EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / misc / vmw_vmci / vmci_guest.c
blob189b325197488d9ed48f1cecc80ddb06ce05e329
1 /*
2 * VMware VMCI Driver
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/moduleparam.h>
19 #include <linux/interrupt.h>
20 #include <linux/highmem.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/smp.h>
29 #include <linux/io.h>
30 #include <linux/vmalloc.h>
32 #include "vmci_datagram.h"
33 #include "vmci_doorbell.h"
34 #include "vmci_context.h"
35 #include "vmci_driver.h"
36 #include "vmci_event.h"
38 #define PCI_DEVICE_ID_VMWARE_VMCI 0x0740
40 #define VMCI_UTIL_NUM_RESOURCES 1
42 static bool vmci_disable_msi;
43 module_param_named(disable_msi, vmci_disable_msi, bool, 0);
44 MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)");
46 static bool vmci_disable_msix;
47 module_param_named(disable_msix, vmci_disable_msix, bool, 0);
48 MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)");
50 static u32 ctx_update_sub_id = VMCI_INVALID_ID;
51 static u32 vm_context_id = VMCI_INVALID_ID;
53 struct vmci_guest_device {
54 struct device *dev; /* PCI device we are attached to */
55 void __iomem *iobase;
57 unsigned int irq;
58 unsigned int intr_type;
59 bool exclusive_vectors;
60 struct msix_entry msix_entries[VMCI_MAX_INTRS];
62 struct tasklet_struct datagram_tasklet;
63 struct tasklet_struct bm_tasklet;
65 void *data_buffer;
66 void *notification_bitmap;
67 dma_addr_t notification_base;
70 /* vmci_dev singleton device and supporting data*/
71 struct pci_dev *vmci_pdev;
72 static struct vmci_guest_device *vmci_dev_g;
73 static DEFINE_SPINLOCK(vmci_dev_spinlock);
75 static atomic_t vmci_num_guest_devices = ATOMIC_INIT(0);
77 bool vmci_guest_code_active(void)
79 return atomic_read(&vmci_num_guest_devices) != 0;
82 u32 vmci_get_vm_context_id(void)
84 if (vm_context_id == VMCI_INVALID_ID) {
85 struct vmci_datagram get_cid_msg;
86 get_cid_msg.dst =
87 vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
88 VMCI_GET_CONTEXT_ID);
89 get_cid_msg.src = VMCI_ANON_SRC_HANDLE;
90 get_cid_msg.payload_size = 0;
91 vm_context_id = vmci_send_datagram(&get_cid_msg);
93 return vm_context_id;
97 * VM to hypervisor call mechanism. We use the standard VMware naming
98 * convention since shared code is calling this function as well.
100 int vmci_send_datagram(struct vmci_datagram *dg)
102 unsigned long flags;
103 int result;
105 /* Check args. */
106 if (dg == NULL)
107 return VMCI_ERROR_INVALID_ARGS;
110 * Need to acquire spinlock on the device because the datagram
111 * data may be spread over multiple pages and the monitor may
112 * interleave device user rpc calls from multiple
113 * VCPUs. Acquiring the spinlock precludes that
114 * possibility. Disabling interrupts to avoid incoming
115 * datagrams during a "rep out" and possibly landing up in
116 * this function.
118 spin_lock_irqsave(&vmci_dev_spinlock, flags);
120 if (vmci_dev_g) {
121 iowrite8_rep(vmci_dev_g->iobase + VMCI_DATA_OUT_ADDR,
122 dg, VMCI_DG_SIZE(dg));
123 result = ioread32(vmci_dev_g->iobase + VMCI_RESULT_LOW_ADDR);
124 } else {
125 result = VMCI_ERROR_UNAVAILABLE;
128 spin_unlock_irqrestore(&vmci_dev_spinlock, flags);
130 return result;
132 EXPORT_SYMBOL_GPL(vmci_send_datagram);
135 * Gets called with the new context id if updated or resumed.
136 * Context id.
138 static void vmci_guest_cid_update(u32 sub_id,
139 const struct vmci_event_data *event_data,
140 void *client_data)
142 const struct vmci_event_payld_ctx *ev_payload =
143 vmci_event_data_const_payload(event_data);
145 if (sub_id != ctx_update_sub_id) {
146 pr_devel("Invalid subscriber (ID=0x%x)\n", sub_id);
147 return;
150 if (!event_data || ev_payload->context_id == VMCI_INVALID_ID) {
151 pr_devel("Invalid event data\n");
152 return;
155 pr_devel("Updating context from (ID=0x%x) to (ID=0x%x) on event (type=%d)\n",
156 vm_context_id, ev_payload->context_id, event_data->event);
158 vm_context_id = ev_payload->context_id;
162 * Verify that the host supports the hypercalls we need. If it does not,
163 * try to find fallback hypercalls and use those instead. Returns
164 * true if required hypercalls (or fallback hypercalls) are
165 * supported by the host, false otherwise.
167 static int vmci_check_host_caps(struct pci_dev *pdev)
169 bool result;
170 struct vmci_resource_query_msg *msg;
171 u32 msg_size = sizeof(struct vmci_resource_query_hdr) +
172 VMCI_UTIL_NUM_RESOURCES * sizeof(u32);
173 struct vmci_datagram *check_msg;
175 check_msg = kmalloc(msg_size, GFP_KERNEL);
176 if (!check_msg) {
177 dev_err(&pdev->dev, "%s: Insufficient memory\n", __func__);
178 return -ENOMEM;
181 check_msg->dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
182 VMCI_RESOURCES_QUERY);
183 check_msg->src = VMCI_ANON_SRC_HANDLE;
184 check_msg->payload_size = msg_size - VMCI_DG_HEADERSIZE;
185 msg = (struct vmci_resource_query_msg *)VMCI_DG_PAYLOAD(check_msg);
187 msg->num_resources = VMCI_UTIL_NUM_RESOURCES;
188 msg->resources[0] = VMCI_GET_CONTEXT_ID;
190 /* Checks that hyper calls are supported */
191 result = vmci_send_datagram(check_msg) == 0x01;
192 kfree(check_msg);
194 dev_dbg(&pdev->dev, "%s: Host capability check: %s\n",
195 __func__, result ? "PASSED" : "FAILED");
197 /* We need the vector. There are no fallbacks. */
198 return result ? 0 : -ENXIO;
202 * Reads datagrams from the data in port and dispatches them. We
203 * always start reading datagrams into only the first page of the
204 * datagram buffer. If the datagrams don't fit into one page, we
205 * use the maximum datagram buffer size for the remainder of the
206 * invocation. This is a simple heuristic for not penalizing
207 * small datagrams.
209 * This function assumes that it has exclusive access to the data
210 * in port for the duration of the call.
212 static void vmci_dispatch_dgs(unsigned long data)
214 struct vmci_guest_device *vmci_dev = (struct vmci_guest_device *)data;
215 u8 *dg_in_buffer = vmci_dev->data_buffer;
216 struct vmci_datagram *dg;
217 size_t dg_in_buffer_size = VMCI_MAX_DG_SIZE;
218 size_t current_dg_in_buffer_size = PAGE_SIZE;
219 size_t remaining_bytes;
221 BUILD_BUG_ON(VMCI_MAX_DG_SIZE < PAGE_SIZE);
223 ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
224 vmci_dev->data_buffer, current_dg_in_buffer_size);
225 dg = (struct vmci_datagram *)dg_in_buffer;
226 remaining_bytes = current_dg_in_buffer_size;
228 while (dg->dst.resource != VMCI_INVALID_ID ||
229 remaining_bytes > PAGE_SIZE) {
230 unsigned dg_in_size;
233 * When the input buffer spans multiple pages, a datagram can
234 * start on any page boundary in the buffer.
236 if (dg->dst.resource == VMCI_INVALID_ID) {
237 dg = (struct vmci_datagram *)roundup(
238 (uintptr_t)dg + 1, PAGE_SIZE);
239 remaining_bytes =
240 (size_t)(dg_in_buffer +
241 current_dg_in_buffer_size -
242 (u8 *)dg);
243 continue;
246 dg_in_size = VMCI_DG_SIZE_ALIGNED(dg);
248 if (dg_in_size <= dg_in_buffer_size) {
249 int result;
252 * If the remaining bytes in the datagram
253 * buffer doesn't contain the complete
254 * datagram, we first make sure we have enough
255 * room for it and then we read the reminder
256 * of the datagram and possibly any following
257 * datagrams.
259 if (dg_in_size > remaining_bytes) {
260 if (remaining_bytes !=
261 current_dg_in_buffer_size) {
264 * We move the partial
265 * datagram to the front and
266 * read the reminder of the
267 * datagram and possibly
268 * following calls into the
269 * following bytes.
271 memmove(dg_in_buffer, dg_in_buffer +
272 current_dg_in_buffer_size -
273 remaining_bytes,
274 remaining_bytes);
275 dg = (struct vmci_datagram *)
276 dg_in_buffer;
279 if (current_dg_in_buffer_size !=
280 dg_in_buffer_size)
281 current_dg_in_buffer_size =
282 dg_in_buffer_size;
284 ioread8_rep(vmci_dev->iobase +
285 VMCI_DATA_IN_ADDR,
286 vmci_dev->data_buffer +
287 remaining_bytes,
288 current_dg_in_buffer_size -
289 remaining_bytes);
293 * We special case event datagrams from the
294 * hypervisor.
296 if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID &&
297 dg->dst.resource == VMCI_EVENT_HANDLER) {
298 result = vmci_event_dispatch(dg);
299 } else {
300 result = vmci_datagram_invoke_guest_handler(dg);
302 if (result < VMCI_SUCCESS)
303 dev_dbg(vmci_dev->dev,
304 "Datagram with resource (ID=0x%x) failed (err=%d)\n",
305 dg->dst.resource, result);
307 /* On to the next datagram. */
308 dg = (struct vmci_datagram *)((u8 *)dg +
309 dg_in_size);
310 } else {
311 size_t bytes_to_skip;
314 * Datagram doesn't fit in datagram buffer of maximal
315 * size. We drop it.
317 dev_dbg(vmci_dev->dev,
318 "Failed to receive datagram (size=%u bytes)\n",
319 dg_in_size);
321 bytes_to_skip = dg_in_size - remaining_bytes;
322 if (current_dg_in_buffer_size != dg_in_buffer_size)
323 current_dg_in_buffer_size = dg_in_buffer_size;
325 for (;;) {
326 ioread8_rep(vmci_dev->iobase +
327 VMCI_DATA_IN_ADDR,
328 vmci_dev->data_buffer,
329 current_dg_in_buffer_size);
330 if (bytes_to_skip <= current_dg_in_buffer_size)
331 break;
333 bytes_to_skip -= current_dg_in_buffer_size;
335 dg = (struct vmci_datagram *)(dg_in_buffer +
336 bytes_to_skip);
339 remaining_bytes =
340 (size_t) (dg_in_buffer + current_dg_in_buffer_size -
341 (u8 *)dg);
343 if (remaining_bytes < VMCI_DG_HEADERSIZE) {
344 /* Get the next batch of datagrams. */
346 ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
347 vmci_dev->data_buffer,
348 current_dg_in_buffer_size);
349 dg = (struct vmci_datagram *)dg_in_buffer;
350 remaining_bytes = current_dg_in_buffer_size;
356 * Scans the notification bitmap for raised flags, clears them
357 * and handles the notifications.
359 static void vmci_process_bitmap(unsigned long data)
361 struct vmci_guest_device *dev = (struct vmci_guest_device *)data;
363 if (!dev->notification_bitmap) {
364 dev_dbg(dev->dev, "No bitmap present in %s\n", __func__);
365 return;
368 vmci_dbell_scan_notification_entries(dev->notification_bitmap);
372 * Enable MSI-X. Try exclusive vectors first, then shared vectors.
374 static int vmci_enable_msix(struct pci_dev *pdev,
375 struct vmci_guest_device *vmci_dev)
377 int i;
378 int result;
380 for (i = 0; i < VMCI_MAX_INTRS; ++i) {
381 vmci_dev->msix_entries[i].entry = i;
382 vmci_dev->msix_entries[i].vector = i;
385 result = pci_enable_msix_exact(pdev,
386 vmci_dev->msix_entries, VMCI_MAX_INTRS);
387 if (result == 0)
388 vmci_dev->exclusive_vectors = true;
389 else if (result == -ENOSPC)
390 result = pci_enable_msix_exact(pdev, vmci_dev->msix_entries, 1);
392 return result;
396 * Interrupt handler for legacy or MSI interrupt, or for first MSI-X
397 * interrupt (vector VMCI_INTR_DATAGRAM).
399 static irqreturn_t vmci_interrupt(int irq, void *_dev)
401 struct vmci_guest_device *dev = _dev;
404 * If we are using MSI-X with exclusive vectors then we simply schedule
405 * the datagram tasklet, since we know the interrupt was meant for us.
406 * Otherwise we must read the ICR to determine what to do.
409 if (dev->intr_type == VMCI_INTR_TYPE_MSIX && dev->exclusive_vectors) {
410 tasklet_schedule(&dev->datagram_tasklet);
411 } else {
412 unsigned int icr;
414 /* Acknowledge interrupt and determine what needs doing. */
415 icr = ioread32(dev->iobase + VMCI_ICR_ADDR);
416 if (icr == 0 || icr == ~0)
417 return IRQ_NONE;
419 if (icr & VMCI_ICR_DATAGRAM) {
420 tasklet_schedule(&dev->datagram_tasklet);
421 icr &= ~VMCI_ICR_DATAGRAM;
424 if (icr & VMCI_ICR_NOTIFICATION) {
425 tasklet_schedule(&dev->bm_tasklet);
426 icr &= ~VMCI_ICR_NOTIFICATION;
429 if (icr != 0)
430 dev_warn(dev->dev,
431 "Ignoring unknown interrupt cause (%d)\n",
432 icr);
435 return IRQ_HANDLED;
439 * Interrupt handler for MSI-X interrupt vector VMCI_INTR_NOTIFICATION,
440 * which is for the notification bitmap. Will only get called if we are
441 * using MSI-X with exclusive vectors.
443 static irqreturn_t vmci_interrupt_bm(int irq, void *_dev)
445 struct vmci_guest_device *dev = _dev;
447 /* For MSI-X we can just assume it was meant for us. */
448 tasklet_schedule(&dev->bm_tasklet);
450 return IRQ_HANDLED;
454 * Most of the initialization at module load time is done here.
456 static int vmci_guest_probe_device(struct pci_dev *pdev,
457 const struct pci_device_id *id)
459 struct vmci_guest_device *vmci_dev;
460 void __iomem *iobase;
461 unsigned int capabilities;
462 unsigned long cmd;
463 int vmci_err;
464 int error;
466 dev_dbg(&pdev->dev, "Probing for vmci/PCI guest device\n");
468 error = pcim_enable_device(pdev);
469 if (error) {
470 dev_err(&pdev->dev,
471 "Failed to enable VMCI device: %d\n", error);
472 return error;
475 error = pcim_iomap_regions(pdev, 1 << 0, KBUILD_MODNAME);
476 if (error) {
477 dev_err(&pdev->dev, "Failed to reserve/map IO regions\n");
478 return error;
481 iobase = pcim_iomap_table(pdev)[0];
483 dev_info(&pdev->dev, "Found VMCI PCI device at %#lx, irq %u\n",
484 (unsigned long)iobase, pdev->irq);
486 vmci_dev = devm_kzalloc(&pdev->dev, sizeof(*vmci_dev), GFP_KERNEL);
487 if (!vmci_dev) {
488 dev_err(&pdev->dev,
489 "Can't allocate memory for VMCI device\n");
490 return -ENOMEM;
493 vmci_dev->dev = &pdev->dev;
494 vmci_dev->intr_type = VMCI_INTR_TYPE_INTX;
495 vmci_dev->exclusive_vectors = false;
496 vmci_dev->iobase = iobase;
498 tasklet_init(&vmci_dev->datagram_tasklet,
499 vmci_dispatch_dgs, (unsigned long)vmci_dev);
500 tasklet_init(&vmci_dev->bm_tasklet,
501 vmci_process_bitmap, (unsigned long)vmci_dev);
503 vmci_dev->data_buffer = vmalloc(VMCI_MAX_DG_SIZE);
504 if (!vmci_dev->data_buffer) {
505 dev_err(&pdev->dev,
506 "Can't allocate memory for datagram buffer\n");
507 return -ENOMEM;
510 pci_set_master(pdev); /* To enable queue_pair functionality. */
513 * Verify that the VMCI Device supports the capabilities that
514 * we need. If the device is missing capabilities that we would
515 * like to use, check for fallback capabilities and use those
516 * instead (so we can run a new VM on old hosts). Fail the load if
517 * a required capability is missing and there is no fallback.
519 * Right now, we need datagrams. There are no fallbacks.
521 capabilities = ioread32(vmci_dev->iobase + VMCI_CAPS_ADDR);
522 if (!(capabilities & VMCI_CAPS_DATAGRAM)) {
523 dev_err(&pdev->dev, "Device does not support datagrams\n");
524 error = -ENXIO;
525 goto err_free_data_buffer;
529 * If the hardware supports notifications, we will use that as
530 * well.
532 if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
533 vmci_dev->notification_bitmap = dma_alloc_coherent(
534 &pdev->dev, PAGE_SIZE, &vmci_dev->notification_base,
535 GFP_KERNEL);
536 if (!vmci_dev->notification_bitmap) {
537 dev_warn(&pdev->dev,
538 "Unable to allocate notification bitmap\n");
539 } else {
540 memset(vmci_dev->notification_bitmap, 0, PAGE_SIZE);
541 capabilities |= VMCI_CAPS_NOTIFICATIONS;
545 dev_info(&pdev->dev, "Using capabilities 0x%x\n", capabilities);
547 /* Let the host know which capabilities we intend to use. */
548 iowrite32(capabilities, vmci_dev->iobase + VMCI_CAPS_ADDR);
550 /* Set up global device so that we can start sending datagrams */
551 spin_lock_irq(&vmci_dev_spinlock);
552 vmci_dev_g = vmci_dev;
553 vmci_pdev = pdev;
554 spin_unlock_irq(&vmci_dev_spinlock);
557 * Register notification bitmap with device if that capability is
558 * used.
560 if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
561 unsigned long bitmap_ppn =
562 vmci_dev->notification_base >> PAGE_SHIFT;
563 if (!vmci_dbell_register_notification_bitmap(bitmap_ppn)) {
564 dev_warn(&pdev->dev,
565 "VMCI device unable to register notification bitmap with PPN 0x%x\n",
566 (u32) bitmap_ppn);
567 error = -ENXIO;
568 goto err_remove_vmci_dev_g;
572 /* Check host capabilities. */
573 error = vmci_check_host_caps(pdev);
574 if (error)
575 goto err_remove_bitmap;
577 /* Enable device. */
580 * We subscribe to the VMCI_EVENT_CTX_ID_UPDATE here so we can
581 * update the internal context id when needed.
583 vmci_err = vmci_event_subscribe(VMCI_EVENT_CTX_ID_UPDATE,
584 vmci_guest_cid_update, NULL,
585 &ctx_update_sub_id);
586 if (vmci_err < VMCI_SUCCESS)
587 dev_warn(&pdev->dev,
588 "Failed to subscribe to event (type=%d): %d\n",
589 VMCI_EVENT_CTX_ID_UPDATE, vmci_err);
592 * Enable interrupts. Try MSI-X first, then MSI, and then fallback on
593 * legacy interrupts.
595 if (!vmci_disable_msix && !vmci_enable_msix(pdev, vmci_dev)) {
596 vmci_dev->intr_type = VMCI_INTR_TYPE_MSIX;
597 vmci_dev->irq = vmci_dev->msix_entries[0].vector;
598 } else if (!vmci_disable_msi && !pci_enable_msi(pdev)) {
599 vmci_dev->intr_type = VMCI_INTR_TYPE_MSI;
600 vmci_dev->irq = pdev->irq;
601 } else {
602 vmci_dev->intr_type = VMCI_INTR_TYPE_INTX;
603 vmci_dev->irq = pdev->irq;
607 * Request IRQ for legacy or MSI interrupts, or for first
608 * MSI-X vector.
610 error = request_irq(vmci_dev->irq, vmci_interrupt, IRQF_SHARED,
611 KBUILD_MODNAME, vmci_dev);
612 if (error) {
613 dev_err(&pdev->dev, "Irq %u in use: %d\n",
614 vmci_dev->irq, error);
615 goto err_disable_msi;
619 * For MSI-X with exclusive vectors we need to request an
620 * interrupt for each vector so that we get a separate
621 * interrupt handler routine. This allows us to distinguish
622 * between the vectors.
624 if (vmci_dev->exclusive_vectors) {
625 error = request_irq(vmci_dev->msix_entries[1].vector,
626 vmci_interrupt_bm, 0, KBUILD_MODNAME,
627 vmci_dev);
628 if (error) {
629 dev_err(&pdev->dev,
630 "Failed to allocate irq %u: %d\n",
631 vmci_dev->msix_entries[1].vector, error);
632 goto err_free_irq;
636 dev_dbg(&pdev->dev, "Registered device\n");
638 atomic_inc(&vmci_num_guest_devices);
640 /* Enable specific interrupt bits. */
641 cmd = VMCI_IMR_DATAGRAM;
642 if (capabilities & VMCI_CAPS_NOTIFICATIONS)
643 cmd |= VMCI_IMR_NOTIFICATION;
644 iowrite32(cmd, vmci_dev->iobase + VMCI_IMR_ADDR);
646 /* Enable interrupts. */
647 iowrite32(VMCI_CONTROL_INT_ENABLE,
648 vmci_dev->iobase + VMCI_CONTROL_ADDR);
650 pci_set_drvdata(pdev, vmci_dev);
651 return 0;
653 err_free_irq:
654 free_irq(vmci_dev->irq, vmci_dev);
655 tasklet_kill(&vmci_dev->datagram_tasklet);
656 tasklet_kill(&vmci_dev->bm_tasklet);
658 err_disable_msi:
659 if (vmci_dev->intr_type == VMCI_INTR_TYPE_MSIX)
660 pci_disable_msix(pdev);
661 else if (vmci_dev->intr_type == VMCI_INTR_TYPE_MSI)
662 pci_disable_msi(pdev);
664 vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
665 if (vmci_err < VMCI_SUCCESS)
666 dev_warn(&pdev->dev,
667 "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
668 VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
670 err_remove_bitmap:
671 if (vmci_dev->notification_bitmap) {
672 iowrite32(VMCI_CONTROL_RESET,
673 vmci_dev->iobase + VMCI_CONTROL_ADDR);
674 dma_free_coherent(&pdev->dev, PAGE_SIZE,
675 vmci_dev->notification_bitmap,
676 vmci_dev->notification_base);
679 err_remove_vmci_dev_g:
680 spin_lock_irq(&vmci_dev_spinlock);
681 vmci_pdev = NULL;
682 vmci_dev_g = NULL;
683 spin_unlock_irq(&vmci_dev_spinlock);
685 err_free_data_buffer:
686 vfree(vmci_dev->data_buffer);
688 /* The rest are managed resources and will be freed by PCI core */
689 return error;
692 static void vmci_guest_remove_device(struct pci_dev *pdev)
694 struct vmci_guest_device *vmci_dev = pci_get_drvdata(pdev);
695 int vmci_err;
697 dev_dbg(&pdev->dev, "Removing device\n");
699 atomic_dec(&vmci_num_guest_devices);
701 vmci_qp_guest_endpoints_exit();
703 vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
704 if (vmci_err < VMCI_SUCCESS)
705 dev_warn(&pdev->dev,
706 "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
707 VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
709 spin_lock_irq(&vmci_dev_spinlock);
710 vmci_dev_g = NULL;
711 vmci_pdev = NULL;
712 spin_unlock_irq(&vmci_dev_spinlock);
714 dev_dbg(&pdev->dev, "Resetting vmci device\n");
715 iowrite32(VMCI_CONTROL_RESET, vmci_dev->iobase + VMCI_CONTROL_ADDR);
718 * Free IRQ and then disable MSI/MSI-X as appropriate. For
719 * MSI-X, we might have multiple vectors, each with their own
720 * IRQ, which we must free too.
722 free_irq(vmci_dev->irq, vmci_dev);
723 if (vmci_dev->intr_type == VMCI_INTR_TYPE_MSIX) {
724 if (vmci_dev->exclusive_vectors)
725 free_irq(vmci_dev->msix_entries[1].vector, vmci_dev);
726 pci_disable_msix(pdev);
727 } else if (vmci_dev->intr_type == VMCI_INTR_TYPE_MSI) {
728 pci_disable_msi(pdev);
731 tasklet_kill(&vmci_dev->datagram_tasklet);
732 tasklet_kill(&vmci_dev->bm_tasklet);
734 if (vmci_dev->notification_bitmap) {
736 * The device reset above cleared the bitmap state of the
737 * device, so we can safely free it here.
740 dma_free_coherent(&pdev->dev, PAGE_SIZE,
741 vmci_dev->notification_bitmap,
742 vmci_dev->notification_base);
745 vfree(vmci_dev->data_buffer);
747 /* The rest are managed resources and will be freed by PCI core */
750 static const struct pci_device_id vmci_ids[] = {
751 { PCI_DEVICE(PCI_VENDOR_ID_VMWARE, PCI_DEVICE_ID_VMWARE_VMCI), },
752 { 0 },
754 MODULE_DEVICE_TABLE(pci, vmci_ids);
756 static struct pci_driver vmci_guest_driver = {
757 .name = KBUILD_MODNAME,
758 .id_table = vmci_ids,
759 .probe = vmci_guest_probe_device,
760 .remove = vmci_guest_remove_device,
763 int __init vmci_guest_init(void)
765 return pci_register_driver(&vmci_guest_driver);
768 void __exit vmci_guest_exit(void)
770 pci_unregister_driver(&vmci_guest_driver);