EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / mmc / card / block.c
blob8a0147dfed27d864d419de730499960c54bc202c
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
45 #include <asm/uaccess.h>
47 #include "queue.h"
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
61 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 #define MMC_SANITIZE_REQ_TIMEOUT 240000
63 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
65 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
66 (rq_data_dir(req) == WRITE))
67 #define PACKED_CMD_VER 0x01
68 #define PACKED_CMD_WR 0x02
70 static DEFINE_MUTEX(block_mutex);
73 * The defaults come from config options but can be overriden by module
74 * or bootarg options.
76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
79 * We've only got one major, so number of mmcblk devices is
80 * limited to (1 << 20) / number of minors per device. It is also
81 * currently limited by the size of the static bitmaps below.
83 static int max_devices;
85 #define MAX_DEVICES 256
87 /* TODO: Replace these with struct ida */
88 static DECLARE_BITMAP(dev_use, MAX_DEVICES);
91 * There is one mmc_blk_data per slot.
93 struct mmc_blk_data {
94 spinlock_t lock;
95 struct gendisk *disk;
96 struct mmc_queue queue;
97 struct list_head part;
99 unsigned int flags;
100 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
101 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
102 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
104 unsigned int usage;
105 unsigned int read_only;
106 unsigned int part_type;
107 unsigned int reset_done;
108 #define MMC_BLK_READ BIT(0)
109 #define MMC_BLK_WRITE BIT(1)
110 #define MMC_BLK_DISCARD BIT(2)
111 #define MMC_BLK_SECDISCARD BIT(3)
114 * Only set in main mmc_blk_data associated
115 * with mmc_card with dev_set_drvdata, and keeps
116 * track of the current selected device partition.
118 unsigned int part_curr;
119 struct device_attribute force_ro;
120 struct device_attribute power_ro_lock;
121 int area_type;
124 static DEFINE_MUTEX(open_lock);
126 enum {
127 MMC_PACKED_NR_IDX = -1,
128 MMC_PACKED_NR_ZERO,
129 MMC_PACKED_NR_SINGLE,
132 module_param(perdev_minors, int, 0444);
133 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
135 static inline int mmc_blk_part_switch(struct mmc_card *card,
136 struct mmc_blk_data *md);
137 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
139 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
141 struct mmc_packed *packed = mqrq->packed;
143 BUG_ON(!packed);
145 mqrq->cmd_type = MMC_PACKED_NONE;
146 packed->nr_entries = MMC_PACKED_NR_ZERO;
147 packed->idx_failure = MMC_PACKED_NR_IDX;
148 packed->retries = 0;
149 packed->blocks = 0;
152 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
154 struct mmc_blk_data *md;
156 mutex_lock(&open_lock);
157 md = disk->private_data;
158 if (md && md->usage == 0)
159 md = NULL;
160 if (md)
161 md->usage++;
162 mutex_unlock(&open_lock);
164 return md;
167 static inline int mmc_get_devidx(struct gendisk *disk)
169 int devidx = disk->first_minor / perdev_minors;
170 return devidx;
173 static void mmc_blk_put(struct mmc_blk_data *md)
175 mutex_lock(&open_lock);
176 md->usage--;
177 if (md->usage == 0) {
178 int devidx = mmc_get_devidx(md->disk);
179 blk_cleanup_queue(md->queue.queue);
181 __clear_bit(devidx, dev_use);
183 put_disk(md->disk);
184 kfree(md);
186 mutex_unlock(&open_lock);
189 static ssize_t power_ro_lock_show(struct device *dev,
190 struct device_attribute *attr, char *buf)
192 int ret;
193 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
194 struct mmc_card *card = md->queue.card;
195 int locked = 0;
197 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
198 locked = 2;
199 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
200 locked = 1;
202 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
204 mmc_blk_put(md);
206 return ret;
209 static ssize_t power_ro_lock_store(struct device *dev,
210 struct device_attribute *attr, const char *buf, size_t count)
212 int ret;
213 struct mmc_blk_data *md, *part_md;
214 struct mmc_card *card;
215 unsigned long set;
217 if (kstrtoul(buf, 0, &set))
218 return -EINVAL;
220 if (set != 1)
221 return count;
223 md = mmc_blk_get(dev_to_disk(dev));
224 card = md->queue.card;
226 mmc_get_card(card);
228 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
229 card->ext_csd.boot_ro_lock |
230 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
231 card->ext_csd.part_time);
232 if (ret)
233 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
234 else
235 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
237 mmc_put_card(card);
239 if (!ret) {
240 pr_info("%s: Locking boot partition ro until next power on\n",
241 md->disk->disk_name);
242 set_disk_ro(md->disk, 1);
244 list_for_each_entry(part_md, &md->part, part)
245 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
246 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
247 set_disk_ro(part_md->disk, 1);
251 mmc_blk_put(md);
252 return count;
255 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
256 char *buf)
258 int ret;
259 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
261 ret = snprintf(buf, PAGE_SIZE, "%d\n",
262 get_disk_ro(dev_to_disk(dev)) ^
263 md->read_only);
264 mmc_blk_put(md);
265 return ret;
268 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
269 const char *buf, size_t count)
271 int ret;
272 char *end;
273 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
274 unsigned long set = simple_strtoul(buf, &end, 0);
275 if (end == buf) {
276 ret = -EINVAL;
277 goto out;
280 set_disk_ro(dev_to_disk(dev), set || md->read_only);
281 ret = count;
282 out:
283 mmc_blk_put(md);
284 return ret;
287 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
289 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
290 int ret = -ENXIO;
292 mutex_lock(&block_mutex);
293 if (md) {
294 if (md->usage == 2)
295 check_disk_change(bdev);
296 ret = 0;
298 if ((mode & FMODE_WRITE) && md->read_only) {
299 mmc_blk_put(md);
300 ret = -EROFS;
303 mutex_unlock(&block_mutex);
305 return ret;
308 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
310 struct mmc_blk_data *md = disk->private_data;
312 mutex_lock(&block_mutex);
313 mmc_blk_put(md);
314 mutex_unlock(&block_mutex);
317 static int
318 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
320 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
321 geo->heads = 4;
322 geo->sectors = 16;
323 return 0;
326 struct mmc_blk_ioc_data {
327 struct mmc_ioc_cmd ic;
328 unsigned char *buf;
329 u64 buf_bytes;
332 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
333 struct mmc_ioc_cmd __user *user)
335 struct mmc_blk_ioc_data *idata;
336 int err;
338 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
339 if (!idata) {
340 err = -ENOMEM;
341 goto out;
344 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
345 err = -EFAULT;
346 goto idata_err;
349 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
350 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
351 err = -EOVERFLOW;
352 goto idata_err;
355 if (!idata->buf_bytes)
356 return idata;
358 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
359 if (!idata->buf) {
360 err = -ENOMEM;
361 goto idata_err;
364 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
365 idata->ic.data_ptr, idata->buf_bytes)) {
366 err = -EFAULT;
367 goto copy_err;
370 return idata;
372 copy_err:
373 kfree(idata->buf);
374 idata_err:
375 kfree(idata);
376 out:
377 return ERR_PTR(err);
380 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
381 struct mmc_blk_ioc_data *idata)
383 struct mmc_ioc_cmd *ic = &idata->ic;
385 if (copy_to_user(&(ic_ptr->response), ic->response,
386 sizeof(ic->response)))
387 return -EFAULT;
389 if (!idata->ic.write_flag) {
390 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
391 idata->buf, idata->buf_bytes))
392 return -EFAULT;
395 return 0;
398 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
399 u32 retries_max)
401 int err;
402 u32 retry_count = 0;
404 if (!status || !retries_max)
405 return -EINVAL;
407 do {
408 err = get_card_status(card, status, 5);
409 if (err)
410 break;
412 if (!R1_STATUS(*status) &&
413 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
414 break; /* RPMB programming operation complete */
417 * Rechedule to give the MMC device a chance to continue
418 * processing the previous command without being polled too
419 * frequently.
421 usleep_range(1000, 5000);
422 } while (++retry_count < retries_max);
424 if (retry_count == retries_max)
425 err = -EPERM;
427 return err;
430 static int ioctl_do_sanitize(struct mmc_card *card)
432 int err;
434 if (!mmc_can_sanitize(card)) {
435 pr_warn("%s: %s - SANITIZE is not supported\n",
436 mmc_hostname(card->host), __func__);
437 err = -EOPNOTSUPP;
438 goto out;
441 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
442 mmc_hostname(card->host), __func__);
444 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
445 EXT_CSD_SANITIZE_START, 1,
446 MMC_SANITIZE_REQ_TIMEOUT);
448 if (err)
449 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
450 mmc_hostname(card->host), __func__, err);
452 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
453 __func__);
454 out:
455 return err;
458 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
459 struct mmc_blk_ioc_data *idata)
461 struct mmc_command cmd = {0};
462 struct mmc_data data = {0};
463 struct mmc_request mrq = {NULL};
464 struct scatterlist sg;
465 int err;
466 int is_rpmb = false;
467 u32 status = 0;
469 if (!card || !md || !idata)
470 return -EINVAL;
472 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
473 is_rpmb = true;
475 cmd.opcode = idata->ic.opcode;
476 cmd.arg = idata->ic.arg;
477 cmd.flags = idata->ic.flags;
479 if (idata->buf_bytes) {
480 data.sg = &sg;
481 data.sg_len = 1;
482 data.blksz = idata->ic.blksz;
483 data.blocks = idata->ic.blocks;
485 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
487 if (idata->ic.write_flag)
488 data.flags = MMC_DATA_WRITE;
489 else
490 data.flags = MMC_DATA_READ;
492 /* data.flags must already be set before doing this. */
493 mmc_set_data_timeout(&data, card);
495 /* Allow overriding the timeout_ns for empirical tuning. */
496 if (idata->ic.data_timeout_ns)
497 data.timeout_ns = idata->ic.data_timeout_ns;
499 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
501 * Pretend this is a data transfer and rely on the
502 * host driver to compute timeout. When all host
503 * drivers support cmd.cmd_timeout for R1B, this
504 * can be changed to:
506 * mrq.data = NULL;
507 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
509 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
512 mrq.data = &data;
515 mrq.cmd = &cmd;
517 err = mmc_blk_part_switch(card, md);
518 if (err)
519 return err;
521 if (idata->ic.is_acmd) {
522 err = mmc_app_cmd(card->host, card);
523 if (err)
524 return err;
527 if (is_rpmb) {
528 err = mmc_set_blockcount(card, data.blocks,
529 idata->ic.write_flag & (1 << 31));
530 if (err)
531 return err;
534 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
535 (cmd.opcode == MMC_SWITCH)) {
536 err = ioctl_do_sanitize(card);
538 if (err)
539 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
540 __func__, err);
542 return err;
545 mmc_wait_for_req(card->host, &mrq);
547 if (cmd.error) {
548 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
549 __func__, cmd.error);
550 return cmd.error;
552 if (data.error) {
553 dev_err(mmc_dev(card->host), "%s: data error %d\n",
554 __func__, data.error);
555 return data.error;
559 * According to the SD specs, some commands require a delay after
560 * issuing the command.
562 if (idata->ic.postsleep_min_us)
563 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
565 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
567 if (is_rpmb) {
569 * Ensure RPMB command has completed by polling CMD13
570 * "Send Status".
572 err = ioctl_rpmb_card_status_poll(card, &status, 5);
573 if (err)
574 dev_err(mmc_dev(card->host),
575 "%s: Card Status=0x%08X, error %d\n",
576 __func__, status, err);
579 return err;
582 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
583 struct mmc_ioc_cmd __user *ic_ptr)
585 struct mmc_blk_ioc_data *idata;
586 struct mmc_blk_data *md;
587 struct mmc_card *card;
588 int err = 0, ioc_err = 0;
591 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
592 * whole block device, not on a partition. This prevents overspray
593 * between sibling partitions.
595 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
596 return -EPERM;
598 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
599 if (IS_ERR(idata))
600 return PTR_ERR(idata);
602 md = mmc_blk_get(bdev->bd_disk);
603 if (!md) {
604 err = -EINVAL;
605 goto cmd_err;
608 card = md->queue.card;
609 if (IS_ERR(card)) {
610 err = PTR_ERR(card);
611 goto cmd_done;
614 mmc_get_card(card);
616 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
618 mmc_put_card(card);
620 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
622 cmd_done:
623 mmc_blk_put(md);
624 cmd_err:
625 kfree(idata->buf);
626 kfree(idata);
627 return ioc_err ? ioc_err : err;
630 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
631 struct mmc_ioc_multi_cmd __user *user)
633 struct mmc_blk_ioc_data **idata = NULL;
634 struct mmc_ioc_cmd __user *cmds = user->cmds;
635 struct mmc_card *card;
636 struct mmc_blk_data *md;
637 int i, err = 0, ioc_err = 0;
638 __u64 num_of_cmds;
641 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
642 * whole block device, not on a partition. This prevents overspray
643 * between sibling partitions.
645 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
646 return -EPERM;
648 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
649 sizeof(num_of_cmds)))
650 return -EFAULT;
652 if (num_of_cmds > MMC_IOC_MAX_CMDS)
653 return -EINVAL;
655 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
656 if (!idata)
657 return -ENOMEM;
659 for (i = 0; i < num_of_cmds; i++) {
660 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
661 if (IS_ERR(idata[i])) {
662 err = PTR_ERR(idata[i]);
663 num_of_cmds = i;
664 goto cmd_err;
668 md = mmc_blk_get(bdev->bd_disk);
669 if (!md) {
670 err = -EINVAL;
671 goto cmd_err;
674 card = md->queue.card;
675 if (IS_ERR(card)) {
676 err = PTR_ERR(card);
677 goto cmd_done;
680 mmc_get_card(card);
682 for (i = 0; i < num_of_cmds && !ioc_err; i++)
683 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
685 mmc_put_card(card);
687 /* copy to user if data and response */
688 for (i = 0; i < num_of_cmds && !err; i++)
689 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
691 cmd_done:
692 mmc_blk_put(md);
693 cmd_err:
694 for (i = 0; i < num_of_cmds; i++) {
695 kfree(idata[i]->buf);
696 kfree(idata[i]);
698 kfree(idata);
699 return ioc_err ? ioc_err : err;
702 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
703 unsigned int cmd, unsigned long arg)
705 switch (cmd) {
706 case MMC_IOC_CMD:
707 return mmc_blk_ioctl_cmd(bdev,
708 (struct mmc_ioc_cmd __user *)arg);
709 case MMC_IOC_MULTI_CMD:
710 return mmc_blk_ioctl_multi_cmd(bdev,
711 (struct mmc_ioc_multi_cmd __user *)arg);
712 default:
713 return -EINVAL;
717 #ifdef CONFIG_COMPAT
718 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
719 unsigned int cmd, unsigned long arg)
721 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
723 #endif
725 static const struct block_device_operations mmc_bdops = {
726 .open = mmc_blk_open,
727 .release = mmc_blk_release,
728 .getgeo = mmc_blk_getgeo,
729 .owner = THIS_MODULE,
730 .ioctl = mmc_blk_ioctl,
731 #ifdef CONFIG_COMPAT
732 .compat_ioctl = mmc_blk_compat_ioctl,
733 #endif
736 static inline int mmc_blk_part_switch(struct mmc_card *card,
737 struct mmc_blk_data *md)
739 int ret;
740 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
742 if (main_md->part_curr == md->part_type)
743 return 0;
745 if (mmc_card_mmc(card)) {
746 u8 part_config = card->ext_csd.part_config;
748 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
749 part_config |= md->part_type;
751 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
752 EXT_CSD_PART_CONFIG, part_config,
753 card->ext_csd.part_time);
754 if (ret)
755 return ret;
757 card->ext_csd.part_config = part_config;
760 main_md->part_curr = md->part_type;
761 return 0;
764 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
766 int err;
767 u32 result;
768 __be32 *blocks;
770 struct mmc_request mrq = {NULL};
771 struct mmc_command cmd = {0};
772 struct mmc_data data = {0};
774 struct scatterlist sg;
776 cmd.opcode = MMC_APP_CMD;
777 cmd.arg = card->rca << 16;
778 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
780 err = mmc_wait_for_cmd(card->host, &cmd, 0);
781 if (err)
782 return (u32)-1;
783 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
784 return (u32)-1;
786 memset(&cmd, 0, sizeof(struct mmc_command));
788 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
789 cmd.arg = 0;
790 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
792 data.blksz = 4;
793 data.blocks = 1;
794 data.flags = MMC_DATA_READ;
795 data.sg = &sg;
796 data.sg_len = 1;
797 mmc_set_data_timeout(&data, card);
799 mrq.cmd = &cmd;
800 mrq.data = &data;
802 blocks = kmalloc(4, GFP_KERNEL);
803 if (!blocks)
804 return (u32)-1;
806 sg_init_one(&sg, blocks, 4);
808 mmc_wait_for_req(card->host, &mrq);
810 result = ntohl(*blocks);
811 kfree(blocks);
813 if (cmd.error || data.error)
814 result = (u32)-1;
816 return result;
819 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
821 struct mmc_command cmd = {0};
822 int err;
824 cmd.opcode = MMC_SEND_STATUS;
825 if (!mmc_host_is_spi(card->host))
826 cmd.arg = card->rca << 16;
827 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
828 err = mmc_wait_for_cmd(card->host, &cmd, retries);
829 if (err == 0)
830 *status = cmd.resp[0];
831 return err;
834 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
835 bool hw_busy_detect, struct request *req, int *gen_err)
837 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
838 int err = 0;
839 u32 status;
841 do {
842 err = get_card_status(card, &status, 5);
843 if (err) {
844 pr_err("%s: error %d requesting status\n",
845 req->rq_disk->disk_name, err);
846 return err;
849 if (status & R1_ERROR) {
850 pr_err("%s: %s: error sending status cmd, status %#x\n",
851 req->rq_disk->disk_name, __func__, status);
852 *gen_err = 1;
855 /* We may rely on the host hw to handle busy detection.*/
856 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
857 hw_busy_detect)
858 break;
861 * Timeout if the device never becomes ready for data and never
862 * leaves the program state.
864 if (time_after(jiffies, timeout)) {
865 pr_err("%s: Card stuck in programming state! %s %s\n",
866 mmc_hostname(card->host),
867 req->rq_disk->disk_name, __func__);
868 return -ETIMEDOUT;
872 * Some cards mishandle the status bits,
873 * so make sure to check both the busy
874 * indication and the card state.
876 } while (!(status & R1_READY_FOR_DATA) ||
877 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
879 return err;
882 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
883 struct request *req, int *gen_err, u32 *stop_status)
885 struct mmc_host *host = card->host;
886 struct mmc_command cmd = {0};
887 int err;
888 bool use_r1b_resp = rq_data_dir(req) == WRITE;
891 * Normally we use R1B responses for WRITE, but in cases where the host
892 * has specified a max_busy_timeout we need to validate it. A failure
893 * means we need to prevent the host from doing hw busy detection, which
894 * is done by converting to a R1 response instead.
896 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
897 use_r1b_resp = false;
899 cmd.opcode = MMC_STOP_TRANSMISSION;
900 if (use_r1b_resp) {
901 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
902 cmd.busy_timeout = timeout_ms;
903 } else {
904 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
907 err = mmc_wait_for_cmd(host, &cmd, 5);
908 if (err)
909 return err;
911 *stop_status = cmd.resp[0];
913 /* No need to check card status in case of READ. */
914 if (rq_data_dir(req) == READ)
915 return 0;
917 if (!mmc_host_is_spi(host) &&
918 (*stop_status & R1_ERROR)) {
919 pr_err("%s: %s: general error sending stop command, resp %#x\n",
920 req->rq_disk->disk_name, __func__, *stop_status);
921 *gen_err = 1;
924 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
927 #define ERR_NOMEDIUM 3
928 #define ERR_RETRY 2
929 #define ERR_ABORT 1
930 #define ERR_CONTINUE 0
932 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
933 bool status_valid, u32 status)
935 switch (error) {
936 case -EILSEQ:
937 /* response crc error, retry the r/w cmd */
938 pr_err("%s: %s sending %s command, card status %#x\n",
939 req->rq_disk->disk_name, "response CRC error",
940 name, status);
941 return ERR_RETRY;
943 case -ETIMEDOUT:
944 pr_err("%s: %s sending %s command, card status %#x\n",
945 req->rq_disk->disk_name, "timed out", name, status);
947 /* If the status cmd initially failed, retry the r/w cmd */
948 if (!status_valid)
949 return ERR_RETRY;
952 * If it was a r/w cmd crc error, or illegal command
953 * (eg, issued in wrong state) then retry - we should
954 * have corrected the state problem above.
956 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
957 return ERR_RETRY;
959 /* Otherwise abort the command */
960 return ERR_ABORT;
962 default:
963 /* We don't understand the error code the driver gave us */
964 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
965 req->rq_disk->disk_name, error, status);
966 return ERR_ABORT;
971 * Initial r/w and stop cmd error recovery.
972 * We don't know whether the card received the r/w cmd or not, so try to
973 * restore things back to a sane state. Essentially, we do this as follows:
974 * - Obtain card status. If the first attempt to obtain card status fails,
975 * the status word will reflect the failed status cmd, not the failed
976 * r/w cmd. If we fail to obtain card status, it suggests we can no
977 * longer communicate with the card.
978 * - Check the card state. If the card received the cmd but there was a
979 * transient problem with the response, it might still be in a data transfer
980 * mode. Try to send it a stop command. If this fails, we can't recover.
981 * - If the r/w cmd failed due to a response CRC error, it was probably
982 * transient, so retry the cmd.
983 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
984 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
985 * illegal cmd, retry.
986 * Otherwise we don't understand what happened, so abort.
988 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
989 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
991 bool prev_cmd_status_valid = true;
992 u32 status, stop_status = 0;
993 int err, retry;
995 if (mmc_card_removed(card))
996 return ERR_NOMEDIUM;
999 * Try to get card status which indicates both the card state
1000 * and why there was no response. If the first attempt fails,
1001 * we can't be sure the returned status is for the r/w command.
1003 for (retry = 2; retry >= 0; retry--) {
1004 err = get_card_status(card, &status, 0);
1005 if (!err)
1006 break;
1008 /* Re-tune if needed */
1009 mmc_retune_recheck(card->host);
1011 prev_cmd_status_valid = false;
1012 pr_err("%s: error %d sending status command, %sing\n",
1013 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1016 /* We couldn't get a response from the card. Give up. */
1017 if (err) {
1018 /* Check if the card is removed */
1019 if (mmc_detect_card_removed(card->host))
1020 return ERR_NOMEDIUM;
1021 return ERR_ABORT;
1024 /* Flag ECC errors */
1025 if ((status & R1_CARD_ECC_FAILED) ||
1026 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1027 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1028 *ecc_err = 1;
1030 /* Flag General errors */
1031 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1032 if ((status & R1_ERROR) ||
1033 (brq->stop.resp[0] & R1_ERROR)) {
1034 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1035 req->rq_disk->disk_name, __func__,
1036 brq->stop.resp[0], status);
1037 *gen_err = 1;
1041 * Check the current card state. If it is in some data transfer
1042 * mode, tell it to stop (and hopefully transition back to TRAN.)
1044 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1045 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1046 err = send_stop(card,
1047 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1048 req, gen_err, &stop_status);
1049 if (err) {
1050 pr_err("%s: error %d sending stop command\n",
1051 req->rq_disk->disk_name, err);
1053 * If the stop cmd also timed out, the card is probably
1054 * not present, so abort. Other errors are bad news too.
1056 return ERR_ABORT;
1059 if (stop_status & R1_CARD_ECC_FAILED)
1060 *ecc_err = 1;
1063 /* Check for set block count errors */
1064 if (brq->sbc.error)
1065 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1066 prev_cmd_status_valid, status);
1068 /* Check for r/w command errors */
1069 if (brq->cmd.error)
1070 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1071 prev_cmd_status_valid, status);
1073 /* Data errors */
1074 if (!brq->stop.error)
1075 return ERR_CONTINUE;
1077 /* Now for stop errors. These aren't fatal to the transfer. */
1078 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1079 req->rq_disk->disk_name, brq->stop.error,
1080 brq->cmd.resp[0], status);
1083 * Subsitute in our own stop status as this will give the error
1084 * state which happened during the execution of the r/w command.
1086 if (stop_status) {
1087 brq->stop.resp[0] = stop_status;
1088 brq->stop.error = 0;
1090 return ERR_CONTINUE;
1093 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1094 int type)
1096 int err;
1098 if (md->reset_done & type)
1099 return -EEXIST;
1101 md->reset_done |= type;
1102 err = mmc_hw_reset(host);
1103 /* Ensure we switch back to the correct partition */
1104 if (err != -EOPNOTSUPP) {
1105 struct mmc_blk_data *main_md =
1106 dev_get_drvdata(&host->card->dev);
1107 int part_err;
1109 main_md->part_curr = main_md->part_type;
1110 part_err = mmc_blk_part_switch(host->card, md);
1111 if (part_err) {
1113 * We have failed to get back into the correct
1114 * partition, so we need to abort the whole request.
1116 return -ENODEV;
1119 return err;
1122 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1124 md->reset_done &= ~type;
1127 int mmc_access_rpmb(struct mmc_queue *mq)
1129 struct mmc_blk_data *md = mq->data;
1131 * If this is a RPMB partition access, return ture
1133 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1134 return true;
1136 return false;
1139 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1141 struct mmc_blk_data *md = mq->data;
1142 struct mmc_card *card = md->queue.card;
1143 unsigned int from, nr, arg;
1144 int err = 0, type = MMC_BLK_DISCARD;
1146 if (!mmc_can_erase(card)) {
1147 err = -EOPNOTSUPP;
1148 goto out;
1151 from = blk_rq_pos(req);
1152 nr = blk_rq_sectors(req);
1154 if (mmc_can_discard(card))
1155 arg = MMC_DISCARD_ARG;
1156 else if (mmc_can_trim(card))
1157 arg = MMC_TRIM_ARG;
1158 else
1159 arg = MMC_ERASE_ARG;
1160 retry:
1161 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1162 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1163 INAND_CMD38_ARG_EXT_CSD,
1164 arg == MMC_TRIM_ARG ?
1165 INAND_CMD38_ARG_TRIM :
1166 INAND_CMD38_ARG_ERASE,
1168 if (err)
1169 goto out;
1171 err = mmc_erase(card, from, nr, arg);
1172 out:
1173 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1174 goto retry;
1175 if (!err)
1176 mmc_blk_reset_success(md, type);
1177 blk_end_request(req, err, blk_rq_bytes(req));
1179 return err ? 0 : 1;
1182 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1183 struct request *req)
1185 struct mmc_blk_data *md = mq->data;
1186 struct mmc_card *card = md->queue.card;
1187 unsigned int from, nr, arg;
1188 int err = 0, type = MMC_BLK_SECDISCARD;
1190 if (!(mmc_can_secure_erase_trim(card))) {
1191 err = -EOPNOTSUPP;
1192 goto out;
1195 from = blk_rq_pos(req);
1196 nr = blk_rq_sectors(req);
1198 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1199 arg = MMC_SECURE_TRIM1_ARG;
1200 else
1201 arg = MMC_SECURE_ERASE_ARG;
1203 retry:
1204 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1205 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1206 INAND_CMD38_ARG_EXT_CSD,
1207 arg == MMC_SECURE_TRIM1_ARG ?
1208 INAND_CMD38_ARG_SECTRIM1 :
1209 INAND_CMD38_ARG_SECERASE,
1211 if (err)
1212 goto out_retry;
1215 err = mmc_erase(card, from, nr, arg);
1216 if (err == -EIO)
1217 goto out_retry;
1218 if (err)
1219 goto out;
1221 if (arg == MMC_SECURE_TRIM1_ARG) {
1222 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1223 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1224 INAND_CMD38_ARG_EXT_CSD,
1225 INAND_CMD38_ARG_SECTRIM2,
1227 if (err)
1228 goto out_retry;
1231 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1232 if (err == -EIO)
1233 goto out_retry;
1234 if (err)
1235 goto out;
1238 out_retry:
1239 if (err && !mmc_blk_reset(md, card->host, type))
1240 goto retry;
1241 if (!err)
1242 mmc_blk_reset_success(md, type);
1243 out:
1244 blk_end_request(req, err, blk_rq_bytes(req));
1246 return err ? 0 : 1;
1249 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1251 struct mmc_blk_data *md = mq->data;
1252 struct mmc_card *card = md->queue.card;
1253 int ret = 0;
1255 ret = mmc_flush_cache(card);
1256 if (ret)
1257 ret = -EIO;
1259 blk_end_request_all(req, ret);
1261 return ret ? 0 : 1;
1265 * Reformat current write as a reliable write, supporting
1266 * both legacy and the enhanced reliable write MMC cards.
1267 * In each transfer we'll handle only as much as a single
1268 * reliable write can handle, thus finish the request in
1269 * partial completions.
1271 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1272 struct mmc_card *card,
1273 struct request *req)
1275 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1276 /* Legacy mode imposes restrictions on transfers. */
1277 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1278 brq->data.blocks = 1;
1280 if (brq->data.blocks > card->ext_csd.rel_sectors)
1281 brq->data.blocks = card->ext_csd.rel_sectors;
1282 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1283 brq->data.blocks = 1;
1287 #define CMD_ERRORS \
1288 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1289 R1_ADDRESS_ERROR | /* Misaligned address */ \
1290 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1291 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1292 R1_CC_ERROR | /* Card controller error */ \
1293 R1_ERROR) /* General/unknown error */
1295 static int mmc_blk_err_check(struct mmc_card *card,
1296 struct mmc_async_req *areq)
1298 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1299 mmc_active);
1300 struct mmc_blk_request *brq = &mq_mrq->brq;
1301 struct request *req = mq_mrq->req;
1302 int need_retune = card->host->need_retune;
1303 int ecc_err = 0, gen_err = 0;
1306 * sbc.error indicates a problem with the set block count
1307 * command. No data will have been transferred.
1309 * cmd.error indicates a problem with the r/w command. No
1310 * data will have been transferred.
1312 * stop.error indicates a problem with the stop command. Data
1313 * may have been transferred, or may still be transferring.
1315 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1316 brq->data.error) {
1317 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1318 case ERR_RETRY:
1319 return MMC_BLK_RETRY;
1320 case ERR_ABORT:
1321 return MMC_BLK_ABORT;
1322 case ERR_NOMEDIUM:
1323 return MMC_BLK_NOMEDIUM;
1324 case ERR_CONTINUE:
1325 break;
1330 * Check for errors relating to the execution of the
1331 * initial command - such as address errors. No data
1332 * has been transferred.
1334 if (brq->cmd.resp[0] & CMD_ERRORS) {
1335 pr_err("%s: r/w command failed, status = %#x\n",
1336 req->rq_disk->disk_name, brq->cmd.resp[0]);
1337 return MMC_BLK_ABORT;
1341 * Everything else is either success, or a data error of some
1342 * kind. If it was a write, we may have transitioned to
1343 * program mode, which we have to wait for it to complete.
1345 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1346 int err;
1348 /* Check stop command response */
1349 if (brq->stop.resp[0] & R1_ERROR) {
1350 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1351 req->rq_disk->disk_name, __func__,
1352 brq->stop.resp[0]);
1353 gen_err = 1;
1356 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1357 &gen_err);
1358 if (err)
1359 return MMC_BLK_CMD_ERR;
1362 /* if general error occurs, retry the write operation. */
1363 if (gen_err) {
1364 pr_warn("%s: retrying write for general error\n",
1365 req->rq_disk->disk_name);
1366 return MMC_BLK_RETRY;
1369 if (brq->data.error) {
1370 if (need_retune && !brq->retune_retry_done) {
1371 pr_debug("%s: retrying because a re-tune was needed\n",
1372 req->rq_disk->disk_name);
1373 brq->retune_retry_done = 1;
1374 return MMC_BLK_RETRY;
1376 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1377 req->rq_disk->disk_name, brq->data.error,
1378 (unsigned)blk_rq_pos(req),
1379 (unsigned)blk_rq_sectors(req),
1380 brq->cmd.resp[0], brq->stop.resp[0]);
1382 if (rq_data_dir(req) == READ) {
1383 if (ecc_err)
1384 return MMC_BLK_ECC_ERR;
1385 return MMC_BLK_DATA_ERR;
1386 } else {
1387 return MMC_BLK_CMD_ERR;
1391 if (!brq->data.bytes_xfered)
1392 return MMC_BLK_RETRY;
1394 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1395 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1396 return MMC_BLK_PARTIAL;
1397 else
1398 return MMC_BLK_SUCCESS;
1401 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1402 return MMC_BLK_PARTIAL;
1404 return MMC_BLK_SUCCESS;
1407 static int mmc_blk_packed_err_check(struct mmc_card *card,
1408 struct mmc_async_req *areq)
1410 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1411 mmc_active);
1412 struct request *req = mq_rq->req;
1413 struct mmc_packed *packed = mq_rq->packed;
1414 int err, check, status;
1415 u8 *ext_csd;
1417 BUG_ON(!packed);
1419 packed->retries--;
1420 check = mmc_blk_err_check(card, areq);
1421 err = get_card_status(card, &status, 0);
1422 if (err) {
1423 pr_err("%s: error %d sending status command\n",
1424 req->rq_disk->disk_name, err);
1425 return MMC_BLK_ABORT;
1428 if (status & R1_EXCEPTION_EVENT) {
1429 err = mmc_get_ext_csd(card, &ext_csd);
1430 if (err) {
1431 pr_err("%s: error %d sending ext_csd\n",
1432 req->rq_disk->disk_name, err);
1433 return MMC_BLK_ABORT;
1436 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1437 EXT_CSD_PACKED_FAILURE) &&
1438 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1439 EXT_CSD_PACKED_GENERIC_ERROR)) {
1440 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1441 EXT_CSD_PACKED_INDEXED_ERROR) {
1442 packed->idx_failure =
1443 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1444 check = MMC_BLK_PARTIAL;
1446 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1447 "failure index: %d\n",
1448 req->rq_disk->disk_name, packed->nr_entries,
1449 packed->blocks, packed->idx_failure);
1451 kfree(ext_csd);
1454 return check;
1457 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1458 struct mmc_card *card,
1459 int disable_multi,
1460 struct mmc_queue *mq)
1462 u32 readcmd, writecmd;
1463 struct mmc_blk_request *brq = &mqrq->brq;
1464 struct request *req = mqrq->req;
1465 struct mmc_blk_data *md = mq->data;
1466 bool do_data_tag;
1469 * Reliable writes are used to implement Forced Unit Access and
1470 * are supported only on MMCs.
1472 bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1473 (rq_data_dir(req) == WRITE) &&
1474 (md->flags & MMC_BLK_REL_WR);
1476 memset(brq, 0, sizeof(struct mmc_blk_request));
1477 brq->mrq.cmd = &brq->cmd;
1478 brq->mrq.data = &brq->data;
1480 brq->cmd.arg = blk_rq_pos(req);
1481 if (!mmc_card_blockaddr(card))
1482 brq->cmd.arg <<= 9;
1483 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1484 brq->data.blksz = 512;
1485 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1486 brq->stop.arg = 0;
1487 brq->data.blocks = blk_rq_sectors(req);
1490 * The block layer doesn't support all sector count
1491 * restrictions, so we need to be prepared for too big
1492 * requests.
1494 if (brq->data.blocks > card->host->max_blk_count)
1495 brq->data.blocks = card->host->max_blk_count;
1497 if (brq->data.blocks > 1) {
1499 * After a read error, we redo the request one sector
1500 * at a time in order to accurately determine which
1501 * sectors can be read successfully.
1503 if (disable_multi)
1504 brq->data.blocks = 1;
1507 * Some controllers have HW issues while operating
1508 * in multiple I/O mode
1510 if (card->host->ops->multi_io_quirk)
1511 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1512 (rq_data_dir(req) == READ) ?
1513 MMC_DATA_READ : MMC_DATA_WRITE,
1514 brq->data.blocks);
1517 if (brq->data.blocks > 1 || do_rel_wr) {
1518 /* SPI multiblock writes terminate using a special
1519 * token, not a STOP_TRANSMISSION request.
1521 if (!mmc_host_is_spi(card->host) ||
1522 rq_data_dir(req) == READ)
1523 brq->mrq.stop = &brq->stop;
1524 readcmd = MMC_READ_MULTIPLE_BLOCK;
1525 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1526 } else {
1527 brq->mrq.stop = NULL;
1528 readcmd = MMC_READ_SINGLE_BLOCK;
1529 writecmd = MMC_WRITE_BLOCK;
1531 if (rq_data_dir(req) == READ) {
1532 brq->cmd.opcode = readcmd;
1533 brq->data.flags = MMC_DATA_READ;
1534 if (brq->mrq.stop)
1535 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1536 MMC_CMD_AC;
1537 } else {
1538 brq->cmd.opcode = writecmd;
1539 brq->data.flags = MMC_DATA_WRITE;
1540 if (brq->mrq.stop)
1541 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1542 MMC_CMD_AC;
1545 if (do_rel_wr)
1546 mmc_apply_rel_rw(brq, card, req);
1549 * Data tag is used only during writing meta data to speed
1550 * up write and any subsequent read of this meta data
1552 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1553 (req->cmd_flags & REQ_META) &&
1554 (rq_data_dir(req) == WRITE) &&
1555 ((brq->data.blocks * brq->data.blksz) >=
1556 card->ext_csd.data_tag_unit_size);
1559 * Pre-defined multi-block transfers are preferable to
1560 * open ended-ones (and necessary for reliable writes).
1561 * However, it is not sufficient to just send CMD23,
1562 * and avoid the final CMD12, as on an error condition
1563 * CMD12 (stop) needs to be sent anyway. This, coupled
1564 * with Auto-CMD23 enhancements provided by some
1565 * hosts, means that the complexity of dealing
1566 * with this is best left to the host. If CMD23 is
1567 * supported by card and host, we'll fill sbc in and let
1568 * the host deal with handling it correctly. This means
1569 * that for hosts that don't expose MMC_CAP_CMD23, no
1570 * change of behavior will be observed.
1572 * N.B: Some MMC cards experience perf degradation.
1573 * We'll avoid using CMD23-bounded multiblock writes for
1574 * these, while retaining features like reliable writes.
1576 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1577 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1578 do_data_tag)) {
1579 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1580 brq->sbc.arg = brq->data.blocks |
1581 (do_rel_wr ? (1 << 31) : 0) |
1582 (do_data_tag ? (1 << 29) : 0);
1583 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1584 brq->mrq.sbc = &brq->sbc;
1587 mmc_set_data_timeout(&brq->data, card);
1589 brq->data.sg = mqrq->sg;
1590 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1593 * Adjust the sg list so it is the same size as the
1594 * request.
1596 if (brq->data.blocks != blk_rq_sectors(req)) {
1597 int i, data_size = brq->data.blocks << 9;
1598 struct scatterlist *sg;
1600 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1601 data_size -= sg->length;
1602 if (data_size <= 0) {
1603 sg->length += data_size;
1604 i++;
1605 break;
1608 brq->data.sg_len = i;
1611 mqrq->mmc_active.mrq = &brq->mrq;
1612 mqrq->mmc_active.err_check = mmc_blk_err_check;
1614 mmc_queue_bounce_pre(mqrq);
1617 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1618 struct mmc_card *card)
1620 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1621 unsigned int max_seg_sz = queue_max_segment_size(q);
1622 unsigned int len, nr_segs = 0;
1624 do {
1625 len = min(hdr_sz, max_seg_sz);
1626 hdr_sz -= len;
1627 nr_segs++;
1628 } while (hdr_sz);
1630 return nr_segs;
1633 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1635 struct request_queue *q = mq->queue;
1636 struct mmc_card *card = mq->card;
1637 struct request *cur = req, *next = NULL;
1638 struct mmc_blk_data *md = mq->data;
1639 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1640 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1641 unsigned int req_sectors = 0, phys_segments = 0;
1642 unsigned int max_blk_count, max_phys_segs;
1643 bool put_back = true;
1644 u8 max_packed_rw = 0;
1645 u8 reqs = 0;
1647 if (!(md->flags & MMC_BLK_PACKED_CMD))
1648 goto no_packed;
1650 if ((rq_data_dir(cur) == WRITE) &&
1651 mmc_host_packed_wr(card->host))
1652 max_packed_rw = card->ext_csd.max_packed_writes;
1654 if (max_packed_rw == 0)
1655 goto no_packed;
1657 if (mmc_req_rel_wr(cur) &&
1658 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1659 goto no_packed;
1661 if (mmc_large_sector(card) &&
1662 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1663 goto no_packed;
1665 mmc_blk_clear_packed(mqrq);
1667 max_blk_count = min(card->host->max_blk_count,
1668 card->host->max_req_size >> 9);
1669 if (unlikely(max_blk_count > 0xffff))
1670 max_blk_count = 0xffff;
1672 max_phys_segs = queue_max_segments(q);
1673 req_sectors += blk_rq_sectors(cur);
1674 phys_segments += cur->nr_phys_segments;
1676 if (rq_data_dir(cur) == WRITE) {
1677 req_sectors += mmc_large_sector(card) ? 8 : 1;
1678 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1681 do {
1682 if (reqs >= max_packed_rw - 1) {
1683 put_back = false;
1684 break;
1687 spin_lock_irq(q->queue_lock);
1688 next = blk_fetch_request(q);
1689 spin_unlock_irq(q->queue_lock);
1690 if (!next) {
1691 put_back = false;
1692 break;
1695 if (mmc_large_sector(card) &&
1696 !IS_ALIGNED(blk_rq_sectors(next), 8))
1697 break;
1699 if (next->cmd_flags & REQ_DISCARD ||
1700 next->cmd_flags & REQ_FLUSH)
1701 break;
1703 if (rq_data_dir(cur) != rq_data_dir(next))
1704 break;
1706 if (mmc_req_rel_wr(next) &&
1707 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1708 break;
1710 req_sectors += blk_rq_sectors(next);
1711 if (req_sectors > max_blk_count)
1712 break;
1714 phys_segments += next->nr_phys_segments;
1715 if (phys_segments > max_phys_segs)
1716 break;
1718 list_add_tail(&next->queuelist, &mqrq->packed->list);
1719 cur = next;
1720 reqs++;
1721 } while (1);
1723 if (put_back) {
1724 spin_lock_irq(q->queue_lock);
1725 blk_requeue_request(q, next);
1726 spin_unlock_irq(q->queue_lock);
1729 if (reqs > 0) {
1730 list_add(&req->queuelist, &mqrq->packed->list);
1731 mqrq->packed->nr_entries = ++reqs;
1732 mqrq->packed->retries = reqs;
1733 return reqs;
1736 no_packed:
1737 mqrq->cmd_type = MMC_PACKED_NONE;
1738 return 0;
1741 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1742 struct mmc_card *card,
1743 struct mmc_queue *mq)
1745 struct mmc_blk_request *brq = &mqrq->brq;
1746 struct request *req = mqrq->req;
1747 struct request *prq;
1748 struct mmc_blk_data *md = mq->data;
1749 struct mmc_packed *packed = mqrq->packed;
1750 bool do_rel_wr, do_data_tag;
1751 u32 *packed_cmd_hdr;
1752 u8 hdr_blocks;
1753 u8 i = 1;
1755 BUG_ON(!packed);
1757 mqrq->cmd_type = MMC_PACKED_WRITE;
1758 packed->blocks = 0;
1759 packed->idx_failure = MMC_PACKED_NR_IDX;
1761 packed_cmd_hdr = packed->cmd_hdr;
1762 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1763 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1764 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1765 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1768 * Argument for each entry of packed group
1770 list_for_each_entry(prq, &packed->list, queuelist) {
1771 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1772 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1773 (prq->cmd_flags & REQ_META) &&
1774 (rq_data_dir(prq) == WRITE) &&
1775 ((brq->data.blocks * brq->data.blksz) >=
1776 card->ext_csd.data_tag_unit_size);
1777 /* Argument of CMD23 */
1778 packed_cmd_hdr[(i * 2)] =
1779 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1780 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1781 blk_rq_sectors(prq);
1782 /* Argument of CMD18 or CMD25 */
1783 packed_cmd_hdr[((i * 2)) + 1] =
1784 mmc_card_blockaddr(card) ?
1785 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1786 packed->blocks += blk_rq_sectors(prq);
1787 i++;
1790 memset(brq, 0, sizeof(struct mmc_blk_request));
1791 brq->mrq.cmd = &brq->cmd;
1792 brq->mrq.data = &brq->data;
1793 brq->mrq.sbc = &brq->sbc;
1794 brq->mrq.stop = &brq->stop;
1796 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1797 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1798 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1800 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1801 brq->cmd.arg = blk_rq_pos(req);
1802 if (!mmc_card_blockaddr(card))
1803 brq->cmd.arg <<= 9;
1804 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1806 brq->data.blksz = 512;
1807 brq->data.blocks = packed->blocks + hdr_blocks;
1808 brq->data.flags = MMC_DATA_WRITE;
1810 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1811 brq->stop.arg = 0;
1812 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1814 mmc_set_data_timeout(&brq->data, card);
1816 brq->data.sg = mqrq->sg;
1817 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1819 mqrq->mmc_active.mrq = &brq->mrq;
1820 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1822 mmc_queue_bounce_pre(mqrq);
1825 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1826 struct mmc_blk_request *brq, struct request *req,
1827 int ret)
1829 struct mmc_queue_req *mq_rq;
1830 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1833 * If this is an SD card and we're writing, we can first
1834 * mark the known good sectors as ok.
1836 * If the card is not SD, we can still ok written sectors
1837 * as reported by the controller (which might be less than
1838 * the real number of written sectors, but never more).
1840 if (mmc_card_sd(card)) {
1841 u32 blocks;
1843 blocks = mmc_sd_num_wr_blocks(card);
1844 if (blocks != (u32)-1) {
1845 ret = blk_end_request(req, 0, blocks << 9);
1847 } else {
1848 if (!mmc_packed_cmd(mq_rq->cmd_type))
1849 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1851 return ret;
1854 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1856 struct request *prq;
1857 struct mmc_packed *packed = mq_rq->packed;
1858 int idx = packed->idx_failure, i = 0;
1859 int ret = 0;
1861 BUG_ON(!packed);
1863 while (!list_empty(&packed->list)) {
1864 prq = list_entry_rq(packed->list.next);
1865 if (idx == i) {
1866 /* retry from error index */
1867 packed->nr_entries -= idx;
1868 mq_rq->req = prq;
1869 ret = 1;
1871 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1872 list_del_init(&prq->queuelist);
1873 mmc_blk_clear_packed(mq_rq);
1875 return ret;
1877 list_del_init(&prq->queuelist);
1878 blk_end_request(prq, 0, blk_rq_bytes(prq));
1879 i++;
1882 mmc_blk_clear_packed(mq_rq);
1883 return ret;
1886 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1888 struct request *prq;
1889 struct mmc_packed *packed = mq_rq->packed;
1891 BUG_ON(!packed);
1893 while (!list_empty(&packed->list)) {
1894 prq = list_entry_rq(packed->list.next);
1895 list_del_init(&prq->queuelist);
1896 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1899 mmc_blk_clear_packed(mq_rq);
1902 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1903 struct mmc_queue_req *mq_rq)
1905 struct request *prq;
1906 struct request_queue *q = mq->queue;
1907 struct mmc_packed *packed = mq_rq->packed;
1909 BUG_ON(!packed);
1911 while (!list_empty(&packed->list)) {
1912 prq = list_entry_rq(packed->list.prev);
1913 if (prq->queuelist.prev != &packed->list) {
1914 list_del_init(&prq->queuelist);
1915 spin_lock_irq(q->queue_lock);
1916 blk_requeue_request(mq->queue, prq);
1917 spin_unlock_irq(q->queue_lock);
1918 } else {
1919 list_del_init(&prq->queuelist);
1923 mmc_blk_clear_packed(mq_rq);
1926 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1928 struct mmc_blk_data *md = mq->data;
1929 struct mmc_card *card = md->queue.card;
1930 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1931 int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1932 enum mmc_blk_status status;
1933 struct mmc_queue_req *mq_rq;
1934 struct request *req = rqc;
1935 struct mmc_async_req *areq;
1936 const u8 packed_nr = 2;
1937 u8 reqs = 0;
1939 if (!rqc && !mq->mqrq_prev->req)
1940 return 0;
1942 if (rqc)
1943 reqs = mmc_blk_prep_packed_list(mq, rqc);
1945 do {
1946 if (rqc) {
1948 * When 4KB native sector is enabled, only 8 blocks
1949 * multiple read or write is allowed
1951 if ((brq->data.blocks & 0x07) &&
1952 (card->ext_csd.data_sector_size == 4096)) {
1953 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1954 req->rq_disk->disk_name);
1955 mq_rq = mq->mqrq_cur;
1956 goto cmd_abort;
1959 if (reqs >= packed_nr)
1960 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1961 card, mq);
1962 else
1963 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1964 areq = &mq->mqrq_cur->mmc_active;
1965 } else
1966 areq = NULL;
1967 areq = mmc_start_req(card->host, areq, (int *) &status);
1968 if (!areq) {
1969 if (status == MMC_BLK_NEW_REQUEST)
1970 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1971 return 0;
1974 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1975 brq = &mq_rq->brq;
1976 req = mq_rq->req;
1977 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1978 mmc_queue_bounce_post(mq_rq);
1980 switch (status) {
1981 case MMC_BLK_SUCCESS:
1982 case MMC_BLK_PARTIAL:
1984 * A block was successfully transferred.
1986 mmc_blk_reset_success(md, type);
1988 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1989 ret = mmc_blk_end_packed_req(mq_rq);
1990 break;
1991 } else {
1992 ret = blk_end_request(req, 0,
1993 brq->data.bytes_xfered);
1997 * If the blk_end_request function returns non-zero even
1998 * though all data has been transferred and no errors
1999 * were returned by the host controller, it's a bug.
2001 if (status == MMC_BLK_SUCCESS && ret) {
2002 pr_err("%s BUG rq_tot %d d_xfer %d\n",
2003 __func__, blk_rq_bytes(req),
2004 brq->data.bytes_xfered);
2005 rqc = NULL;
2006 goto cmd_abort;
2008 break;
2009 case MMC_BLK_CMD_ERR:
2010 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
2011 if (mmc_blk_reset(md, card->host, type))
2012 goto cmd_abort;
2013 if (!ret)
2014 goto start_new_req;
2015 break;
2016 case MMC_BLK_RETRY:
2017 retune_retry_done = brq->retune_retry_done;
2018 if (retry++ < 5)
2019 break;
2020 /* Fall through */
2021 case MMC_BLK_ABORT:
2022 if (!mmc_blk_reset(md, card->host, type))
2023 break;
2024 goto cmd_abort;
2025 case MMC_BLK_DATA_ERR: {
2026 int err;
2028 err = mmc_blk_reset(md, card->host, type);
2029 if (!err)
2030 break;
2031 if (err == -ENODEV ||
2032 mmc_packed_cmd(mq_rq->cmd_type))
2033 goto cmd_abort;
2034 /* Fall through */
2036 case MMC_BLK_ECC_ERR:
2037 if (brq->data.blocks > 1) {
2038 /* Redo read one sector at a time */
2039 pr_warn("%s: retrying using single block read\n",
2040 req->rq_disk->disk_name);
2041 disable_multi = 1;
2042 break;
2045 * After an error, we redo I/O one sector at a
2046 * time, so we only reach here after trying to
2047 * read a single sector.
2049 ret = blk_end_request(req, -EIO,
2050 brq->data.blksz);
2051 if (!ret)
2052 goto start_new_req;
2053 break;
2054 case MMC_BLK_NOMEDIUM:
2055 goto cmd_abort;
2056 default:
2057 pr_err("%s: Unhandled return value (%d)",
2058 req->rq_disk->disk_name, status);
2059 goto cmd_abort;
2062 if (ret) {
2063 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2064 if (!mq_rq->packed->retries)
2065 goto cmd_abort;
2066 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
2067 mmc_start_req(card->host,
2068 &mq_rq->mmc_active, NULL);
2069 } else {
2072 * In case of a incomplete request
2073 * prepare it again and resend.
2075 mmc_blk_rw_rq_prep(mq_rq, card,
2076 disable_multi, mq);
2077 mmc_start_req(card->host,
2078 &mq_rq->mmc_active, NULL);
2080 mq_rq->brq.retune_retry_done = retune_retry_done;
2082 } while (ret);
2084 return 1;
2086 cmd_abort:
2087 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2088 mmc_blk_abort_packed_req(mq_rq);
2089 } else {
2090 if (mmc_card_removed(card))
2091 req->cmd_flags |= REQ_QUIET;
2092 while (ret)
2093 ret = blk_end_request(req, -EIO,
2094 blk_rq_cur_bytes(req));
2097 start_new_req:
2098 if (rqc) {
2099 if (mmc_card_removed(card)) {
2100 rqc->cmd_flags |= REQ_QUIET;
2101 blk_end_request_all(rqc, -EIO);
2102 } else {
2104 * If current request is packed, it needs to put back.
2106 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2107 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2109 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2110 mmc_start_req(card->host,
2111 &mq->mqrq_cur->mmc_active, NULL);
2115 return 0;
2118 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2120 int ret;
2121 struct mmc_blk_data *md = mq->data;
2122 struct mmc_card *card = md->queue.card;
2123 struct mmc_host *host = card->host;
2124 unsigned long flags;
2125 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2127 if (req && !mq->mqrq_prev->req)
2128 /* claim host only for the first request */
2129 mmc_get_card(card);
2131 ret = mmc_blk_part_switch(card, md);
2132 if (ret) {
2133 if (req) {
2134 blk_end_request_all(req, -EIO);
2136 ret = 0;
2137 goto out;
2140 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2141 if (cmd_flags & REQ_DISCARD) {
2142 /* complete ongoing async transfer before issuing discard */
2143 if (card->host->areq)
2144 mmc_blk_issue_rw_rq(mq, NULL);
2145 if (req->cmd_flags & REQ_SECURE)
2146 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2147 else
2148 ret = mmc_blk_issue_discard_rq(mq, req);
2149 } else if (cmd_flags & REQ_FLUSH) {
2150 /* complete ongoing async transfer before issuing flush */
2151 if (card->host->areq)
2152 mmc_blk_issue_rw_rq(mq, NULL);
2153 ret = mmc_blk_issue_flush(mq, req);
2154 } else {
2155 if (!req && host->areq) {
2156 spin_lock_irqsave(&host->context_info.lock, flags);
2157 host->context_info.is_waiting_last_req = true;
2158 spin_unlock_irqrestore(&host->context_info.lock, flags);
2160 ret = mmc_blk_issue_rw_rq(mq, req);
2163 out:
2164 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2165 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2167 * Release host when there are no more requests
2168 * and after special request(discard, flush) is done.
2169 * In case sepecial request, there is no reentry to
2170 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2172 mmc_put_card(card);
2173 return ret;
2176 static inline int mmc_blk_readonly(struct mmc_card *card)
2178 return mmc_card_readonly(card) ||
2179 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2182 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2183 struct device *parent,
2184 sector_t size,
2185 bool default_ro,
2186 const char *subname,
2187 int area_type)
2189 struct mmc_blk_data *md;
2190 int devidx, ret;
2192 devidx = find_first_zero_bit(dev_use, max_devices);
2193 if (devidx >= max_devices)
2194 return ERR_PTR(-ENOSPC);
2195 __set_bit(devidx, dev_use);
2197 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2198 if (!md) {
2199 ret = -ENOMEM;
2200 goto out;
2203 md->area_type = area_type;
2206 * Set the read-only status based on the supported commands
2207 * and the write protect switch.
2209 md->read_only = mmc_blk_readonly(card);
2211 md->disk = alloc_disk(perdev_minors);
2212 if (md->disk == NULL) {
2213 ret = -ENOMEM;
2214 goto err_kfree;
2217 spin_lock_init(&md->lock);
2218 INIT_LIST_HEAD(&md->part);
2219 md->usage = 1;
2221 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2222 if (ret)
2223 goto err_putdisk;
2225 md->queue.issue_fn = mmc_blk_issue_rq;
2226 md->queue.data = md;
2228 md->disk->major = MMC_BLOCK_MAJOR;
2229 md->disk->first_minor = devidx * perdev_minors;
2230 md->disk->fops = &mmc_bdops;
2231 md->disk->private_data = md;
2232 md->disk->queue = md->queue.queue;
2233 md->disk->driverfs_dev = parent;
2234 set_disk_ro(md->disk, md->read_only || default_ro);
2235 md->disk->flags = GENHD_FL_EXT_DEVT;
2236 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2237 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2240 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2242 * - be set for removable media with permanent block devices
2243 * - be unset for removable block devices with permanent media
2245 * Since MMC block devices clearly fall under the second
2246 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2247 * should use the block device creation/destruction hotplug
2248 * messages to tell when the card is present.
2251 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2252 "mmcblk%u%s", card->host->index, subname ? subname : "");
2254 if (mmc_card_mmc(card))
2255 blk_queue_logical_block_size(md->queue.queue,
2256 card->ext_csd.data_sector_size);
2257 else
2258 blk_queue_logical_block_size(md->queue.queue, 512);
2260 set_capacity(md->disk, size);
2262 if (mmc_host_cmd23(card->host)) {
2263 if (mmc_card_mmc(card) ||
2264 (mmc_card_sd(card) &&
2265 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2266 md->flags |= MMC_BLK_CMD23;
2269 if (mmc_card_mmc(card) &&
2270 md->flags & MMC_BLK_CMD23 &&
2271 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2272 card->ext_csd.rel_sectors)) {
2273 md->flags |= MMC_BLK_REL_WR;
2274 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2277 if (mmc_card_mmc(card) &&
2278 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2279 (md->flags & MMC_BLK_CMD23) &&
2280 card->ext_csd.packed_event_en) {
2281 if (!mmc_packed_init(&md->queue, card))
2282 md->flags |= MMC_BLK_PACKED_CMD;
2285 return md;
2287 err_putdisk:
2288 put_disk(md->disk);
2289 err_kfree:
2290 kfree(md);
2291 out:
2292 return ERR_PTR(ret);
2295 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2297 sector_t size;
2299 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2301 * The EXT_CSD sector count is in number or 512 byte
2302 * sectors.
2304 size = card->ext_csd.sectors;
2305 } else {
2307 * The CSD capacity field is in units of read_blkbits.
2308 * set_capacity takes units of 512 bytes.
2310 size = (typeof(sector_t))card->csd.capacity
2311 << (card->csd.read_blkbits - 9);
2314 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2315 MMC_BLK_DATA_AREA_MAIN);
2318 static int mmc_blk_alloc_part(struct mmc_card *card,
2319 struct mmc_blk_data *md,
2320 unsigned int part_type,
2321 sector_t size,
2322 bool default_ro,
2323 const char *subname,
2324 int area_type)
2326 char cap_str[10];
2327 struct mmc_blk_data *part_md;
2329 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2330 subname, area_type);
2331 if (IS_ERR(part_md))
2332 return PTR_ERR(part_md);
2333 part_md->part_type = part_type;
2334 list_add(&part_md->part, &md->part);
2336 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2337 cap_str, sizeof(cap_str));
2338 pr_info("%s: %s %s partition %u %s\n",
2339 part_md->disk->disk_name, mmc_card_id(card),
2340 mmc_card_name(card), part_md->part_type, cap_str);
2341 return 0;
2344 /* MMC Physical partitions consist of two boot partitions and
2345 * up to four general purpose partitions.
2346 * For each partition enabled in EXT_CSD a block device will be allocatedi
2347 * to provide access to the partition.
2350 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2352 int idx, ret = 0;
2354 if (!mmc_card_mmc(card))
2355 return 0;
2357 for (idx = 0; idx < card->nr_parts; idx++) {
2358 if (card->part[idx].size) {
2359 ret = mmc_blk_alloc_part(card, md,
2360 card->part[idx].part_cfg,
2361 card->part[idx].size >> 9,
2362 card->part[idx].force_ro,
2363 card->part[idx].name,
2364 card->part[idx].area_type);
2365 if (ret)
2366 return ret;
2370 return ret;
2373 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2375 struct mmc_card *card;
2377 if (md) {
2379 * Flush remaining requests and free queues. It
2380 * is freeing the queue that stops new requests
2381 * from being accepted.
2383 card = md->queue.card;
2384 mmc_cleanup_queue(&md->queue);
2385 if (md->flags & MMC_BLK_PACKED_CMD)
2386 mmc_packed_clean(&md->queue);
2387 if (md->disk->flags & GENHD_FL_UP) {
2388 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2389 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2390 card->ext_csd.boot_ro_lockable)
2391 device_remove_file(disk_to_dev(md->disk),
2392 &md->power_ro_lock);
2394 del_gendisk(md->disk);
2396 mmc_blk_put(md);
2400 static void mmc_blk_remove_parts(struct mmc_card *card,
2401 struct mmc_blk_data *md)
2403 struct list_head *pos, *q;
2404 struct mmc_blk_data *part_md;
2406 list_for_each_safe(pos, q, &md->part) {
2407 part_md = list_entry(pos, struct mmc_blk_data, part);
2408 list_del(pos);
2409 mmc_blk_remove_req(part_md);
2413 static int mmc_add_disk(struct mmc_blk_data *md)
2415 int ret;
2416 struct mmc_card *card = md->queue.card;
2418 add_disk(md->disk);
2419 md->force_ro.show = force_ro_show;
2420 md->force_ro.store = force_ro_store;
2421 sysfs_attr_init(&md->force_ro.attr);
2422 md->force_ro.attr.name = "force_ro";
2423 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2424 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2425 if (ret)
2426 goto force_ro_fail;
2428 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2429 card->ext_csd.boot_ro_lockable) {
2430 umode_t mode;
2432 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2433 mode = S_IRUGO;
2434 else
2435 mode = S_IRUGO | S_IWUSR;
2437 md->power_ro_lock.show = power_ro_lock_show;
2438 md->power_ro_lock.store = power_ro_lock_store;
2439 sysfs_attr_init(&md->power_ro_lock.attr);
2440 md->power_ro_lock.attr.mode = mode;
2441 md->power_ro_lock.attr.name =
2442 "ro_lock_until_next_power_on";
2443 ret = device_create_file(disk_to_dev(md->disk),
2444 &md->power_ro_lock);
2445 if (ret)
2446 goto power_ro_lock_fail;
2448 return ret;
2450 power_ro_lock_fail:
2451 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2452 force_ro_fail:
2453 del_gendisk(md->disk);
2455 return ret;
2458 #define CID_MANFID_SANDISK 0x2
2459 #define CID_MANFID_TOSHIBA 0x11
2460 #define CID_MANFID_MICRON 0x13
2461 #define CID_MANFID_SAMSUNG 0x15
2462 #define CID_MANFID_KINGSTON 0x70
2464 static const struct mmc_fixup blk_fixups[] =
2466 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2467 MMC_QUIRK_INAND_CMD38),
2468 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2469 MMC_QUIRK_INAND_CMD38),
2470 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2471 MMC_QUIRK_INAND_CMD38),
2472 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2473 MMC_QUIRK_INAND_CMD38),
2474 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2475 MMC_QUIRK_INAND_CMD38),
2478 * Some MMC cards experience performance degradation with CMD23
2479 * instead of CMD12-bounded multiblock transfers. For now we'll
2480 * black list what's bad...
2481 * - Certain Toshiba cards.
2483 * N.B. This doesn't affect SD cards.
2485 MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2486 MMC_QUIRK_BLK_NO_CMD23),
2487 MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2488 MMC_QUIRK_BLK_NO_CMD23),
2489 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2490 MMC_QUIRK_BLK_NO_CMD23),
2491 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2492 MMC_QUIRK_BLK_NO_CMD23),
2493 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2494 MMC_QUIRK_BLK_NO_CMD23),
2497 * Some Micron MMC cards needs longer data read timeout than
2498 * indicated in CSD.
2500 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2501 MMC_QUIRK_LONG_READ_TIME),
2504 * On these Samsung MoviNAND parts, performing secure erase or
2505 * secure trim can result in unrecoverable corruption due to a
2506 * firmware bug.
2508 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2509 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2510 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2511 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2512 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2513 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2514 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2515 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2516 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2517 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2518 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2519 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2520 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2521 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2522 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2523 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2526 * On Some Kingston eMMCs, performing trim can result in
2527 * unrecoverable data conrruption occasionally due to a firmware bug.
2529 MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2530 MMC_QUIRK_TRIM_BROKEN),
2531 MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2532 MMC_QUIRK_TRIM_BROKEN),
2534 END_FIXUP
2537 static int mmc_blk_probe(struct mmc_card *card)
2539 struct mmc_blk_data *md, *part_md;
2540 char cap_str[10];
2543 * Check that the card supports the command class(es) we need.
2545 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2546 return -ENODEV;
2548 mmc_fixup_device(card, blk_fixups);
2550 md = mmc_blk_alloc(card);
2551 if (IS_ERR(md))
2552 return PTR_ERR(md);
2554 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2555 cap_str, sizeof(cap_str));
2556 pr_info("%s: %s %s %s %s\n",
2557 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2558 cap_str, md->read_only ? "(ro)" : "");
2560 if (mmc_blk_alloc_parts(card, md))
2561 goto out;
2563 dev_set_drvdata(&card->dev, md);
2565 if (mmc_add_disk(md))
2566 goto out;
2568 list_for_each_entry(part_md, &md->part, part) {
2569 if (mmc_add_disk(part_md))
2570 goto out;
2573 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2574 pm_runtime_use_autosuspend(&card->dev);
2577 * Don't enable runtime PM for SD-combo cards here. Leave that
2578 * decision to be taken during the SDIO init sequence instead.
2580 if (card->type != MMC_TYPE_SD_COMBO) {
2581 pm_runtime_set_active(&card->dev);
2582 pm_runtime_enable(&card->dev);
2585 return 0;
2587 out:
2588 mmc_blk_remove_parts(card, md);
2589 mmc_blk_remove_req(md);
2590 return 0;
2593 static void mmc_blk_remove(struct mmc_card *card)
2595 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2597 mmc_blk_remove_parts(card, md);
2598 pm_runtime_get_sync(&card->dev);
2599 mmc_claim_host(card->host);
2600 mmc_blk_part_switch(card, md);
2601 mmc_release_host(card->host);
2602 if (card->type != MMC_TYPE_SD_COMBO)
2603 pm_runtime_disable(&card->dev);
2604 pm_runtime_put_noidle(&card->dev);
2605 mmc_blk_remove_req(md);
2606 dev_set_drvdata(&card->dev, NULL);
2609 static int _mmc_blk_suspend(struct mmc_card *card)
2611 struct mmc_blk_data *part_md;
2612 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2614 if (md) {
2615 mmc_queue_suspend(&md->queue);
2616 list_for_each_entry(part_md, &md->part, part) {
2617 mmc_queue_suspend(&part_md->queue);
2620 return 0;
2623 static void mmc_blk_shutdown(struct mmc_card *card)
2625 _mmc_blk_suspend(card);
2628 #ifdef CONFIG_PM_SLEEP
2629 static int mmc_blk_suspend(struct device *dev)
2631 struct mmc_card *card = mmc_dev_to_card(dev);
2633 return _mmc_blk_suspend(card);
2636 static int mmc_blk_resume(struct device *dev)
2638 struct mmc_blk_data *part_md;
2639 struct mmc_blk_data *md = dev_get_drvdata(dev);
2641 if (md) {
2643 * Resume involves the card going into idle state,
2644 * so current partition is always the main one.
2646 md->part_curr = md->part_type;
2647 mmc_queue_resume(&md->queue);
2648 list_for_each_entry(part_md, &md->part, part) {
2649 mmc_queue_resume(&part_md->queue);
2652 return 0;
2654 #endif
2656 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2658 static struct mmc_driver mmc_driver = {
2659 .drv = {
2660 .name = "mmcblk",
2661 .pm = &mmc_blk_pm_ops,
2663 .probe = mmc_blk_probe,
2664 .remove = mmc_blk_remove,
2665 .shutdown = mmc_blk_shutdown,
2668 static int __init mmc_blk_init(void)
2670 int res;
2672 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2673 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2675 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2677 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2678 if (res)
2679 goto out;
2681 res = mmc_register_driver(&mmc_driver);
2682 if (res)
2683 goto out2;
2685 return 0;
2686 out2:
2687 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2688 out:
2689 return res;
2692 static void __exit mmc_blk_exit(void)
2694 mmc_unregister_driver(&mmc_driver);
2695 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2698 module_init(mmc_blk_init);
2699 module_exit(mmc_blk_exit);
2701 MODULE_LICENSE("GPL");
2702 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");