2 * Copyright © 2003 Rick Bronson
4 * Derived from drivers/mtd/nand/autcpu12.c
5 * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
7 * Derived from drivers/mtd/spia.c
8 * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
18 * Add Programmable Multibit ECC support for various AT91 SoC
19 * © Copyright 2012 ATMEL, Hong Xu
21 * Add Nand Flash Controller support for SAMA5 SoC
22 * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
30 #include <linux/clk.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/slab.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/platform_device.h>
37 #include <linux/of_device.h>
38 #include <linux/of_gpio.h>
39 #include <linux/of_mtd.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/partitions.h>
44 #include <linux/delay.h>
45 #include <linux/dmaengine.h>
46 #include <linux/gpio.h>
47 #include <linux/interrupt.h>
49 #include <linux/platform_data/atmel.h>
51 static int use_dma
= 1;
52 module_param(use_dma
, int, 0);
54 static int on_flash_bbt
= 0;
55 module_param(on_flash_bbt
, int, 0);
57 /* Register access macros */
58 #define ecc_readl(add, reg) \
59 __raw_readl(add + ATMEL_ECC_##reg)
60 #define ecc_writel(add, reg, value) \
61 __raw_writel((value), add + ATMEL_ECC_##reg)
63 #include "atmel_nand_ecc.h" /* Hardware ECC registers */
64 #include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
66 struct atmel_nand_caps
{
67 bool pmecc_correct_erase_page
;
68 uint8_t pmecc_max_correction
;
71 struct atmel_nand_nfc_caps
{
75 /* oob layout for large page size
76 * bad block info is on bytes 0 and 1
77 * the bytes have to be consecutives to avoid
78 * several NAND_CMD_RNDOUT during read
80 static struct nand_ecclayout atmel_oobinfo_large
= {
82 .eccpos
= {60, 61, 62, 63},
88 /* oob layout for small page size
89 * bad block info is on bytes 4 and 5
90 * the bytes have to be consecutives to avoid
91 * several NAND_CMD_RNDOUT during read
93 static struct nand_ecclayout atmel_oobinfo_small
= {
95 .eccpos
= {0, 1, 2, 3},
102 void __iomem
*base_cmd_regs
;
103 void __iomem
*hsmc_regs
;
105 dma_addr_t sram_bank0_phys
;
112 struct completion comp_ready
;
113 struct completion comp_cmd_done
;
114 struct completion comp_xfer_done
;
116 /* Point to the sram bank which include readed data via NFC */
118 bool will_write_sram
;
119 const struct atmel_nand_nfc_caps
*caps
;
121 static struct atmel_nfc nand_nfc
;
123 struct atmel_nand_host
{
124 struct nand_chip nand_chip
;
125 void __iomem
*io_base
;
127 struct atmel_nand_data board
;
131 struct completion comp
;
132 struct dma_chan
*dma_chan
;
134 struct atmel_nfc
*nfc
;
136 const struct atmel_nand_caps
*caps
;
139 u16 pmecc_sector_size
;
140 bool has_no_lookup_table
;
141 u32 pmecc_lookup_table_offset
;
142 u32 pmecc_lookup_table_offset_512
;
143 u32 pmecc_lookup_table_offset_1024
;
145 int pmecc_degree
; /* Degree of remainders */
146 int pmecc_cw_len
; /* Length of codeword */
148 void __iomem
*pmerrloc_base
;
149 void __iomem
*pmerrloc_el_base
;
150 void __iomem
*pmecc_rom_base
;
152 /* lookup table for alpha_to and index_of */
153 void __iomem
*pmecc_alpha_to
;
154 void __iomem
*pmecc_index_of
;
156 /* data for pmecc computation */
157 int16_t *pmecc_partial_syn
;
159 int16_t *pmecc_smu
; /* Sigma table */
160 int16_t *pmecc_lmu
; /* polynomal order */
166 static struct nand_ecclayout atmel_pmecc_oobinfo
;
171 static void atmel_nand_enable(struct atmel_nand_host
*host
)
173 if (gpio_is_valid(host
->board
.enable_pin
))
174 gpio_set_value(host
->board
.enable_pin
, 0);
180 static void atmel_nand_disable(struct atmel_nand_host
*host
)
182 if (gpio_is_valid(host
->board
.enable_pin
))
183 gpio_set_value(host
->board
.enable_pin
, 1);
187 * Hardware specific access to control-lines
189 static void atmel_nand_cmd_ctrl(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
191 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
192 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
194 if (ctrl
& NAND_CTRL_CHANGE
) {
196 atmel_nand_enable(host
);
198 atmel_nand_disable(host
);
200 if (cmd
== NAND_CMD_NONE
)
204 writeb(cmd
, host
->io_base
+ (1 << host
->board
.cle
));
206 writeb(cmd
, host
->io_base
+ (1 << host
->board
.ale
));
210 * Read the Device Ready pin.
212 static int atmel_nand_device_ready(struct mtd_info
*mtd
)
214 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
215 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
217 return gpio_get_value(host
->board
.rdy_pin
) ^
218 !!host
->board
.rdy_pin_active_low
;
221 /* Set up for hardware ready pin and enable pin. */
222 static int atmel_nand_set_enable_ready_pins(struct mtd_info
*mtd
)
224 struct nand_chip
*chip
= mtd_to_nand(mtd
);
225 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
228 if (gpio_is_valid(host
->board
.rdy_pin
)) {
229 res
= devm_gpio_request(host
->dev
,
230 host
->board
.rdy_pin
, "nand_rdy");
233 "can't request rdy gpio %d\n",
234 host
->board
.rdy_pin
);
238 res
= gpio_direction_input(host
->board
.rdy_pin
);
241 "can't request input direction rdy gpio %d\n",
242 host
->board
.rdy_pin
);
246 chip
->dev_ready
= atmel_nand_device_ready
;
249 if (gpio_is_valid(host
->board
.enable_pin
)) {
250 res
= devm_gpio_request(host
->dev
,
251 host
->board
.enable_pin
, "nand_enable");
254 "can't request enable gpio %d\n",
255 host
->board
.enable_pin
);
259 res
= gpio_direction_output(host
->board
.enable_pin
, 1);
262 "can't request output direction enable gpio %d\n",
263 host
->board
.enable_pin
);
272 * Minimal-overhead PIO for data access.
274 static void atmel_read_buf8(struct mtd_info
*mtd
, u8
*buf
, int len
)
276 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
277 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
279 if (host
->nfc
&& host
->nfc
->use_nfc_sram
&& host
->nfc
->data_in_sram
) {
280 memcpy(buf
, host
->nfc
->data_in_sram
, len
);
281 host
->nfc
->data_in_sram
+= len
;
283 __raw_readsb(nand_chip
->IO_ADDR_R
, buf
, len
);
287 static void atmel_read_buf16(struct mtd_info
*mtd
, u8
*buf
, int len
)
289 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
290 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
292 if (host
->nfc
&& host
->nfc
->use_nfc_sram
&& host
->nfc
->data_in_sram
) {
293 memcpy(buf
, host
->nfc
->data_in_sram
, len
);
294 host
->nfc
->data_in_sram
+= len
;
296 __raw_readsw(nand_chip
->IO_ADDR_R
, buf
, len
/ 2);
300 static void atmel_write_buf8(struct mtd_info
*mtd
, const u8
*buf
, int len
)
302 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
304 __raw_writesb(nand_chip
->IO_ADDR_W
, buf
, len
);
307 static void atmel_write_buf16(struct mtd_info
*mtd
, const u8
*buf
, int len
)
309 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
311 __raw_writesw(nand_chip
->IO_ADDR_W
, buf
, len
/ 2);
314 static void dma_complete_func(void *completion
)
316 complete(completion
);
319 static int nfc_set_sram_bank(struct atmel_nand_host
*host
, unsigned int bank
)
321 /* NFC only has two banks. Must be 0 or 1 */
326 struct mtd_info
*mtd
= nand_to_mtd(&host
->nand_chip
);
328 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
329 if (mtd
->writesize
> 2048)
331 nfc_writel(host
->nfc
->hsmc_regs
, BANK
, ATMEL_HSMC_NFC_BANK1
);
333 nfc_writel(host
->nfc
->hsmc_regs
, BANK
, ATMEL_HSMC_NFC_BANK0
);
339 static uint
nfc_get_sram_off(struct atmel_nand_host
*host
)
341 if (nfc_readl(host
->nfc
->hsmc_regs
, BANK
) & ATMEL_HSMC_NFC_BANK1
)
342 return NFC_SRAM_BANK1_OFFSET
;
347 static dma_addr_t
nfc_sram_phys(struct atmel_nand_host
*host
)
349 if (nfc_readl(host
->nfc
->hsmc_regs
, BANK
) & ATMEL_HSMC_NFC_BANK1
)
350 return host
->nfc
->sram_bank0_phys
+ NFC_SRAM_BANK1_OFFSET
;
352 return host
->nfc
->sram_bank0_phys
;
355 static int atmel_nand_dma_op(struct mtd_info
*mtd
, void *buf
, int len
,
358 struct dma_device
*dma_dev
;
359 enum dma_ctrl_flags flags
;
360 dma_addr_t dma_src_addr
, dma_dst_addr
, phys_addr
;
361 struct dma_async_tx_descriptor
*tx
= NULL
;
363 struct nand_chip
*chip
= mtd_to_nand(mtd
);
364 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
367 enum dma_data_direction dir
= is_read
? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
368 struct atmel_nfc
*nfc
= host
->nfc
;
370 if (buf
>= high_memory
)
373 dma_dev
= host
->dma_chan
->device
;
375 flags
= DMA_CTRL_ACK
| DMA_PREP_INTERRUPT
;
377 phys_addr
= dma_map_single(dma_dev
->dev
, p
, len
, dir
);
378 if (dma_mapping_error(dma_dev
->dev
, phys_addr
)) {
379 dev_err(host
->dev
, "Failed to dma_map_single\n");
384 if (nfc
&& nfc
->data_in_sram
)
385 dma_src_addr
= nfc_sram_phys(host
) + (nfc
->data_in_sram
386 - (nfc
->sram_bank0
+ nfc_get_sram_off(host
)));
388 dma_src_addr
= host
->io_phys
;
390 dma_dst_addr
= phys_addr
;
392 dma_src_addr
= phys_addr
;
394 if (nfc
&& nfc
->write_by_sram
)
395 dma_dst_addr
= nfc_sram_phys(host
);
397 dma_dst_addr
= host
->io_phys
;
400 tx
= dma_dev
->device_prep_dma_memcpy(host
->dma_chan
, dma_dst_addr
,
401 dma_src_addr
, len
, flags
);
403 dev_err(host
->dev
, "Failed to prepare DMA memcpy\n");
407 init_completion(&host
->comp
);
408 tx
->callback
= dma_complete_func
;
409 tx
->callback_param
= &host
->comp
;
411 cookie
= tx
->tx_submit(tx
);
412 if (dma_submit_error(cookie
)) {
413 dev_err(host
->dev
, "Failed to do DMA tx_submit\n");
417 dma_async_issue_pending(host
->dma_chan
);
418 wait_for_completion(&host
->comp
);
420 if (is_read
&& nfc
&& nfc
->data_in_sram
)
421 /* After read data from SRAM, need to increase the position */
422 nfc
->data_in_sram
+= len
;
427 dma_unmap_single(dma_dev
->dev
, phys_addr
, len
, dir
);
430 dev_dbg(host
->dev
, "Fall back to CPU I/O\n");
434 static void atmel_read_buf(struct mtd_info
*mtd
, u8
*buf
, int len
)
436 struct nand_chip
*chip
= mtd_to_nand(mtd
);
437 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
439 if (use_dma
&& len
> mtd
->oobsize
)
440 /* only use DMA for bigger than oob size: better performances */
441 if (atmel_nand_dma_op(mtd
, buf
, len
, 1) == 0)
444 if (host
->board
.bus_width_16
)
445 atmel_read_buf16(mtd
, buf
, len
);
447 atmel_read_buf8(mtd
, buf
, len
);
450 static void atmel_write_buf(struct mtd_info
*mtd
, const u8
*buf
, int len
)
452 struct nand_chip
*chip
= mtd_to_nand(mtd
);
453 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
455 if (use_dma
&& len
> mtd
->oobsize
)
456 /* only use DMA for bigger than oob size: better performances */
457 if (atmel_nand_dma_op(mtd
, (void *)buf
, len
, 0) == 0)
460 if (host
->board
.bus_width_16
)
461 atmel_write_buf16(mtd
, buf
, len
);
463 atmel_write_buf8(mtd
, buf
, len
);
467 * Return number of ecc bytes per sector according to sector size and
468 * correction capability
470 * Following table shows what at91 PMECC supported:
471 * Correction Capability Sector_512_bytes Sector_1024_bytes
472 * ===================== ================ =================
473 * 2-bits 4-bytes 4-bytes
474 * 4-bits 7-bytes 7-bytes
475 * 8-bits 13-bytes 14-bytes
476 * 12-bits 20-bytes 21-bytes
477 * 24-bits 39-bytes 42-bytes
478 * 32-bits 52-bytes 56-bytes
480 static int pmecc_get_ecc_bytes(int cap
, int sector_size
)
482 int m
= 12 + sector_size
/ 512;
483 return (m
* cap
+ 7) / 8;
486 static void pmecc_config_ecc_layout(struct nand_ecclayout
*layout
,
487 int oobsize
, int ecc_len
)
491 layout
->eccbytes
= ecc_len
;
493 /* ECC will occupy the last ecc_len bytes continuously */
494 for (i
= 0; i
< ecc_len
; i
++)
495 layout
->eccpos
[i
] = oobsize
- ecc_len
+ i
;
497 layout
->oobfree
[0].offset
= PMECC_OOB_RESERVED_BYTES
;
498 layout
->oobfree
[0].length
=
499 oobsize
- ecc_len
- layout
->oobfree
[0].offset
;
502 static void __iomem
*pmecc_get_alpha_to(struct atmel_nand_host
*host
)
506 table_size
= host
->pmecc_sector_size
== 512 ?
507 PMECC_LOOKUP_TABLE_SIZE_512
: PMECC_LOOKUP_TABLE_SIZE_1024
;
509 return host
->pmecc_rom_base
+ host
->pmecc_lookup_table_offset
+
510 table_size
* sizeof(int16_t);
513 static int pmecc_data_alloc(struct atmel_nand_host
*host
)
515 const int cap
= host
->pmecc_corr_cap
;
518 size
= (2 * cap
+ 1) * sizeof(int16_t);
519 host
->pmecc_partial_syn
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
520 host
->pmecc_si
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
521 host
->pmecc_lmu
= devm_kzalloc(host
->dev
,
522 (cap
+ 1) * sizeof(int16_t), GFP_KERNEL
);
523 host
->pmecc_smu
= devm_kzalloc(host
->dev
,
524 (cap
+ 2) * size
, GFP_KERNEL
);
526 size
= (cap
+ 1) * sizeof(int);
527 host
->pmecc_mu
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
528 host
->pmecc_dmu
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
529 host
->pmecc_delta
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
531 if (!host
->pmecc_partial_syn
||
543 static void pmecc_gen_syndrome(struct mtd_info
*mtd
, int sector
)
545 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
546 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
550 /* Fill odd syndromes */
551 for (i
= 0; i
< host
->pmecc_corr_cap
; i
++) {
552 value
= pmecc_readl_rem_relaxed(host
->ecc
, sector
, i
/ 2);
556 host
->pmecc_partial_syn
[(2 * i
) + 1] = (int16_t)value
;
560 static void pmecc_substitute(struct mtd_info
*mtd
)
562 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
563 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
564 int16_t __iomem
*alpha_to
= host
->pmecc_alpha_to
;
565 int16_t __iomem
*index_of
= host
->pmecc_index_of
;
566 int16_t *partial_syn
= host
->pmecc_partial_syn
;
567 const int cap
= host
->pmecc_corr_cap
;
571 /* si[] is a table that holds the current syndrome value,
572 * an element of that table belongs to the field
576 memset(&si
[1], 0, sizeof(int16_t) * (2 * cap
- 1));
578 /* Computation 2t syndromes based on S(x) */
580 for (i
= 1; i
< 2 * cap
; i
+= 2) {
581 for (j
= 0; j
< host
->pmecc_degree
; j
++) {
582 if (partial_syn
[i
] & ((unsigned short)0x1 << j
))
583 si
[i
] = readw_relaxed(alpha_to
+ i
* j
) ^ si
[i
];
586 /* Even syndrome = (Odd syndrome) ** 2 */
587 for (i
= 2, j
= 1; j
<= cap
; i
= ++j
<< 1) {
593 tmp
= readw_relaxed(index_of
+ si
[j
]);
594 tmp
= (tmp
* 2) % host
->pmecc_cw_len
;
595 si
[i
] = readw_relaxed(alpha_to
+ tmp
);
602 static void pmecc_get_sigma(struct mtd_info
*mtd
)
604 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
605 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
607 int16_t *lmu
= host
->pmecc_lmu
;
608 int16_t *si
= host
->pmecc_si
;
609 int *mu
= host
->pmecc_mu
;
610 int *dmu
= host
->pmecc_dmu
; /* Discrepancy */
611 int *delta
= host
->pmecc_delta
; /* Delta order */
612 int cw_len
= host
->pmecc_cw_len
;
613 const int16_t cap
= host
->pmecc_corr_cap
;
614 const int num
= 2 * cap
+ 1;
615 int16_t __iomem
*index_of
= host
->pmecc_index_of
;
616 int16_t __iomem
*alpha_to
= host
->pmecc_alpha_to
;
618 uint32_t dmu_0_count
, tmp
;
619 int16_t *smu
= host
->pmecc_smu
;
621 /* index of largest delta */
633 memset(smu
, 0, sizeof(int16_t) * num
);
636 /* discrepancy set to 1 */
638 /* polynom order set to 0 */
640 delta
[0] = (mu
[0] * 2 - lmu
[0]) >> 1;
646 /* Sigma(x) set to 1 */
647 memset(&smu
[num
], 0, sizeof(int16_t) * num
);
650 /* discrepancy set to S1 */
653 /* polynom order set to 0 */
656 delta
[1] = (mu
[1] * 2 - lmu
[1]) >> 1;
658 /* Init the Sigma(x) last row */
659 memset(&smu
[(cap
+ 1) * num
], 0, sizeof(int16_t) * num
);
661 for (i
= 1; i
<= cap
; i
++) {
663 /* Begin Computing Sigma (Mu+1) and L(mu) */
664 /* check if discrepancy is set to 0 */
668 tmp
= ((cap
- (lmu
[i
] >> 1) - 1) / 2);
669 if ((cap
- (lmu
[i
] >> 1) - 1) & 0x1)
674 if (dmu_0_count
== tmp
) {
675 for (j
= 0; j
<= (lmu
[i
] >> 1) + 1; j
++)
676 smu
[(cap
+ 1) * num
+ j
] =
679 lmu
[cap
+ 1] = lmu
[i
];
684 for (j
= 0; j
<= lmu
[i
] >> 1; j
++)
685 smu
[(i
+ 1) * num
+ j
] = smu
[i
* num
+ j
];
687 /* copy previous polynom order to the next */
692 /* find largest delta with dmu != 0 */
693 for (j
= 0; j
< i
; j
++) {
694 if ((dmu
[j
]) && (delta
[j
] > largest
)) {
700 /* compute difference */
701 diff
= (mu
[i
] - mu
[ro
]);
703 /* Compute degree of the new smu polynomial */
704 if ((lmu
[i
] >> 1) > ((lmu
[ro
] >> 1) + diff
))
707 lmu
[i
+ 1] = ((lmu
[ro
] >> 1) + diff
) * 2;
709 /* Init smu[i+1] with 0 */
710 for (k
= 0; k
< num
; k
++)
711 smu
[(i
+ 1) * num
+ k
] = 0;
713 /* Compute smu[i+1] */
714 for (k
= 0; k
<= lmu
[ro
] >> 1; k
++) {
717 if (!(smu
[ro
* num
+ k
] && dmu
[i
]))
719 a
= readw_relaxed(index_of
+ dmu
[i
]);
720 b
= readw_relaxed(index_of
+ dmu
[ro
]);
721 c
= readw_relaxed(index_of
+ smu
[ro
* num
+ k
]);
722 tmp
= a
+ (cw_len
- b
) + c
;
723 a
= readw_relaxed(alpha_to
+ tmp
% cw_len
);
724 smu
[(i
+ 1) * num
+ (k
+ diff
)] = a
;
727 for (k
= 0; k
<= lmu
[i
] >> 1; k
++)
728 smu
[(i
+ 1) * num
+ k
] ^= smu
[i
* num
+ k
];
731 /* End Computing Sigma (Mu+1) and L(mu) */
732 /* In either case compute delta */
733 delta
[i
+ 1] = (mu
[i
+ 1] * 2 - lmu
[i
+ 1]) >> 1;
735 /* Do not compute discrepancy for the last iteration */
739 for (k
= 0; k
<= (lmu
[i
+ 1] >> 1); k
++) {
742 dmu
[i
+ 1] = si
[tmp
+ 3];
743 } else if (smu
[(i
+ 1) * num
+ k
] && si
[tmp
+ 3 - k
]) {
745 a
= readw_relaxed(index_of
+
746 smu
[(i
+ 1) * num
+ k
]);
747 b
= si
[2 * (i
- 1) + 3 - k
];
748 c
= readw_relaxed(index_of
+ b
);
751 dmu
[i
+ 1] = readw_relaxed(alpha_to
+ tmp
) ^
760 static int pmecc_err_location(struct mtd_info
*mtd
)
762 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
763 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
764 unsigned long end_time
;
765 const int cap
= host
->pmecc_corr_cap
;
766 const int num
= 2 * cap
+ 1;
767 int sector_size
= host
->pmecc_sector_size
;
768 int err_nbr
= 0; /* number of error */
769 int roots_nbr
; /* number of roots */
772 int16_t *smu
= host
->pmecc_smu
;
774 pmerrloc_writel(host
->pmerrloc_base
, ELDIS
, PMERRLOC_DISABLE
);
776 for (i
= 0; i
<= host
->pmecc_lmu
[cap
+ 1] >> 1; i
++) {
777 pmerrloc_writel_sigma_relaxed(host
->pmerrloc_base
, i
,
778 smu
[(cap
+ 1) * num
+ i
]);
782 val
= (err_nbr
- 1) << 16;
783 if (sector_size
== 1024)
786 pmerrloc_writel(host
->pmerrloc_base
, ELCFG
, val
);
787 pmerrloc_writel(host
->pmerrloc_base
, ELEN
,
788 sector_size
* 8 + host
->pmecc_degree
* cap
);
790 end_time
= jiffies
+ msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS
);
791 while (!(pmerrloc_readl_relaxed(host
->pmerrloc_base
, ELISR
)
792 & PMERRLOC_CALC_DONE
)) {
793 if (unlikely(time_after(jiffies
, end_time
))) {
794 dev_err(host
->dev
, "PMECC: Timeout to calculate error location.\n");
800 roots_nbr
= (pmerrloc_readl_relaxed(host
->pmerrloc_base
, ELISR
)
801 & PMERRLOC_ERR_NUM_MASK
) >> 8;
802 /* Number of roots == degree of smu hence <= cap */
803 if (roots_nbr
== host
->pmecc_lmu
[cap
+ 1] >> 1)
806 /* Number of roots does not match the degree of smu
807 * unable to correct error */
811 static void pmecc_correct_data(struct mtd_info
*mtd
, uint8_t *buf
, uint8_t *ecc
,
812 int sector_num
, int extra_bytes
, int err_nbr
)
814 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
815 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
817 int byte_pos
, bit_pos
, sector_size
, pos
;
821 sector_size
= host
->pmecc_sector_size
;
824 tmp
= pmerrloc_readl_el_relaxed(host
->pmerrloc_el_base
, i
) - 1;
828 if (byte_pos
>= (sector_size
+ extra_bytes
))
829 BUG(); /* should never happen */
831 if (byte_pos
< sector_size
) {
832 err_byte
= *(buf
+ byte_pos
);
833 *(buf
+ byte_pos
) ^= (1 << bit_pos
);
835 pos
= sector_num
* host
->pmecc_sector_size
+ byte_pos
;
836 dev_dbg(host
->dev
, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
837 pos
, bit_pos
, err_byte
, *(buf
+ byte_pos
));
839 /* Bit flip in OOB area */
840 tmp
= sector_num
* nand_chip
->ecc
.bytes
841 + (byte_pos
- sector_size
);
843 ecc
[tmp
] ^= (1 << bit_pos
);
845 pos
= tmp
+ nand_chip
->ecc
.layout
->eccpos
[0];
846 dev_dbg(host
->dev
, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
847 pos
, bit_pos
, err_byte
, ecc
[tmp
]);
857 static int pmecc_correction(struct mtd_info
*mtd
, u32 pmecc_stat
, uint8_t *buf
,
860 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
861 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
864 int max_bitflips
= 0;
866 /* If can correct bitfilps from erased page, do the normal check */
867 if (host
->caps
->pmecc_correct_erase_page
)
870 for (i
= 0; i
< nand_chip
->ecc
.total
; i
++)
873 /* Erased page, return OK */
877 for (i
= 0; i
< nand_chip
->ecc
.steps
; i
++) {
879 if (pmecc_stat
& 0x1) {
880 buf_pos
= buf
+ i
* host
->pmecc_sector_size
;
882 pmecc_gen_syndrome(mtd
, i
);
883 pmecc_substitute(mtd
);
884 pmecc_get_sigma(mtd
);
886 err_nbr
= pmecc_err_location(mtd
);
888 dev_err(host
->dev
, "PMECC: Too many errors\n");
889 mtd
->ecc_stats
.failed
++;
892 pmecc_correct_data(mtd
, buf_pos
, ecc
, i
,
893 nand_chip
->ecc
.bytes
, err_nbr
);
894 mtd
->ecc_stats
.corrected
+= err_nbr
;
895 max_bitflips
= max_t(int, max_bitflips
, err_nbr
);
904 static void pmecc_enable(struct atmel_nand_host
*host
, int ecc_op
)
908 if (ecc_op
!= NAND_ECC_READ
&& ecc_op
!= NAND_ECC_WRITE
) {
909 dev_err(host
->dev
, "atmel_nand: wrong pmecc operation type!");
913 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_RST
);
914 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DISABLE
);
915 val
= pmecc_readl_relaxed(host
->ecc
, CFG
);
917 if (ecc_op
== NAND_ECC_READ
)
918 pmecc_writel(host
->ecc
, CFG
, (val
& ~PMECC_CFG_WRITE_OP
)
919 | PMECC_CFG_AUTO_ENABLE
);
921 pmecc_writel(host
->ecc
, CFG
, (val
| PMECC_CFG_WRITE_OP
)
922 & ~PMECC_CFG_AUTO_ENABLE
);
924 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_ENABLE
);
925 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DATA
);
928 static int atmel_nand_pmecc_read_page(struct mtd_info
*mtd
,
929 struct nand_chip
*chip
, uint8_t *buf
, int oob_required
, int page
)
931 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
932 int eccsize
= chip
->ecc
.size
* chip
->ecc
.steps
;
933 uint8_t *oob
= chip
->oob_poi
;
934 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
936 unsigned long end_time
;
939 if (!host
->nfc
|| !host
->nfc
->use_nfc_sram
)
940 pmecc_enable(host
, NAND_ECC_READ
);
942 chip
->read_buf(mtd
, buf
, eccsize
);
943 chip
->read_buf(mtd
, oob
, mtd
->oobsize
);
945 end_time
= jiffies
+ msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS
);
946 while ((pmecc_readl_relaxed(host
->ecc
, SR
) & PMECC_SR_BUSY
)) {
947 if (unlikely(time_after(jiffies
, end_time
))) {
948 dev_err(host
->dev
, "PMECC: Timeout to get error status.\n");
954 stat
= pmecc_readl_relaxed(host
->ecc
, ISR
);
956 bitflips
= pmecc_correction(mtd
, stat
, buf
, &oob
[eccpos
[0]]);
958 /* uncorrectable errors */
965 static int atmel_nand_pmecc_write_page(struct mtd_info
*mtd
,
966 struct nand_chip
*chip
, const uint8_t *buf
, int oob_required
,
969 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
970 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
972 unsigned long end_time
;
974 if (!host
->nfc
|| !host
->nfc
->write_by_sram
) {
975 pmecc_enable(host
, NAND_ECC_WRITE
);
976 chip
->write_buf(mtd
, (u8
*)buf
, mtd
->writesize
);
979 end_time
= jiffies
+ msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS
);
980 while ((pmecc_readl_relaxed(host
->ecc
, SR
) & PMECC_SR_BUSY
)) {
981 if (unlikely(time_after(jiffies
, end_time
))) {
982 dev_err(host
->dev
, "PMECC: Timeout to get ECC value.\n");
988 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
989 for (j
= 0; j
< chip
->ecc
.bytes
; j
++) {
992 pos
= i
* chip
->ecc
.bytes
+ j
;
993 chip
->oob_poi
[eccpos
[pos
]] =
994 pmecc_readb_ecc_relaxed(host
->ecc
, i
, j
);
997 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1002 static void atmel_pmecc_core_init(struct mtd_info
*mtd
)
1004 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
1005 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
1007 struct nand_ecclayout
*ecc_layout
;
1009 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_RST
);
1010 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DISABLE
);
1012 switch (host
->pmecc_corr_cap
) {
1014 val
= PMECC_CFG_BCH_ERR2
;
1017 val
= PMECC_CFG_BCH_ERR4
;
1020 val
= PMECC_CFG_BCH_ERR8
;
1023 val
= PMECC_CFG_BCH_ERR12
;
1026 val
= PMECC_CFG_BCH_ERR24
;
1029 val
= PMECC_CFG_BCH_ERR32
;
1033 if (host
->pmecc_sector_size
== 512)
1034 val
|= PMECC_CFG_SECTOR512
;
1035 else if (host
->pmecc_sector_size
== 1024)
1036 val
|= PMECC_CFG_SECTOR1024
;
1038 switch (nand_chip
->ecc
.steps
) {
1040 val
|= PMECC_CFG_PAGE_1SECTOR
;
1043 val
|= PMECC_CFG_PAGE_2SECTORS
;
1046 val
|= PMECC_CFG_PAGE_4SECTORS
;
1049 val
|= PMECC_CFG_PAGE_8SECTORS
;
1053 val
|= (PMECC_CFG_READ_OP
| PMECC_CFG_SPARE_DISABLE
1054 | PMECC_CFG_AUTO_DISABLE
);
1055 pmecc_writel(host
->ecc
, CFG
, val
);
1057 ecc_layout
= nand_chip
->ecc
.layout
;
1058 pmecc_writel(host
->ecc
, SAREA
, mtd
->oobsize
- 1);
1059 pmecc_writel(host
->ecc
, SADDR
, ecc_layout
->eccpos
[0]);
1060 pmecc_writel(host
->ecc
, EADDR
,
1061 ecc_layout
->eccpos
[ecc_layout
->eccbytes
- 1]);
1062 /* See datasheet about PMECC Clock Control Register */
1063 pmecc_writel(host
->ecc
, CLK
, 2);
1064 pmecc_writel(host
->ecc
, IDR
, 0xff);
1065 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_ENABLE
);
1069 * Get minimum ecc requirements from NAND.
1070 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1071 * will set them according to minimum ecc requirement. Otherwise, use the
1072 * value in DTS file.
1073 * return 0 if success. otherwise return error code.
1075 static int pmecc_choose_ecc(struct atmel_nand_host
*host
,
1076 int *cap
, int *sector_size
)
1078 /* Get minimum ECC requirements */
1079 if (host
->nand_chip
.ecc_strength_ds
) {
1080 *cap
= host
->nand_chip
.ecc_strength_ds
;
1081 *sector_size
= host
->nand_chip
.ecc_step_ds
;
1082 dev_info(host
->dev
, "minimum ECC: %d bits in %d bytes\n",
1083 *cap
, *sector_size
);
1087 dev_info(host
->dev
, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1090 /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1091 if (host
->pmecc_corr_cap
== 0) {
1092 if (*cap
> host
->caps
->pmecc_max_correction
)
1095 /* use the most fitable ecc bits (the near bigger one ) */
1097 host
->pmecc_corr_cap
= 2;
1099 host
->pmecc_corr_cap
= 4;
1101 host
->pmecc_corr_cap
= 8;
1102 else if (*cap
<= 12)
1103 host
->pmecc_corr_cap
= 12;
1104 else if (*cap
<= 24)
1105 host
->pmecc_corr_cap
= 24;
1106 else if (*cap
<= 32)
1107 host
->pmecc_corr_cap
= 32;
1111 if (host
->pmecc_sector_size
== 0) {
1112 /* use the most fitable sector size (the near smaller one ) */
1113 if (*sector_size
>= 1024)
1114 host
->pmecc_sector_size
= 1024;
1115 else if (*sector_size
>= 512)
1116 host
->pmecc_sector_size
= 512;
1123 static inline int deg(unsigned int poly
)
1125 /* polynomial degree is the most-significant bit index */
1126 return fls(poly
) - 1;
1129 static int build_gf_tables(int mm
, unsigned int poly
,
1130 int16_t *index_of
, int16_t *alpha_to
)
1132 unsigned int i
, x
= 1;
1133 const unsigned int k
= 1 << deg(poly
);
1134 unsigned int nn
= (1 << mm
) - 1;
1136 /* primitive polynomial must be of degree m */
1137 if (k
!= (1u << mm
))
1140 for (i
= 0; i
< nn
; i
++) {
1144 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1156 static uint16_t *create_lookup_table(struct device
*dev
, int sector_size
)
1158 int degree
= (sector_size
== 512) ?
1159 PMECC_GF_DIMENSION_13
:
1160 PMECC_GF_DIMENSION_14
;
1161 unsigned int poly
= (sector_size
== 512) ?
1162 PMECC_GF_13_PRIMITIVE_POLY
:
1163 PMECC_GF_14_PRIMITIVE_POLY
;
1164 int table_size
= (sector_size
== 512) ?
1165 PMECC_LOOKUP_TABLE_SIZE_512
:
1166 PMECC_LOOKUP_TABLE_SIZE_1024
;
1168 int16_t *addr
= devm_kzalloc(dev
, 2 * table_size
* sizeof(uint16_t),
1170 if (addr
&& build_gf_tables(degree
, poly
, addr
, addr
+ table_size
))
1176 static int atmel_pmecc_nand_init_params(struct platform_device
*pdev
,
1177 struct atmel_nand_host
*host
)
1179 struct nand_chip
*nand_chip
= &host
->nand_chip
;
1180 struct mtd_info
*mtd
= nand_to_mtd(nand_chip
);
1181 struct resource
*regs
, *regs_pmerr
, *regs_rom
;
1182 uint16_t *galois_table
;
1183 int cap
, sector_size
, err_no
;
1185 err_no
= pmecc_choose_ecc(host
, &cap
, §or_size
);
1187 dev_err(host
->dev
, "The NAND flash's ECC requirement are not support!");
1191 if (cap
> host
->pmecc_corr_cap
||
1192 sector_size
!= host
->pmecc_sector_size
)
1193 dev_info(host
->dev
, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1195 cap
= host
->pmecc_corr_cap
;
1196 sector_size
= host
->pmecc_sector_size
;
1197 host
->pmecc_lookup_table_offset
= (sector_size
== 512) ?
1198 host
->pmecc_lookup_table_offset_512
:
1199 host
->pmecc_lookup_table_offset_1024
;
1201 dev_info(host
->dev
, "Initialize PMECC params, cap: %d, sector: %d\n",
1204 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1207 "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1208 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1212 host
->ecc
= devm_ioremap_resource(&pdev
->dev
, regs
);
1213 if (IS_ERR(host
->ecc
)) {
1214 err_no
= PTR_ERR(host
->ecc
);
1218 regs_pmerr
= platform_get_resource(pdev
, IORESOURCE_MEM
, 2);
1219 host
->pmerrloc_base
= devm_ioremap_resource(&pdev
->dev
, regs_pmerr
);
1220 if (IS_ERR(host
->pmerrloc_base
)) {
1221 err_no
= PTR_ERR(host
->pmerrloc_base
);
1224 host
->pmerrloc_el_base
= host
->pmerrloc_base
+ ATMEL_PMERRLOC_SIGMAx
+
1225 (host
->caps
->pmecc_max_correction
+ 1) * 4;
1227 if (!host
->has_no_lookup_table
) {
1228 regs_rom
= platform_get_resource(pdev
, IORESOURCE_MEM
, 3);
1229 host
->pmecc_rom_base
= devm_ioremap_resource(&pdev
->dev
,
1231 if (IS_ERR(host
->pmecc_rom_base
)) {
1232 dev_err(host
->dev
, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
1233 host
->has_no_lookup_table
= true;
1237 if (host
->has_no_lookup_table
) {
1238 /* Build the look-up table in runtime */
1239 galois_table
= create_lookup_table(host
->dev
, sector_size
);
1240 if (!galois_table
) {
1241 dev_err(host
->dev
, "Failed to build a lookup table in runtime!\n");
1246 host
->pmecc_rom_base
= (void __iomem
*)galois_table
;
1247 host
->pmecc_lookup_table_offset
= 0;
1250 nand_chip
->ecc
.size
= sector_size
;
1252 /* set ECC page size and oob layout */
1253 switch (mtd
->writesize
) {
1259 if (sector_size
> mtd
->writesize
) {
1260 dev_err(host
->dev
, "pmecc sector size is bigger than the page size!\n");
1265 host
->pmecc_degree
= (sector_size
== 512) ?
1266 PMECC_GF_DIMENSION_13
: PMECC_GF_DIMENSION_14
;
1267 host
->pmecc_cw_len
= (1 << host
->pmecc_degree
) - 1;
1268 host
->pmecc_alpha_to
= pmecc_get_alpha_to(host
);
1269 host
->pmecc_index_of
= host
->pmecc_rom_base
+
1270 host
->pmecc_lookup_table_offset
;
1272 nand_chip
->ecc
.strength
= cap
;
1273 nand_chip
->ecc
.bytes
= pmecc_get_ecc_bytes(cap
, sector_size
);
1274 nand_chip
->ecc
.steps
= mtd
->writesize
/ sector_size
;
1275 nand_chip
->ecc
.total
= nand_chip
->ecc
.bytes
*
1276 nand_chip
->ecc
.steps
;
1277 if (nand_chip
->ecc
.total
>
1278 mtd
->oobsize
- PMECC_OOB_RESERVED_BYTES
) {
1279 dev_err(host
->dev
, "No room for ECC bytes\n");
1283 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo
,
1285 nand_chip
->ecc
.total
);
1287 nand_chip
->ecc
.layout
= &atmel_pmecc_oobinfo
;
1291 "Unsupported page size for PMECC, use Software ECC\n");
1292 /* page size not handled by HW ECC */
1293 /* switching back to soft ECC */
1294 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1298 /* Allocate data for PMECC computation */
1299 err_no
= pmecc_data_alloc(host
);
1302 "Cannot allocate memory for PMECC computation!\n");
1306 nand_chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1307 nand_chip
->ecc
.read_page
= atmel_nand_pmecc_read_page
;
1308 nand_chip
->ecc
.write_page
= atmel_nand_pmecc_write_page
;
1310 atmel_pmecc_core_init(mtd
);
1321 * function called after a write
1323 * mtd: MTD block structure
1324 * dat: raw data (unused)
1325 * ecc_code: buffer for ECC
1327 static int atmel_nand_calculate(struct mtd_info
*mtd
,
1328 const u_char
*dat
, unsigned char *ecc_code
)
1330 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
1331 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
1332 unsigned int ecc_value
;
1334 /* get the first 2 ECC bytes */
1335 ecc_value
= ecc_readl(host
->ecc
, PR
);
1337 ecc_code
[0] = ecc_value
& 0xFF;
1338 ecc_code
[1] = (ecc_value
>> 8) & 0xFF;
1340 /* get the last 2 ECC bytes */
1341 ecc_value
= ecc_readl(host
->ecc
, NPR
) & ATMEL_ECC_NPARITY
;
1343 ecc_code
[2] = ecc_value
& 0xFF;
1344 ecc_code
[3] = (ecc_value
>> 8) & 0xFF;
1350 * HW ECC read page function
1352 * mtd: mtd info structure
1353 * chip: nand chip info structure
1354 * buf: buffer to store read data
1355 * oob_required: caller expects OOB data read to chip->oob_poi
1357 static int atmel_nand_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1358 uint8_t *buf
, int oob_required
, int page
)
1360 int eccsize
= chip
->ecc
.size
;
1361 int eccbytes
= chip
->ecc
.bytes
;
1362 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1364 uint8_t *oob
= chip
->oob_poi
;
1367 unsigned int max_bitflips
= 0;
1370 * Errata: ALE is incorrectly wired up to the ECC controller
1371 * on the AP7000, so it will include the address cycles in the
1374 * Workaround: Reset the parity registers before reading the
1377 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
1378 if (host
->board
.need_reset_workaround
)
1379 ecc_writel(host
->ecc
, CR
, ATMEL_ECC_RST
);
1382 chip
->read_buf(mtd
, p
, eccsize
);
1384 /* move to ECC position if needed */
1385 if (eccpos
[0] != 0) {
1386 /* This only works on large pages
1387 * because the ECC controller waits for
1388 * NAND_CMD_RNDOUTSTART after the
1390 * anyway, for small pages, the eccpos[0] == 0
1392 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1393 mtd
->writesize
+ eccpos
[0], -1);
1396 /* the ECC controller needs to read the ECC just after the data */
1397 ecc_pos
= oob
+ eccpos
[0];
1398 chip
->read_buf(mtd
, ecc_pos
, eccbytes
);
1400 /* check if there's an error */
1401 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1404 mtd
->ecc_stats
.failed
++;
1406 mtd
->ecc_stats
.corrected
+= stat
;
1407 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1410 /* get back to oob start (end of page) */
1411 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1414 chip
->read_buf(mtd
, oob
, mtd
->oobsize
);
1416 return max_bitflips
;
1422 * function called after a read
1424 * mtd: MTD block structure
1425 * dat: raw data read from the chip
1426 * read_ecc: ECC from the chip (unused)
1429 * Detect and correct a 1 bit error for a page
1431 static int atmel_nand_correct(struct mtd_info
*mtd
, u_char
*dat
,
1432 u_char
*read_ecc
, u_char
*isnull
)
1434 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
1435 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
1436 unsigned int ecc_status
;
1437 unsigned int ecc_word
, ecc_bit
;
1439 /* get the status from the Status Register */
1440 ecc_status
= ecc_readl(host
->ecc
, SR
);
1442 /* if there's no error */
1443 if (likely(!(ecc_status
& ATMEL_ECC_RECERR
)))
1446 /* get error bit offset (4 bits) */
1447 ecc_bit
= ecc_readl(host
->ecc
, PR
) & ATMEL_ECC_BITADDR
;
1448 /* get word address (12 bits) */
1449 ecc_word
= ecc_readl(host
->ecc
, PR
) & ATMEL_ECC_WORDADDR
;
1452 /* if there are multiple errors */
1453 if (ecc_status
& ATMEL_ECC_MULERR
) {
1454 /* check if it is a freshly erased block
1455 * (filled with 0xff) */
1456 if ((ecc_bit
== ATMEL_ECC_BITADDR
)
1457 && (ecc_word
== (ATMEL_ECC_WORDADDR
>> 4))) {
1458 /* the block has just been erased, return OK */
1461 /* it doesn't seems to be a freshly
1463 * We can't correct so many errors */
1464 dev_dbg(host
->dev
, "atmel_nand : multiple errors detected."
1465 " Unable to correct.\n");
1469 /* if there's a single bit error : we can correct it */
1470 if (ecc_status
& ATMEL_ECC_ECCERR
) {
1471 /* there's nothing much to do here.
1472 * the bit error is on the ECC itself.
1474 dev_dbg(host
->dev
, "atmel_nand : one bit error on ECC code."
1475 " Nothing to correct\n");
1479 dev_dbg(host
->dev
, "atmel_nand : one bit error on data."
1480 " (word offset in the page :"
1481 " 0x%x bit offset : 0x%x)\n",
1483 /* correct the error */
1484 if (nand_chip
->options
& NAND_BUSWIDTH_16
) {
1486 ((unsigned short *) dat
)[ecc_word
] ^= (1 << ecc_bit
);
1489 dat
[ecc_word
] ^= (1 << ecc_bit
);
1491 dev_dbg(host
->dev
, "atmel_nand : error corrected\n");
1496 * Enable HW ECC : unused on most chips
1498 static void atmel_nand_hwctl(struct mtd_info
*mtd
, int mode
)
1500 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
1501 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
1503 if (host
->board
.need_reset_workaround
)
1504 ecc_writel(host
->ecc
, CR
, ATMEL_ECC_RST
);
1507 static int atmel_of_init_port(struct atmel_nand_host
*host
,
1508 struct device_node
*np
)
1513 struct atmel_nand_data
*board
= &host
->board
;
1514 enum of_gpio_flags flags
= 0;
1516 host
->caps
= (struct atmel_nand_caps
*)
1517 of_device_get_match_data(host
->dev
);
1519 if (of_property_read_u32(np
, "atmel,nand-addr-offset", &val
) == 0) {
1521 dev_err(host
->dev
, "invalid addr-offset %u\n", val
);
1527 if (of_property_read_u32(np
, "atmel,nand-cmd-offset", &val
) == 0) {
1529 dev_err(host
->dev
, "invalid cmd-offset %u\n", val
);
1535 ecc_mode
= of_get_nand_ecc_mode(np
);
1537 board
->ecc_mode
= ecc_mode
< 0 ? NAND_ECC_SOFT
: ecc_mode
;
1539 board
->on_flash_bbt
= of_get_nand_on_flash_bbt(np
);
1541 board
->has_dma
= of_property_read_bool(np
, "atmel,nand-has-dma");
1543 if (of_get_nand_bus_width(np
) == 16)
1544 board
->bus_width_16
= 1;
1546 board
->rdy_pin
= of_get_gpio_flags(np
, 0, &flags
);
1547 board
->rdy_pin_active_low
= (flags
== OF_GPIO_ACTIVE_LOW
);
1549 board
->enable_pin
= of_get_gpio(np
, 1);
1550 board
->det_pin
= of_get_gpio(np
, 2);
1552 host
->has_pmecc
= of_property_read_bool(np
, "atmel,has-pmecc");
1554 /* load the nfc driver if there is */
1555 of_platform_populate(np
, NULL
, NULL
, host
->dev
);
1557 if (!(board
->ecc_mode
== NAND_ECC_HW
) || !host
->has_pmecc
)
1558 return 0; /* Not using PMECC */
1560 /* use PMECC, get correction capability, sector size and lookup
1562 * If correction bits and sector size are not specified, then find
1563 * them from NAND ONFI parameters.
1565 if (of_property_read_u32(np
, "atmel,pmecc-cap", &val
) == 0) {
1566 if (val
> host
->caps
->pmecc_max_correction
) {
1568 "Required ECC strength too high: %u max %u\n",
1569 val
, host
->caps
->pmecc_max_correction
);
1572 if ((val
!= 2) && (val
!= 4) && (val
!= 8) &&
1573 (val
!= 12) && (val
!= 24) && (val
!= 32)) {
1575 "Required ECC strength not supported: %u\n",
1579 host
->pmecc_corr_cap
= (u8
)val
;
1582 if (of_property_read_u32(np
, "atmel,pmecc-sector-size", &val
) == 0) {
1583 if ((val
!= 512) && (val
!= 1024)) {
1585 "Required ECC sector size not supported: %u\n",
1589 host
->pmecc_sector_size
= (u16
)val
;
1592 if (of_property_read_u32_array(np
, "atmel,pmecc-lookup-table-offset",
1594 dev_err(host
->dev
, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
1595 host
->has_no_lookup_table
= true;
1596 /* Will build a lookup table and initialize the offset later */
1599 if (!offset
[0] && !offset
[1]) {
1600 dev_err(host
->dev
, "Invalid PMECC lookup table offset\n");
1603 host
->pmecc_lookup_table_offset_512
= offset
[0];
1604 host
->pmecc_lookup_table_offset_1024
= offset
[1];
1609 static int atmel_hw_nand_init_params(struct platform_device
*pdev
,
1610 struct atmel_nand_host
*host
)
1612 struct nand_chip
*nand_chip
= &host
->nand_chip
;
1613 struct mtd_info
*mtd
= nand_to_mtd(nand_chip
);
1614 struct resource
*regs
;
1616 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1619 "Can't get I/O resource regs, use software ECC\n");
1620 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1624 host
->ecc
= devm_ioremap_resource(&pdev
->dev
, regs
);
1625 if (IS_ERR(host
->ecc
))
1626 return PTR_ERR(host
->ecc
);
1628 /* ECC is calculated for the whole page (1 step) */
1629 nand_chip
->ecc
.size
= mtd
->writesize
;
1631 /* set ECC page size and oob layout */
1632 switch (mtd
->writesize
) {
1634 nand_chip
->ecc
.layout
= &atmel_oobinfo_small
;
1635 ecc_writel(host
->ecc
, MR
, ATMEL_ECC_PAGESIZE_528
);
1638 nand_chip
->ecc
.layout
= &atmel_oobinfo_large
;
1639 ecc_writel(host
->ecc
, MR
, ATMEL_ECC_PAGESIZE_1056
);
1642 nand_chip
->ecc
.layout
= &atmel_oobinfo_large
;
1643 ecc_writel(host
->ecc
, MR
, ATMEL_ECC_PAGESIZE_2112
);
1646 nand_chip
->ecc
.layout
= &atmel_oobinfo_large
;
1647 ecc_writel(host
->ecc
, MR
, ATMEL_ECC_PAGESIZE_4224
);
1650 /* page size not handled by HW ECC */
1651 /* switching back to soft ECC */
1652 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1656 /* set up for HW ECC */
1657 nand_chip
->ecc
.calculate
= atmel_nand_calculate
;
1658 nand_chip
->ecc
.correct
= atmel_nand_correct
;
1659 nand_chip
->ecc
.hwctl
= atmel_nand_hwctl
;
1660 nand_chip
->ecc
.read_page
= atmel_nand_read_page
;
1661 nand_chip
->ecc
.bytes
= 4;
1662 nand_chip
->ecc
.strength
= 1;
1667 static inline u32
nfc_read_status(struct atmel_nand_host
*host
)
1669 u32 err_flags
= NFC_SR_DTOE
| NFC_SR_UNDEF
| NFC_SR_AWB
| NFC_SR_ASE
;
1670 u32 nfc_status
= nfc_readl(host
->nfc
->hsmc_regs
, SR
);
1672 if (unlikely(nfc_status
& err_flags
)) {
1673 if (nfc_status
& NFC_SR_DTOE
)
1674 dev_err(host
->dev
, "NFC: Waiting Nand R/B Timeout Error\n");
1675 else if (nfc_status
& NFC_SR_UNDEF
)
1676 dev_err(host
->dev
, "NFC: Access Undefined Area Error\n");
1677 else if (nfc_status
& NFC_SR_AWB
)
1678 dev_err(host
->dev
, "NFC: Access memory While NFC is busy\n");
1679 else if (nfc_status
& NFC_SR_ASE
)
1680 dev_err(host
->dev
, "NFC: Access memory Size Error\n");
1686 /* SMC interrupt service routine */
1687 static irqreturn_t
hsmc_interrupt(int irq
, void *dev_id
)
1689 struct atmel_nand_host
*host
= dev_id
;
1690 u32 status
, mask
, pending
;
1691 irqreturn_t ret
= IRQ_NONE
;
1693 status
= nfc_read_status(host
);
1694 mask
= nfc_readl(host
->nfc
->hsmc_regs
, IMR
);
1695 pending
= status
& mask
;
1697 if (pending
& NFC_SR_XFR_DONE
) {
1698 complete(&host
->nfc
->comp_xfer_done
);
1699 nfc_writel(host
->nfc
->hsmc_regs
, IDR
, NFC_SR_XFR_DONE
);
1702 if (pending
& host
->nfc
->caps
->rb_mask
) {
1703 complete(&host
->nfc
->comp_ready
);
1704 nfc_writel(host
->nfc
->hsmc_regs
, IDR
, host
->nfc
->caps
->rb_mask
);
1707 if (pending
& NFC_SR_CMD_DONE
) {
1708 complete(&host
->nfc
->comp_cmd_done
);
1709 nfc_writel(host
->nfc
->hsmc_regs
, IDR
, NFC_SR_CMD_DONE
);
1716 /* NFC(Nand Flash Controller) related functions */
1717 static void nfc_prepare_interrupt(struct atmel_nand_host
*host
, u32 flag
)
1719 if (flag
& NFC_SR_XFR_DONE
)
1720 init_completion(&host
->nfc
->comp_xfer_done
);
1722 if (flag
& host
->nfc
->caps
->rb_mask
)
1723 init_completion(&host
->nfc
->comp_ready
);
1725 if (flag
& NFC_SR_CMD_DONE
)
1726 init_completion(&host
->nfc
->comp_cmd_done
);
1728 /* Enable interrupt that need to wait for */
1729 nfc_writel(host
->nfc
->hsmc_regs
, IER
, flag
);
1732 static int nfc_wait_interrupt(struct atmel_nand_host
*host
, u32 flag
)
1735 struct completion
*comp
[3]; /* Support 3 interrupt completion */
1737 if (flag
& NFC_SR_XFR_DONE
)
1738 comp
[index
++] = &host
->nfc
->comp_xfer_done
;
1740 if (flag
& host
->nfc
->caps
->rb_mask
)
1741 comp
[index
++] = &host
->nfc
->comp_ready
;
1743 if (flag
& NFC_SR_CMD_DONE
)
1744 comp
[index
++] = &host
->nfc
->comp_cmd_done
;
1747 dev_err(host
->dev
, "Unknown interrupt flag: 0x%08x\n", flag
);
1751 for (i
= 0; i
< index
; i
++) {
1752 if (wait_for_completion_timeout(comp
[i
],
1753 msecs_to_jiffies(NFC_TIME_OUT_MS
)))
1754 continue; /* wait for next completion */
1762 dev_err(host
->dev
, "Time out to wait for interrupt: 0x%08x\n", flag
);
1763 /* Disable the interrupt as it is not handled by interrupt handler */
1764 nfc_writel(host
->nfc
->hsmc_regs
, IDR
, flag
);
1768 static int nfc_send_command(struct atmel_nand_host
*host
,
1769 unsigned int cmd
, unsigned int addr
, unsigned char cycle0
)
1771 unsigned long timeout
;
1772 u32 flag
= NFC_SR_CMD_DONE
;
1773 flag
|= cmd
& NFCADDR_CMD_DATAEN
? NFC_SR_XFR_DONE
: 0;
1776 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1779 timeout
= jiffies
+ msecs_to_jiffies(NFC_TIME_OUT_MS
);
1780 while (nfc_readl(host
->nfc
->hsmc_regs
, SR
) & NFC_SR_BUSY
) {
1781 if (time_after(jiffies
, timeout
)) {
1783 "Time out to wait for NFC ready!\n");
1788 nfc_prepare_interrupt(host
, flag
);
1789 nfc_writel(host
->nfc
->hsmc_regs
, CYCLE0
, cycle0
);
1790 nfc_cmd_addr1234_writel(cmd
, addr
, host
->nfc
->base_cmd_regs
);
1791 return nfc_wait_interrupt(host
, flag
);
1794 static int nfc_device_ready(struct mtd_info
*mtd
)
1797 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
1798 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
1800 status
= nfc_read_status(host
);
1801 mask
= nfc_readl(host
->nfc
->hsmc_regs
, IMR
);
1803 /* The mask should be 0. If not we may lost interrupts */
1804 if (unlikely(mask
& status
))
1805 dev_err(host
->dev
, "Lost the interrupt flags: 0x%08x\n",
1808 return status
& host
->nfc
->caps
->rb_mask
;
1811 static void nfc_select_chip(struct mtd_info
*mtd
, int chip
)
1813 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
1814 struct atmel_nand_host
*host
= nand_get_controller_data(nand_chip
);
1817 nfc_writel(host
->nfc
->hsmc_regs
, CTRL
, NFC_CTRL_DISABLE
);
1819 nfc_writel(host
->nfc
->hsmc_regs
, CTRL
, NFC_CTRL_ENABLE
);
1822 static int nfc_make_addr(struct mtd_info
*mtd
, int command
, int column
,
1823 int page_addr
, unsigned int *addr1234
, unsigned int *cycle0
)
1825 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1828 unsigned char addr_bytes
[8];
1829 int index
= 0, bit_shift
;
1831 BUG_ON(addr1234
== NULL
|| cycle0
== NULL
);
1837 if (chip
->options
& NAND_BUSWIDTH_16
&&
1838 !nand_opcode_8bits(command
))
1840 addr_bytes
[acycle
++] = column
& 0xff;
1841 if (mtd
->writesize
> 512)
1842 addr_bytes
[acycle
++] = (column
>> 8) & 0xff;
1845 if (page_addr
!= -1) {
1846 addr_bytes
[acycle
++] = page_addr
& 0xff;
1847 addr_bytes
[acycle
++] = (page_addr
>> 8) & 0xff;
1848 if (chip
->chipsize
> (128 << 20))
1849 addr_bytes
[acycle
++] = (page_addr
>> 16) & 0xff;
1853 *cycle0
= addr_bytes
[index
++];
1855 for (bit_shift
= 0; index
< acycle
; bit_shift
+= 8)
1856 *addr1234
+= addr_bytes
[index
++] << bit_shift
;
1858 /* return acycle in cmd register */
1859 return acycle
<< NFCADDR_CMD_ACYCLE_BIT_POS
;
1862 static void nfc_nand_command(struct mtd_info
*mtd
, unsigned int command
,
1863 int column
, int page_addr
)
1865 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1866 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
1867 unsigned long timeout
;
1868 unsigned int nfc_addr_cmd
= 0;
1870 unsigned int cmd1
= command
<< NFCADDR_CMD_CMD1_BIT_POS
;
1872 /* Set default settings: no cmd2, no addr cycle. read from nand */
1873 unsigned int cmd2
= 0;
1874 unsigned int vcmd2
= 0;
1875 int acycle
= NFCADDR_CMD_ACYCLE_NONE
;
1876 int csid
= NFCADDR_CMD_CSID_3
;
1877 int dataen
= NFCADDR_CMD_DATADIS
;
1878 int nfcwr
= NFCADDR_CMD_NFCRD
;
1879 unsigned int addr1234
= 0;
1880 unsigned int cycle0
= 0;
1881 bool do_addr
= true;
1882 host
->nfc
->data_in_sram
= NULL
;
1884 dev_dbg(host
->dev
, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1885 __func__
, command
, column
, page_addr
);
1888 case NAND_CMD_RESET
:
1889 nfc_addr_cmd
= cmd1
| acycle
| csid
| dataen
| nfcwr
;
1890 nfc_send_command(host
, nfc_addr_cmd
, addr1234
, cycle0
);
1891 udelay(chip
->chip_delay
);
1893 nfc_nand_command(mtd
, NAND_CMD_STATUS
, -1, -1);
1894 timeout
= jiffies
+ msecs_to_jiffies(NFC_TIME_OUT_MS
);
1895 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) {
1896 if (time_after(jiffies
, timeout
)) {
1898 "Time out to wait status ready!\n");
1903 case NAND_CMD_STATUS
:
1906 case NAND_CMD_PARAM
:
1907 case NAND_CMD_READID
:
1909 acycle
= NFCADDR_CMD_ACYCLE_1
;
1913 case NAND_CMD_RNDOUT
:
1914 cmd2
= NAND_CMD_RNDOUTSTART
<< NFCADDR_CMD_CMD2_BIT_POS
;
1915 vcmd2
= NFCADDR_CMD_VCMD2
;
1917 case NAND_CMD_READ0
:
1918 case NAND_CMD_READOOB
:
1919 if (command
== NAND_CMD_READOOB
) {
1920 column
+= mtd
->writesize
;
1921 command
= NAND_CMD_READ0
; /* only READ0 is valid */
1922 cmd1
= command
<< NFCADDR_CMD_CMD1_BIT_POS
;
1924 if (host
->nfc
->use_nfc_sram
) {
1925 /* Enable Data transfer to sram */
1926 dataen
= NFCADDR_CMD_DATAEN
;
1928 /* Need enable PMECC now, since NFC will transfer
1929 * data in bus after sending nfc read command.
1931 if (chip
->ecc
.mode
== NAND_ECC_HW
&& host
->has_pmecc
)
1932 pmecc_enable(host
, NAND_ECC_READ
);
1935 cmd2
= NAND_CMD_READSTART
<< NFCADDR_CMD_CMD2_BIT_POS
;
1936 vcmd2
= NFCADDR_CMD_VCMD2
;
1938 /* For prgramming command, the cmd need set to write enable */
1939 case NAND_CMD_PAGEPROG
:
1940 case NAND_CMD_SEQIN
:
1941 case NAND_CMD_RNDIN
:
1942 nfcwr
= NFCADDR_CMD_NFCWR
;
1943 if (host
->nfc
->will_write_sram
&& command
== NAND_CMD_SEQIN
)
1944 dataen
= NFCADDR_CMD_DATAEN
;
1951 acycle
= nfc_make_addr(mtd
, command
, column
, page_addr
,
1952 &addr1234
, &cycle0
);
1954 nfc_addr_cmd
= cmd1
| cmd2
| vcmd2
| acycle
| csid
| dataen
| nfcwr
;
1955 nfc_send_command(host
, nfc_addr_cmd
, addr1234
, cycle0
);
1958 * Program and erase have their own busy handlers status, sequential
1959 * in, and deplete1 need no delay.
1962 case NAND_CMD_CACHEDPROG
:
1963 case NAND_CMD_PAGEPROG
:
1964 case NAND_CMD_ERASE1
:
1965 case NAND_CMD_ERASE2
:
1966 case NAND_CMD_RNDIN
:
1967 case NAND_CMD_STATUS
:
1968 case NAND_CMD_RNDOUT
:
1969 case NAND_CMD_SEQIN
:
1970 case NAND_CMD_READID
:
1973 case NAND_CMD_READ0
:
1974 if (dataen
== NFCADDR_CMD_DATAEN
) {
1975 host
->nfc
->data_in_sram
= host
->nfc
->sram_bank0
+
1976 nfc_get_sram_off(host
);
1981 nfc_prepare_interrupt(host
, host
->nfc
->caps
->rb_mask
);
1982 nfc_wait_interrupt(host
, host
->nfc
->caps
->rb_mask
);
1986 static int nfc_sram_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1987 uint32_t offset
, int data_len
, const uint8_t *buf
,
1988 int oob_required
, int page
, int cached
, int raw
)
1992 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
1993 void *sram
= host
->nfc
->sram_bank0
+ nfc_get_sram_off(host
);
1995 /* Subpage write is not supported */
1996 if (offset
|| (data_len
< mtd
->writesize
))
1999 len
= mtd
->writesize
;
2000 /* Copy page data to sram that will write to nand via NFC */
2002 if (atmel_nand_dma_op(mtd
, (void *)buf
, len
, 0) != 0)
2003 /* Fall back to use cpu copy */
2004 memcpy(sram
, buf
, len
);
2006 memcpy(sram
, buf
, len
);
2009 cfg
= nfc_readl(host
->nfc
->hsmc_regs
, CFG
);
2010 if (unlikely(raw
) && oob_required
) {
2011 memcpy(sram
+ len
, chip
->oob_poi
, mtd
->oobsize
);
2012 len
+= mtd
->oobsize
;
2013 nfc_writel(host
->nfc
->hsmc_regs
, CFG
, cfg
| NFC_CFG_WSPARE
);
2015 nfc_writel(host
->nfc
->hsmc_regs
, CFG
, cfg
& ~NFC_CFG_WSPARE
);
2018 if (chip
->ecc
.mode
== NAND_ECC_HW
&& host
->has_pmecc
)
2020 * When use NFC sram, need set up PMECC before send
2021 * NAND_CMD_SEQIN command. Since when the nand command
2022 * is sent, nfc will do transfer from sram and nand.
2024 pmecc_enable(host
, NAND_ECC_WRITE
);
2026 host
->nfc
->will_write_sram
= true;
2027 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2028 host
->nfc
->will_write_sram
= false;
2031 /* Need to write ecc into oob */
2032 status
= chip
->ecc
.write_page(mtd
, chip
, buf
, oob_required
,
2038 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2039 status
= chip
->waitfunc(mtd
, chip
);
2041 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2042 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
, page
);
2044 if (status
& NAND_STATUS_FAIL
)
2050 static int nfc_sram_init(struct mtd_info
*mtd
)
2052 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2053 struct atmel_nand_host
*host
= nand_get_controller_data(chip
);
2056 /* Initialize the NFC CFG register */
2057 unsigned int cfg_nfc
= 0;
2059 /* set page size and oob layout */
2060 switch (mtd
->writesize
) {
2062 cfg_nfc
= NFC_CFG_PAGESIZE_512
;
2065 cfg_nfc
= NFC_CFG_PAGESIZE_1024
;
2068 cfg_nfc
= NFC_CFG_PAGESIZE_2048
;
2071 cfg_nfc
= NFC_CFG_PAGESIZE_4096
;
2074 cfg_nfc
= NFC_CFG_PAGESIZE_8192
;
2077 dev_err(host
->dev
, "Unsupported page size for NFC.\n");
2082 /* oob bytes size = (NFCSPARESIZE + 1) * 4
2083 * Max support spare size is 512 bytes. */
2084 cfg_nfc
|= (((mtd
->oobsize
/ 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
2085 & NFC_CFG_NFC_SPARESIZE
);
2086 /* default set a max timeout */
2087 cfg_nfc
|= NFC_CFG_RSPARE
|
2088 NFC_CFG_NFC_DTOCYC
| NFC_CFG_NFC_DTOMUL
;
2090 nfc_writel(host
->nfc
->hsmc_regs
, CFG
, cfg_nfc
);
2092 host
->nfc
->will_write_sram
= false;
2093 nfc_set_sram_bank(host
, 0);
2095 /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2096 if (host
->nfc
->write_by_sram
) {
2097 if ((chip
->ecc
.mode
== NAND_ECC_HW
&& host
->has_pmecc
) ||
2098 chip
->ecc
.mode
== NAND_ECC_NONE
)
2099 chip
->write_page
= nfc_sram_write_page
;
2101 host
->nfc
->write_by_sram
= false;
2104 dev_info(host
->dev
, "Using NFC Sram read %s\n",
2105 host
->nfc
->write_by_sram
? "and write" : "");
2109 static struct platform_driver atmel_nand_nfc_driver
;
2111 * Probe for the NAND device.
2113 static int atmel_nand_probe(struct platform_device
*pdev
)
2115 struct atmel_nand_host
*host
;
2116 struct mtd_info
*mtd
;
2117 struct nand_chip
*nand_chip
;
2118 struct resource
*mem
;
2121 /* Allocate memory for the device structure (and zero it) */
2122 host
= devm_kzalloc(&pdev
->dev
, sizeof(*host
), GFP_KERNEL
);
2126 res
= platform_driver_register(&atmel_nand_nfc_driver
);
2128 dev_err(&pdev
->dev
, "atmel_nand: can't register NFC driver\n");
2130 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2131 host
->io_base
= devm_ioremap_resource(&pdev
->dev
, mem
);
2132 if (IS_ERR(host
->io_base
)) {
2133 res
= PTR_ERR(host
->io_base
);
2134 goto err_nand_ioremap
;
2136 host
->io_phys
= (dma_addr_t
)mem
->start
;
2138 nand_chip
= &host
->nand_chip
;
2139 mtd
= nand_to_mtd(nand_chip
);
2140 host
->dev
= &pdev
->dev
;
2141 if (IS_ENABLED(CONFIG_OF
) && pdev
->dev
.of_node
) {
2142 nand_set_flash_node(nand_chip
, pdev
->dev
.of_node
);
2143 /* Only when CONFIG_OF is enabled of_node can be parsed */
2144 res
= atmel_of_init_port(host
, pdev
->dev
.of_node
);
2146 goto err_nand_ioremap
;
2148 memcpy(&host
->board
, dev_get_platdata(&pdev
->dev
),
2149 sizeof(struct atmel_nand_data
));
2152 /* link the private data structures */
2153 nand_set_controller_data(nand_chip
, host
);
2154 mtd
->dev
.parent
= &pdev
->dev
;
2156 /* Set address of NAND IO lines */
2157 nand_chip
->IO_ADDR_R
= host
->io_base
;
2158 nand_chip
->IO_ADDR_W
= host
->io_base
;
2160 if (nand_nfc
.is_initialized
) {
2161 /* NFC driver is probed and initialized */
2162 host
->nfc
= &nand_nfc
;
2164 nand_chip
->select_chip
= nfc_select_chip
;
2165 nand_chip
->dev_ready
= nfc_device_ready
;
2166 nand_chip
->cmdfunc
= nfc_nand_command
;
2168 /* Initialize the interrupt for NFC */
2169 irq
= platform_get_irq(pdev
, 0);
2171 dev_err(host
->dev
, "Cannot get HSMC irq!\n");
2173 goto err_nand_ioremap
;
2176 res
= devm_request_irq(&pdev
->dev
, irq
, hsmc_interrupt
,
2179 dev_err(&pdev
->dev
, "Unable to request HSMC irq %d\n",
2181 goto err_nand_ioremap
;
2184 res
= atmel_nand_set_enable_ready_pins(mtd
);
2186 goto err_nand_ioremap
;
2188 nand_chip
->cmd_ctrl
= atmel_nand_cmd_ctrl
;
2191 nand_chip
->ecc
.mode
= host
->board
.ecc_mode
;
2192 nand_chip
->chip_delay
= 40; /* 40us command delay time */
2194 if (host
->board
.bus_width_16
) /* 16-bit bus width */
2195 nand_chip
->options
|= NAND_BUSWIDTH_16
;
2197 nand_chip
->read_buf
= atmel_read_buf
;
2198 nand_chip
->write_buf
= atmel_write_buf
;
2200 platform_set_drvdata(pdev
, host
);
2201 atmel_nand_enable(host
);
2203 if (gpio_is_valid(host
->board
.det_pin
)) {
2204 res
= devm_gpio_request(&pdev
->dev
,
2205 host
->board
.det_pin
, "nand_det");
2208 "can't request det gpio %d\n",
2209 host
->board
.det_pin
);
2213 res
= gpio_direction_input(host
->board
.det_pin
);
2216 "can't request input direction det gpio %d\n",
2217 host
->board
.det_pin
);
2221 if (gpio_get_value(host
->board
.det_pin
)) {
2222 dev_info(&pdev
->dev
, "No SmartMedia card inserted.\n");
2228 if (host
->board
.on_flash_bbt
|| on_flash_bbt
) {
2229 dev_info(&pdev
->dev
, "Use On Flash BBT\n");
2230 nand_chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2233 if (!host
->board
.has_dma
)
2237 dma_cap_mask_t mask
;
2240 dma_cap_set(DMA_MEMCPY
, mask
);
2241 host
->dma_chan
= dma_request_channel(mask
, NULL
, NULL
);
2242 if (!host
->dma_chan
) {
2243 dev_err(host
->dev
, "Failed to request DMA channel\n");
2248 dev_info(host
->dev
, "Using %s for DMA transfers.\n",
2249 dma_chan_name(host
->dma_chan
));
2251 dev_info(host
->dev
, "No DMA support for NAND access.\n");
2253 /* first scan to find the device and get the page size */
2254 if (nand_scan_ident(mtd
, 1, NULL
)) {
2256 goto err_scan_ident
;
2259 if (nand_chip
->ecc
.mode
== NAND_ECC_HW
) {
2260 if (host
->has_pmecc
)
2261 res
= atmel_pmecc_nand_init_params(pdev
, host
);
2263 res
= atmel_hw_nand_init_params(pdev
, host
);
2269 /* initialize the nfc configuration register */
2270 if (host
->nfc
&& host
->nfc
->use_nfc_sram
) {
2271 res
= nfc_sram_init(mtd
);
2273 host
->nfc
->use_nfc_sram
= false;
2274 dev_err(host
->dev
, "Disable use nfc sram for data transfer.\n");
2278 /* second phase scan */
2279 if (nand_scan_tail(mtd
)) {
2284 mtd
->name
= "atmel_nand";
2285 res
= mtd_device_register(mtd
, host
->board
.parts
,
2286 host
->board
.num_parts
);
2291 if (host
->has_pmecc
&& host
->nand_chip
.ecc
.mode
== NAND_ECC_HW
)
2292 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DISABLE
);
2296 atmel_nand_disable(host
);
2298 dma_release_channel(host
->dma_chan
);
2304 * Remove a NAND device.
2306 static int atmel_nand_remove(struct platform_device
*pdev
)
2308 struct atmel_nand_host
*host
= platform_get_drvdata(pdev
);
2309 struct mtd_info
*mtd
= nand_to_mtd(&host
->nand_chip
);
2313 atmel_nand_disable(host
);
2315 if (host
->has_pmecc
&& host
->nand_chip
.ecc
.mode
== NAND_ECC_HW
) {
2316 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DISABLE
);
2317 pmerrloc_writel(host
->pmerrloc_base
, ELDIS
,
2322 dma_release_channel(host
->dma_chan
);
2324 platform_driver_unregister(&atmel_nand_nfc_driver
);
2330 * AT91RM9200 does not have PMECC or PMECC Errloc peripherals for
2331 * BCH ECC. Combined with the "atmel,has-pmecc", it is used to describe
2332 * devices from the SAM9 family that have those.
2334 static const struct atmel_nand_caps at91rm9200_caps
= {
2335 .pmecc_correct_erase_page
= false,
2336 .pmecc_max_correction
= 24,
2339 static const struct atmel_nand_caps sama5d4_caps
= {
2340 .pmecc_correct_erase_page
= true,
2341 .pmecc_max_correction
= 24,
2345 * The PMECC Errloc controller starting in SAMA5D2 is not compatible,
2346 * as the increased correction strength requires more registers.
2348 static const struct atmel_nand_caps sama5d2_caps
= {
2349 .pmecc_correct_erase_page
= true,
2350 .pmecc_max_correction
= 32,
2353 static const struct of_device_id atmel_nand_dt_ids
[] = {
2354 { .compatible
= "atmel,at91rm9200-nand", .data
= &at91rm9200_caps
},
2355 { .compatible
= "atmel,sama5d4-nand", .data
= &sama5d4_caps
},
2356 { .compatible
= "atmel,sama5d2-nand", .data
= &sama5d2_caps
},
2360 MODULE_DEVICE_TABLE(of
, atmel_nand_dt_ids
);
2362 static int atmel_nand_nfc_probe(struct platform_device
*pdev
)
2364 struct atmel_nfc
*nfc
= &nand_nfc
;
2365 struct resource
*nfc_cmd_regs
, *nfc_hsmc_regs
, *nfc_sram
;
2368 nfc_cmd_regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2369 nfc
->base_cmd_regs
= devm_ioremap_resource(&pdev
->dev
, nfc_cmd_regs
);
2370 if (IS_ERR(nfc
->base_cmd_regs
))
2371 return PTR_ERR(nfc
->base_cmd_regs
);
2373 nfc_hsmc_regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
2374 nfc
->hsmc_regs
= devm_ioremap_resource(&pdev
->dev
, nfc_hsmc_regs
);
2375 if (IS_ERR(nfc
->hsmc_regs
))
2376 return PTR_ERR(nfc
->hsmc_regs
);
2378 nfc_sram
= platform_get_resource(pdev
, IORESOURCE_MEM
, 2);
2380 nfc
->sram_bank0
= (void * __force
)
2381 devm_ioremap_resource(&pdev
->dev
, nfc_sram
);
2382 if (IS_ERR(nfc
->sram_bank0
)) {
2383 dev_warn(&pdev
->dev
, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2384 PTR_ERR(nfc
->sram_bank0
));
2386 nfc
->use_nfc_sram
= true;
2387 nfc
->sram_bank0_phys
= (dma_addr_t
)nfc_sram
->start
;
2389 if (pdev
->dev
.of_node
)
2390 nfc
->write_by_sram
= of_property_read_bool(
2392 "atmel,write-by-sram");
2396 nfc
->caps
= (const struct atmel_nand_nfc_caps
*)
2397 of_device_get_match_data(&pdev
->dev
);
2401 nfc_writel(nfc
->hsmc_regs
, IDR
, 0xffffffff);
2402 nfc_readl(nfc
->hsmc_regs
, SR
); /* clear the NFC_SR */
2404 nfc
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
2405 if (!IS_ERR(nfc
->clk
)) {
2406 ret
= clk_prepare_enable(nfc
->clk
);
2410 dev_warn(&pdev
->dev
, "NFC clock missing, update your Device Tree");
2413 nfc
->is_initialized
= true;
2414 dev_info(&pdev
->dev
, "NFC is probed.\n");
2419 static int atmel_nand_nfc_remove(struct platform_device
*pdev
)
2421 struct atmel_nfc
*nfc
= &nand_nfc
;
2423 if (!IS_ERR(nfc
->clk
))
2424 clk_disable_unprepare(nfc
->clk
);
2429 static const struct atmel_nand_nfc_caps sama5d3_nfc_caps
= {
2430 .rb_mask
= NFC_SR_RB_EDGE0
,
2433 static const struct atmel_nand_nfc_caps sama5d4_nfc_caps
= {
2434 .rb_mask
= NFC_SR_RB_EDGE3
,
2437 static const struct of_device_id atmel_nand_nfc_match
[] = {
2438 { .compatible
= "atmel,sama5d3-nfc", .data
= &sama5d3_nfc_caps
},
2439 { .compatible
= "atmel,sama5d4-nfc", .data
= &sama5d4_nfc_caps
},
2442 MODULE_DEVICE_TABLE(of
, atmel_nand_nfc_match
);
2444 static struct platform_driver atmel_nand_nfc_driver
= {
2446 .name
= "atmel_nand_nfc",
2447 .of_match_table
= of_match_ptr(atmel_nand_nfc_match
),
2449 .probe
= atmel_nand_nfc_probe
,
2450 .remove
= atmel_nand_nfc_remove
,
2453 static struct platform_driver atmel_nand_driver
= {
2454 .probe
= atmel_nand_probe
,
2455 .remove
= atmel_nand_remove
,
2457 .name
= "atmel_nand",
2458 .of_match_table
= of_match_ptr(atmel_nand_dt_ids
),
2462 module_platform_driver(atmel_nand_driver
);
2464 MODULE_LICENSE("GPL");
2465 MODULE_AUTHOR("Rick Bronson");
2466 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2467 MODULE_ALIAS("platform:atmel_nand");