EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / perf / arm_pmu.c
blobf70090897fdf19c9777c332401dd01de7b1efc52
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
27 #include <asm/cputype.h>
28 #include <asm/irq_regs.h>
30 static int
31 armpmu_map_cache_event(const unsigned (*cache_map)
32 [PERF_COUNT_HW_CACHE_MAX]
33 [PERF_COUNT_HW_CACHE_OP_MAX]
34 [PERF_COUNT_HW_CACHE_RESULT_MAX],
35 u64 config)
37 unsigned int cache_type, cache_op, cache_result, ret;
39 cache_type = (config >> 0) & 0xff;
40 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
41 return -EINVAL;
43 cache_op = (config >> 8) & 0xff;
44 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
45 return -EINVAL;
47 cache_result = (config >> 16) & 0xff;
48 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
49 return -EINVAL;
51 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53 if (ret == CACHE_OP_UNSUPPORTED)
54 return -ENOENT;
56 return ret;
59 static int
60 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62 int mapping;
64 if (config >= PERF_COUNT_HW_MAX)
65 return -EINVAL;
67 mapping = (*event_map)[config];
68 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
71 static int
72 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74 return (int)(config & raw_event_mask);
77 int
78 armpmu_map_event(struct perf_event *event,
79 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
80 const unsigned (*cache_map)
81 [PERF_COUNT_HW_CACHE_MAX]
82 [PERF_COUNT_HW_CACHE_OP_MAX]
83 [PERF_COUNT_HW_CACHE_RESULT_MAX],
84 u32 raw_event_mask)
86 u64 config = event->attr.config;
87 int type = event->attr.type;
89 if (type == event->pmu->type)
90 return armpmu_map_raw_event(raw_event_mask, config);
92 switch (type) {
93 case PERF_TYPE_HARDWARE:
94 return armpmu_map_hw_event(event_map, config);
95 case PERF_TYPE_HW_CACHE:
96 return armpmu_map_cache_event(cache_map, config);
97 case PERF_TYPE_RAW:
98 return armpmu_map_raw_event(raw_event_mask, config);
101 return -ENOENT;
104 int armpmu_event_set_period(struct perf_event *event)
106 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
107 struct hw_perf_event *hwc = &event->hw;
108 s64 left = local64_read(&hwc->period_left);
109 s64 period = hwc->sample_period;
110 int ret = 0;
112 if (unlikely(left <= -period)) {
113 left = period;
114 local64_set(&hwc->period_left, left);
115 hwc->last_period = period;
116 ret = 1;
119 if (unlikely(left <= 0)) {
120 left += period;
121 local64_set(&hwc->period_left, left);
122 hwc->last_period = period;
123 ret = 1;
127 * Limit the maximum period to prevent the counter value
128 * from overtaking the one we are about to program. In
129 * effect we are reducing max_period to account for
130 * interrupt latency (and we are being very conservative).
132 if (left > (armpmu->max_period >> 1))
133 left = armpmu->max_period >> 1;
135 local64_set(&hwc->prev_count, (u64)-left);
137 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139 perf_event_update_userpage(event);
141 return ret;
144 u64 armpmu_event_update(struct perf_event *event)
146 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
147 struct hw_perf_event *hwc = &event->hw;
148 u64 delta, prev_raw_count, new_raw_count;
150 again:
151 prev_raw_count = local64_read(&hwc->prev_count);
152 new_raw_count = armpmu->read_counter(event);
154 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
155 new_raw_count) != prev_raw_count)
156 goto again;
158 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160 local64_add(delta, &event->count);
161 local64_sub(delta, &hwc->period_left);
163 return new_raw_count;
166 static void
167 armpmu_read(struct perf_event *event)
169 armpmu_event_update(event);
172 static void
173 armpmu_stop(struct perf_event *event, int flags)
175 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
176 struct hw_perf_event *hwc = &event->hw;
179 * ARM pmu always has to update the counter, so ignore
180 * PERF_EF_UPDATE, see comments in armpmu_start().
182 if (!(hwc->state & PERF_HES_STOPPED)) {
183 armpmu->disable(event);
184 armpmu_event_update(event);
185 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
189 static void armpmu_start(struct perf_event *event, int flags)
191 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
192 struct hw_perf_event *hwc = &event->hw;
195 * ARM pmu always has to reprogram the period, so ignore
196 * PERF_EF_RELOAD, see the comment below.
198 if (flags & PERF_EF_RELOAD)
199 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
201 hwc->state = 0;
203 * Set the period again. Some counters can't be stopped, so when we
204 * were stopped we simply disabled the IRQ source and the counter
205 * may have been left counting. If we don't do this step then we may
206 * get an interrupt too soon or *way* too late if the overflow has
207 * happened since disabling.
209 armpmu_event_set_period(event);
210 armpmu->enable(event);
213 static void
214 armpmu_del(struct perf_event *event, int flags)
216 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
217 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
218 struct hw_perf_event *hwc = &event->hw;
219 int idx = hwc->idx;
221 armpmu_stop(event, PERF_EF_UPDATE);
222 hw_events->events[idx] = NULL;
223 clear_bit(idx, hw_events->used_mask);
224 if (armpmu->clear_event_idx)
225 armpmu->clear_event_idx(hw_events, event);
227 perf_event_update_userpage(event);
230 static int
231 armpmu_add(struct perf_event *event, int flags)
233 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
234 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
235 struct hw_perf_event *hwc = &event->hw;
236 int idx;
237 int err = 0;
239 /* An event following a process won't be stopped earlier */
240 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
241 return -ENOENT;
243 perf_pmu_disable(event->pmu);
245 /* If we don't have a space for the counter then finish early. */
246 idx = armpmu->get_event_idx(hw_events, event);
247 if (idx < 0) {
248 err = idx;
249 goto out;
253 * If there is an event in the counter we are going to use then make
254 * sure it is disabled.
256 event->hw.idx = idx;
257 armpmu->disable(event);
258 hw_events->events[idx] = event;
260 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
261 if (flags & PERF_EF_START)
262 armpmu_start(event, PERF_EF_RELOAD);
264 /* Propagate our changes to the userspace mapping. */
265 perf_event_update_userpage(event);
267 out:
268 perf_pmu_enable(event->pmu);
269 return err;
272 static int
273 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
274 struct perf_event *event)
276 struct arm_pmu *armpmu;
278 if (is_software_event(event))
279 return 1;
282 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
283 * core perf code won't check that the pmu->ctx == leader->ctx
284 * until after pmu->event_init(event).
286 if (event->pmu != pmu)
287 return 0;
289 if (event->state < PERF_EVENT_STATE_OFF)
290 return 1;
292 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
293 return 1;
295 armpmu = to_arm_pmu(event->pmu);
296 return armpmu->get_event_idx(hw_events, event) >= 0;
299 static int
300 validate_group(struct perf_event *event)
302 struct perf_event *sibling, *leader = event->group_leader;
303 struct pmu_hw_events fake_pmu;
306 * Initialise the fake PMU. We only need to populate the
307 * used_mask for the purposes of validation.
309 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
311 if (!validate_event(event->pmu, &fake_pmu, leader))
312 return -EINVAL;
314 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
315 if (!validate_event(event->pmu, &fake_pmu, sibling))
316 return -EINVAL;
319 if (!validate_event(event->pmu, &fake_pmu, event))
320 return -EINVAL;
322 return 0;
325 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
327 struct arm_pmu *armpmu;
328 struct platform_device *plat_device;
329 struct arm_pmu_platdata *plat;
330 int ret;
331 u64 start_clock, finish_clock;
334 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
335 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
336 * do any necessary shifting, we just need to perform the first
337 * dereference.
339 armpmu = *(void **)dev;
340 plat_device = armpmu->plat_device;
341 plat = dev_get_platdata(&plat_device->dev);
343 start_clock = sched_clock();
344 if (plat && plat->handle_irq)
345 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
346 else
347 ret = armpmu->handle_irq(irq, armpmu);
348 finish_clock = sched_clock();
350 perf_sample_event_took(finish_clock - start_clock);
351 return ret;
354 static void
355 armpmu_release_hardware(struct arm_pmu *armpmu)
357 armpmu->free_irq(armpmu);
360 static int
361 armpmu_reserve_hardware(struct arm_pmu *armpmu)
363 int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
364 if (err) {
365 armpmu_release_hardware(armpmu);
366 return err;
369 return 0;
372 static void
373 hw_perf_event_destroy(struct perf_event *event)
375 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
376 atomic_t *active_events = &armpmu->active_events;
377 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
379 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
380 armpmu_release_hardware(armpmu);
381 mutex_unlock(pmu_reserve_mutex);
385 static int
386 event_requires_mode_exclusion(struct perf_event_attr *attr)
388 return attr->exclude_idle || attr->exclude_user ||
389 attr->exclude_kernel || attr->exclude_hv;
392 static int
393 __hw_perf_event_init(struct perf_event *event)
395 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
396 struct hw_perf_event *hwc = &event->hw;
397 int mapping;
399 mapping = armpmu->map_event(event);
401 if (mapping < 0) {
402 pr_debug("event %x:%llx not supported\n", event->attr.type,
403 event->attr.config);
404 return mapping;
408 * We don't assign an index until we actually place the event onto
409 * hardware. Use -1 to signify that we haven't decided where to put it
410 * yet. For SMP systems, each core has it's own PMU so we can't do any
411 * clever allocation or constraints checking at this point.
413 hwc->idx = -1;
414 hwc->config_base = 0;
415 hwc->config = 0;
416 hwc->event_base = 0;
419 * Check whether we need to exclude the counter from certain modes.
421 if ((!armpmu->set_event_filter ||
422 armpmu->set_event_filter(hwc, &event->attr)) &&
423 event_requires_mode_exclusion(&event->attr)) {
424 pr_debug("ARM performance counters do not support "
425 "mode exclusion\n");
426 return -EOPNOTSUPP;
430 * Store the event encoding into the config_base field.
432 hwc->config_base |= (unsigned long)mapping;
434 if (!is_sampling_event(event)) {
436 * For non-sampling runs, limit the sample_period to half
437 * of the counter width. That way, the new counter value
438 * is far less likely to overtake the previous one unless
439 * you have some serious IRQ latency issues.
441 hwc->sample_period = armpmu->max_period >> 1;
442 hwc->last_period = hwc->sample_period;
443 local64_set(&hwc->period_left, hwc->sample_period);
446 if (event->group_leader != event) {
447 if (validate_group(event) != 0)
448 return -EINVAL;
451 return 0;
454 static int armpmu_event_init(struct perf_event *event)
456 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
457 int err = 0;
458 atomic_t *active_events = &armpmu->active_events;
461 * Reject CPU-affine events for CPUs that are of a different class to
462 * that which this PMU handles. Process-following events (where
463 * event->cpu == -1) can be migrated between CPUs, and thus we have to
464 * reject them later (in armpmu_add) if they're scheduled on a
465 * different class of CPU.
467 if (event->cpu != -1 &&
468 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
469 return -ENOENT;
471 /* does not support taken branch sampling */
472 if (has_branch_stack(event))
473 return -EOPNOTSUPP;
475 if (armpmu->map_event(event) == -ENOENT)
476 return -ENOENT;
478 event->destroy = hw_perf_event_destroy;
480 if (!atomic_inc_not_zero(active_events)) {
481 mutex_lock(&armpmu->reserve_mutex);
482 if (atomic_read(active_events) == 0)
483 err = armpmu_reserve_hardware(armpmu);
485 if (!err)
486 atomic_inc(active_events);
487 mutex_unlock(&armpmu->reserve_mutex);
490 if (err)
491 return err;
493 err = __hw_perf_event_init(event);
494 if (err)
495 hw_perf_event_destroy(event);
497 return err;
500 static void armpmu_enable(struct pmu *pmu)
502 struct arm_pmu *armpmu = to_arm_pmu(pmu);
503 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
504 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
506 /* For task-bound events we may be called on other CPUs */
507 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
508 return;
510 if (enabled)
511 armpmu->start(armpmu);
514 static void armpmu_disable(struct pmu *pmu)
516 struct arm_pmu *armpmu = to_arm_pmu(pmu);
518 /* For task-bound events we may be called on other CPUs */
519 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
520 return;
522 armpmu->stop(armpmu);
526 * In heterogeneous systems, events are specific to a particular
527 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
528 * the same microarchitecture.
530 static int armpmu_filter_match(struct perf_event *event)
532 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
533 unsigned int cpu = smp_processor_id();
534 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
537 static void armpmu_init(struct arm_pmu *armpmu)
539 atomic_set(&armpmu->active_events, 0);
540 mutex_init(&armpmu->reserve_mutex);
542 armpmu->pmu = (struct pmu) {
543 .pmu_enable = armpmu_enable,
544 .pmu_disable = armpmu_disable,
545 .event_init = armpmu_event_init,
546 .add = armpmu_add,
547 .del = armpmu_del,
548 .start = armpmu_start,
549 .stop = armpmu_stop,
550 .read = armpmu_read,
551 .filter_match = armpmu_filter_match,
555 /* Set at runtime when we know what CPU type we are. */
556 static struct arm_pmu *__oprofile_cpu_pmu;
559 * Despite the names, these two functions are CPU-specific and are used
560 * by the OProfile/perf code.
562 const char *perf_pmu_name(void)
564 if (!__oprofile_cpu_pmu)
565 return NULL;
567 return __oprofile_cpu_pmu->name;
569 EXPORT_SYMBOL_GPL(perf_pmu_name);
571 int perf_num_counters(void)
573 int max_events = 0;
575 if (__oprofile_cpu_pmu != NULL)
576 max_events = __oprofile_cpu_pmu->num_events;
578 return max_events;
580 EXPORT_SYMBOL_GPL(perf_num_counters);
582 static void cpu_pmu_enable_percpu_irq(void *data)
584 int irq = *(int *)data;
586 enable_percpu_irq(irq, IRQ_TYPE_NONE);
589 static void cpu_pmu_disable_percpu_irq(void *data)
591 int irq = *(int *)data;
593 disable_percpu_irq(irq);
596 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
598 int i, irq, irqs;
599 struct platform_device *pmu_device = cpu_pmu->plat_device;
600 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
602 irqs = min(pmu_device->num_resources, num_possible_cpus());
604 irq = platform_get_irq(pmu_device, 0);
605 if (irq >= 0 && irq_is_percpu(irq)) {
606 on_each_cpu(cpu_pmu_disable_percpu_irq, &irq, 1);
607 free_percpu_irq(irq, &hw_events->percpu_pmu);
608 } else {
609 for (i = 0; i < irqs; ++i) {
610 int cpu = i;
612 if (cpu_pmu->irq_affinity)
613 cpu = cpu_pmu->irq_affinity[i];
615 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
616 continue;
617 irq = platform_get_irq(pmu_device, i);
618 if (irq >= 0)
619 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
624 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
626 int i, err, irq, irqs;
627 struct platform_device *pmu_device = cpu_pmu->plat_device;
628 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
630 if (!pmu_device)
631 return -ENODEV;
633 irqs = min(pmu_device->num_resources, num_possible_cpus());
634 if (irqs < 1) {
635 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
636 return 0;
639 irq = platform_get_irq(pmu_device, 0);
640 if (irq >= 0 && irq_is_percpu(irq)) {
641 err = request_percpu_irq(irq, handler, "arm-pmu",
642 &hw_events->percpu_pmu);
643 if (err) {
644 pr_err("unable to request IRQ%d for ARM PMU counters\n",
645 irq);
646 return err;
648 on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1);
649 } else {
650 for (i = 0; i < irqs; ++i) {
651 int cpu = i;
653 err = 0;
654 irq = platform_get_irq(pmu_device, i);
655 if (irq < 0)
656 continue;
658 if (cpu_pmu->irq_affinity)
659 cpu = cpu_pmu->irq_affinity[i];
662 * If we have a single PMU interrupt that we can't shift,
663 * assume that we're running on a uniprocessor machine and
664 * continue. Otherwise, continue without this interrupt.
666 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
667 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
668 irq, cpu);
669 continue;
672 err = request_irq(irq, handler,
673 IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
674 per_cpu_ptr(&hw_events->percpu_pmu, cpu));
675 if (err) {
676 pr_err("unable to request IRQ%d for ARM PMU counters\n",
677 irq);
678 return err;
681 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
685 return 0;
689 * PMU hardware loses all context when a CPU goes offline.
690 * When a CPU is hotplugged back in, since some hardware registers are
691 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
692 * junk values out of them.
694 static int cpu_pmu_notify(struct notifier_block *b, unsigned long action,
695 void *hcpu)
697 int cpu = (unsigned long)hcpu;
698 struct arm_pmu *pmu = container_of(b, struct arm_pmu, hotplug_nb);
700 if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
701 return NOTIFY_DONE;
703 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
704 return NOTIFY_DONE;
706 if (pmu->reset)
707 pmu->reset(pmu);
708 else
709 return NOTIFY_DONE;
711 return NOTIFY_OK;
714 #ifdef CONFIG_CPU_PM
715 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
717 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
718 struct perf_event *event;
719 int idx;
721 for (idx = 0; idx < armpmu->num_events; idx++) {
723 * If the counter is not used skip it, there is no
724 * need of stopping/restarting it.
726 if (!test_bit(idx, hw_events->used_mask))
727 continue;
729 event = hw_events->events[idx];
731 switch (cmd) {
732 case CPU_PM_ENTER:
734 * Stop and update the counter
736 armpmu_stop(event, PERF_EF_UPDATE);
737 break;
738 case CPU_PM_EXIT:
739 case CPU_PM_ENTER_FAILED:
741 * Restore and enable the counter.
742 * armpmu_start() indirectly calls
744 * perf_event_update_userpage()
746 * that requires RCU read locking to be functional,
747 * wrap the call within RCU_NONIDLE to make the
748 * RCU subsystem aware this cpu is not idle from
749 * an RCU perspective for the armpmu_start() call
750 * duration.
752 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
753 break;
754 default:
755 break;
760 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
761 void *v)
763 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
764 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
765 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
767 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
768 return NOTIFY_DONE;
771 * Always reset the PMU registers on power-up even if
772 * there are no events running.
774 if (cmd == CPU_PM_EXIT && armpmu->reset)
775 armpmu->reset(armpmu);
777 if (!enabled)
778 return NOTIFY_OK;
780 switch (cmd) {
781 case CPU_PM_ENTER:
782 armpmu->stop(armpmu);
783 cpu_pm_pmu_setup(armpmu, cmd);
784 break;
785 case CPU_PM_EXIT:
786 cpu_pm_pmu_setup(armpmu, cmd);
787 case CPU_PM_ENTER_FAILED:
788 armpmu->start(armpmu);
789 break;
790 default:
791 return NOTIFY_DONE;
794 return NOTIFY_OK;
797 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
799 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
800 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
803 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
805 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
807 #else
808 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
809 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
810 #endif
812 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
814 int err;
815 int cpu;
816 struct pmu_hw_events __percpu *cpu_hw_events;
818 cpu_hw_events = alloc_percpu(struct pmu_hw_events);
819 if (!cpu_hw_events)
820 return -ENOMEM;
822 cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify;
823 err = register_cpu_notifier(&cpu_pmu->hotplug_nb);
824 if (err)
825 goto out_hw_events;
827 err = cpu_pm_pmu_register(cpu_pmu);
828 if (err)
829 goto out_unregister;
831 for_each_possible_cpu(cpu) {
832 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
833 raw_spin_lock_init(&events->pmu_lock);
834 events->percpu_pmu = cpu_pmu;
837 cpu_pmu->hw_events = cpu_hw_events;
838 cpu_pmu->request_irq = cpu_pmu_request_irq;
839 cpu_pmu->free_irq = cpu_pmu_free_irq;
841 /* Ensure the PMU has sane values out of reset. */
842 if (cpu_pmu->reset)
843 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
844 cpu_pmu, 1);
846 /* If no interrupts available, set the corresponding capability flag */
847 if (!platform_get_irq(cpu_pmu->plat_device, 0))
848 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
850 return 0;
852 out_unregister:
853 unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
854 out_hw_events:
855 free_percpu(cpu_hw_events);
856 return err;
859 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
861 cpu_pm_pmu_unregister(cpu_pmu);
862 unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
863 free_percpu(cpu_pmu->hw_events);
867 * CPU PMU identification and probing.
869 static int probe_current_pmu(struct arm_pmu *pmu,
870 const struct pmu_probe_info *info)
872 int cpu = get_cpu();
873 unsigned int cpuid = read_cpuid_id();
874 int ret = -ENODEV;
876 pr_info("probing PMU on CPU %d\n", cpu);
878 for (; info->init != NULL; info++) {
879 if ((cpuid & info->mask) != info->cpuid)
880 continue;
881 ret = info->init(pmu);
882 break;
885 put_cpu();
886 return ret;
889 static int of_pmu_irq_cfg(struct arm_pmu *pmu)
891 int *irqs, i = 0;
892 bool using_spi = false;
893 struct platform_device *pdev = pmu->plat_device;
895 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
896 if (!irqs)
897 return -ENOMEM;
899 do {
900 struct device_node *dn;
901 int cpu, irq;
903 /* See if we have an affinity entry */
904 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
905 if (!dn)
906 break;
908 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
909 irq = platform_get_irq(pdev, i);
910 if (irq >= 0) {
911 bool spi = !irq_is_percpu(irq);
913 if (i > 0 && spi != using_spi) {
914 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
915 dn->name);
916 kfree(irqs);
917 return -EINVAL;
920 using_spi = spi;
923 /* Now look up the logical CPU number */
924 for_each_possible_cpu(cpu) {
925 struct device_node *cpu_dn;
927 cpu_dn = of_cpu_device_node_get(cpu);
928 of_node_put(cpu_dn);
930 if (dn == cpu_dn)
931 break;
934 if (cpu >= nr_cpu_ids) {
935 pr_warn("Failed to find logical CPU for %s\n",
936 dn->name);
937 of_node_put(dn);
938 cpumask_setall(&pmu->supported_cpus);
939 break;
941 of_node_put(dn);
943 /* For SPIs, we need to track the affinity per IRQ */
944 if (using_spi) {
945 if (i >= pdev->num_resources) {
946 of_node_put(dn);
947 break;
950 irqs[i] = cpu;
953 /* Keep track of the CPUs containing this PMU type */
954 cpumask_set_cpu(cpu, &pmu->supported_cpus);
955 of_node_put(dn);
956 i++;
957 } while (1);
959 /* If we didn't manage to parse anything, claim to support all CPUs */
960 if (cpumask_weight(&pmu->supported_cpus) == 0)
961 cpumask_setall(&pmu->supported_cpus);
963 /* If we matched up the IRQ affinities, use them to route the SPIs */
964 if (using_spi && i == pdev->num_resources)
965 pmu->irq_affinity = irqs;
966 else
967 kfree(irqs);
969 return 0;
972 int arm_pmu_device_probe(struct platform_device *pdev,
973 const struct of_device_id *of_table,
974 const struct pmu_probe_info *probe_table)
976 const struct of_device_id *of_id;
977 const int (*init_fn)(struct arm_pmu *);
978 struct device_node *node = pdev->dev.of_node;
979 struct arm_pmu *pmu;
980 int ret = -ENODEV;
982 pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
983 if (!pmu) {
984 pr_info("failed to allocate PMU device!\n");
985 return -ENOMEM;
988 armpmu_init(pmu);
990 if (!__oprofile_cpu_pmu)
991 __oprofile_cpu_pmu = pmu;
993 pmu->plat_device = pdev;
995 if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
996 init_fn = of_id->data;
998 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
999 "secure-reg-access");
1001 /* arm64 systems boot only as non-secure */
1002 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1003 pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1004 pmu->secure_access = false;
1007 ret = of_pmu_irq_cfg(pmu);
1008 if (!ret)
1009 ret = init_fn(pmu);
1010 } else {
1011 ret = probe_current_pmu(pmu, probe_table);
1012 cpumask_setall(&pmu->supported_cpus);
1015 if (ret) {
1016 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1017 goto out_free;
1020 ret = cpu_pmu_init(pmu);
1021 if (ret)
1022 goto out_free;
1024 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1025 if (ret)
1026 goto out_destroy;
1028 pr_info("enabled with %s PMU driver, %d counters available\n",
1029 pmu->name, pmu->num_events);
1031 return 0;
1033 out_destroy:
1034 cpu_pmu_destroy(pmu);
1035 out_free:
1036 pr_info("%s: failed to register PMU devices!\n",
1037 of_node_full_name(node));
1038 kfree(pmu);
1039 return ret;