4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
27 #include <asm/cputype.h>
28 #include <asm/irq_regs.h>
31 armpmu_map_cache_event(const unsigned (*cache_map
)
32 [PERF_COUNT_HW_CACHE_MAX
]
33 [PERF_COUNT_HW_CACHE_OP_MAX
]
34 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
37 unsigned int cache_type
, cache_op
, cache_result
, ret
;
39 cache_type
= (config
>> 0) & 0xff;
40 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
43 cache_op
= (config
>> 8) & 0xff;
44 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
47 cache_result
= (config
>> 16) & 0xff;
48 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
51 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
53 if (ret
== CACHE_OP_UNSUPPORTED
)
60 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
64 if (config
>= PERF_COUNT_HW_MAX
)
67 mapping
= (*event_map
)[config
];
68 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
72 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
74 return (int)(config
& raw_event_mask
);
78 armpmu_map_event(struct perf_event
*event
,
79 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
80 const unsigned (*cache_map
)
81 [PERF_COUNT_HW_CACHE_MAX
]
82 [PERF_COUNT_HW_CACHE_OP_MAX
]
83 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
86 u64 config
= event
->attr
.config
;
87 int type
= event
->attr
.type
;
89 if (type
== event
->pmu
->type
)
90 return armpmu_map_raw_event(raw_event_mask
, config
);
93 case PERF_TYPE_HARDWARE
:
94 return armpmu_map_hw_event(event_map
, config
);
95 case PERF_TYPE_HW_CACHE
:
96 return armpmu_map_cache_event(cache_map
, config
);
98 return armpmu_map_raw_event(raw_event_mask
, config
);
104 int armpmu_event_set_period(struct perf_event
*event
)
106 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
107 struct hw_perf_event
*hwc
= &event
->hw
;
108 s64 left
= local64_read(&hwc
->period_left
);
109 s64 period
= hwc
->sample_period
;
112 if (unlikely(left
<= -period
)) {
114 local64_set(&hwc
->period_left
, left
);
115 hwc
->last_period
= period
;
119 if (unlikely(left
<= 0)) {
121 local64_set(&hwc
->period_left
, left
);
122 hwc
->last_period
= period
;
127 * Limit the maximum period to prevent the counter value
128 * from overtaking the one we are about to program. In
129 * effect we are reducing max_period to account for
130 * interrupt latency (and we are being very conservative).
132 if (left
> (armpmu
->max_period
>> 1))
133 left
= armpmu
->max_period
>> 1;
135 local64_set(&hwc
->prev_count
, (u64
)-left
);
137 armpmu
->write_counter(event
, (u64
)(-left
) & 0xffffffff);
139 perf_event_update_userpage(event
);
144 u64
armpmu_event_update(struct perf_event
*event
)
146 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
147 struct hw_perf_event
*hwc
= &event
->hw
;
148 u64 delta
, prev_raw_count
, new_raw_count
;
151 prev_raw_count
= local64_read(&hwc
->prev_count
);
152 new_raw_count
= armpmu
->read_counter(event
);
154 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
155 new_raw_count
) != prev_raw_count
)
158 delta
= (new_raw_count
- prev_raw_count
) & armpmu
->max_period
;
160 local64_add(delta
, &event
->count
);
161 local64_sub(delta
, &hwc
->period_left
);
163 return new_raw_count
;
167 armpmu_read(struct perf_event
*event
)
169 armpmu_event_update(event
);
173 armpmu_stop(struct perf_event
*event
, int flags
)
175 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
176 struct hw_perf_event
*hwc
= &event
->hw
;
179 * ARM pmu always has to update the counter, so ignore
180 * PERF_EF_UPDATE, see comments in armpmu_start().
182 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
183 armpmu
->disable(event
);
184 armpmu_event_update(event
);
185 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
189 static void armpmu_start(struct perf_event
*event
, int flags
)
191 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
192 struct hw_perf_event
*hwc
= &event
->hw
;
195 * ARM pmu always has to reprogram the period, so ignore
196 * PERF_EF_RELOAD, see the comment below.
198 if (flags
& PERF_EF_RELOAD
)
199 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
203 * Set the period again. Some counters can't be stopped, so when we
204 * were stopped we simply disabled the IRQ source and the counter
205 * may have been left counting. If we don't do this step then we may
206 * get an interrupt too soon or *way* too late if the overflow has
207 * happened since disabling.
209 armpmu_event_set_period(event
);
210 armpmu
->enable(event
);
214 armpmu_del(struct perf_event
*event
, int flags
)
216 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
217 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
218 struct hw_perf_event
*hwc
= &event
->hw
;
221 armpmu_stop(event
, PERF_EF_UPDATE
);
222 hw_events
->events
[idx
] = NULL
;
223 clear_bit(idx
, hw_events
->used_mask
);
224 if (armpmu
->clear_event_idx
)
225 armpmu
->clear_event_idx(hw_events
, event
);
227 perf_event_update_userpage(event
);
231 armpmu_add(struct perf_event
*event
, int flags
)
233 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
234 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
235 struct hw_perf_event
*hwc
= &event
->hw
;
239 /* An event following a process won't be stopped earlier */
240 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
243 perf_pmu_disable(event
->pmu
);
245 /* If we don't have a space for the counter then finish early. */
246 idx
= armpmu
->get_event_idx(hw_events
, event
);
253 * If there is an event in the counter we are going to use then make
254 * sure it is disabled.
257 armpmu
->disable(event
);
258 hw_events
->events
[idx
] = event
;
260 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
261 if (flags
& PERF_EF_START
)
262 armpmu_start(event
, PERF_EF_RELOAD
);
264 /* Propagate our changes to the userspace mapping. */
265 perf_event_update_userpage(event
);
268 perf_pmu_enable(event
->pmu
);
273 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
274 struct perf_event
*event
)
276 struct arm_pmu
*armpmu
;
278 if (is_software_event(event
))
282 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
283 * core perf code won't check that the pmu->ctx == leader->ctx
284 * until after pmu->event_init(event).
286 if (event
->pmu
!= pmu
)
289 if (event
->state
< PERF_EVENT_STATE_OFF
)
292 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
295 armpmu
= to_arm_pmu(event
->pmu
);
296 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
300 validate_group(struct perf_event
*event
)
302 struct perf_event
*sibling
, *leader
= event
->group_leader
;
303 struct pmu_hw_events fake_pmu
;
306 * Initialise the fake PMU. We only need to populate the
307 * used_mask for the purposes of validation.
309 memset(&fake_pmu
.used_mask
, 0, sizeof(fake_pmu
.used_mask
));
311 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
314 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
315 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
319 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
325 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
327 struct arm_pmu
*armpmu
;
328 struct platform_device
*plat_device
;
329 struct arm_pmu_platdata
*plat
;
331 u64 start_clock
, finish_clock
;
334 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
335 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
336 * do any necessary shifting, we just need to perform the first
339 armpmu
= *(void **)dev
;
340 plat_device
= armpmu
->plat_device
;
341 plat
= dev_get_platdata(&plat_device
->dev
);
343 start_clock
= sched_clock();
344 if (plat
&& plat
->handle_irq
)
345 ret
= plat
->handle_irq(irq
, armpmu
, armpmu
->handle_irq
);
347 ret
= armpmu
->handle_irq(irq
, armpmu
);
348 finish_clock
= sched_clock();
350 perf_sample_event_took(finish_clock
- start_clock
);
355 armpmu_release_hardware(struct arm_pmu
*armpmu
)
357 armpmu
->free_irq(armpmu
);
361 armpmu_reserve_hardware(struct arm_pmu
*armpmu
)
363 int err
= armpmu
->request_irq(armpmu
, armpmu_dispatch_irq
);
365 armpmu_release_hardware(armpmu
);
373 hw_perf_event_destroy(struct perf_event
*event
)
375 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
376 atomic_t
*active_events
= &armpmu
->active_events
;
377 struct mutex
*pmu_reserve_mutex
= &armpmu
->reserve_mutex
;
379 if (atomic_dec_and_mutex_lock(active_events
, pmu_reserve_mutex
)) {
380 armpmu_release_hardware(armpmu
);
381 mutex_unlock(pmu_reserve_mutex
);
386 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
388 return attr
->exclude_idle
|| attr
->exclude_user
||
389 attr
->exclude_kernel
|| attr
->exclude_hv
;
393 __hw_perf_event_init(struct perf_event
*event
)
395 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
396 struct hw_perf_event
*hwc
= &event
->hw
;
399 mapping
= armpmu
->map_event(event
);
402 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
408 * We don't assign an index until we actually place the event onto
409 * hardware. Use -1 to signify that we haven't decided where to put it
410 * yet. For SMP systems, each core has it's own PMU so we can't do any
411 * clever allocation or constraints checking at this point.
414 hwc
->config_base
= 0;
419 * Check whether we need to exclude the counter from certain modes.
421 if ((!armpmu
->set_event_filter
||
422 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
423 event_requires_mode_exclusion(&event
->attr
)) {
424 pr_debug("ARM performance counters do not support "
430 * Store the event encoding into the config_base field.
432 hwc
->config_base
|= (unsigned long)mapping
;
434 if (!is_sampling_event(event
)) {
436 * For non-sampling runs, limit the sample_period to half
437 * of the counter width. That way, the new counter value
438 * is far less likely to overtake the previous one unless
439 * you have some serious IRQ latency issues.
441 hwc
->sample_period
= armpmu
->max_period
>> 1;
442 hwc
->last_period
= hwc
->sample_period
;
443 local64_set(&hwc
->period_left
, hwc
->sample_period
);
446 if (event
->group_leader
!= event
) {
447 if (validate_group(event
) != 0)
454 static int armpmu_event_init(struct perf_event
*event
)
456 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
458 atomic_t
*active_events
= &armpmu
->active_events
;
461 * Reject CPU-affine events for CPUs that are of a different class to
462 * that which this PMU handles. Process-following events (where
463 * event->cpu == -1) can be migrated between CPUs, and thus we have to
464 * reject them later (in armpmu_add) if they're scheduled on a
465 * different class of CPU.
467 if (event
->cpu
!= -1 &&
468 !cpumask_test_cpu(event
->cpu
, &armpmu
->supported_cpus
))
471 /* does not support taken branch sampling */
472 if (has_branch_stack(event
))
475 if (armpmu
->map_event(event
) == -ENOENT
)
478 event
->destroy
= hw_perf_event_destroy
;
480 if (!atomic_inc_not_zero(active_events
)) {
481 mutex_lock(&armpmu
->reserve_mutex
);
482 if (atomic_read(active_events
) == 0)
483 err
= armpmu_reserve_hardware(armpmu
);
486 atomic_inc(active_events
);
487 mutex_unlock(&armpmu
->reserve_mutex
);
493 err
= __hw_perf_event_init(event
);
495 hw_perf_event_destroy(event
);
500 static void armpmu_enable(struct pmu
*pmu
)
502 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
503 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
504 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
506 /* For task-bound events we may be called on other CPUs */
507 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
511 armpmu
->start(armpmu
);
514 static void armpmu_disable(struct pmu
*pmu
)
516 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
518 /* For task-bound events we may be called on other CPUs */
519 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
522 armpmu
->stop(armpmu
);
526 * In heterogeneous systems, events are specific to a particular
527 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
528 * the same microarchitecture.
530 static int armpmu_filter_match(struct perf_event
*event
)
532 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
533 unsigned int cpu
= smp_processor_id();
534 return cpumask_test_cpu(cpu
, &armpmu
->supported_cpus
);
537 static void armpmu_init(struct arm_pmu
*armpmu
)
539 atomic_set(&armpmu
->active_events
, 0);
540 mutex_init(&armpmu
->reserve_mutex
);
542 armpmu
->pmu
= (struct pmu
) {
543 .pmu_enable
= armpmu_enable
,
544 .pmu_disable
= armpmu_disable
,
545 .event_init
= armpmu_event_init
,
548 .start
= armpmu_start
,
551 .filter_match
= armpmu_filter_match
,
555 /* Set at runtime when we know what CPU type we are. */
556 static struct arm_pmu
*__oprofile_cpu_pmu
;
559 * Despite the names, these two functions are CPU-specific and are used
560 * by the OProfile/perf code.
562 const char *perf_pmu_name(void)
564 if (!__oprofile_cpu_pmu
)
567 return __oprofile_cpu_pmu
->name
;
569 EXPORT_SYMBOL_GPL(perf_pmu_name
);
571 int perf_num_counters(void)
575 if (__oprofile_cpu_pmu
!= NULL
)
576 max_events
= __oprofile_cpu_pmu
->num_events
;
580 EXPORT_SYMBOL_GPL(perf_num_counters
);
582 static void cpu_pmu_enable_percpu_irq(void *data
)
584 int irq
= *(int *)data
;
586 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
589 static void cpu_pmu_disable_percpu_irq(void *data
)
591 int irq
= *(int *)data
;
593 disable_percpu_irq(irq
);
596 static void cpu_pmu_free_irq(struct arm_pmu
*cpu_pmu
)
599 struct platform_device
*pmu_device
= cpu_pmu
->plat_device
;
600 struct pmu_hw_events __percpu
*hw_events
= cpu_pmu
->hw_events
;
602 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
604 irq
= platform_get_irq(pmu_device
, 0);
605 if (irq
>= 0 && irq_is_percpu(irq
)) {
606 on_each_cpu(cpu_pmu_disable_percpu_irq
, &irq
, 1);
607 free_percpu_irq(irq
, &hw_events
->percpu_pmu
);
609 for (i
= 0; i
< irqs
; ++i
) {
612 if (cpu_pmu
->irq_affinity
)
613 cpu
= cpu_pmu
->irq_affinity
[i
];
615 if (!cpumask_test_and_clear_cpu(cpu
, &cpu_pmu
->active_irqs
))
617 irq
= platform_get_irq(pmu_device
, i
);
619 free_irq(irq
, per_cpu_ptr(&hw_events
->percpu_pmu
, cpu
));
624 static int cpu_pmu_request_irq(struct arm_pmu
*cpu_pmu
, irq_handler_t handler
)
626 int i
, err
, irq
, irqs
;
627 struct platform_device
*pmu_device
= cpu_pmu
->plat_device
;
628 struct pmu_hw_events __percpu
*hw_events
= cpu_pmu
->hw_events
;
633 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
635 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
639 irq
= platform_get_irq(pmu_device
, 0);
640 if (irq
>= 0 && irq_is_percpu(irq
)) {
641 err
= request_percpu_irq(irq
, handler
, "arm-pmu",
642 &hw_events
->percpu_pmu
);
644 pr_err("unable to request IRQ%d for ARM PMU counters\n",
648 on_each_cpu(cpu_pmu_enable_percpu_irq
, &irq
, 1);
650 for (i
= 0; i
< irqs
; ++i
) {
654 irq
= platform_get_irq(pmu_device
, i
);
658 if (cpu_pmu
->irq_affinity
)
659 cpu
= cpu_pmu
->irq_affinity
[i
];
662 * If we have a single PMU interrupt that we can't shift,
663 * assume that we're running on a uniprocessor machine and
664 * continue. Otherwise, continue without this interrupt.
666 if (irq_set_affinity(irq
, cpumask_of(cpu
)) && irqs
> 1) {
667 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
672 err
= request_irq(irq
, handler
,
673 IRQF_NOBALANCING
| IRQF_NO_THREAD
, "arm-pmu",
674 per_cpu_ptr(&hw_events
->percpu_pmu
, cpu
));
676 pr_err("unable to request IRQ%d for ARM PMU counters\n",
681 cpumask_set_cpu(cpu
, &cpu_pmu
->active_irqs
);
689 * PMU hardware loses all context when a CPU goes offline.
690 * When a CPU is hotplugged back in, since some hardware registers are
691 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
692 * junk values out of them.
694 static int cpu_pmu_notify(struct notifier_block
*b
, unsigned long action
,
697 int cpu
= (unsigned long)hcpu
;
698 struct arm_pmu
*pmu
= container_of(b
, struct arm_pmu
, hotplug_nb
);
700 if ((action
& ~CPU_TASKS_FROZEN
) != CPU_STARTING
)
703 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
715 static void cpu_pm_pmu_setup(struct arm_pmu
*armpmu
, unsigned long cmd
)
717 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
718 struct perf_event
*event
;
721 for (idx
= 0; idx
< armpmu
->num_events
; idx
++) {
723 * If the counter is not used skip it, there is no
724 * need of stopping/restarting it.
726 if (!test_bit(idx
, hw_events
->used_mask
))
729 event
= hw_events
->events
[idx
];
734 * Stop and update the counter
736 armpmu_stop(event
, PERF_EF_UPDATE
);
739 case CPU_PM_ENTER_FAILED
:
741 * Restore and enable the counter.
742 * armpmu_start() indirectly calls
744 * perf_event_update_userpage()
746 * that requires RCU read locking to be functional,
747 * wrap the call within RCU_NONIDLE to make the
748 * RCU subsystem aware this cpu is not idle from
749 * an RCU perspective for the armpmu_start() call
752 RCU_NONIDLE(armpmu_start(event
, PERF_EF_RELOAD
));
760 static int cpu_pm_pmu_notify(struct notifier_block
*b
, unsigned long cmd
,
763 struct arm_pmu
*armpmu
= container_of(b
, struct arm_pmu
, cpu_pm_nb
);
764 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
765 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
767 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
771 * Always reset the PMU registers on power-up even if
772 * there are no events running.
774 if (cmd
== CPU_PM_EXIT
&& armpmu
->reset
)
775 armpmu
->reset(armpmu
);
782 armpmu
->stop(armpmu
);
783 cpu_pm_pmu_setup(armpmu
, cmd
);
786 cpu_pm_pmu_setup(armpmu
, cmd
);
787 case CPU_PM_ENTER_FAILED
:
788 armpmu
->start(armpmu
);
797 static int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
)
799 cpu_pmu
->cpu_pm_nb
.notifier_call
= cpu_pm_pmu_notify
;
800 return cpu_pm_register_notifier(&cpu_pmu
->cpu_pm_nb
);
803 static void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
)
805 cpu_pm_unregister_notifier(&cpu_pmu
->cpu_pm_nb
);
808 static inline int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
) { return 0; }
809 static inline void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
) { }
812 static int cpu_pmu_init(struct arm_pmu
*cpu_pmu
)
816 struct pmu_hw_events __percpu
*cpu_hw_events
;
818 cpu_hw_events
= alloc_percpu(struct pmu_hw_events
);
822 cpu_pmu
->hotplug_nb
.notifier_call
= cpu_pmu_notify
;
823 err
= register_cpu_notifier(&cpu_pmu
->hotplug_nb
);
827 err
= cpu_pm_pmu_register(cpu_pmu
);
831 for_each_possible_cpu(cpu
) {
832 struct pmu_hw_events
*events
= per_cpu_ptr(cpu_hw_events
, cpu
);
833 raw_spin_lock_init(&events
->pmu_lock
);
834 events
->percpu_pmu
= cpu_pmu
;
837 cpu_pmu
->hw_events
= cpu_hw_events
;
838 cpu_pmu
->request_irq
= cpu_pmu_request_irq
;
839 cpu_pmu
->free_irq
= cpu_pmu_free_irq
;
841 /* Ensure the PMU has sane values out of reset. */
843 on_each_cpu_mask(&cpu_pmu
->supported_cpus
, cpu_pmu
->reset
,
846 /* If no interrupts available, set the corresponding capability flag */
847 if (!platform_get_irq(cpu_pmu
->plat_device
, 0))
848 cpu_pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
853 unregister_cpu_notifier(&cpu_pmu
->hotplug_nb
);
855 free_percpu(cpu_hw_events
);
859 static void cpu_pmu_destroy(struct arm_pmu
*cpu_pmu
)
861 cpu_pm_pmu_unregister(cpu_pmu
);
862 unregister_cpu_notifier(&cpu_pmu
->hotplug_nb
);
863 free_percpu(cpu_pmu
->hw_events
);
867 * CPU PMU identification and probing.
869 static int probe_current_pmu(struct arm_pmu
*pmu
,
870 const struct pmu_probe_info
*info
)
873 unsigned int cpuid
= read_cpuid_id();
876 pr_info("probing PMU on CPU %d\n", cpu
);
878 for (; info
->init
!= NULL
; info
++) {
879 if ((cpuid
& info
->mask
) != info
->cpuid
)
881 ret
= info
->init(pmu
);
889 static int of_pmu_irq_cfg(struct arm_pmu
*pmu
)
892 bool using_spi
= false;
893 struct platform_device
*pdev
= pmu
->plat_device
;
895 irqs
= kcalloc(pdev
->num_resources
, sizeof(*irqs
), GFP_KERNEL
);
900 struct device_node
*dn
;
903 /* See if we have an affinity entry */
904 dn
= of_parse_phandle(pdev
->dev
.of_node
, "interrupt-affinity", i
);
908 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
909 irq
= platform_get_irq(pdev
, i
);
911 bool spi
= !irq_is_percpu(irq
);
913 if (i
> 0 && spi
!= using_spi
) {
914 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
923 /* Now look up the logical CPU number */
924 for_each_possible_cpu(cpu
) {
925 struct device_node
*cpu_dn
;
927 cpu_dn
= of_cpu_device_node_get(cpu
);
934 if (cpu
>= nr_cpu_ids
) {
935 pr_warn("Failed to find logical CPU for %s\n",
938 cpumask_setall(&pmu
->supported_cpus
);
943 /* For SPIs, we need to track the affinity per IRQ */
945 if (i
>= pdev
->num_resources
) {
953 /* Keep track of the CPUs containing this PMU type */
954 cpumask_set_cpu(cpu
, &pmu
->supported_cpus
);
959 /* If we didn't manage to parse anything, claim to support all CPUs */
960 if (cpumask_weight(&pmu
->supported_cpus
) == 0)
961 cpumask_setall(&pmu
->supported_cpus
);
963 /* If we matched up the IRQ affinities, use them to route the SPIs */
964 if (using_spi
&& i
== pdev
->num_resources
)
965 pmu
->irq_affinity
= irqs
;
972 int arm_pmu_device_probe(struct platform_device
*pdev
,
973 const struct of_device_id
*of_table
,
974 const struct pmu_probe_info
*probe_table
)
976 const struct of_device_id
*of_id
;
977 const int (*init_fn
)(struct arm_pmu
*);
978 struct device_node
*node
= pdev
->dev
.of_node
;
982 pmu
= kzalloc(sizeof(struct arm_pmu
), GFP_KERNEL
);
984 pr_info("failed to allocate PMU device!\n");
990 if (!__oprofile_cpu_pmu
)
991 __oprofile_cpu_pmu
= pmu
;
993 pmu
->plat_device
= pdev
;
995 if (node
&& (of_id
= of_match_node(of_table
, pdev
->dev
.of_node
))) {
996 init_fn
= of_id
->data
;
998 pmu
->secure_access
= of_property_read_bool(pdev
->dev
.of_node
,
999 "secure-reg-access");
1001 /* arm64 systems boot only as non-secure */
1002 if (IS_ENABLED(CONFIG_ARM64
) && pmu
->secure_access
) {
1003 pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1004 pmu
->secure_access
= false;
1007 ret
= of_pmu_irq_cfg(pmu
);
1011 ret
= probe_current_pmu(pmu
, probe_table
);
1012 cpumask_setall(&pmu
->supported_cpus
);
1016 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node
));
1020 ret
= cpu_pmu_init(pmu
);
1024 ret
= perf_pmu_register(&pmu
->pmu
, pmu
->name
, -1);
1028 pr_info("enabled with %s PMU driver, %d counters available\n",
1029 pmu
->name
, pmu
->num_events
);
1034 cpu_pmu_destroy(pmu
);
1036 pr_info("%s: failed to register PMU devices!\n",
1037 of_node_full_name(node
));