EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / powercap / intel_rapl.c
blob8fad0a7044d3d332b8733eaff65d2fb33dd46e61
1 /*
2 * Intel Running Average Power Limit (RAPL) Driver
3 * Copyright (c) 2013, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list.h>
23 #include <linux/types.h>
24 #include <linux/device.h>
25 #include <linux/slab.h>
26 #include <linux/log2.h>
27 #include <linux/bitmap.h>
28 #include <linux/delay.h>
29 #include <linux/sysfs.h>
30 #include <linux/cpu.h>
31 #include <linux/powercap.h>
32 #include <asm/iosf_mbi.h>
34 #include <asm/processor.h>
35 #include <asm/cpu_device_id.h>
37 /* bitmasks for RAPL MSRs, used by primitive access functions */
38 #define ENERGY_STATUS_MASK 0xffffffff
40 #define POWER_LIMIT1_MASK 0x7FFF
41 #define POWER_LIMIT1_ENABLE BIT(15)
42 #define POWER_LIMIT1_CLAMP BIT(16)
44 #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
45 #define POWER_LIMIT2_ENABLE BIT_ULL(47)
46 #define POWER_LIMIT2_CLAMP BIT_ULL(48)
47 #define POWER_PACKAGE_LOCK BIT_ULL(63)
48 #define POWER_PP_LOCK BIT(31)
50 #define TIME_WINDOW1_MASK (0x7FULL<<17)
51 #define TIME_WINDOW2_MASK (0x7FULL<<49)
53 #define POWER_UNIT_OFFSET 0
54 #define POWER_UNIT_MASK 0x0F
56 #define ENERGY_UNIT_OFFSET 0x08
57 #define ENERGY_UNIT_MASK 0x1F00
59 #define TIME_UNIT_OFFSET 0x10
60 #define TIME_UNIT_MASK 0xF0000
62 #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
63 #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
64 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
65 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
67 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
68 #define PP_POLICY_MASK 0x1F
70 /* Non HW constants */
71 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
72 #define RAPL_PRIMITIVE_DUMMY BIT(2)
74 #define TIME_WINDOW_MAX_MSEC 40000
75 #define TIME_WINDOW_MIN_MSEC 250
76 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
77 enum unit_type {
78 ARBITRARY_UNIT, /* no translation */
79 POWER_UNIT,
80 ENERGY_UNIT,
81 TIME_UNIT,
84 enum rapl_domain_type {
85 RAPL_DOMAIN_PACKAGE, /* entire package/socket */
86 RAPL_DOMAIN_PP0, /* core power plane */
87 RAPL_DOMAIN_PP1, /* graphics uncore */
88 RAPL_DOMAIN_DRAM,/* DRAM control_type */
89 RAPL_DOMAIN_MAX,
92 enum rapl_domain_msr_id {
93 RAPL_DOMAIN_MSR_LIMIT,
94 RAPL_DOMAIN_MSR_STATUS,
95 RAPL_DOMAIN_MSR_PERF,
96 RAPL_DOMAIN_MSR_POLICY,
97 RAPL_DOMAIN_MSR_INFO,
98 RAPL_DOMAIN_MSR_MAX,
101 /* per domain data, some are optional */
102 enum rapl_primitives {
103 ENERGY_COUNTER,
104 POWER_LIMIT1,
105 POWER_LIMIT2,
106 FW_LOCK,
108 PL1_ENABLE, /* power limit 1, aka long term */
109 PL1_CLAMP, /* allow frequency to go below OS request */
110 PL2_ENABLE, /* power limit 2, aka short term, instantaneous */
111 PL2_CLAMP,
113 TIME_WINDOW1, /* long term */
114 TIME_WINDOW2, /* short term */
115 THERMAL_SPEC_POWER,
116 MAX_POWER,
118 MIN_POWER,
119 MAX_TIME_WINDOW,
120 THROTTLED_TIME,
121 PRIORITY_LEVEL,
123 /* below are not raw primitive data */
124 AVERAGE_POWER,
125 NR_RAPL_PRIMITIVES,
128 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
130 /* Can be expanded to include events, etc.*/
131 struct rapl_domain_data {
132 u64 primitives[NR_RAPL_PRIMITIVES];
133 unsigned long timestamp;
136 struct msrl_action {
137 u32 msr_no;
138 u64 clear_mask;
139 u64 set_mask;
140 int err;
143 #define DOMAIN_STATE_INACTIVE BIT(0)
144 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
145 #define DOMAIN_STATE_BIOS_LOCKED BIT(2)
147 #define NR_POWER_LIMITS (2)
148 struct rapl_power_limit {
149 struct powercap_zone_constraint *constraint;
150 int prim_id; /* primitive ID used to enable */
151 struct rapl_domain *domain;
152 const char *name;
155 static const char pl1_name[] = "long_term";
156 static const char pl2_name[] = "short_term";
158 struct rapl_package;
159 struct rapl_domain {
160 const char *name;
161 enum rapl_domain_type id;
162 int msrs[RAPL_DOMAIN_MSR_MAX];
163 struct powercap_zone power_zone;
164 struct rapl_domain_data rdd;
165 struct rapl_power_limit rpl[NR_POWER_LIMITS];
166 u64 attr_map; /* track capabilities */
167 unsigned int state;
168 unsigned int domain_energy_unit;
169 struct rapl_package *rp;
171 #define power_zone_to_rapl_domain(_zone) \
172 container_of(_zone, struct rapl_domain, power_zone)
175 /* Each physical package contains multiple domains, these are the common
176 * data across RAPL domains within a package.
178 struct rapl_package {
179 unsigned int id; /* physical package/socket id */
180 unsigned int nr_domains;
181 unsigned long domain_map; /* bit map of active domains */
182 unsigned int power_unit;
183 unsigned int energy_unit;
184 unsigned int time_unit;
185 struct rapl_domain *domains; /* array of domains, sized at runtime */
186 struct powercap_zone *power_zone; /* keep track of parent zone */
187 int nr_cpus; /* active cpus on the package, topology info is lost during
188 * cpu hotplug. so we have to track ourselves.
190 unsigned long power_limit_irq; /* keep track of package power limit
191 * notify interrupt enable status.
193 struct list_head plist;
194 int lead_cpu; /* one active cpu per package for access */
197 struct rapl_defaults {
198 u8 floor_freq_reg_addr;
199 int (*check_unit)(struct rapl_package *rp, int cpu);
200 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
201 u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
202 bool to_raw);
203 unsigned int dram_domain_energy_unit;
205 static struct rapl_defaults *rapl_defaults;
207 /* Sideband MBI registers */
208 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
209 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
211 #define PACKAGE_PLN_INT_SAVED BIT(0)
212 #define MAX_PRIM_NAME (32)
214 /* per domain data. used to describe individual knobs such that access function
215 * can be consolidated into one instead of many inline functions.
217 struct rapl_primitive_info {
218 const char *name;
219 u64 mask;
220 int shift;
221 enum rapl_domain_msr_id id;
222 enum unit_type unit;
223 u32 flag;
226 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
227 .name = #p, \
228 .mask = m, \
229 .shift = s, \
230 .id = i, \
231 .unit = u, \
232 .flag = f \
235 static void rapl_init_domains(struct rapl_package *rp);
236 static int rapl_read_data_raw(struct rapl_domain *rd,
237 enum rapl_primitives prim,
238 bool xlate, u64 *data);
239 static int rapl_write_data_raw(struct rapl_domain *rd,
240 enum rapl_primitives prim,
241 unsigned long long value);
242 static u64 rapl_unit_xlate(struct rapl_domain *rd,
243 enum unit_type type, u64 value,
244 int to_raw);
245 static void package_power_limit_irq_save(struct rapl_package *rp);
247 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
249 static const char * const rapl_domain_names[] = {
250 "package",
251 "core",
252 "uncore",
253 "dram",
256 static struct powercap_control_type *control_type; /* PowerCap Controller */
258 /* caller to ensure CPU hotplug lock is held */
259 static struct rapl_package *find_package_by_id(int id)
261 struct rapl_package *rp;
263 list_for_each_entry(rp, &rapl_packages, plist) {
264 if (rp->id == id)
265 return rp;
268 return NULL;
271 /* caller must hold cpu hotplug lock */
272 static void rapl_cleanup_data(void)
274 struct rapl_package *p, *tmp;
276 list_for_each_entry_safe(p, tmp, &rapl_packages, plist) {
277 kfree(p->domains);
278 list_del(&p->plist);
279 kfree(p);
283 static int get_energy_counter(struct powercap_zone *power_zone, u64 *energy_raw)
285 struct rapl_domain *rd;
286 u64 energy_now;
288 /* prevent CPU hotplug, make sure the RAPL domain does not go
289 * away while reading the counter.
291 get_online_cpus();
292 rd = power_zone_to_rapl_domain(power_zone);
294 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
295 *energy_raw = energy_now;
296 put_online_cpus();
298 return 0;
300 put_online_cpus();
302 return -EIO;
305 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
307 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
309 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
310 return 0;
313 static int release_zone(struct powercap_zone *power_zone)
315 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
316 struct rapl_package *rp = rd->rp;
318 /* package zone is the last zone of a package, we can free
319 * memory here since all children has been unregistered.
321 if (rd->id == RAPL_DOMAIN_PACKAGE) {
322 kfree(rd);
323 rp->domains = NULL;
326 return 0;
330 static int find_nr_power_limit(struct rapl_domain *rd)
332 int i;
334 for (i = 0; i < NR_POWER_LIMITS; i++) {
335 if (rd->rpl[i].name == NULL)
336 break;
339 return i;
342 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
344 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
346 if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
347 return -EACCES;
349 get_online_cpus();
350 rapl_write_data_raw(rd, PL1_ENABLE, mode);
351 if (rapl_defaults->set_floor_freq)
352 rapl_defaults->set_floor_freq(rd, mode);
353 put_online_cpus();
355 return 0;
358 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
360 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
361 u64 val;
363 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
364 *mode = false;
365 return 0;
367 get_online_cpus();
368 if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
369 put_online_cpus();
370 return -EIO;
372 *mode = val;
373 put_online_cpus();
375 return 0;
378 /* per RAPL domain ops, in the order of rapl_domain_type */
379 static const struct powercap_zone_ops zone_ops[] = {
380 /* RAPL_DOMAIN_PACKAGE */
382 .get_energy_uj = get_energy_counter,
383 .get_max_energy_range_uj = get_max_energy_counter,
384 .release = release_zone,
385 .set_enable = set_domain_enable,
386 .get_enable = get_domain_enable,
388 /* RAPL_DOMAIN_PP0 */
390 .get_energy_uj = get_energy_counter,
391 .get_max_energy_range_uj = get_max_energy_counter,
392 .release = release_zone,
393 .set_enable = set_domain_enable,
394 .get_enable = get_domain_enable,
396 /* RAPL_DOMAIN_PP1 */
398 .get_energy_uj = get_energy_counter,
399 .get_max_energy_range_uj = get_max_energy_counter,
400 .release = release_zone,
401 .set_enable = set_domain_enable,
402 .get_enable = get_domain_enable,
404 /* RAPL_DOMAIN_DRAM */
406 .get_energy_uj = get_energy_counter,
407 .get_max_energy_range_uj = get_max_energy_counter,
408 .release = release_zone,
409 .set_enable = set_domain_enable,
410 .get_enable = get_domain_enable,
414 static int set_power_limit(struct powercap_zone *power_zone, int id,
415 u64 power_limit)
417 struct rapl_domain *rd;
418 struct rapl_package *rp;
419 int ret = 0;
421 get_online_cpus();
422 rd = power_zone_to_rapl_domain(power_zone);
423 rp = rd->rp;
425 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
426 dev_warn(&power_zone->dev, "%s locked by BIOS, monitoring only\n",
427 rd->name);
428 ret = -EACCES;
429 goto set_exit;
432 switch (rd->rpl[id].prim_id) {
433 case PL1_ENABLE:
434 rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
435 break;
436 case PL2_ENABLE:
437 rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
438 break;
439 default:
440 ret = -EINVAL;
442 if (!ret)
443 package_power_limit_irq_save(rp);
444 set_exit:
445 put_online_cpus();
446 return ret;
449 static int get_current_power_limit(struct powercap_zone *power_zone, int id,
450 u64 *data)
452 struct rapl_domain *rd;
453 u64 val;
454 int prim;
455 int ret = 0;
457 get_online_cpus();
458 rd = power_zone_to_rapl_domain(power_zone);
459 switch (rd->rpl[id].prim_id) {
460 case PL1_ENABLE:
461 prim = POWER_LIMIT1;
462 break;
463 case PL2_ENABLE:
464 prim = POWER_LIMIT2;
465 break;
466 default:
467 put_online_cpus();
468 return -EINVAL;
470 if (rapl_read_data_raw(rd, prim, true, &val))
471 ret = -EIO;
472 else
473 *data = val;
475 put_online_cpus();
477 return ret;
480 static int set_time_window(struct powercap_zone *power_zone, int id,
481 u64 window)
483 struct rapl_domain *rd;
484 int ret = 0;
486 get_online_cpus();
487 rd = power_zone_to_rapl_domain(power_zone);
488 switch (rd->rpl[id].prim_id) {
489 case PL1_ENABLE:
490 rapl_write_data_raw(rd, TIME_WINDOW1, window);
491 break;
492 case PL2_ENABLE:
493 rapl_write_data_raw(rd, TIME_WINDOW2, window);
494 break;
495 default:
496 ret = -EINVAL;
498 put_online_cpus();
499 return ret;
502 static int get_time_window(struct powercap_zone *power_zone, int id, u64 *data)
504 struct rapl_domain *rd;
505 u64 val;
506 int ret = 0;
508 get_online_cpus();
509 rd = power_zone_to_rapl_domain(power_zone);
510 switch (rd->rpl[id].prim_id) {
511 case PL1_ENABLE:
512 ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
513 break;
514 case PL2_ENABLE:
515 ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
516 break;
517 default:
518 put_online_cpus();
519 return -EINVAL;
521 if (!ret)
522 *data = val;
523 put_online_cpus();
525 return ret;
528 static const char *get_constraint_name(struct powercap_zone *power_zone, int id)
530 struct rapl_power_limit *rpl;
531 struct rapl_domain *rd;
533 rd = power_zone_to_rapl_domain(power_zone);
534 rpl = (struct rapl_power_limit *) &rd->rpl[id];
536 return rpl->name;
540 static int get_max_power(struct powercap_zone *power_zone, int id,
541 u64 *data)
543 struct rapl_domain *rd;
544 u64 val;
545 int prim;
546 int ret = 0;
548 get_online_cpus();
549 rd = power_zone_to_rapl_domain(power_zone);
550 switch (rd->rpl[id].prim_id) {
551 case PL1_ENABLE:
552 prim = THERMAL_SPEC_POWER;
553 break;
554 case PL2_ENABLE:
555 prim = MAX_POWER;
556 break;
557 default:
558 put_online_cpus();
559 return -EINVAL;
561 if (rapl_read_data_raw(rd, prim, true, &val))
562 ret = -EIO;
563 else
564 *data = val;
566 put_online_cpus();
568 return ret;
571 static const struct powercap_zone_constraint_ops constraint_ops = {
572 .set_power_limit_uw = set_power_limit,
573 .get_power_limit_uw = get_current_power_limit,
574 .set_time_window_us = set_time_window,
575 .get_time_window_us = get_time_window,
576 .get_max_power_uw = get_max_power,
577 .get_name = get_constraint_name,
580 /* called after domain detection and package level data are set */
581 static void rapl_init_domains(struct rapl_package *rp)
583 int i;
584 struct rapl_domain *rd = rp->domains;
586 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
587 unsigned int mask = rp->domain_map & (1 << i);
588 switch (mask) {
589 case BIT(RAPL_DOMAIN_PACKAGE):
590 rd->name = rapl_domain_names[RAPL_DOMAIN_PACKAGE];
591 rd->id = RAPL_DOMAIN_PACKAGE;
592 rd->msrs[0] = MSR_PKG_POWER_LIMIT;
593 rd->msrs[1] = MSR_PKG_ENERGY_STATUS;
594 rd->msrs[2] = MSR_PKG_PERF_STATUS;
595 rd->msrs[3] = 0;
596 rd->msrs[4] = MSR_PKG_POWER_INFO;
597 rd->rpl[0].prim_id = PL1_ENABLE;
598 rd->rpl[0].name = pl1_name;
599 rd->rpl[1].prim_id = PL2_ENABLE;
600 rd->rpl[1].name = pl2_name;
601 break;
602 case BIT(RAPL_DOMAIN_PP0):
603 rd->name = rapl_domain_names[RAPL_DOMAIN_PP0];
604 rd->id = RAPL_DOMAIN_PP0;
605 rd->msrs[0] = MSR_PP0_POWER_LIMIT;
606 rd->msrs[1] = MSR_PP0_ENERGY_STATUS;
607 rd->msrs[2] = 0;
608 rd->msrs[3] = MSR_PP0_POLICY;
609 rd->msrs[4] = 0;
610 rd->rpl[0].prim_id = PL1_ENABLE;
611 rd->rpl[0].name = pl1_name;
612 break;
613 case BIT(RAPL_DOMAIN_PP1):
614 rd->name = rapl_domain_names[RAPL_DOMAIN_PP1];
615 rd->id = RAPL_DOMAIN_PP1;
616 rd->msrs[0] = MSR_PP1_POWER_LIMIT;
617 rd->msrs[1] = MSR_PP1_ENERGY_STATUS;
618 rd->msrs[2] = 0;
619 rd->msrs[3] = MSR_PP1_POLICY;
620 rd->msrs[4] = 0;
621 rd->rpl[0].prim_id = PL1_ENABLE;
622 rd->rpl[0].name = pl1_name;
623 break;
624 case BIT(RAPL_DOMAIN_DRAM):
625 rd->name = rapl_domain_names[RAPL_DOMAIN_DRAM];
626 rd->id = RAPL_DOMAIN_DRAM;
627 rd->msrs[0] = MSR_DRAM_POWER_LIMIT;
628 rd->msrs[1] = MSR_DRAM_ENERGY_STATUS;
629 rd->msrs[2] = MSR_DRAM_PERF_STATUS;
630 rd->msrs[3] = 0;
631 rd->msrs[4] = MSR_DRAM_POWER_INFO;
632 rd->rpl[0].prim_id = PL1_ENABLE;
633 rd->rpl[0].name = pl1_name;
634 rd->domain_energy_unit =
635 rapl_defaults->dram_domain_energy_unit;
636 if (rd->domain_energy_unit)
637 pr_info("DRAM domain energy unit %dpj\n",
638 rd->domain_energy_unit);
639 break;
641 if (mask) {
642 rd->rp = rp;
643 rd++;
648 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
649 u64 value, int to_raw)
651 u64 units = 1;
652 struct rapl_package *rp = rd->rp;
653 u64 scale = 1;
655 switch (type) {
656 case POWER_UNIT:
657 units = rp->power_unit;
658 break;
659 case ENERGY_UNIT:
660 scale = ENERGY_UNIT_SCALE;
661 /* per domain unit takes precedence */
662 if (rd && rd->domain_energy_unit)
663 units = rd->domain_energy_unit;
664 else
665 units = rp->energy_unit;
666 break;
667 case TIME_UNIT:
668 return rapl_defaults->compute_time_window(rp, value, to_raw);
669 case ARBITRARY_UNIT:
670 default:
671 return value;
674 if (to_raw)
675 return div64_u64(value, units) * scale;
677 value *= units;
679 return div64_u64(value, scale);
682 /* in the order of enum rapl_primitives */
683 static struct rapl_primitive_info rpi[] = {
684 /* name, mask, shift, msr index, unit divisor */
685 PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
686 RAPL_DOMAIN_MSR_STATUS, ENERGY_UNIT, 0),
687 PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
688 RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
689 PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
690 RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
691 PRIMITIVE_INFO_INIT(FW_LOCK, POWER_PP_LOCK, 31,
692 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
693 PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
694 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
695 PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
696 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
697 PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
698 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
699 PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
700 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
701 PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
702 RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
703 PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
704 RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
705 PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
706 0, RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
707 PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
708 RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
709 PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
710 RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
711 PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
712 RAPL_DOMAIN_MSR_INFO, TIME_UNIT, 0),
713 PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
714 RAPL_DOMAIN_MSR_PERF, TIME_UNIT, 0),
715 PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
716 RAPL_DOMAIN_MSR_POLICY, ARBITRARY_UNIT, 0),
717 /* non-hardware */
718 PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
719 RAPL_PRIMITIVE_DERIVED),
720 {NULL, 0, 0, 0},
723 /* Read primitive data based on its related struct rapl_primitive_info.
724 * if xlate flag is set, return translated data based on data units, i.e.
725 * time, energy, and power.
726 * RAPL MSRs are non-architectual and are laid out not consistently across
727 * domains. Here we use primitive info to allow writing consolidated access
728 * functions.
729 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
730 * is pre-assigned based on RAPL unit MSRs read at init time.
731 * 63-------------------------- 31--------------------------- 0
732 * | xxxxx (mask) |
733 * | |<- shift ----------------|
734 * 63-------------------------- 31--------------------------- 0
736 static int rapl_read_data_raw(struct rapl_domain *rd,
737 enum rapl_primitives prim,
738 bool xlate, u64 *data)
740 u64 value, final;
741 u32 msr;
742 struct rapl_primitive_info *rp = &rpi[prim];
743 int cpu;
745 if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
746 return -EINVAL;
748 msr = rd->msrs[rp->id];
749 if (!msr)
750 return -EINVAL;
752 cpu = rd->rp->lead_cpu;
754 /* special-case package domain, which uses a different bit*/
755 if (prim == FW_LOCK && rd->id == RAPL_DOMAIN_PACKAGE) {
756 rp->mask = POWER_PACKAGE_LOCK;
757 rp->shift = 63;
759 /* non-hardware data are collected by the polling thread */
760 if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
761 *data = rd->rdd.primitives[prim];
762 return 0;
765 if (rdmsrl_safe_on_cpu(cpu, msr, &value)) {
766 pr_debug("failed to read msr 0x%x on cpu %d\n", msr, cpu);
767 return -EIO;
770 final = value & rp->mask;
771 final = final >> rp->shift;
772 if (xlate)
773 *data = rapl_unit_xlate(rd, rp->unit, final, 0);
774 else
775 *data = final;
777 return 0;
781 static int msrl_update_safe(u32 msr_no, u64 clear_mask, u64 set_mask)
783 int err;
784 u64 val;
786 err = rdmsrl_safe(msr_no, &val);
787 if (err)
788 goto out;
790 val &= ~clear_mask;
791 val |= set_mask;
793 err = wrmsrl_safe(msr_no, val);
795 out:
796 return err;
799 static void msrl_update_func(void *info)
801 struct msrl_action *ma = info;
803 ma->err = msrl_update_safe(ma->msr_no, ma->clear_mask, ma->set_mask);
806 /* Similar use of primitive info in the read counterpart */
807 static int rapl_write_data_raw(struct rapl_domain *rd,
808 enum rapl_primitives prim,
809 unsigned long long value)
811 struct rapl_primitive_info *rp = &rpi[prim];
812 int cpu;
813 u64 bits;
814 struct msrl_action ma;
815 int ret;
817 cpu = rd->rp->lead_cpu;
818 bits = rapl_unit_xlate(rd, rp->unit, value, 1);
819 bits |= bits << rp->shift;
820 memset(&ma, 0, sizeof(ma));
822 ma.msr_no = rd->msrs[rp->id];
823 ma.clear_mask = rp->mask;
824 ma.set_mask = bits;
826 ret = smp_call_function_single(cpu, msrl_update_func, &ma, 1);
827 if (ret)
828 WARN_ON_ONCE(ret);
829 else
830 ret = ma.err;
832 return ret;
836 * Raw RAPL data stored in MSRs are in certain scales. We need to
837 * convert them into standard units based on the units reported in
838 * the RAPL unit MSRs. This is specific to CPUs as the method to
839 * calculate units differ on different CPUs.
840 * We convert the units to below format based on CPUs.
841 * i.e.
842 * energy unit: picoJoules : Represented in picoJoules by default
843 * power unit : microWatts : Represented in milliWatts by default
844 * time unit : microseconds: Represented in seconds by default
846 static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
848 u64 msr_val;
849 u32 value;
851 if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
852 pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
853 MSR_RAPL_POWER_UNIT, cpu);
854 return -ENODEV;
857 value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
858 rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
860 value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
861 rp->power_unit = 1000000 / (1 << value);
863 value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
864 rp->time_unit = 1000000 / (1 << value);
866 pr_debug("Core CPU package %d energy=%dpJ, time=%dus, power=%duW\n",
867 rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
869 return 0;
872 static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
874 u64 msr_val;
875 u32 value;
877 if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
878 pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
879 MSR_RAPL_POWER_UNIT, cpu);
880 return -ENODEV;
882 value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
883 rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
885 value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
886 rp->power_unit = (1 << value) * 1000;
888 value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
889 rp->time_unit = 1000000 / (1 << value);
891 pr_debug("Atom package %d energy=%dpJ, time=%dus, power=%duW\n",
892 rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
894 return 0;
897 static void power_limit_irq_save_cpu(void *info)
899 u32 l, h = 0;
900 struct rapl_package *rp = (struct rapl_package *)info;
902 /* save the state of PLN irq mask bit before disabling it */
903 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
904 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
905 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
906 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
908 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
909 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
913 /* REVISIT:
914 * When package power limit is set artificially low by RAPL, LVT
915 * thermal interrupt for package power limit should be ignored
916 * since we are not really exceeding the real limit. The intention
917 * is to avoid excessive interrupts while we are trying to save power.
918 * A useful feature might be routing the package_power_limit interrupt
919 * to userspace via eventfd. once we have a usecase, this is simple
920 * to do by adding an atomic notifier.
923 static void package_power_limit_irq_save(struct rapl_package *rp)
925 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
926 return;
928 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
931 static void power_limit_irq_restore_cpu(void *info)
933 u32 l, h = 0;
934 struct rapl_package *rp = (struct rapl_package *)info;
936 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
938 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
939 l |= PACKAGE_THERM_INT_PLN_ENABLE;
940 else
941 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
943 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
946 /* restore per package power limit interrupt enable state */
947 static void package_power_limit_irq_restore(struct rapl_package *rp)
949 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
950 return;
952 /* irq enable state not saved, nothing to restore */
953 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
954 return;
956 smp_call_function_single(rp->lead_cpu, power_limit_irq_restore_cpu, rp, 1);
959 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
961 int nr_powerlimit = find_nr_power_limit(rd);
963 /* always enable clamp such that p-state can go below OS requested
964 * range. power capping priority over guranteed frequency.
966 rapl_write_data_raw(rd, PL1_CLAMP, mode);
968 /* some domains have pl2 */
969 if (nr_powerlimit > 1) {
970 rapl_write_data_raw(rd, PL2_ENABLE, mode);
971 rapl_write_data_raw(rd, PL2_CLAMP, mode);
975 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
977 static u32 power_ctrl_orig_val;
978 u32 mdata;
980 if (!rapl_defaults->floor_freq_reg_addr) {
981 pr_err("Invalid floor frequency config register\n");
982 return;
985 if (!power_ctrl_orig_val)
986 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
987 rapl_defaults->floor_freq_reg_addr,
988 &power_ctrl_orig_val);
989 mdata = power_ctrl_orig_val;
990 if (enable) {
991 mdata &= ~(0x7f << 8);
992 mdata |= 1 << 8;
994 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
995 rapl_defaults->floor_freq_reg_addr, mdata);
998 static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
999 bool to_raw)
1001 u64 f, y; /* fraction and exp. used for time unit */
1004 * Special processing based on 2^Y*(1+F/4), refer
1005 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1007 if (!to_raw) {
1008 f = (value & 0x60) >> 5;
1009 y = value & 0x1f;
1010 value = (1 << y) * (4 + f) * rp->time_unit / 4;
1011 } else {
1012 do_div(value, rp->time_unit);
1013 y = ilog2(value);
1014 f = div64_u64(4 * (value - (1 << y)), 1 << y);
1015 value = (y & 0x1f) | ((f & 0x3) << 5);
1017 return value;
1020 static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
1021 bool to_raw)
1024 * Atom time unit encoding is straight forward val * time_unit,
1025 * where time_unit is default to 1 sec. Never 0.
1027 if (!to_raw)
1028 return (value) ? value *= rp->time_unit : rp->time_unit;
1029 else
1030 value = div64_u64(value, rp->time_unit);
1032 return value;
1035 static const struct rapl_defaults rapl_defaults_core = {
1036 .floor_freq_reg_addr = 0,
1037 .check_unit = rapl_check_unit_core,
1038 .set_floor_freq = set_floor_freq_default,
1039 .compute_time_window = rapl_compute_time_window_core,
1042 static const struct rapl_defaults rapl_defaults_hsw_server = {
1043 .check_unit = rapl_check_unit_core,
1044 .set_floor_freq = set_floor_freq_default,
1045 .compute_time_window = rapl_compute_time_window_core,
1046 .dram_domain_energy_unit = 15300,
1049 static const struct rapl_defaults rapl_defaults_byt = {
1050 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1051 .check_unit = rapl_check_unit_atom,
1052 .set_floor_freq = set_floor_freq_atom,
1053 .compute_time_window = rapl_compute_time_window_atom,
1056 static const struct rapl_defaults rapl_defaults_tng = {
1057 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1058 .check_unit = rapl_check_unit_atom,
1059 .set_floor_freq = set_floor_freq_atom,
1060 .compute_time_window = rapl_compute_time_window_atom,
1063 static const struct rapl_defaults rapl_defaults_ann = {
1064 .floor_freq_reg_addr = 0,
1065 .check_unit = rapl_check_unit_atom,
1066 .set_floor_freq = NULL,
1067 .compute_time_window = rapl_compute_time_window_atom,
1070 static const struct rapl_defaults rapl_defaults_cht = {
1071 .floor_freq_reg_addr = 0,
1072 .check_unit = rapl_check_unit_atom,
1073 .set_floor_freq = NULL,
1074 .compute_time_window = rapl_compute_time_window_atom,
1077 #define RAPL_CPU(_model, _ops) { \
1078 .vendor = X86_VENDOR_INTEL, \
1079 .family = 6, \
1080 .model = _model, \
1081 .driver_data = (kernel_ulong_t)&_ops, \
1084 static const struct x86_cpu_id rapl_ids[] __initconst = {
1085 RAPL_CPU(0x2a, rapl_defaults_core),/* Sandy Bridge */
1086 RAPL_CPU(0x2d, rapl_defaults_core),/* Sandy Bridge EP */
1087 RAPL_CPU(0x37, rapl_defaults_byt),/* Valleyview */
1088 RAPL_CPU(0x3a, rapl_defaults_core),/* Ivy Bridge */
1089 RAPL_CPU(0x3c, rapl_defaults_core),/* Haswell */
1090 RAPL_CPU(0x3d, rapl_defaults_core),/* Broadwell */
1091 RAPL_CPU(0x3f, rapl_defaults_hsw_server),/* Haswell servers */
1092 RAPL_CPU(0x4f, rapl_defaults_hsw_server),/* Broadwell servers */
1093 RAPL_CPU(0x45, rapl_defaults_core),/* Haswell ULT */
1094 RAPL_CPU(0x46, rapl_defaults_core),/* Haswell */
1095 RAPL_CPU(0x47, rapl_defaults_core),/* Broadwell-H */
1096 RAPL_CPU(0x4E, rapl_defaults_core),/* Skylake */
1097 RAPL_CPU(0x4C, rapl_defaults_cht),/* Braswell/Cherryview */
1098 RAPL_CPU(0x4A, rapl_defaults_tng),/* Tangier */
1099 RAPL_CPU(0x56, rapl_defaults_core),/* Future Xeon */
1100 RAPL_CPU(0x5A, rapl_defaults_ann),/* Annidale */
1101 RAPL_CPU(0X5C, rapl_defaults_core),/* Broxton */
1102 RAPL_CPU(0x5E, rapl_defaults_core),/* Skylake-H/S */
1103 RAPL_CPU(0x57, rapl_defaults_hsw_server),/* Knights Landing */
1106 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1108 /* read once for all raw primitive data for all packages, domains */
1109 static void rapl_update_domain_data(void)
1111 int dmn, prim;
1112 u64 val;
1113 struct rapl_package *rp;
1115 list_for_each_entry(rp, &rapl_packages, plist) {
1116 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1117 pr_debug("update package %d domain %s data\n", rp->id,
1118 rp->domains[dmn].name);
1119 /* exclude non-raw primitives */
1120 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++)
1121 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1122 rpi[prim].unit,
1123 &val))
1124 rp->domains[dmn].rdd.primitives[prim] =
1125 val;
1131 static int rapl_unregister_powercap(void)
1133 struct rapl_package *rp;
1134 struct rapl_domain *rd, *rd_package = NULL;
1136 /* unregister all active rapl packages from the powercap layer,
1137 * hotplug lock held
1139 list_for_each_entry(rp, &rapl_packages, plist) {
1140 package_power_limit_irq_restore(rp);
1142 for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
1143 rd++) {
1144 pr_debug("remove package, undo power limit on %d: %s\n",
1145 rp->id, rd->name);
1146 rapl_write_data_raw(rd, PL1_ENABLE, 0);
1147 rapl_write_data_raw(rd, PL1_CLAMP, 0);
1148 if (find_nr_power_limit(rd) > 1) {
1149 rapl_write_data_raw(rd, PL2_ENABLE, 0);
1150 rapl_write_data_raw(rd, PL2_CLAMP, 0);
1152 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1153 rd_package = rd;
1154 continue;
1156 powercap_unregister_zone(control_type, &rd->power_zone);
1158 /* do the package zone last */
1159 if (rd_package)
1160 powercap_unregister_zone(control_type,
1161 &rd_package->power_zone);
1163 powercap_unregister_control_type(control_type);
1165 return 0;
1168 static int rapl_package_register_powercap(struct rapl_package *rp)
1170 struct rapl_domain *rd;
1171 int ret = 0;
1172 char dev_name[17]; /* max domain name = 7 + 1 + 8 for int + 1 for null*/
1173 struct powercap_zone *power_zone = NULL;
1174 int nr_pl;
1176 /* first we register package domain as the parent zone*/
1177 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1178 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1179 nr_pl = find_nr_power_limit(rd);
1180 pr_debug("register socket %d package domain %s\n",
1181 rp->id, rd->name);
1182 memset(dev_name, 0, sizeof(dev_name));
1183 snprintf(dev_name, sizeof(dev_name), "%s-%d",
1184 rd->name, rp->id);
1185 power_zone = powercap_register_zone(&rd->power_zone,
1186 control_type,
1187 dev_name, NULL,
1188 &zone_ops[rd->id],
1189 nr_pl,
1190 &constraint_ops);
1191 if (IS_ERR(power_zone)) {
1192 pr_debug("failed to register package, %d\n",
1193 rp->id);
1194 ret = PTR_ERR(power_zone);
1195 goto exit_package;
1197 /* track parent zone in per package/socket data */
1198 rp->power_zone = power_zone;
1199 /* done, only one package domain per socket */
1200 break;
1203 if (!power_zone) {
1204 pr_err("no package domain found, unknown topology!\n");
1205 ret = -ENODEV;
1206 goto exit_package;
1208 /* now register domains as children of the socket/package*/
1209 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1210 if (rd->id == RAPL_DOMAIN_PACKAGE)
1211 continue;
1212 /* number of power limits per domain varies */
1213 nr_pl = find_nr_power_limit(rd);
1214 power_zone = powercap_register_zone(&rd->power_zone,
1215 control_type, rd->name,
1216 rp->power_zone,
1217 &zone_ops[rd->id], nr_pl,
1218 &constraint_ops);
1220 if (IS_ERR(power_zone)) {
1221 pr_debug("failed to register power_zone, %d:%s:%s\n",
1222 rp->id, rd->name, dev_name);
1223 ret = PTR_ERR(power_zone);
1224 goto err_cleanup;
1228 exit_package:
1229 return ret;
1230 err_cleanup:
1231 /* clean up previously initialized domains within the package if we
1232 * failed after the first domain setup.
1234 while (--rd >= rp->domains) {
1235 pr_debug("unregister package %d domain %s\n", rp->id, rd->name);
1236 powercap_unregister_zone(control_type, &rd->power_zone);
1239 return ret;
1242 static int rapl_register_powercap(void)
1244 struct rapl_domain *rd;
1245 struct rapl_package *rp;
1246 int ret = 0;
1248 control_type = powercap_register_control_type(NULL, "intel-rapl", NULL);
1249 if (IS_ERR(control_type)) {
1250 pr_debug("failed to register powercap control_type.\n");
1251 return PTR_ERR(control_type);
1253 /* read the initial data */
1254 rapl_update_domain_data();
1255 list_for_each_entry(rp, &rapl_packages, plist)
1256 if (rapl_package_register_powercap(rp))
1257 goto err_cleanup_package;
1258 return ret;
1260 err_cleanup_package:
1261 /* clean up previously initialized packages */
1262 list_for_each_entry_continue_reverse(rp, &rapl_packages, plist) {
1263 for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
1264 rd++) {
1265 pr_debug("unregister zone/package %d, %s domain\n",
1266 rp->id, rd->name);
1267 powercap_unregister_zone(control_type, &rd->power_zone);
1271 return ret;
1274 static int rapl_check_domain(int cpu, int domain)
1276 unsigned msr;
1277 u64 val = 0;
1279 switch (domain) {
1280 case RAPL_DOMAIN_PACKAGE:
1281 msr = MSR_PKG_ENERGY_STATUS;
1282 break;
1283 case RAPL_DOMAIN_PP0:
1284 msr = MSR_PP0_ENERGY_STATUS;
1285 break;
1286 case RAPL_DOMAIN_PP1:
1287 msr = MSR_PP1_ENERGY_STATUS;
1288 break;
1289 case RAPL_DOMAIN_DRAM:
1290 msr = MSR_DRAM_ENERGY_STATUS;
1291 break;
1292 default:
1293 pr_err("invalid domain id %d\n", domain);
1294 return -EINVAL;
1296 /* make sure domain counters are available and contains non-zero
1297 * values, otherwise skip it.
1299 if (rdmsrl_safe_on_cpu(cpu, msr, &val) || !val)
1300 return -ENODEV;
1302 return 0;
1305 /* Detect active and valid domains for the given CPU, caller must
1306 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1308 static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1310 int i;
1311 int ret = 0;
1312 struct rapl_domain *rd;
1313 u64 locked;
1315 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1316 /* use physical package id to read counters */
1317 if (!rapl_check_domain(cpu, i)) {
1318 rp->domain_map |= 1 << i;
1319 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1322 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1323 if (!rp->nr_domains) {
1324 pr_err("no valid rapl domains found in package %d\n", rp->id);
1325 ret = -ENODEV;
1326 goto done;
1328 pr_debug("found %d domains on package %d\n", rp->nr_domains, rp->id);
1330 rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1331 GFP_KERNEL);
1332 if (!rp->domains) {
1333 ret = -ENOMEM;
1334 goto done;
1336 rapl_init_domains(rp);
1338 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1339 /* check if the domain is locked by BIOS */
1340 ret = rapl_read_data_raw(rd, FW_LOCK, false, &locked);
1341 if (ret)
1342 return ret;
1343 if (locked) {
1344 pr_info("RAPL package %d domain %s locked by BIOS\n",
1345 rp->id, rd->name);
1346 rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1351 done:
1352 return ret;
1355 static bool is_package_new(int package)
1357 struct rapl_package *rp;
1359 /* caller prevents cpu hotplug, there will be no new packages added
1360 * or deleted while traversing the package list, no need for locking.
1362 list_for_each_entry(rp, &rapl_packages, plist)
1363 if (package == rp->id)
1364 return false;
1366 return true;
1369 /* RAPL interface can be made of a two-level hierarchy: package level and domain
1370 * level. We first detect the number of packages then domains of each package.
1371 * We have to consider the possiblity of CPU online/offline due to hotplug and
1372 * other scenarios.
1374 static int rapl_detect_topology(void)
1376 int i;
1377 int phy_package_id;
1378 struct rapl_package *new_package, *rp;
1380 for_each_online_cpu(i) {
1381 phy_package_id = topology_physical_package_id(i);
1382 if (is_package_new(phy_package_id)) {
1383 new_package = kzalloc(sizeof(*rp), GFP_KERNEL);
1384 if (!new_package) {
1385 rapl_cleanup_data();
1386 return -ENOMEM;
1388 /* add the new package to the list */
1389 new_package->id = phy_package_id;
1390 new_package->nr_cpus = 1;
1391 /* use the first active cpu of the package to access */
1392 new_package->lead_cpu = i;
1393 /* check if the package contains valid domains */
1394 if (rapl_detect_domains(new_package, i) ||
1395 rapl_defaults->check_unit(new_package, i)) {
1396 kfree(new_package->domains);
1397 kfree(new_package);
1398 /* free up the packages already initialized */
1399 rapl_cleanup_data();
1400 return -ENODEV;
1402 INIT_LIST_HEAD(&new_package->plist);
1403 list_add(&new_package->plist, &rapl_packages);
1404 } else {
1405 rp = find_package_by_id(phy_package_id);
1406 if (rp)
1407 ++rp->nr_cpus;
1411 return 0;
1414 /* called from CPU hotplug notifier, hotplug lock held */
1415 static void rapl_remove_package(struct rapl_package *rp)
1417 struct rapl_domain *rd, *rd_package = NULL;
1419 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1420 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1421 rd_package = rd;
1422 continue;
1424 pr_debug("remove package %d, %s domain\n", rp->id, rd->name);
1425 powercap_unregister_zone(control_type, &rd->power_zone);
1427 /* do parent zone last */
1428 powercap_unregister_zone(control_type, &rd_package->power_zone);
1429 list_del(&rp->plist);
1430 kfree(rp);
1433 /* called from CPU hotplug notifier, hotplug lock held */
1434 static int rapl_add_package(int cpu)
1436 int ret = 0;
1437 int phy_package_id;
1438 struct rapl_package *rp;
1440 phy_package_id = topology_physical_package_id(cpu);
1441 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1442 if (!rp)
1443 return -ENOMEM;
1445 /* add the new package to the list */
1446 rp->id = phy_package_id;
1447 rp->nr_cpus = 1;
1448 rp->lead_cpu = cpu;
1450 /* check if the package contains valid domains */
1451 if (rapl_detect_domains(rp, cpu) ||
1452 rapl_defaults->check_unit(rp, cpu)) {
1453 ret = -ENODEV;
1454 goto err_free_package;
1456 if (!rapl_package_register_powercap(rp)) {
1457 INIT_LIST_HEAD(&rp->plist);
1458 list_add(&rp->plist, &rapl_packages);
1459 return ret;
1462 err_free_package:
1463 kfree(rp->domains);
1464 kfree(rp);
1466 return ret;
1469 /* Handles CPU hotplug on multi-socket systems.
1470 * If a CPU goes online as the first CPU of the physical package
1471 * we add the RAPL package to the system. Similarly, when the last
1472 * CPU of the package is removed, we remove the RAPL package and its
1473 * associated domains. Cooling devices are handled accordingly at
1474 * per-domain level.
1476 static int rapl_cpu_callback(struct notifier_block *nfb,
1477 unsigned long action, void *hcpu)
1479 unsigned long cpu = (unsigned long)hcpu;
1480 int phy_package_id;
1481 struct rapl_package *rp;
1482 int lead_cpu;
1484 phy_package_id = topology_physical_package_id(cpu);
1485 switch (action) {
1486 case CPU_ONLINE:
1487 case CPU_ONLINE_FROZEN:
1488 case CPU_DOWN_FAILED:
1489 case CPU_DOWN_FAILED_FROZEN:
1490 rp = find_package_by_id(phy_package_id);
1491 if (rp)
1492 ++rp->nr_cpus;
1493 else
1494 rapl_add_package(cpu);
1495 break;
1496 case CPU_DOWN_PREPARE:
1497 case CPU_DOWN_PREPARE_FROZEN:
1498 rp = find_package_by_id(phy_package_id);
1499 if (!rp)
1500 break;
1501 if (--rp->nr_cpus == 0)
1502 rapl_remove_package(rp);
1503 else if (cpu == rp->lead_cpu) {
1504 /* choose another active cpu in the package */
1505 lead_cpu = cpumask_any_but(topology_core_cpumask(cpu), cpu);
1506 if (lead_cpu < nr_cpu_ids)
1507 rp->lead_cpu = lead_cpu;
1508 else /* should never go here */
1509 pr_err("no active cpu available for package %d\n",
1510 phy_package_id);
1514 return NOTIFY_OK;
1517 static struct notifier_block rapl_cpu_notifier = {
1518 .notifier_call = rapl_cpu_callback,
1521 static int __init rapl_init(void)
1523 int ret = 0;
1524 const struct x86_cpu_id *id;
1526 id = x86_match_cpu(rapl_ids);
1527 if (!id) {
1528 pr_err("driver does not support CPU family %d model %d\n",
1529 boot_cpu_data.x86, boot_cpu_data.x86_model);
1531 return -ENODEV;
1534 rapl_defaults = (struct rapl_defaults *)id->driver_data;
1536 cpu_notifier_register_begin();
1538 /* prevent CPU hotplug during detection */
1539 get_online_cpus();
1540 ret = rapl_detect_topology();
1541 if (ret)
1542 goto done;
1544 if (rapl_register_powercap()) {
1545 rapl_cleanup_data();
1546 ret = -ENODEV;
1547 goto done;
1549 __register_hotcpu_notifier(&rapl_cpu_notifier);
1550 done:
1551 put_online_cpus();
1552 cpu_notifier_register_done();
1554 return ret;
1557 static void __exit rapl_exit(void)
1559 cpu_notifier_register_begin();
1560 get_online_cpus();
1561 __unregister_hotcpu_notifier(&rapl_cpu_notifier);
1562 rapl_unregister_powercap();
1563 rapl_cleanup_data();
1564 put_online_cpus();
1565 cpu_notifier_register_done();
1568 module_init(rapl_init);
1569 module_exit(rapl_exit);
1571 MODULE_DESCRIPTION("Driver for Intel RAPL (Running Average Power Limit)");
1572 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1573 MODULE_LICENSE("GPL v2");