2 * f_fs.c -- user mode file system API for USB composite function controllers
4 * Copyright (C) 2010 Samsung Electronics
5 * Author: Michal Nazarewicz <mina86@mina86.com>
7 * Based on inode.c (GadgetFS) which was:
8 * Copyright (C) 2003-2004 David Brownell
9 * Copyright (C) 2003 Agilent Technologies
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
19 /* #define VERBOSE_DEBUG */
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
39 #include "u_os_desc.h"
42 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data
*ffs
);
46 static void ffs_data_put(struct ffs_data
*ffs
);
47 /* Creates new ffs_data object. */
48 static struct ffs_data
*__must_check
ffs_data_new(void) __attribute__((malloc
));
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data
*ffs
);
52 static void ffs_data_closed(struct ffs_data
*ffs
);
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data
*ffs
, char *data
, size_t len
);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data
*ffs
, char *data
, size_t len
);
61 /* The function structure ***************************************************/
66 struct usb_configuration
*conf
;
67 struct usb_gadget
*gadget
;
72 short *interfaces_nums
;
74 struct usb_function function
;
78 static struct ffs_function
*ffs_func_from_usb(struct usb_function
*f
)
80 return container_of(f
, struct ffs_function
, function
);
84 static inline enum ffs_setup_state
85 ffs_setup_state_clear_cancelled(struct ffs_data
*ffs
)
87 return (enum ffs_setup_state
)
88 cmpxchg(&ffs
->setup_state
, FFS_SETUP_CANCELLED
, FFS_NO_SETUP
);
92 static void ffs_func_eps_disable(struct ffs_function
*func
);
93 static int __must_check
ffs_func_eps_enable(struct ffs_function
*func
);
95 static int ffs_func_bind(struct usb_configuration
*,
96 struct usb_function
*);
97 static int ffs_func_set_alt(struct usb_function
*, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function
*);
99 static int ffs_func_setup(struct usb_function
*,
100 const struct usb_ctrlrequest
*);
101 static void ffs_func_suspend(struct usb_function
*);
102 static void ffs_func_resume(struct usb_function
*);
105 static int ffs_func_revmap_ep(struct ffs_function
*func
, u8 num
);
106 static int ffs_func_revmap_intf(struct ffs_function
*func
, u8 intf
);
109 /* The endpoints structures *************************************************/
112 struct usb_ep
*ep
; /* P: ffs->eps_lock */
113 struct usb_request
*req
; /* P: epfile->mutex */
115 /* [0]: full speed, [1]: high speed, [2]: super speed */
116 struct usb_endpoint_descriptor
*descs
[3];
120 int status
; /* P: epfile->mutex */
124 /* Protects ep->ep and ep->req. */
126 wait_queue_head_t wait
;
128 struct ffs_data
*ffs
;
129 struct ffs_ep
*ep
; /* P: ffs->eps_lock */
131 struct dentry
*dentry
;
135 unsigned char in
; /* P: ffs->eps_lock */
136 unsigned char isoc
; /* P: ffs->eps_lock */
141 /* ffs_io_data structure ***************************************************/
148 struct iov_iter data
;
152 struct mm_struct
*mm
;
153 struct work_struct work
;
156 struct usb_request
*req
;
158 struct ffs_data
*ffs
;
161 struct ffs_desc_helper
{
162 struct ffs_data
*ffs
;
163 unsigned interfaces_count
;
167 static int __must_check
ffs_epfiles_create(struct ffs_data
*ffs
);
168 static void ffs_epfiles_destroy(struct ffs_epfile
*epfiles
, unsigned count
);
170 static struct dentry
*
171 ffs_sb_create_file(struct super_block
*sb
, const char *name
, void *data
,
172 const struct file_operations
*fops
);
174 /* Devices management *******************************************************/
176 DEFINE_MUTEX(ffs_lock
);
177 EXPORT_SYMBOL_GPL(ffs_lock
);
179 static struct ffs_dev
*_ffs_find_dev(const char *name
);
180 static struct ffs_dev
*_ffs_alloc_dev(void);
181 static int _ffs_name_dev(struct ffs_dev
*dev
, const char *name
);
182 static void _ffs_free_dev(struct ffs_dev
*dev
);
183 static void *ffs_acquire_dev(const char *dev_name
);
184 static void ffs_release_dev(struct ffs_data
*ffs_data
);
185 static int ffs_ready(struct ffs_data
*ffs
);
186 static void ffs_closed(struct ffs_data
*ffs
);
188 /* Misc helper functions ****************************************************/
190 static int ffs_mutex_lock(struct mutex
*mutex
, unsigned nonblock
)
191 __attribute__((warn_unused_result
, nonnull
));
192 static char *ffs_prepare_buffer(const char __user
*buf
, size_t len
)
193 __attribute__((warn_unused_result
, nonnull
));
196 /* Control file aka ep0 *****************************************************/
198 static void ffs_ep0_complete(struct usb_ep
*ep
, struct usb_request
*req
)
200 struct ffs_data
*ffs
= req
->context
;
202 complete_all(&ffs
->ep0req_completion
);
205 static int __ffs_ep0_queue_wait(struct ffs_data
*ffs
, char *data
, size_t len
)
207 struct usb_request
*req
= ffs
->ep0req
;
210 req
->zero
= len
< le16_to_cpu(ffs
->ev
.setup
.wLength
);
212 spin_unlock_irq(&ffs
->ev
.waitq
.lock
);
218 * UDC layer requires to provide a buffer even for ZLP, but should
219 * not use it at all. Let's provide some poisoned pointer to catch
220 * possible bug in the driver.
222 if (req
->buf
== NULL
)
223 req
->buf
= (void *)0xDEADBABE;
225 reinit_completion(&ffs
->ep0req_completion
);
227 ret
= usb_ep_queue(ffs
->gadget
->ep0
, req
, GFP_ATOMIC
);
228 if (unlikely(ret
< 0))
231 ret
= wait_for_completion_interruptible(&ffs
->ep0req_completion
);
233 usb_ep_dequeue(ffs
->gadget
->ep0
, req
);
237 ffs
->setup_state
= FFS_NO_SETUP
;
238 return req
->status
? req
->status
: req
->actual
;
241 static int __ffs_ep0_stall(struct ffs_data
*ffs
)
243 if (ffs
->ev
.can_stall
) {
244 pr_vdebug("ep0 stall\n");
245 usb_ep_set_halt(ffs
->gadget
->ep0
);
246 ffs
->setup_state
= FFS_NO_SETUP
;
249 pr_debug("bogus ep0 stall!\n");
254 static ssize_t
ffs_ep0_write(struct file
*file
, const char __user
*buf
,
255 size_t len
, loff_t
*ptr
)
257 struct ffs_data
*ffs
= file
->private_data
;
263 /* Fast check if setup was canceled */
264 if (ffs_setup_state_clear_cancelled(ffs
) == FFS_SETUP_CANCELLED
)
268 ret
= ffs_mutex_lock(&ffs
->mutex
, file
->f_flags
& O_NONBLOCK
);
269 if (unlikely(ret
< 0))
273 switch (ffs
->state
) {
274 case FFS_READ_DESCRIPTORS
:
275 case FFS_READ_STRINGS
:
277 if (unlikely(len
< 16)) {
282 data
= ffs_prepare_buffer(buf
, len
);
289 if (ffs
->state
== FFS_READ_DESCRIPTORS
) {
290 pr_info("read descriptors\n");
291 ret
= __ffs_data_got_descs(ffs
, data
, len
);
292 if (unlikely(ret
< 0))
295 ffs
->state
= FFS_READ_STRINGS
;
298 pr_info("read strings\n");
299 ret
= __ffs_data_got_strings(ffs
, data
, len
);
300 if (unlikely(ret
< 0))
303 ret
= ffs_epfiles_create(ffs
);
305 ffs
->state
= FFS_CLOSING
;
309 ffs
->state
= FFS_ACTIVE
;
310 mutex_unlock(&ffs
->mutex
);
312 ret
= ffs_ready(ffs
);
313 if (unlikely(ret
< 0)) {
314 ffs
->state
= FFS_CLOSING
;
325 * We're called from user space, we can use _irq
326 * rather then _irqsave
328 spin_lock_irq(&ffs
->ev
.waitq
.lock
);
329 switch (ffs_setup_state_clear_cancelled(ffs
)) {
330 case FFS_SETUP_CANCELLED
:
338 case FFS_SETUP_PENDING
:
342 /* FFS_SETUP_PENDING */
343 if (!(ffs
->ev
.setup
.bRequestType
& USB_DIR_IN
)) {
344 spin_unlock_irq(&ffs
->ev
.waitq
.lock
);
345 ret
= __ffs_ep0_stall(ffs
);
349 /* FFS_SETUP_PENDING and not stall */
350 len
= min(len
, (size_t)le16_to_cpu(ffs
->ev
.setup
.wLength
));
352 spin_unlock_irq(&ffs
->ev
.waitq
.lock
);
354 data
= ffs_prepare_buffer(buf
, len
);
360 spin_lock_irq(&ffs
->ev
.waitq
.lock
);
363 * We are guaranteed to be still in FFS_ACTIVE state
364 * but the state of setup could have changed from
365 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
366 * to check for that. If that happened we copied data
367 * from user space in vain but it's unlikely.
369 * For sure we are not in FFS_NO_SETUP since this is
370 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
371 * transition can be performed and it's protected by
374 if (ffs_setup_state_clear_cancelled(ffs
) ==
375 FFS_SETUP_CANCELLED
) {
378 spin_unlock_irq(&ffs
->ev
.waitq
.lock
);
380 /* unlocks spinlock */
381 ret
= __ffs_ep0_queue_wait(ffs
, data
, len
);
391 mutex_unlock(&ffs
->mutex
);
395 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
396 static ssize_t
__ffs_ep0_read_events(struct ffs_data
*ffs
, char __user
*buf
,
400 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
401 * size of ffs->ev.types array (which is four) so that's how much space
404 struct usb_functionfs_event events
[ARRAY_SIZE(ffs
->ev
.types
)];
405 const size_t size
= n
* sizeof *events
;
408 memset(events
, 0, size
);
411 events
[i
].type
= ffs
->ev
.types
[i
];
412 if (events
[i
].type
== FUNCTIONFS_SETUP
) {
413 events
[i
].u
.setup
= ffs
->ev
.setup
;
414 ffs
->setup_state
= FFS_SETUP_PENDING
;
420 memmove(ffs
->ev
.types
, ffs
->ev
.types
+ n
,
421 ffs
->ev
.count
* sizeof *ffs
->ev
.types
);
423 spin_unlock_irq(&ffs
->ev
.waitq
.lock
);
424 mutex_unlock(&ffs
->mutex
);
426 return unlikely(copy_to_user(buf
, events
, size
)) ? -EFAULT
: size
;
429 static ssize_t
ffs_ep0_read(struct file
*file
, char __user
*buf
,
430 size_t len
, loff_t
*ptr
)
432 struct ffs_data
*ffs
= file
->private_data
;
439 /* Fast check if setup was canceled */
440 if (ffs_setup_state_clear_cancelled(ffs
) == FFS_SETUP_CANCELLED
)
444 ret
= ffs_mutex_lock(&ffs
->mutex
, file
->f_flags
& O_NONBLOCK
);
445 if (unlikely(ret
< 0))
449 if (ffs
->state
!= FFS_ACTIVE
) {
455 * We're called from user space, we can use _irq rather then
458 spin_lock_irq(&ffs
->ev
.waitq
.lock
);
460 switch (ffs_setup_state_clear_cancelled(ffs
)) {
461 case FFS_SETUP_CANCELLED
:
466 n
= len
/ sizeof(struct usb_functionfs_event
);
472 if ((file
->f_flags
& O_NONBLOCK
) && !ffs
->ev
.count
) {
477 if (wait_event_interruptible_exclusive_locked_irq(ffs
->ev
.waitq
,
483 return __ffs_ep0_read_events(ffs
, buf
,
484 min(n
, (size_t)ffs
->ev
.count
));
486 case FFS_SETUP_PENDING
:
487 if (ffs
->ev
.setup
.bRequestType
& USB_DIR_IN
) {
488 spin_unlock_irq(&ffs
->ev
.waitq
.lock
);
489 ret
= __ffs_ep0_stall(ffs
);
493 len
= min(len
, (size_t)le16_to_cpu(ffs
->ev
.setup
.wLength
));
495 spin_unlock_irq(&ffs
->ev
.waitq
.lock
);
498 data
= kmalloc(len
, GFP_KERNEL
);
499 if (unlikely(!data
)) {
505 spin_lock_irq(&ffs
->ev
.waitq
.lock
);
507 /* See ffs_ep0_write() */
508 if (ffs_setup_state_clear_cancelled(ffs
) ==
509 FFS_SETUP_CANCELLED
) {
514 /* unlocks spinlock */
515 ret
= __ffs_ep0_queue_wait(ffs
, data
, len
);
516 if (likely(ret
> 0) && unlikely(copy_to_user(buf
, data
, len
)))
525 spin_unlock_irq(&ffs
->ev
.waitq
.lock
);
527 mutex_unlock(&ffs
->mutex
);
532 static int ffs_ep0_open(struct inode
*inode
, struct file
*file
)
534 struct ffs_data
*ffs
= inode
->i_private
;
538 if (unlikely(ffs
->state
== FFS_CLOSING
))
541 file
->private_data
= ffs
;
542 ffs_data_opened(ffs
);
547 static int ffs_ep0_release(struct inode
*inode
, struct file
*file
)
549 struct ffs_data
*ffs
= file
->private_data
;
553 ffs_data_closed(ffs
);
558 static long ffs_ep0_ioctl(struct file
*file
, unsigned code
, unsigned long value
)
560 struct ffs_data
*ffs
= file
->private_data
;
561 struct usb_gadget
*gadget
= ffs
->gadget
;
566 if (code
== FUNCTIONFS_INTERFACE_REVMAP
) {
567 struct ffs_function
*func
= ffs
->func
;
568 ret
= func
? ffs_func_revmap_intf(func
, value
) : -ENODEV
;
569 } else if (gadget
&& gadget
->ops
->ioctl
) {
570 ret
= gadget
->ops
->ioctl(gadget
, code
, value
);
578 static unsigned int ffs_ep0_poll(struct file
*file
, poll_table
*wait
)
580 struct ffs_data
*ffs
= file
->private_data
;
581 unsigned int mask
= POLLWRNORM
;
584 poll_wait(file
, &ffs
->ev
.waitq
, wait
);
586 ret
= ffs_mutex_lock(&ffs
->mutex
, file
->f_flags
& O_NONBLOCK
);
587 if (unlikely(ret
< 0))
590 switch (ffs
->state
) {
591 case FFS_READ_DESCRIPTORS
:
592 case FFS_READ_STRINGS
:
597 switch (ffs
->setup_state
) {
603 case FFS_SETUP_PENDING
:
604 case FFS_SETUP_CANCELLED
:
605 mask
|= (POLLIN
| POLLOUT
);
610 case FFS_DEACTIVATED
:
614 mutex_unlock(&ffs
->mutex
);
619 static const struct file_operations ffs_ep0_operations
= {
622 .open
= ffs_ep0_open
,
623 .write
= ffs_ep0_write
,
624 .read
= ffs_ep0_read
,
625 .release
= ffs_ep0_release
,
626 .unlocked_ioctl
= ffs_ep0_ioctl
,
627 .poll
= ffs_ep0_poll
,
631 /* "Normal" endpoints operations ********************************************/
633 static void ffs_epfile_io_complete(struct usb_ep
*_ep
, struct usb_request
*req
)
636 if (likely(req
->context
)) {
637 struct ffs_ep
*ep
= _ep
->driver_data
;
638 ep
->status
= req
->status
? req
->status
: req
->actual
;
639 complete(req
->context
);
643 static void ffs_user_copy_worker(struct work_struct
*work
)
645 struct ffs_io_data
*io_data
= container_of(work
, struct ffs_io_data
,
647 int ret
= io_data
->req
->status
? io_data
->req
->status
:
648 io_data
->req
->actual
;
649 bool kiocb_has_eventfd
= io_data
->kiocb
->ki_flags
& IOCB_EVENTFD
;
651 if (io_data
->read
&& ret
> 0) {
653 ret
= copy_to_iter(io_data
->buf
, ret
, &io_data
->data
);
654 if (iov_iter_count(&io_data
->data
))
656 unuse_mm(io_data
->mm
);
659 io_data
->kiocb
->ki_complete(io_data
->kiocb
, ret
, ret
);
661 if (io_data
->ffs
->ffs_eventfd
&& !kiocb_has_eventfd
)
662 eventfd_signal(io_data
->ffs
->ffs_eventfd
, 1);
664 usb_ep_free_request(io_data
->ep
, io_data
->req
);
667 kfree(io_data
->to_free
);
672 static void ffs_epfile_async_io_complete(struct usb_ep
*_ep
,
673 struct usb_request
*req
)
675 struct ffs_io_data
*io_data
= req
->context
;
679 INIT_WORK(&io_data
->work
, ffs_user_copy_worker
);
680 schedule_work(&io_data
->work
);
683 static ssize_t
ffs_epfile_io(struct file
*file
, struct ffs_io_data
*io_data
)
685 struct ffs_epfile
*epfile
= file
->private_data
;
686 struct usb_request
*req
;
689 ssize_t ret
, data_len
= -EINVAL
;
692 /* Are we still active? */
693 if (WARN_ON(epfile
->ffs
->state
!= FFS_ACTIVE
))
696 /* Wait for endpoint to be enabled */
699 if (file
->f_flags
& O_NONBLOCK
)
702 ret
= wait_event_interruptible(epfile
->wait
, (ep
= epfile
->ep
));
708 halt
= (!io_data
->read
== !epfile
->in
);
709 if (halt
&& epfile
->isoc
)
712 /* Allocate & copy */
715 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
716 * before the waiting completes, so do not assign to 'gadget'
719 struct usb_gadget
*gadget
= epfile
->ffs
->gadget
;
722 spin_lock_irq(&epfile
->ffs
->eps_lock
);
723 /* In the meantime, endpoint got disabled or changed. */
724 if (epfile
->ep
!= ep
) {
725 spin_unlock_irq(&epfile
->ffs
->eps_lock
);
728 data_len
= iov_iter_count(&io_data
->data
);
730 * Controller may require buffer size to be aligned to
731 * maxpacketsize of an out endpoint.
734 data_len
= usb_ep_align_maybe(gadget
, ep
->ep
, data_len
);
735 spin_unlock_irq(&epfile
->ffs
->eps_lock
);
737 data
= kmalloc(data_len
, GFP_KERNEL
);
740 if (!io_data
->read
) {
741 copied
= copy_from_iter(data
, data_len
, &io_data
->data
);
742 if (copied
!= data_len
) {
749 /* We will be using request */
750 ret
= ffs_mutex_lock(&epfile
->mutex
, file
->f_flags
& O_NONBLOCK
);
754 spin_lock_irq(&epfile
->ffs
->eps_lock
);
756 if (epfile
->ep
!= ep
) {
757 /* In the meantime, endpoint got disabled or changed. */
761 if (likely(epfile
->ep
== ep
) && !WARN_ON(!ep
->ep
))
762 usb_ep_set_halt(ep
->ep
);
764 } else if (unlikely(data_len
== -EINVAL
)) {
766 * Sanity Check: even though data_len can't be used
767 * uninitialized at the time I write this comment, some
768 * compilers complain about this situation.
769 * In order to keep the code clean from warnings, data_len is
770 * being initialized to -EINVAL during its declaration, which
771 * means we can't rely on compiler anymore to warn no future
772 * changes won't result in data_len being used uninitialized.
773 * For such reason, we're adding this redundant sanity check
776 WARN(1, "%s: data_len == -EINVAL\n", __func__
);
778 } else if (!io_data
->aio
) {
779 DECLARE_COMPLETION_ONSTACK(done
);
780 bool interrupted
= false;
784 req
->length
= data_len
;
786 req
->context
= &done
;
787 req
->complete
= ffs_epfile_io_complete
;
789 ret
= usb_ep_queue(ep
->ep
, req
, GFP_ATOMIC
);
790 if (unlikely(ret
< 0))
793 spin_unlock_irq(&epfile
->ffs
->eps_lock
);
795 if (unlikely(wait_for_completion_interruptible(&done
))) {
797 * To avoid race condition with ffs_epfile_io_complete,
798 * dequeue the request first then check
799 * status. usb_ep_dequeue API should guarantee no race
800 * condition with req->complete callback.
802 usb_ep_dequeue(ep
->ep
, req
);
803 interrupted
= ep
->status
< 0;
807 * XXX We may end up silently droping data here. Since data_len
808 * (i.e. req->length) may be bigger than len (after being
809 * rounded up to maxpacketsize), we may end up with more data
810 * then user space has space for.
812 ret
= interrupted
? -EINTR
: ep
->status
;
813 if (io_data
->read
&& ret
> 0) {
814 ret
= copy_to_iter(data
, ret
, &io_data
->data
);
819 } else if (!(req
= usb_ep_alloc_request(ep
->ep
, GFP_KERNEL
))) {
823 req
->length
= data_len
;
826 io_data
->ep
= ep
->ep
;
828 io_data
->ffs
= epfile
->ffs
;
830 req
->context
= io_data
;
831 req
->complete
= ffs_epfile_async_io_complete
;
833 ret
= usb_ep_queue(ep
->ep
, req
, GFP_ATOMIC
);
835 usb_ep_free_request(ep
->ep
, req
);
841 * Do not kfree the buffer in this function. It will be freed
842 * by ffs_user_copy_worker.
848 spin_unlock_irq(&epfile
->ffs
->eps_lock
);
850 mutex_unlock(&epfile
->mutex
);
857 ffs_epfile_open(struct inode
*inode
, struct file
*file
)
859 struct ffs_epfile
*epfile
= inode
->i_private
;
863 if (WARN_ON(epfile
->ffs
->state
!= FFS_ACTIVE
))
866 file
->private_data
= epfile
;
867 ffs_data_opened(epfile
->ffs
);
872 static int ffs_aio_cancel(struct kiocb
*kiocb
)
874 struct ffs_io_data
*io_data
= kiocb
->private;
875 struct ffs_epfile
*epfile
= kiocb
->ki_filp
->private_data
;
880 spin_lock_irq(&epfile
->ffs
->eps_lock
);
882 if (likely(io_data
&& io_data
->ep
&& io_data
->req
))
883 value
= usb_ep_dequeue(io_data
->ep
, io_data
->req
);
887 spin_unlock_irq(&epfile
->ffs
->eps_lock
);
892 static ssize_t
ffs_epfile_write_iter(struct kiocb
*kiocb
, struct iov_iter
*from
)
894 struct ffs_io_data io_data
, *p
= &io_data
;
899 if (!is_sync_kiocb(kiocb
)) {
900 p
= kmalloc(sizeof(io_data
), GFP_KERNEL
);
916 kiocb_set_cancel_fn(kiocb
, ffs_aio_cancel
);
918 res
= ffs_epfile_io(kiocb
->ki_filp
, p
);
919 if (res
== -EIOCBQUEUED
)
928 static ssize_t
ffs_epfile_read_iter(struct kiocb
*kiocb
, struct iov_iter
*to
)
930 struct ffs_io_data io_data
, *p
= &io_data
;
935 if (!is_sync_kiocb(kiocb
)) {
936 p
= kmalloc(sizeof(io_data
), GFP_KERNEL
);
947 p
->to_free
= dup_iter(&p
->data
, to
, GFP_KERNEL
);
961 kiocb_set_cancel_fn(kiocb
, ffs_aio_cancel
);
963 res
= ffs_epfile_io(kiocb
->ki_filp
, p
);
964 if (res
== -EIOCBQUEUED
)
977 ffs_epfile_release(struct inode
*inode
, struct file
*file
)
979 struct ffs_epfile
*epfile
= inode
->i_private
;
983 ffs_data_closed(epfile
->ffs
);
988 static long ffs_epfile_ioctl(struct file
*file
, unsigned code
,
991 struct ffs_epfile
*epfile
= file
->private_data
;
996 if (WARN_ON(epfile
->ffs
->state
!= FFS_ACTIVE
))
999 spin_lock_irq(&epfile
->ffs
->eps_lock
);
1000 if (likely(epfile
->ep
)) {
1002 case FUNCTIONFS_FIFO_STATUS
:
1003 ret
= usb_ep_fifo_status(epfile
->ep
->ep
);
1005 case FUNCTIONFS_FIFO_FLUSH
:
1006 usb_ep_fifo_flush(epfile
->ep
->ep
);
1009 case FUNCTIONFS_CLEAR_HALT
:
1010 ret
= usb_ep_clear_halt(epfile
->ep
->ep
);
1012 case FUNCTIONFS_ENDPOINT_REVMAP
:
1013 ret
= epfile
->ep
->num
;
1015 case FUNCTIONFS_ENDPOINT_DESC
:
1018 struct usb_endpoint_descriptor
*desc
;
1020 switch (epfile
->ffs
->gadget
->speed
) {
1021 case USB_SPEED_SUPER
:
1024 case USB_SPEED_HIGH
:
1030 desc
= epfile
->ep
->descs
[desc_idx
];
1032 spin_unlock_irq(&epfile
->ffs
->eps_lock
);
1033 ret
= copy_to_user((void *)value
, desc
, sizeof(*desc
));
1044 spin_unlock_irq(&epfile
->ffs
->eps_lock
);
1049 static const struct file_operations ffs_epfile_operations
= {
1050 .llseek
= no_llseek
,
1052 .open
= ffs_epfile_open
,
1053 .write_iter
= ffs_epfile_write_iter
,
1054 .read_iter
= ffs_epfile_read_iter
,
1055 .release
= ffs_epfile_release
,
1056 .unlocked_ioctl
= ffs_epfile_ioctl
,
1060 /* File system and super block operations ***********************************/
1063 * Mounting the file system creates a controller file, used first for
1064 * function configuration then later for event monitoring.
1067 static struct inode
*__must_check
1068 ffs_sb_make_inode(struct super_block
*sb
, void *data
,
1069 const struct file_operations
*fops
,
1070 const struct inode_operations
*iops
,
1071 struct ffs_file_perms
*perms
)
1073 struct inode
*inode
;
1077 inode
= new_inode(sb
);
1079 if (likely(inode
)) {
1080 struct timespec current_time
= CURRENT_TIME
;
1082 inode
->i_ino
= get_next_ino();
1083 inode
->i_mode
= perms
->mode
;
1084 inode
->i_uid
= perms
->uid
;
1085 inode
->i_gid
= perms
->gid
;
1086 inode
->i_atime
= current_time
;
1087 inode
->i_mtime
= current_time
;
1088 inode
->i_ctime
= current_time
;
1089 inode
->i_private
= data
;
1091 inode
->i_fop
= fops
;
1099 /* Create "regular" file */
1100 static struct dentry
*ffs_sb_create_file(struct super_block
*sb
,
1101 const char *name
, void *data
,
1102 const struct file_operations
*fops
)
1104 struct ffs_data
*ffs
= sb
->s_fs_info
;
1105 struct dentry
*dentry
;
1106 struct inode
*inode
;
1110 dentry
= d_alloc_name(sb
->s_root
, name
);
1111 if (unlikely(!dentry
))
1114 inode
= ffs_sb_make_inode(sb
, data
, fops
, NULL
, &ffs
->file_perms
);
1115 if (unlikely(!inode
)) {
1120 d_add(dentry
, inode
);
1125 static const struct super_operations ffs_sb_operations
= {
1126 .statfs
= simple_statfs
,
1127 .drop_inode
= generic_delete_inode
,
1130 struct ffs_sb_fill_data
{
1131 struct ffs_file_perms perms
;
1133 const char *dev_name
;
1135 struct ffs_data
*ffs_data
;
1138 static int ffs_sb_fill(struct super_block
*sb
, void *_data
, int silent
)
1140 struct ffs_sb_fill_data
*data
= _data
;
1141 struct inode
*inode
;
1142 struct ffs_data
*ffs
= data
->ffs_data
;
1147 data
->ffs_data
= NULL
;
1148 sb
->s_fs_info
= ffs
;
1149 sb
->s_blocksize
= PAGE_SIZE
;
1150 sb
->s_blocksize_bits
= PAGE_SHIFT
;
1151 sb
->s_magic
= FUNCTIONFS_MAGIC
;
1152 sb
->s_op
= &ffs_sb_operations
;
1153 sb
->s_time_gran
= 1;
1156 data
->perms
.mode
= data
->root_mode
;
1157 inode
= ffs_sb_make_inode(sb
, NULL
,
1158 &simple_dir_operations
,
1159 &simple_dir_inode_operations
,
1161 sb
->s_root
= d_make_root(inode
);
1162 if (unlikely(!sb
->s_root
))
1166 if (unlikely(!ffs_sb_create_file(sb
, "ep0", ffs
,
1167 &ffs_ep0_operations
)))
1173 static int ffs_fs_parse_opts(struct ffs_sb_fill_data
*data
, char *opts
)
1177 if (!opts
|| !*opts
)
1181 unsigned long value
;
1185 comma
= strchr(opts
, ',');
1190 eq
= strchr(opts
, '=');
1191 if (unlikely(!eq
)) {
1192 pr_err("'=' missing in %s\n", opts
);
1198 if (kstrtoul(eq
+ 1, 0, &value
)) {
1199 pr_err("%s: invalid value: %s\n", opts
, eq
+ 1);
1203 /* Interpret option */
1204 switch (eq
- opts
) {
1206 if (!memcmp(opts
, "no_disconnect", 13))
1207 data
->no_disconnect
= !!value
;
1212 if (!memcmp(opts
, "rmode", 5))
1213 data
->root_mode
= (value
& 0555) | S_IFDIR
;
1214 else if (!memcmp(opts
, "fmode", 5))
1215 data
->perms
.mode
= (value
& 0666) | S_IFREG
;
1221 if (!memcmp(opts
, "mode", 4)) {
1222 data
->root_mode
= (value
& 0555) | S_IFDIR
;
1223 data
->perms
.mode
= (value
& 0666) | S_IFREG
;
1230 if (!memcmp(opts
, "uid", 3)) {
1231 data
->perms
.uid
= make_kuid(current_user_ns(), value
);
1232 if (!uid_valid(data
->perms
.uid
)) {
1233 pr_err("%s: unmapped value: %lu\n", opts
, value
);
1236 } else if (!memcmp(opts
, "gid", 3)) {
1237 data
->perms
.gid
= make_kgid(current_user_ns(), value
);
1238 if (!gid_valid(data
->perms
.gid
)) {
1239 pr_err("%s: unmapped value: %lu\n", opts
, value
);
1249 pr_err("%s: invalid option\n", opts
);
1253 /* Next iteration */
1262 /* "mount -t functionfs dev_name /dev/function" ends up here */
1264 static struct dentry
*
1265 ffs_fs_mount(struct file_system_type
*t
, int flags
,
1266 const char *dev_name
, void *opts
)
1268 struct ffs_sb_fill_data data
= {
1270 .mode
= S_IFREG
| 0600,
1271 .uid
= GLOBAL_ROOT_UID
,
1272 .gid
= GLOBAL_ROOT_GID
,
1274 .root_mode
= S_IFDIR
| 0500,
1275 .no_disconnect
= false,
1280 struct ffs_data
*ffs
;
1284 ret
= ffs_fs_parse_opts(&data
, opts
);
1285 if (unlikely(ret
< 0))
1286 return ERR_PTR(ret
);
1288 ffs
= ffs_data_new();
1290 return ERR_PTR(-ENOMEM
);
1291 ffs
->file_perms
= data
.perms
;
1292 ffs
->no_disconnect
= data
.no_disconnect
;
1294 ffs
->dev_name
= kstrdup(dev_name
, GFP_KERNEL
);
1295 if (unlikely(!ffs
->dev_name
)) {
1297 return ERR_PTR(-ENOMEM
);
1300 ffs_dev
= ffs_acquire_dev(dev_name
);
1301 if (IS_ERR(ffs_dev
)) {
1303 return ERR_CAST(ffs_dev
);
1305 ffs
->private_data
= ffs_dev
;
1306 data
.ffs_data
= ffs
;
1308 rv
= mount_nodev(t
, flags
, &data
, ffs_sb_fill
);
1309 if (IS_ERR(rv
) && data
.ffs_data
) {
1310 ffs_release_dev(data
.ffs_data
);
1311 ffs_data_put(data
.ffs_data
);
1317 ffs_fs_kill_sb(struct super_block
*sb
)
1321 kill_litter_super(sb
);
1322 if (sb
->s_fs_info
) {
1323 ffs_release_dev(sb
->s_fs_info
);
1324 ffs_data_closed(sb
->s_fs_info
);
1325 ffs_data_put(sb
->s_fs_info
);
1329 static struct file_system_type ffs_fs_type
= {
1330 .owner
= THIS_MODULE
,
1331 .name
= "functionfs",
1332 .mount
= ffs_fs_mount
,
1333 .kill_sb
= ffs_fs_kill_sb
,
1335 MODULE_ALIAS_FS("functionfs");
1338 /* Driver's main init/cleanup functions *************************************/
1340 static int functionfs_init(void)
1346 ret
= register_filesystem(&ffs_fs_type
);
1348 pr_info("file system registered\n");
1350 pr_err("failed registering file system (%d)\n", ret
);
1355 static void functionfs_cleanup(void)
1359 pr_info("unloading\n");
1360 unregister_filesystem(&ffs_fs_type
);
1364 /* ffs_data and ffs_function construction and destruction code **************/
1366 static void ffs_data_clear(struct ffs_data
*ffs
);
1367 static void ffs_data_reset(struct ffs_data
*ffs
);
1369 static void ffs_data_get(struct ffs_data
*ffs
)
1373 atomic_inc(&ffs
->ref
);
1376 static void ffs_data_opened(struct ffs_data
*ffs
)
1380 atomic_inc(&ffs
->ref
);
1381 if (atomic_add_return(1, &ffs
->opened
) == 1 &&
1382 ffs
->state
== FFS_DEACTIVATED
) {
1383 ffs
->state
= FFS_CLOSING
;
1384 ffs_data_reset(ffs
);
1388 static void ffs_data_put(struct ffs_data
*ffs
)
1392 if (unlikely(atomic_dec_and_test(&ffs
->ref
))) {
1393 pr_info("%s(): freeing\n", __func__
);
1394 ffs_data_clear(ffs
);
1395 BUG_ON(waitqueue_active(&ffs
->ev
.waitq
) ||
1396 waitqueue_active(&ffs
->ep0req_completion
.wait
));
1397 kfree(ffs
->dev_name
);
1402 static void ffs_data_closed(struct ffs_data
*ffs
)
1406 if (atomic_dec_and_test(&ffs
->opened
)) {
1407 if (ffs
->no_disconnect
) {
1408 ffs
->state
= FFS_DEACTIVATED
;
1410 ffs_epfiles_destroy(ffs
->epfiles
,
1412 ffs
->epfiles
= NULL
;
1414 if (ffs
->setup_state
== FFS_SETUP_PENDING
)
1415 __ffs_ep0_stall(ffs
);
1417 ffs
->state
= FFS_CLOSING
;
1418 ffs_data_reset(ffs
);
1421 if (atomic_read(&ffs
->opened
) < 0) {
1422 ffs
->state
= FFS_CLOSING
;
1423 ffs_data_reset(ffs
);
1429 static struct ffs_data
*ffs_data_new(void)
1431 struct ffs_data
*ffs
= kzalloc(sizeof *ffs
, GFP_KERNEL
);
1437 atomic_set(&ffs
->ref
, 1);
1438 atomic_set(&ffs
->opened
, 0);
1439 ffs
->state
= FFS_READ_DESCRIPTORS
;
1440 mutex_init(&ffs
->mutex
);
1441 spin_lock_init(&ffs
->eps_lock
);
1442 init_waitqueue_head(&ffs
->ev
.waitq
);
1443 init_completion(&ffs
->ep0req_completion
);
1445 /* XXX REVISIT need to update it in some places, or do we? */
1446 ffs
->ev
.can_stall
= 1;
1451 static void ffs_data_clear(struct ffs_data
*ffs
)
1457 BUG_ON(ffs
->gadget
);
1460 ffs_epfiles_destroy(ffs
->epfiles
, ffs
->eps_count
);
1462 if (ffs
->ffs_eventfd
)
1463 eventfd_ctx_put(ffs
->ffs_eventfd
);
1465 kfree(ffs
->raw_descs_data
);
1466 kfree(ffs
->raw_strings
);
1467 kfree(ffs
->stringtabs
);
1470 static void ffs_data_reset(struct ffs_data
*ffs
)
1474 ffs_data_clear(ffs
);
1476 ffs
->epfiles
= NULL
;
1477 ffs
->raw_descs_data
= NULL
;
1478 ffs
->raw_descs
= NULL
;
1479 ffs
->raw_strings
= NULL
;
1480 ffs
->stringtabs
= NULL
;
1482 ffs
->raw_descs_length
= 0;
1483 ffs
->fs_descs_count
= 0;
1484 ffs
->hs_descs_count
= 0;
1485 ffs
->ss_descs_count
= 0;
1487 ffs
->strings_count
= 0;
1488 ffs
->interfaces_count
= 0;
1493 ffs
->state
= FFS_READ_DESCRIPTORS
;
1494 ffs
->setup_state
= FFS_NO_SETUP
;
1499 static int functionfs_bind(struct ffs_data
*ffs
, struct usb_composite_dev
*cdev
)
1501 struct usb_gadget_strings
**lang
;
1506 if (WARN_ON(ffs
->state
!= FFS_ACTIVE
1507 || test_and_set_bit(FFS_FL_BOUND
, &ffs
->flags
)))
1510 first_id
= usb_string_ids_n(cdev
, ffs
->strings_count
);
1511 if (unlikely(first_id
< 0))
1514 ffs
->ep0req
= usb_ep_alloc_request(cdev
->gadget
->ep0
, GFP_KERNEL
);
1515 if (unlikely(!ffs
->ep0req
))
1517 ffs
->ep0req
->complete
= ffs_ep0_complete
;
1518 ffs
->ep0req
->context
= ffs
;
1520 lang
= ffs
->stringtabs
;
1522 for (; *lang
; ++lang
) {
1523 struct usb_string
*str
= (*lang
)->strings
;
1525 for (; str
->s
; ++id
, ++str
)
1530 ffs
->gadget
= cdev
->gadget
;
1535 static void functionfs_unbind(struct ffs_data
*ffs
)
1539 if (!WARN_ON(!ffs
->gadget
)) {
1540 usb_ep_free_request(ffs
->gadget
->ep0
, ffs
->ep0req
);
1543 clear_bit(FFS_FL_BOUND
, &ffs
->flags
);
1548 static int ffs_epfiles_create(struct ffs_data
*ffs
)
1550 struct ffs_epfile
*epfile
, *epfiles
;
1555 count
= ffs
->eps_count
;
1556 epfiles
= kcalloc(count
, sizeof(*epfiles
), GFP_KERNEL
);
1561 for (i
= 1; i
<= count
; ++i
, ++epfile
) {
1563 mutex_init(&epfile
->mutex
);
1564 init_waitqueue_head(&epfile
->wait
);
1565 if (ffs
->user_flags
& FUNCTIONFS_VIRTUAL_ADDR
)
1566 sprintf(epfile
->name
, "ep%02x", ffs
->eps_addrmap
[i
]);
1568 sprintf(epfile
->name
, "ep%u", i
);
1569 epfile
->dentry
= ffs_sb_create_file(ffs
->sb
, epfile
->name
,
1571 &ffs_epfile_operations
);
1572 if (unlikely(!epfile
->dentry
)) {
1573 ffs_epfiles_destroy(epfiles
, i
- 1);
1578 ffs
->epfiles
= epfiles
;
1582 static void ffs_epfiles_destroy(struct ffs_epfile
*epfiles
, unsigned count
)
1584 struct ffs_epfile
*epfile
= epfiles
;
1588 for (; count
; --count
, ++epfile
) {
1589 BUG_ON(mutex_is_locked(&epfile
->mutex
) ||
1590 waitqueue_active(&epfile
->wait
));
1591 if (epfile
->dentry
) {
1592 d_delete(epfile
->dentry
);
1593 dput(epfile
->dentry
);
1594 epfile
->dentry
= NULL
;
1601 static void ffs_func_eps_disable(struct ffs_function
*func
)
1603 struct ffs_ep
*ep
= func
->eps
;
1604 struct ffs_epfile
*epfile
= func
->ffs
->epfiles
;
1605 unsigned count
= func
->ffs
->eps_count
;
1606 unsigned long flags
;
1608 spin_lock_irqsave(&func
->ffs
->eps_lock
, flags
);
1610 /* pending requests get nuked */
1612 usb_ep_disable(ep
->ep
);
1620 spin_unlock_irqrestore(&func
->ffs
->eps_lock
, flags
);
1623 static int ffs_func_eps_enable(struct ffs_function
*func
)
1625 struct ffs_data
*ffs
= func
->ffs
;
1626 struct ffs_ep
*ep
= func
->eps
;
1627 struct ffs_epfile
*epfile
= ffs
->epfiles
;
1628 unsigned count
= ffs
->eps_count
;
1629 unsigned long flags
;
1632 spin_lock_irqsave(&func
->ffs
->eps_lock
, flags
);
1634 struct usb_endpoint_descriptor
*ds
;
1637 if (ffs
->gadget
->speed
== USB_SPEED_SUPER
)
1639 else if (ffs
->gadget
->speed
== USB_SPEED_HIGH
)
1644 /* fall-back to lower speed if desc missing for current speed */
1646 ds
= ep
->descs
[desc_idx
];
1647 } while (!ds
&& --desc_idx
>= 0);
1654 ep
->ep
->driver_data
= ep
;
1656 ret
= usb_ep_enable(ep
->ep
);
1659 epfile
->in
= usb_endpoint_dir_in(ds
);
1660 epfile
->isoc
= usb_endpoint_xfer_isoc(ds
);
1665 wake_up(&epfile
->wait
);
1670 spin_unlock_irqrestore(&func
->ffs
->eps_lock
, flags
);
1676 /* Parsing and building descriptors and strings *****************************/
1679 * This validates if data pointed by data is a valid USB descriptor as
1680 * well as record how many interfaces, endpoints and strings are
1681 * required by given configuration. Returns address after the
1682 * descriptor or NULL if data is invalid.
1685 enum ffs_entity_type
{
1686 FFS_DESCRIPTOR
, FFS_INTERFACE
, FFS_STRING
, FFS_ENDPOINT
1689 enum ffs_os_desc_type
{
1690 FFS_OS_DESC
, FFS_OS_DESC_EXT_COMPAT
, FFS_OS_DESC_EXT_PROP
1693 typedef int (*ffs_entity_callback
)(enum ffs_entity_type entity
,
1695 struct usb_descriptor_header
*desc
,
1698 typedef int (*ffs_os_desc_callback
)(enum ffs_os_desc_type entity
,
1699 struct usb_os_desc_header
*h
, void *data
,
1700 unsigned len
, void *priv
);
1702 static int __must_check
ffs_do_single_desc(char *data
, unsigned len
,
1703 ffs_entity_callback entity
,
1706 struct usb_descriptor_header
*_ds
= (void *)data
;
1712 /* At least two bytes are required: length and type */
1714 pr_vdebug("descriptor too short\n");
1718 /* If we have at least as many bytes as the descriptor takes? */
1719 length
= _ds
->bLength
;
1721 pr_vdebug("descriptor longer then available data\n");
1725 #define __entity_check_INTERFACE(val) 1
1726 #define __entity_check_STRING(val) (val)
1727 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1728 #define __entity(type, val) do { \
1729 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1730 if (unlikely(!__entity_check_ ##type(val))) { \
1731 pr_vdebug("invalid entity's value\n"); \
1734 ret = entity(FFS_ ##type, &val, _ds, priv); \
1735 if (unlikely(ret < 0)) { \
1736 pr_debug("entity " #type "(%02x); ret = %d\n", \
1742 /* Parse descriptor depending on type. */
1743 switch (_ds
->bDescriptorType
) {
1747 case USB_DT_DEVICE_QUALIFIER
:
1748 /* function can't have any of those */
1749 pr_vdebug("descriptor reserved for gadget: %d\n",
1750 _ds
->bDescriptorType
);
1753 case USB_DT_INTERFACE
: {
1754 struct usb_interface_descriptor
*ds
= (void *)_ds
;
1755 pr_vdebug("interface descriptor\n");
1756 if (length
!= sizeof *ds
)
1759 __entity(INTERFACE
, ds
->bInterfaceNumber
);
1761 __entity(STRING
, ds
->iInterface
);
1765 case USB_DT_ENDPOINT
: {
1766 struct usb_endpoint_descriptor
*ds
= (void *)_ds
;
1767 pr_vdebug("endpoint descriptor\n");
1768 if (length
!= USB_DT_ENDPOINT_SIZE
&&
1769 length
!= USB_DT_ENDPOINT_AUDIO_SIZE
)
1771 __entity(ENDPOINT
, ds
->bEndpointAddress
);
1776 pr_vdebug("hid descriptor\n");
1777 if (length
!= sizeof(struct hid_descriptor
))
1782 if (length
!= sizeof(struct usb_otg_descriptor
))
1786 case USB_DT_INTERFACE_ASSOCIATION
: {
1787 struct usb_interface_assoc_descriptor
*ds
= (void *)_ds
;
1788 pr_vdebug("interface association descriptor\n");
1789 if (length
!= sizeof *ds
)
1792 __entity(STRING
, ds
->iFunction
);
1796 case USB_DT_SS_ENDPOINT_COMP
:
1797 pr_vdebug("EP SS companion descriptor\n");
1798 if (length
!= sizeof(struct usb_ss_ep_comp_descriptor
))
1802 case USB_DT_OTHER_SPEED_CONFIG
:
1803 case USB_DT_INTERFACE_POWER
:
1805 case USB_DT_SECURITY
:
1806 case USB_DT_CS_RADIO_CONTROL
:
1808 pr_vdebug("unimplemented descriptor: %d\n", _ds
->bDescriptorType
);
1812 /* We should never be here */
1813 pr_vdebug("unknown descriptor: %d\n", _ds
->bDescriptorType
);
1817 pr_vdebug("invalid length: %d (descriptor %d)\n",
1818 _ds
->bLength
, _ds
->bDescriptorType
);
1823 #undef __entity_check_DESCRIPTOR
1824 #undef __entity_check_INTERFACE
1825 #undef __entity_check_STRING
1826 #undef __entity_check_ENDPOINT
1831 static int __must_check
ffs_do_descs(unsigned count
, char *data
, unsigned len
,
1832 ffs_entity_callback entity
, void *priv
)
1834 const unsigned _len
= len
;
1835 unsigned long num
= 0;
1845 /* Record "descriptor" entity */
1846 ret
= entity(FFS_DESCRIPTOR
, (u8
*)num
, (void *)data
, priv
);
1847 if (unlikely(ret
< 0)) {
1848 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1856 ret
= ffs_do_single_desc(data
, len
, entity
, priv
);
1857 if (unlikely(ret
< 0)) {
1858 pr_debug("%s returns %d\n", __func__
, ret
);
1868 static int __ffs_data_do_entity(enum ffs_entity_type type
,
1869 u8
*valuep
, struct usb_descriptor_header
*desc
,
1872 struct ffs_desc_helper
*helper
= priv
;
1873 struct usb_endpoint_descriptor
*d
;
1878 case FFS_DESCRIPTOR
:
1883 * Interfaces are indexed from zero so if we
1884 * encountered interface "n" then there are at least
1887 if (*valuep
>= helper
->interfaces_count
)
1888 helper
->interfaces_count
= *valuep
+ 1;
1893 * Strings are indexed from 1 (0 is magic ;) reserved
1894 * for languages list or some such)
1896 if (*valuep
> helper
->ffs
->strings_count
)
1897 helper
->ffs
->strings_count
= *valuep
;
1902 helper
->eps_count
++;
1903 if (helper
->eps_count
>= 15)
1905 /* Check if descriptors for any speed were already parsed */
1906 if (!helper
->ffs
->eps_count
&& !helper
->ffs
->interfaces_count
)
1907 helper
->ffs
->eps_addrmap
[helper
->eps_count
] =
1908 d
->bEndpointAddress
;
1909 else if (helper
->ffs
->eps_addrmap
[helper
->eps_count
] !=
1910 d
->bEndpointAddress
)
1918 static int __ffs_do_os_desc_header(enum ffs_os_desc_type
*next_type
,
1919 struct usb_os_desc_header
*desc
)
1921 u16 bcd_version
= le16_to_cpu(desc
->bcdVersion
);
1922 u16 w_index
= le16_to_cpu(desc
->wIndex
);
1924 if (bcd_version
!= 1) {
1925 pr_vdebug("unsupported os descriptors version: %d",
1931 *next_type
= FFS_OS_DESC_EXT_COMPAT
;
1934 *next_type
= FFS_OS_DESC_EXT_PROP
;
1937 pr_vdebug("unsupported os descriptor type: %d", w_index
);
1941 return sizeof(*desc
);
1945 * Process all extended compatibility/extended property descriptors
1946 * of a feature descriptor
1948 static int __must_check
ffs_do_single_os_desc(char *data
, unsigned len
,
1949 enum ffs_os_desc_type type
,
1951 ffs_os_desc_callback entity
,
1953 struct usb_os_desc_header
*h
)
1956 const unsigned _len
= len
;
1960 /* loop over all ext compat/ext prop descriptors */
1961 while (feature_count
--) {
1962 ret
= entity(type
, h
, data
, len
, priv
);
1963 if (unlikely(ret
< 0)) {
1964 pr_debug("bad OS descriptor, type: %d\n", type
);
1973 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
1974 static int __must_check
ffs_do_os_descs(unsigned count
,
1975 char *data
, unsigned len
,
1976 ffs_os_desc_callback entity
, void *priv
)
1978 const unsigned _len
= len
;
1979 unsigned long num
= 0;
1983 for (num
= 0; num
< count
; ++num
) {
1985 enum ffs_os_desc_type type
;
1987 struct usb_os_desc_header
*desc
= (void *)data
;
1989 if (len
< sizeof(*desc
))
1993 * Record "descriptor" entity.
1994 * Process dwLength, bcdVersion, wIndex, get b/wCount.
1995 * Move the data pointer to the beginning of extended
1996 * compatibilities proper or extended properties proper
1997 * portions of the data
1999 if (le32_to_cpu(desc
->dwLength
) > len
)
2002 ret
= __ffs_do_os_desc_header(&type
, desc
);
2003 if (unlikely(ret
< 0)) {
2004 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2009 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2011 feature_count
= le16_to_cpu(desc
->wCount
);
2012 if (type
== FFS_OS_DESC_EXT_COMPAT
&&
2013 (feature_count
> 255 || desc
->Reserved
))
2019 * Process all function/property descriptors
2020 * of this Feature Descriptor
2022 ret
= ffs_do_single_os_desc(data
, len
, type
,
2023 feature_count
, entity
, priv
, desc
);
2024 if (unlikely(ret
< 0)) {
2025 pr_debug("%s returns %d\n", __func__
, ret
);
2036 * Validate contents of the buffer from userspace related to OS descriptors.
2038 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type
,
2039 struct usb_os_desc_header
*h
, void *data
,
2040 unsigned len
, void *priv
)
2042 struct ffs_data
*ffs
= priv
;
2048 case FFS_OS_DESC_EXT_COMPAT
: {
2049 struct usb_ext_compat_desc
*d
= data
;
2052 if (len
< sizeof(*d
) ||
2053 d
->bFirstInterfaceNumber
>= ffs
->interfaces_count
||
2056 for (i
= 0; i
< ARRAY_SIZE(d
->Reserved2
); ++i
)
2057 if (d
->Reserved2
[i
])
2060 length
= sizeof(struct usb_ext_compat_desc
);
2063 case FFS_OS_DESC_EXT_PROP
: {
2064 struct usb_ext_prop_desc
*d
= data
;
2068 if (len
< sizeof(*d
) || h
->interface
>= ffs
->interfaces_count
)
2070 length
= le32_to_cpu(d
->dwSize
);
2071 type
= le32_to_cpu(d
->dwPropertyDataType
);
2072 if (type
< USB_EXT_PROP_UNICODE
||
2073 type
> USB_EXT_PROP_UNICODE_MULTI
) {
2074 pr_vdebug("unsupported os descriptor property type: %d",
2078 pnl
= le16_to_cpu(d
->wPropertyNameLength
);
2079 pdl
= le32_to_cpu(*(u32
*)((u8
*)data
+ 10 + pnl
));
2080 if (length
!= 14 + pnl
+ pdl
) {
2081 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2082 length
, pnl
, pdl
, type
);
2085 ++ffs
->ms_os_descs_ext_prop_count
;
2086 /* property name reported to the host as "WCHAR"s */
2087 ffs
->ms_os_descs_ext_prop_name_len
+= pnl
* 2;
2088 ffs
->ms_os_descs_ext_prop_data_len
+= pdl
;
2092 pr_vdebug("unknown descriptor: %d\n", type
);
2098 static int __ffs_data_got_descs(struct ffs_data
*ffs
,
2099 char *const _data
, size_t len
)
2101 char *data
= _data
, *raw_descs
;
2102 unsigned os_descs_count
= 0, counts
[3], flags
;
2103 int ret
= -EINVAL
, i
;
2104 struct ffs_desc_helper helper
;
2108 if (get_unaligned_le32(data
+ 4) != len
)
2111 switch (get_unaligned_le32(data
)) {
2112 case FUNCTIONFS_DESCRIPTORS_MAGIC
:
2113 flags
= FUNCTIONFS_HAS_FS_DESC
| FUNCTIONFS_HAS_HS_DESC
;
2117 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2
:
2118 flags
= get_unaligned_le32(data
+ 8);
2119 ffs
->user_flags
= flags
;
2120 if (flags
& ~(FUNCTIONFS_HAS_FS_DESC
|
2121 FUNCTIONFS_HAS_HS_DESC
|
2122 FUNCTIONFS_HAS_SS_DESC
|
2123 FUNCTIONFS_HAS_MS_OS_DESC
|
2124 FUNCTIONFS_VIRTUAL_ADDR
|
2125 FUNCTIONFS_EVENTFD
)) {
2136 if (flags
& FUNCTIONFS_EVENTFD
) {
2140 eventfd_ctx_fdget((int)get_unaligned_le32(data
));
2141 if (IS_ERR(ffs
->ffs_eventfd
)) {
2142 ret
= PTR_ERR(ffs
->ffs_eventfd
);
2143 ffs
->ffs_eventfd
= NULL
;
2150 /* Read fs_count, hs_count and ss_count (if present) */
2151 for (i
= 0; i
< 3; ++i
) {
2152 if (!(flags
& (1 << i
))) {
2154 } else if (len
< 4) {
2157 counts
[i
] = get_unaligned_le32(data
);
2162 if (flags
& (1 << i
)) {
2163 os_descs_count
= get_unaligned_le32(data
);
2168 /* Read descriptors */
2171 for (i
= 0; i
< 3; ++i
) {
2174 helper
.interfaces_count
= 0;
2175 helper
.eps_count
= 0;
2176 ret
= ffs_do_descs(counts
[i
], data
, len
,
2177 __ffs_data_do_entity
, &helper
);
2180 if (!ffs
->eps_count
&& !ffs
->interfaces_count
) {
2181 ffs
->eps_count
= helper
.eps_count
;
2182 ffs
->interfaces_count
= helper
.interfaces_count
;
2184 if (ffs
->eps_count
!= helper
.eps_count
) {
2188 if (ffs
->interfaces_count
!= helper
.interfaces_count
) {
2196 if (os_descs_count
) {
2197 ret
= ffs_do_os_descs(os_descs_count
, data
, len
,
2198 __ffs_data_do_os_desc
, ffs
);
2205 if (raw_descs
== data
|| len
) {
2210 ffs
->raw_descs_data
= _data
;
2211 ffs
->raw_descs
= raw_descs
;
2212 ffs
->raw_descs_length
= data
- raw_descs
;
2213 ffs
->fs_descs_count
= counts
[0];
2214 ffs
->hs_descs_count
= counts
[1];
2215 ffs
->ss_descs_count
= counts
[2];
2216 ffs
->ms_os_descs_count
= os_descs_count
;
2225 static int __ffs_data_got_strings(struct ffs_data
*ffs
,
2226 char *const _data
, size_t len
)
2228 u32 str_count
, needed_count
, lang_count
;
2229 struct usb_gadget_strings
**stringtabs
, *t
;
2230 struct usb_string
*strings
, *s
;
2231 const char *data
= _data
;
2235 if (unlikely(get_unaligned_le32(data
) != FUNCTIONFS_STRINGS_MAGIC
||
2236 get_unaligned_le32(data
+ 4) != len
))
2238 str_count
= get_unaligned_le32(data
+ 8);
2239 lang_count
= get_unaligned_le32(data
+ 12);
2241 /* if one is zero the other must be zero */
2242 if (unlikely(!str_count
!= !lang_count
))
2245 /* Do we have at least as many strings as descriptors need? */
2246 needed_count
= ffs
->strings_count
;
2247 if (unlikely(str_count
< needed_count
))
2251 * If we don't need any strings just return and free all
2254 if (!needed_count
) {
2259 /* Allocate everything in one chunk so there's less maintenance. */
2263 vla_item(d
, struct usb_gadget_strings
*, stringtabs
,
2265 vla_item(d
, struct usb_gadget_strings
, stringtab
, lang_count
);
2266 vla_item(d
, struct usb_string
, strings
,
2267 lang_count
*(needed_count
+1));
2269 char *vlabuf
= kmalloc(vla_group_size(d
), GFP_KERNEL
);
2271 if (unlikely(!vlabuf
)) {
2276 /* Initialize the VLA pointers */
2277 stringtabs
= vla_ptr(vlabuf
, d
, stringtabs
);
2278 t
= vla_ptr(vlabuf
, d
, stringtab
);
2281 *stringtabs
++ = t
++;
2285 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2286 stringtabs
= vla_ptr(vlabuf
, d
, stringtabs
);
2287 t
= vla_ptr(vlabuf
, d
, stringtab
);
2288 s
= vla_ptr(vlabuf
, d
, strings
);
2292 /* For each language */
2296 do { /* lang_count > 0 so we can use do-while */
2297 unsigned needed
= needed_count
;
2299 if (unlikely(len
< 3))
2301 t
->language
= get_unaligned_le16(data
);
2308 /* For each string */
2309 do { /* str_count > 0 so we can use do-while */
2310 size_t length
= strnlen(data
, len
);
2312 if (unlikely(length
== len
))
2316 * User may provide more strings then we need,
2317 * if that's the case we simply ignore the
2320 if (likely(needed
)) {
2322 * s->id will be set while adding
2323 * function to configuration so for
2324 * now just leave garbage here.
2333 } while (--str_count
);
2335 s
->id
= 0; /* terminator */
2339 } while (--lang_count
);
2341 /* Some garbage left? */
2346 ffs
->stringtabs
= stringtabs
;
2347 ffs
->raw_strings
= _data
;
2359 /* Events handling and management *******************************************/
2361 static void __ffs_event_add(struct ffs_data
*ffs
,
2362 enum usb_functionfs_event_type type
)
2364 enum usb_functionfs_event_type rem_type1
, rem_type2
= type
;
2368 * Abort any unhandled setup
2370 * We do not need to worry about some cmpxchg() changing value
2371 * of ffs->setup_state without holding the lock because when
2372 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2373 * the source does nothing.
2375 if (ffs
->setup_state
== FFS_SETUP_PENDING
)
2376 ffs
->setup_state
= FFS_SETUP_CANCELLED
;
2379 * Logic of this function guarantees that there are at most four pending
2380 * evens on ffs->ev.types queue. This is important because the queue
2381 * has space for four elements only and __ffs_ep0_read_events function
2382 * depends on that limit as well. If more event types are added, those
2383 * limits have to be revisited or guaranteed to still hold.
2386 case FUNCTIONFS_RESUME
:
2387 rem_type2
= FUNCTIONFS_SUSPEND
;
2389 case FUNCTIONFS_SUSPEND
:
2390 case FUNCTIONFS_SETUP
:
2392 /* Discard all similar events */
2395 case FUNCTIONFS_BIND
:
2396 case FUNCTIONFS_UNBIND
:
2397 case FUNCTIONFS_DISABLE
:
2398 case FUNCTIONFS_ENABLE
:
2399 /* Discard everything other then power management. */
2400 rem_type1
= FUNCTIONFS_SUSPEND
;
2401 rem_type2
= FUNCTIONFS_RESUME
;
2406 WARN(1, "%d: unknown event, this should not happen\n", type
);
2411 u8
*ev
= ffs
->ev
.types
, *out
= ev
;
2412 unsigned n
= ffs
->ev
.count
;
2413 for (; n
; --n
, ++ev
)
2414 if ((*ev
== rem_type1
|| *ev
== rem_type2
) == neg
)
2417 pr_vdebug("purging event %d\n", *ev
);
2418 ffs
->ev
.count
= out
- ffs
->ev
.types
;
2421 pr_vdebug("adding event %d\n", type
);
2422 ffs
->ev
.types
[ffs
->ev
.count
++] = type
;
2423 wake_up_locked(&ffs
->ev
.waitq
);
2424 if (ffs
->ffs_eventfd
)
2425 eventfd_signal(ffs
->ffs_eventfd
, 1);
2428 static void ffs_event_add(struct ffs_data
*ffs
,
2429 enum usb_functionfs_event_type type
)
2431 unsigned long flags
;
2432 spin_lock_irqsave(&ffs
->ev
.waitq
.lock
, flags
);
2433 __ffs_event_add(ffs
, type
);
2434 spin_unlock_irqrestore(&ffs
->ev
.waitq
.lock
, flags
);
2437 /* Bind/unbind USB function hooks *******************************************/
2439 static int ffs_ep_addr2idx(struct ffs_data
*ffs
, u8 endpoint_address
)
2443 for (i
= 1; i
< ARRAY_SIZE(ffs
->eps_addrmap
); ++i
)
2444 if (ffs
->eps_addrmap
[i
] == endpoint_address
)
2449 static int __ffs_func_bind_do_descs(enum ffs_entity_type type
, u8
*valuep
,
2450 struct usb_descriptor_header
*desc
,
2453 struct usb_endpoint_descriptor
*ds
= (void *)desc
;
2454 struct ffs_function
*func
= priv
;
2455 struct ffs_ep
*ffs_ep
;
2456 unsigned ep_desc_id
;
2458 static const char *speed_names
[] = { "full", "high", "super" };
2460 if (type
!= FFS_DESCRIPTOR
)
2464 * If ss_descriptors is not NULL, we are reading super speed
2465 * descriptors; if hs_descriptors is not NULL, we are reading high
2466 * speed descriptors; otherwise, we are reading full speed
2469 if (func
->function
.ss_descriptors
) {
2471 func
->function
.ss_descriptors
[(long)valuep
] = desc
;
2472 } else if (func
->function
.hs_descriptors
) {
2474 func
->function
.hs_descriptors
[(long)valuep
] = desc
;
2477 func
->function
.fs_descriptors
[(long)valuep
] = desc
;
2480 if (!desc
|| desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
2483 idx
= ffs_ep_addr2idx(func
->ffs
, ds
->bEndpointAddress
) - 1;
2487 ffs_ep
= func
->eps
+ idx
;
2489 if (unlikely(ffs_ep
->descs
[ep_desc_id
])) {
2490 pr_err("two %sspeed descriptors for EP %d\n",
2491 speed_names
[ep_desc_id
],
2492 ds
->bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK
);
2495 ffs_ep
->descs
[ep_desc_id
] = ds
;
2497 ffs_dump_mem(": Original ep desc", ds
, ds
->bLength
);
2499 ds
->bEndpointAddress
= ffs_ep
->descs
[0]->bEndpointAddress
;
2500 if (!ds
->wMaxPacketSize
)
2501 ds
->wMaxPacketSize
= ffs_ep
->descs
[0]->wMaxPacketSize
;
2503 struct usb_request
*req
;
2505 u8 bEndpointAddress
;
2508 * We back up bEndpointAddress because autoconfig overwrites
2509 * it with physical endpoint address.
2511 bEndpointAddress
= ds
->bEndpointAddress
;
2512 pr_vdebug("autoconfig\n");
2513 ep
= usb_ep_autoconfig(func
->gadget
, ds
);
2516 ep
->driver_data
= func
->eps
+ idx
;
2518 req
= usb_ep_alloc_request(ep
, GFP_KERNEL
);
2524 func
->eps_revmap
[ds
->bEndpointAddress
&
2525 USB_ENDPOINT_NUMBER_MASK
] = idx
+ 1;
2527 * If we use virtual address mapping, we restore
2528 * original bEndpointAddress value.
2530 if (func
->ffs
->user_flags
& FUNCTIONFS_VIRTUAL_ADDR
)
2531 ds
->bEndpointAddress
= bEndpointAddress
;
2533 ffs_dump_mem(": Rewritten ep desc", ds
, ds
->bLength
);
2538 static int __ffs_func_bind_do_nums(enum ffs_entity_type type
, u8
*valuep
,
2539 struct usb_descriptor_header
*desc
,
2542 struct ffs_function
*func
= priv
;
2548 case FFS_DESCRIPTOR
:
2549 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2554 if (func
->interfaces_nums
[idx
] < 0) {
2555 int id
= usb_interface_id(func
->conf
, &func
->function
);
2556 if (unlikely(id
< 0))
2558 func
->interfaces_nums
[idx
] = id
;
2560 newValue
= func
->interfaces_nums
[idx
];
2564 /* String' IDs are allocated when fsf_data is bound to cdev */
2565 newValue
= func
->ffs
->stringtabs
[0]->strings
[*valuep
- 1].id
;
2570 * USB_DT_ENDPOINT are handled in
2571 * __ffs_func_bind_do_descs().
2573 if (desc
->bDescriptorType
== USB_DT_ENDPOINT
)
2576 idx
= (*valuep
& USB_ENDPOINT_NUMBER_MASK
) - 1;
2577 if (unlikely(!func
->eps
[idx
].ep
))
2581 struct usb_endpoint_descriptor
**descs
;
2582 descs
= func
->eps
[idx
].descs
;
2583 newValue
= descs
[descs
[0] ? 0 : 1]->bEndpointAddress
;
2588 pr_vdebug("%02x -> %02x\n", *valuep
, newValue
);
2593 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type
,
2594 struct usb_os_desc_header
*h
, void *data
,
2595 unsigned len
, void *priv
)
2597 struct ffs_function
*func
= priv
;
2601 case FFS_OS_DESC_EXT_COMPAT
: {
2602 struct usb_ext_compat_desc
*desc
= data
;
2603 struct usb_os_desc_table
*t
;
2605 t
= &func
->function
.os_desc_table
[desc
->bFirstInterfaceNumber
];
2606 t
->if_id
= func
->interfaces_nums
[desc
->bFirstInterfaceNumber
];
2607 memcpy(t
->os_desc
->ext_compat_id
, &desc
->CompatibleID
,
2608 ARRAY_SIZE(desc
->CompatibleID
) +
2609 ARRAY_SIZE(desc
->SubCompatibleID
));
2610 length
= sizeof(*desc
);
2613 case FFS_OS_DESC_EXT_PROP
: {
2614 struct usb_ext_prop_desc
*desc
= data
;
2615 struct usb_os_desc_table
*t
;
2616 struct usb_os_desc_ext_prop
*ext_prop
;
2617 char *ext_prop_name
;
2618 char *ext_prop_data
;
2620 t
= &func
->function
.os_desc_table
[h
->interface
];
2621 t
->if_id
= func
->interfaces_nums
[h
->interface
];
2623 ext_prop
= func
->ffs
->ms_os_descs_ext_prop_avail
;
2624 func
->ffs
->ms_os_descs_ext_prop_avail
+= sizeof(*ext_prop
);
2626 ext_prop
->type
= le32_to_cpu(desc
->dwPropertyDataType
);
2627 ext_prop
->name_len
= le16_to_cpu(desc
->wPropertyNameLength
);
2628 ext_prop
->data_len
= le32_to_cpu(*(u32
*)
2629 usb_ext_prop_data_len_ptr(data
, ext_prop
->name_len
));
2630 length
= ext_prop
->name_len
+ ext_prop
->data_len
+ 14;
2632 ext_prop_name
= func
->ffs
->ms_os_descs_ext_prop_name_avail
;
2633 func
->ffs
->ms_os_descs_ext_prop_name_avail
+=
2636 ext_prop_data
= func
->ffs
->ms_os_descs_ext_prop_data_avail
;
2637 func
->ffs
->ms_os_descs_ext_prop_data_avail
+=
2639 memcpy(ext_prop_data
,
2640 usb_ext_prop_data_ptr(data
, ext_prop
->name_len
),
2641 ext_prop
->data_len
);
2642 /* unicode data reported to the host as "WCHAR"s */
2643 switch (ext_prop
->type
) {
2644 case USB_EXT_PROP_UNICODE
:
2645 case USB_EXT_PROP_UNICODE_ENV
:
2646 case USB_EXT_PROP_UNICODE_LINK
:
2647 case USB_EXT_PROP_UNICODE_MULTI
:
2648 ext_prop
->data_len
*= 2;
2651 ext_prop
->data
= ext_prop_data
;
2653 memcpy(ext_prop_name
, usb_ext_prop_name_ptr(data
),
2654 ext_prop
->name_len
);
2655 /* property name reported to the host as "WCHAR"s */
2656 ext_prop
->name_len
*= 2;
2657 ext_prop
->name
= ext_prop_name
;
2659 t
->os_desc
->ext_prop_len
+=
2660 ext_prop
->name_len
+ ext_prop
->data_len
+ 14;
2661 ++t
->os_desc
->ext_prop_count
;
2662 list_add_tail(&ext_prop
->entry
, &t
->os_desc
->ext_prop
);
2666 pr_vdebug("unknown descriptor: %d\n", type
);
2672 static inline struct f_fs_opts
*ffs_do_functionfs_bind(struct usb_function
*f
,
2673 struct usb_configuration
*c
)
2675 struct ffs_function
*func
= ffs_func_from_usb(f
);
2676 struct f_fs_opts
*ffs_opts
=
2677 container_of(f
->fi
, struct f_fs_opts
, func_inst
);
2683 * Legacy gadget triggers binding in functionfs_ready_callback,
2684 * which already uses locking; taking the same lock here would
2687 * Configfs-enabled gadgets however do need ffs_dev_lock.
2689 if (!ffs_opts
->no_configfs
)
2691 ret
= ffs_opts
->dev
->desc_ready
? 0 : -ENODEV
;
2692 func
->ffs
= ffs_opts
->dev
->ffs_data
;
2693 if (!ffs_opts
->no_configfs
)
2696 return ERR_PTR(ret
);
2699 func
->gadget
= c
->cdev
->gadget
;
2702 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2703 * configurations are bound in sequence with list_for_each_entry,
2704 * in each configuration its functions are bound in sequence
2705 * with list_for_each_entry, so we assume no race condition
2706 * with regard to ffs_opts->bound access
2708 if (!ffs_opts
->refcnt
) {
2709 ret
= functionfs_bind(func
->ffs
, c
->cdev
);
2711 return ERR_PTR(ret
);
2714 func
->function
.strings
= func
->ffs
->stringtabs
;
2719 static int _ffs_func_bind(struct usb_configuration
*c
,
2720 struct usb_function
*f
)
2722 struct ffs_function
*func
= ffs_func_from_usb(f
);
2723 struct ffs_data
*ffs
= func
->ffs
;
2725 const int full
= !!func
->ffs
->fs_descs_count
;
2726 const int high
= gadget_is_dualspeed(func
->gadget
) &&
2727 func
->ffs
->hs_descs_count
;
2728 const int super
= gadget_is_superspeed(func
->gadget
) &&
2729 func
->ffs
->ss_descs_count
;
2731 int fs_len
, hs_len
, ss_len
, ret
, i
;
2733 /* Make it a single chunk, less management later on */
2735 vla_item_with_sz(d
, struct ffs_ep
, eps
, ffs
->eps_count
);
2736 vla_item_with_sz(d
, struct usb_descriptor_header
*, fs_descs
,
2737 full
? ffs
->fs_descs_count
+ 1 : 0);
2738 vla_item_with_sz(d
, struct usb_descriptor_header
*, hs_descs
,
2739 high
? ffs
->hs_descs_count
+ 1 : 0);
2740 vla_item_with_sz(d
, struct usb_descriptor_header
*, ss_descs
,
2741 super
? ffs
->ss_descs_count
+ 1 : 0);
2742 vla_item_with_sz(d
, short, inums
, ffs
->interfaces_count
);
2743 vla_item_with_sz(d
, struct usb_os_desc_table
, os_desc_table
,
2744 c
->cdev
->use_os_string
? ffs
->interfaces_count
: 0);
2745 vla_item_with_sz(d
, char[16], ext_compat
,
2746 c
->cdev
->use_os_string
? ffs
->interfaces_count
: 0);
2747 vla_item_with_sz(d
, struct usb_os_desc
, os_desc
,
2748 c
->cdev
->use_os_string
? ffs
->interfaces_count
: 0);
2749 vla_item_with_sz(d
, struct usb_os_desc_ext_prop
, ext_prop
,
2750 ffs
->ms_os_descs_ext_prop_count
);
2751 vla_item_with_sz(d
, char, ext_prop_name
,
2752 ffs
->ms_os_descs_ext_prop_name_len
);
2753 vla_item_with_sz(d
, char, ext_prop_data
,
2754 ffs
->ms_os_descs_ext_prop_data_len
);
2755 vla_item_with_sz(d
, char, raw_descs
, ffs
->raw_descs_length
);
2760 /* Has descriptors only for speeds gadget does not support */
2761 if (unlikely(!(full
| high
| super
)))
2764 /* Allocate a single chunk, less management later on */
2765 vlabuf
= kzalloc(vla_group_size(d
), GFP_KERNEL
);
2766 if (unlikely(!vlabuf
))
2769 ffs
->ms_os_descs_ext_prop_avail
= vla_ptr(vlabuf
, d
, ext_prop
);
2770 ffs
->ms_os_descs_ext_prop_name_avail
=
2771 vla_ptr(vlabuf
, d
, ext_prop_name
);
2772 ffs
->ms_os_descs_ext_prop_data_avail
=
2773 vla_ptr(vlabuf
, d
, ext_prop_data
);
2775 /* Copy descriptors */
2776 memcpy(vla_ptr(vlabuf
, d
, raw_descs
), ffs
->raw_descs
,
2777 ffs
->raw_descs_length
);
2779 memset(vla_ptr(vlabuf
, d
, inums
), 0xff, d_inums__sz
);
2780 for (ret
= ffs
->eps_count
; ret
; --ret
) {
2783 ptr
= vla_ptr(vlabuf
, d
, eps
);
2788 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2790 func
->eps
= vla_ptr(vlabuf
, d
, eps
);
2791 func
->interfaces_nums
= vla_ptr(vlabuf
, d
, inums
);
2794 * Go through all the endpoint descriptors and allocate
2795 * endpoints first, so that later we can rewrite the endpoint
2796 * numbers without worrying that it may be described later on.
2799 func
->function
.fs_descriptors
= vla_ptr(vlabuf
, d
, fs_descs
);
2800 fs_len
= ffs_do_descs(ffs
->fs_descs_count
,
2801 vla_ptr(vlabuf
, d
, raw_descs
),
2803 __ffs_func_bind_do_descs
, func
);
2804 if (unlikely(fs_len
< 0)) {
2813 func
->function
.hs_descriptors
= vla_ptr(vlabuf
, d
, hs_descs
);
2814 hs_len
= ffs_do_descs(ffs
->hs_descs_count
,
2815 vla_ptr(vlabuf
, d
, raw_descs
) + fs_len
,
2816 d_raw_descs__sz
- fs_len
,
2817 __ffs_func_bind_do_descs
, func
);
2818 if (unlikely(hs_len
< 0)) {
2826 if (likely(super
)) {
2827 func
->function
.ss_descriptors
= vla_ptr(vlabuf
, d
, ss_descs
);
2828 ss_len
= ffs_do_descs(ffs
->ss_descs_count
,
2829 vla_ptr(vlabuf
, d
, raw_descs
) + fs_len
+ hs_len
,
2830 d_raw_descs__sz
- fs_len
- hs_len
,
2831 __ffs_func_bind_do_descs
, func
);
2832 if (unlikely(ss_len
< 0)) {
2841 * Now handle interface numbers allocation and interface and
2842 * endpoint numbers rewriting. We can do that in one go
2845 ret
= ffs_do_descs(ffs
->fs_descs_count
+
2846 (high
? ffs
->hs_descs_count
: 0) +
2847 (super
? ffs
->ss_descs_count
: 0),
2848 vla_ptr(vlabuf
, d
, raw_descs
), d_raw_descs__sz
,
2849 __ffs_func_bind_do_nums
, func
);
2850 if (unlikely(ret
< 0))
2853 func
->function
.os_desc_table
= vla_ptr(vlabuf
, d
, os_desc_table
);
2854 if (c
->cdev
->use_os_string
)
2855 for (i
= 0; i
< ffs
->interfaces_count
; ++i
) {
2856 struct usb_os_desc
*desc
;
2858 desc
= func
->function
.os_desc_table
[i
].os_desc
=
2859 vla_ptr(vlabuf
, d
, os_desc
) +
2860 i
* sizeof(struct usb_os_desc
);
2861 desc
->ext_compat_id
=
2862 vla_ptr(vlabuf
, d
, ext_compat
) + i
* 16;
2863 INIT_LIST_HEAD(&desc
->ext_prop
);
2865 ret
= ffs_do_os_descs(ffs
->ms_os_descs_count
,
2866 vla_ptr(vlabuf
, d
, raw_descs
) +
2867 fs_len
+ hs_len
+ ss_len
,
2868 d_raw_descs__sz
- fs_len
- hs_len
- ss_len
,
2869 __ffs_func_bind_do_os_desc
, func
);
2870 if (unlikely(ret
< 0))
2872 func
->function
.os_desc_n
=
2873 c
->cdev
->use_os_string
? ffs
->interfaces_count
: 0;
2875 /* And we're done */
2876 ffs_event_add(ffs
, FUNCTIONFS_BIND
);
2880 /* XXX Do we need to release all claimed endpoints here? */
2884 static int ffs_func_bind(struct usb_configuration
*c
,
2885 struct usb_function
*f
)
2887 struct f_fs_opts
*ffs_opts
= ffs_do_functionfs_bind(f
, c
);
2888 struct ffs_function
*func
= ffs_func_from_usb(f
);
2891 if (IS_ERR(ffs_opts
))
2892 return PTR_ERR(ffs_opts
);
2894 ret
= _ffs_func_bind(c
, f
);
2895 if (ret
&& !--ffs_opts
->refcnt
)
2896 functionfs_unbind(func
->ffs
);
2902 /* Other USB function hooks *************************************************/
2904 static void ffs_reset_work(struct work_struct
*work
)
2906 struct ffs_data
*ffs
= container_of(work
,
2907 struct ffs_data
, reset_work
);
2908 ffs_data_reset(ffs
);
2911 static int ffs_func_set_alt(struct usb_function
*f
,
2912 unsigned interface
, unsigned alt
)
2914 struct ffs_function
*func
= ffs_func_from_usb(f
);
2915 struct ffs_data
*ffs
= func
->ffs
;
2918 if (alt
!= (unsigned)-1) {
2919 intf
= ffs_func_revmap_intf(func
, interface
);
2920 if (unlikely(intf
< 0))
2925 ffs_func_eps_disable(ffs
->func
);
2927 if (ffs
->state
== FFS_DEACTIVATED
) {
2928 ffs
->state
= FFS_CLOSING
;
2929 INIT_WORK(&ffs
->reset_work
, ffs_reset_work
);
2930 schedule_work(&ffs
->reset_work
);
2934 if (ffs
->state
!= FFS_ACTIVE
)
2937 if (alt
== (unsigned)-1) {
2939 ffs_event_add(ffs
, FUNCTIONFS_DISABLE
);
2944 ret
= ffs_func_eps_enable(func
);
2945 if (likely(ret
>= 0))
2946 ffs_event_add(ffs
, FUNCTIONFS_ENABLE
);
2950 static void ffs_func_disable(struct usb_function
*f
)
2952 ffs_func_set_alt(f
, 0, (unsigned)-1);
2955 static int ffs_func_setup(struct usb_function
*f
,
2956 const struct usb_ctrlrequest
*creq
)
2958 struct ffs_function
*func
= ffs_func_from_usb(f
);
2959 struct ffs_data
*ffs
= func
->ffs
;
2960 unsigned long flags
;
2965 pr_vdebug("creq->bRequestType = %02x\n", creq
->bRequestType
);
2966 pr_vdebug("creq->bRequest = %02x\n", creq
->bRequest
);
2967 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq
->wValue
));
2968 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq
->wIndex
));
2969 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq
->wLength
));
2972 * Most requests directed to interface go through here
2973 * (notable exceptions are set/get interface) so we need to
2974 * handle them. All other either handled by composite or
2975 * passed to usb_configuration->setup() (if one is set). No
2976 * matter, we will handle requests directed to endpoint here
2977 * as well (as it's straightforward) but what to do with any
2980 if (ffs
->state
!= FFS_ACTIVE
)
2983 switch (creq
->bRequestType
& USB_RECIP_MASK
) {
2984 case USB_RECIP_INTERFACE
:
2985 ret
= ffs_func_revmap_intf(func
, le16_to_cpu(creq
->wIndex
));
2986 if (unlikely(ret
< 0))
2990 case USB_RECIP_ENDPOINT
:
2991 ret
= ffs_func_revmap_ep(func
, le16_to_cpu(creq
->wIndex
));
2992 if (unlikely(ret
< 0))
2994 if (func
->ffs
->user_flags
& FUNCTIONFS_VIRTUAL_ADDR
)
2995 ret
= func
->ffs
->eps_addrmap
[ret
];
3002 spin_lock_irqsave(&ffs
->ev
.waitq
.lock
, flags
);
3003 ffs
->ev
.setup
= *creq
;
3004 ffs
->ev
.setup
.wIndex
= cpu_to_le16(ret
);
3005 __ffs_event_add(ffs
, FUNCTIONFS_SETUP
);
3006 spin_unlock_irqrestore(&ffs
->ev
.waitq
.lock
, flags
);
3011 static void ffs_func_suspend(struct usb_function
*f
)
3014 ffs_event_add(ffs_func_from_usb(f
)->ffs
, FUNCTIONFS_SUSPEND
);
3017 static void ffs_func_resume(struct usb_function
*f
)
3020 ffs_event_add(ffs_func_from_usb(f
)->ffs
, FUNCTIONFS_RESUME
);
3024 /* Endpoint and interface numbers reverse mapping ***************************/
3026 static int ffs_func_revmap_ep(struct ffs_function
*func
, u8 num
)
3028 num
= func
->eps_revmap
[num
& USB_ENDPOINT_NUMBER_MASK
];
3029 return num
? num
: -EDOM
;
3032 static int ffs_func_revmap_intf(struct ffs_function
*func
, u8 intf
)
3034 short *nums
= func
->interfaces_nums
;
3035 unsigned count
= func
->ffs
->interfaces_count
;
3037 for (; count
; --count
, ++nums
) {
3038 if (*nums
>= 0 && *nums
== intf
)
3039 return nums
- func
->interfaces_nums
;
3046 /* Devices management *******************************************************/
3048 static LIST_HEAD(ffs_devices
);
3050 static struct ffs_dev
*_ffs_do_find_dev(const char *name
)
3052 struct ffs_dev
*dev
;
3054 list_for_each_entry(dev
, &ffs_devices
, entry
) {
3055 if (!dev
->name
|| !name
)
3057 if (strcmp(dev
->name
, name
) == 0)
3065 * ffs_lock must be taken by the caller of this function
3067 static struct ffs_dev
*_ffs_get_single_dev(void)
3069 struct ffs_dev
*dev
;
3071 if (list_is_singular(&ffs_devices
)) {
3072 dev
= list_first_entry(&ffs_devices
, struct ffs_dev
, entry
);
3081 * ffs_lock must be taken by the caller of this function
3083 static struct ffs_dev
*_ffs_find_dev(const char *name
)
3085 struct ffs_dev
*dev
;
3087 dev
= _ffs_get_single_dev();
3091 return _ffs_do_find_dev(name
);
3094 /* Configfs support *********************************************************/
3096 static inline struct f_fs_opts
*to_ffs_opts(struct config_item
*item
)
3098 return container_of(to_config_group(item
), struct f_fs_opts
,
3102 static void ffs_attr_release(struct config_item
*item
)
3104 struct f_fs_opts
*opts
= to_ffs_opts(item
);
3106 usb_put_function_instance(&opts
->func_inst
);
3109 static struct configfs_item_operations ffs_item_ops
= {
3110 .release
= ffs_attr_release
,
3113 static struct config_item_type ffs_func_type
= {
3114 .ct_item_ops
= &ffs_item_ops
,
3115 .ct_owner
= THIS_MODULE
,
3119 /* Function registration interface ******************************************/
3121 static void ffs_free_inst(struct usb_function_instance
*f
)
3123 struct f_fs_opts
*opts
;
3125 opts
= to_f_fs_opts(f
);
3127 _ffs_free_dev(opts
->dev
);
3132 #define MAX_INST_NAME_LEN 40
3134 static int ffs_set_inst_name(struct usb_function_instance
*fi
, const char *name
)
3136 struct f_fs_opts
*opts
;
3141 name_len
= strlen(name
) + 1;
3142 if (name_len
> MAX_INST_NAME_LEN
)
3143 return -ENAMETOOLONG
;
3145 ptr
= kstrndup(name
, name_len
, GFP_KERNEL
);
3149 opts
= to_f_fs_opts(fi
);
3154 tmp
= opts
->dev
->name_allocated
? opts
->dev
->name
: NULL
;
3155 ret
= _ffs_name_dev(opts
->dev
, ptr
);
3161 opts
->dev
->name_allocated
= true;
3170 static struct usb_function_instance
*ffs_alloc_inst(void)
3172 struct f_fs_opts
*opts
;
3173 struct ffs_dev
*dev
;
3175 opts
= kzalloc(sizeof(*opts
), GFP_KERNEL
);
3177 return ERR_PTR(-ENOMEM
);
3179 opts
->func_inst
.set_inst_name
= ffs_set_inst_name
;
3180 opts
->func_inst
.free_func_inst
= ffs_free_inst
;
3182 dev
= _ffs_alloc_dev();
3186 return ERR_CAST(dev
);
3191 config_group_init_type_name(&opts
->func_inst
.group
, "",
3193 return &opts
->func_inst
;
3196 static void ffs_free(struct usb_function
*f
)
3198 kfree(ffs_func_from_usb(f
));
3201 static void ffs_func_unbind(struct usb_configuration
*c
,
3202 struct usb_function
*f
)
3204 struct ffs_function
*func
= ffs_func_from_usb(f
);
3205 struct ffs_data
*ffs
= func
->ffs
;
3206 struct f_fs_opts
*opts
=
3207 container_of(f
->fi
, struct f_fs_opts
, func_inst
);
3208 struct ffs_ep
*ep
= func
->eps
;
3209 unsigned count
= ffs
->eps_count
;
3210 unsigned long flags
;
3213 if (ffs
->func
== func
) {
3214 ffs_func_eps_disable(func
);
3218 if (!--opts
->refcnt
)
3219 functionfs_unbind(ffs
);
3221 /* cleanup after autoconfig */
3222 spin_lock_irqsave(&func
->ffs
->eps_lock
, flags
);
3224 if (ep
->ep
&& ep
->req
)
3225 usb_ep_free_request(ep
->ep
, ep
->req
);
3229 spin_unlock_irqrestore(&func
->ffs
->eps_lock
, flags
);
3233 * eps, descriptors and interfaces_nums are allocated in the
3234 * same chunk so only one free is required.
3236 func
->function
.fs_descriptors
= NULL
;
3237 func
->function
.hs_descriptors
= NULL
;
3238 func
->function
.ss_descriptors
= NULL
;
3239 func
->interfaces_nums
= NULL
;
3241 ffs_event_add(ffs
, FUNCTIONFS_UNBIND
);
3244 static struct usb_function
*ffs_alloc(struct usb_function_instance
*fi
)
3246 struct ffs_function
*func
;
3250 func
= kzalloc(sizeof(*func
), GFP_KERNEL
);
3251 if (unlikely(!func
))
3252 return ERR_PTR(-ENOMEM
);
3254 func
->function
.name
= "Function FS Gadget";
3256 func
->function
.bind
= ffs_func_bind
;
3257 func
->function
.unbind
= ffs_func_unbind
;
3258 func
->function
.set_alt
= ffs_func_set_alt
;
3259 func
->function
.disable
= ffs_func_disable
;
3260 func
->function
.setup
= ffs_func_setup
;
3261 func
->function
.suspend
= ffs_func_suspend
;
3262 func
->function
.resume
= ffs_func_resume
;
3263 func
->function
.free_func
= ffs_free
;
3265 return &func
->function
;
3269 * ffs_lock must be taken by the caller of this function
3271 static struct ffs_dev
*_ffs_alloc_dev(void)
3273 struct ffs_dev
*dev
;
3276 if (_ffs_get_single_dev())
3277 return ERR_PTR(-EBUSY
);
3279 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
3281 return ERR_PTR(-ENOMEM
);
3283 if (list_empty(&ffs_devices
)) {
3284 ret
= functionfs_init();
3287 return ERR_PTR(ret
);
3291 list_add(&dev
->entry
, &ffs_devices
);
3297 * ffs_lock must be taken by the caller of this function
3298 * The caller is responsible for "name" being available whenever f_fs needs it
3300 static int _ffs_name_dev(struct ffs_dev
*dev
, const char *name
)
3302 struct ffs_dev
*existing
;
3304 existing
= _ffs_do_find_dev(name
);
3314 * The caller is responsible for "name" being available whenever f_fs needs it
3316 int ffs_name_dev(struct ffs_dev
*dev
, const char *name
)
3321 ret
= _ffs_name_dev(dev
, name
);
3326 EXPORT_SYMBOL_GPL(ffs_name_dev
);
3328 int ffs_single_dev(struct ffs_dev
*dev
)
3335 if (!list_is_singular(&ffs_devices
))
3343 EXPORT_SYMBOL_GPL(ffs_single_dev
);
3346 * ffs_lock must be taken by the caller of this function
3348 static void _ffs_free_dev(struct ffs_dev
*dev
)
3350 list_del(&dev
->entry
);
3351 if (dev
->name_allocated
)
3354 if (list_empty(&ffs_devices
))
3355 functionfs_cleanup();
3358 static void *ffs_acquire_dev(const char *dev_name
)
3360 struct ffs_dev
*ffs_dev
;
3365 ffs_dev
= _ffs_find_dev(dev_name
);
3367 ffs_dev
= ERR_PTR(-ENOENT
);
3368 else if (ffs_dev
->mounted
)
3369 ffs_dev
= ERR_PTR(-EBUSY
);
3370 else if (ffs_dev
->ffs_acquire_dev_callback
&&
3371 ffs_dev
->ffs_acquire_dev_callback(ffs_dev
))
3372 ffs_dev
= ERR_PTR(-ENOENT
);
3374 ffs_dev
->mounted
= true;
3380 static void ffs_release_dev(struct ffs_data
*ffs_data
)
3382 struct ffs_dev
*ffs_dev
;
3387 ffs_dev
= ffs_data
->private_data
;
3389 ffs_dev
->mounted
= false;
3391 if (ffs_dev
->ffs_release_dev_callback
)
3392 ffs_dev
->ffs_release_dev_callback(ffs_dev
);
3398 static int ffs_ready(struct ffs_data
*ffs
)
3400 struct ffs_dev
*ffs_obj
;
3406 ffs_obj
= ffs
->private_data
;
3411 if (WARN_ON(ffs_obj
->desc_ready
)) {
3416 ffs_obj
->desc_ready
= true;
3417 ffs_obj
->ffs_data
= ffs
;
3419 if (ffs_obj
->ffs_ready_callback
) {
3420 ret
= ffs_obj
->ffs_ready_callback(ffs
);
3425 set_bit(FFS_FL_CALL_CLOSED_CALLBACK
, &ffs
->flags
);
3431 static void ffs_closed(struct ffs_data
*ffs
)
3433 struct ffs_dev
*ffs_obj
;
3434 struct f_fs_opts
*opts
;
3439 ffs_obj
= ffs
->private_data
;
3443 ffs_obj
->desc_ready
= false;
3445 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK
, &ffs
->flags
) &&
3446 ffs_obj
->ffs_closed_callback
)
3447 ffs_obj
->ffs_closed_callback(ffs
);
3450 opts
= ffs_obj
->opts
;
3454 if (opts
->no_configfs
|| !opts
->func_inst
.group
.cg_item
.ci_parent
3455 || !atomic_read(&opts
->func_inst
.group
.cg_item
.ci_kref
.refcount
))
3458 unregister_gadget_item(ffs_obj
->opts
->
3459 func_inst
.group
.cg_item
.ci_parent
->ci_parent
);
3464 /* Misc helper functions ****************************************************/
3466 static int ffs_mutex_lock(struct mutex
*mutex
, unsigned nonblock
)
3469 ? likely(mutex_trylock(mutex
)) ? 0 : -EAGAIN
3470 : mutex_lock_interruptible(mutex
);
3473 static char *ffs_prepare_buffer(const char __user
*buf
, size_t len
)
3480 data
= kmalloc(len
, GFP_KERNEL
);
3481 if (unlikely(!data
))
3482 return ERR_PTR(-ENOMEM
);
3484 if (unlikely(copy_from_user(data
, buf
, len
))) {
3486 return ERR_PTR(-EFAULT
);
3489 pr_vdebug("Buffer from user space:\n");
3490 ffs_dump_mem("", data
, len
);
3495 DECLARE_USB_FUNCTION_INIT(ffs
, ffs_alloc_inst
, ffs_alloc
);
3496 MODULE_LICENSE("GPL");
3497 MODULE_AUTHOR("Michal Nazarewicz");