2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
33 #include "xhci-trace.h"
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk
;
43 module_param(link_quirk
, int, S_IRUGO
| S_IWUSR
);
44 MODULE_PARM_DESC(link_quirk
, "Don't clear the chain bit on a link TRB");
46 static unsigned int quirks
;
47 module_param(quirks
, uint
, S_IRUGO
);
48 MODULE_PARM_DESC(quirks
, "Bit flags for quirks to be enabled as default");
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
58 * Returns negative errno, or zero on success
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
64 int xhci_handshake(void __iomem
*ptr
, u32 mask
, u32 done
, int usec
)
70 if (result
== ~(u32
)0) /* card removed */
82 * Disable interrupts and begin the xHCI halting process.
84 void xhci_quiesce(struct xhci_hcd
*xhci
)
91 halted
= readl(&xhci
->op_regs
->status
) & STS_HALT
;
95 cmd
= readl(&xhci
->op_regs
->command
);
97 writel(cmd
, &xhci
->op_regs
->command
);
101 * Force HC into halt state.
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
108 int xhci_halt(struct xhci_hcd
*xhci
)
111 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Halt the HC");
114 ret
= xhci_handshake(&xhci
->op_regs
->status
,
115 STS_HALT
, STS_HALT
, XHCI_MAX_HALT_USEC
);
117 xhci
->xhc_state
|= XHCI_STATE_HALTED
;
118 xhci
->cmd_ring_state
= CMD_RING_STATE_STOPPED
;
120 xhci_warn(xhci
, "Host not halted after %u microseconds.\n",
126 * Set the run bit and wait for the host to be running.
128 static int xhci_start(struct xhci_hcd
*xhci
)
133 temp
= readl(&xhci
->op_regs
->command
);
135 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Turn on HC, cmd = 0x%x.",
137 writel(temp
, &xhci
->op_regs
->command
);
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 ret
= xhci_handshake(&xhci
->op_regs
->status
,
144 STS_HALT
, 0, XHCI_MAX_HALT_USEC
);
145 if (ret
== -ETIMEDOUT
)
146 xhci_err(xhci
, "Host took too long to start, "
147 "waited %u microseconds.\n",
150 /* clear state flags. Including dying, halted or removing */
159 * This resets pipelines, timers, counters, state machines, etc.
160 * Transactions will be terminated immediately, and operational registers
161 * will be set to their defaults.
163 int xhci_reset(struct xhci_hcd
*xhci
)
169 state
= readl(&xhci
->op_regs
->status
);
170 if ((state
& STS_HALT
) == 0) {
171 xhci_warn(xhci
, "Host controller not halted, aborting reset.\n");
175 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Reset the HC");
176 command
= readl(&xhci
->op_regs
->command
);
177 command
|= CMD_RESET
;
178 writel(command
, &xhci
->op_regs
->command
);
180 /* Existing Intel xHCI controllers require a delay of 1 mS,
181 * after setting the CMD_RESET bit, and before accessing any
182 * HC registers. This allows the HC to complete the
183 * reset operation and be ready for HC register access.
184 * Without this delay, the subsequent HC register access,
185 * may result in a system hang very rarely.
187 if (xhci
->quirks
& XHCI_INTEL_HOST
)
190 ret
= xhci_handshake(&xhci
->op_regs
->command
,
191 CMD_RESET
, 0, 10 * 1000 * 1000);
195 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
196 "Wait for controller to be ready for doorbell rings");
198 * xHCI cannot write to any doorbells or operational registers other
199 * than status until the "Controller Not Ready" flag is cleared.
201 ret
= xhci_handshake(&xhci
->op_regs
->status
,
202 STS_CNR
, 0, 10 * 1000 * 1000);
204 for (i
= 0; i
< 2; ++i
) {
205 xhci
->bus_state
[i
].port_c_suspend
= 0;
206 xhci
->bus_state
[i
].suspended_ports
= 0;
207 xhci
->bus_state
[i
].resuming_ports
= 0;
214 static int xhci_free_msi(struct xhci_hcd
*xhci
)
218 if (!xhci
->msix_entries
)
221 for (i
= 0; i
< xhci
->msix_count
; i
++)
222 if (xhci
->msix_entries
[i
].vector
)
223 free_irq(xhci
->msix_entries
[i
].vector
,
231 static int xhci_setup_msi(struct xhci_hcd
*xhci
)
234 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
236 ret
= pci_enable_msi(pdev
);
238 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
239 "failed to allocate MSI entry");
243 ret
= request_irq(pdev
->irq
, xhci_msi_irq
,
244 0, "xhci_hcd", xhci_to_hcd(xhci
));
246 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
247 "disable MSI interrupt");
248 pci_disable_msi(pdev
);
256 * free all IRQs request
258 static void xhci_free_irq(struct xhci_hcd
*xhci
)
260 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
263 /* return if using legacy interrupt */
264 if (xhci_to_hcd(xhci
)->irq
> 0)
267 ret
= xhci_free_msi(xhci
);
271 free_irq(pdev
->irq
, xhci_to_hcd(xhci
));
279 static int xhci_setup_msix(struct xhci_hcd
*xhci
)
282 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
283 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
286 * calculate number of msi-x vectors supported.
287 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288 * with max number of interrupters based on the xhci HCSPARAMS1.
289 * - num_online_cpus: maximum msi-x vectors per CPUs core.
290 * Add additional 1 vector to ensure always available interrupt.
292 xhci
->msix_count
= min(num_online_cpus() + 1,
293 HCS_MAX_INTRS(xhci
->hcs_params1
));
296 kmalloc((sizeof(struct msix_entry
))*xhci
->msix_count
,
298 if (!xhci
->msix_entries
) {
299 xhci_err(xhci
, "Failed to allocate MSI-X entries\n");
303 for (i
= 0; i
< xhci
->msix_count
; i
++) {
304 xhci
->msix_entries
[i
].entry
= i
;
305 xhci
->msix_entries
[i
].vector
= 0;
308 ret
= pci_enable_msix_exact(pdev
, xhci
->msix_entries
, xhci
->msix_count
);
310 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
311 "Failed to enable MSI-X");
315 for (i
= 0; i
< xhci
->msix_count
; i
++) {
316 ret
= request_irq(xhci
->msix_entries
[i
].vector
,
318 0, "xhci_hcd", xhci_to_hcd(xhci
));
323 hcd
->msix_enabled
= 1;
327 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "disable MSI-X interrupt");
329 pci_disable_msix(pdev
);
331 kfree(xhci
->msix_entries
);
332 xhci
->msix_entries
= NULL
;
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
339 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
340 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
342 if (xhci
->quirks
& XHCI_PLAT
)
347 if (xhci
->msix_entries
) {
348 pci_disable_msix(pdev
);
349 kfree(xhci
->msix_entries
);
350 xhci
->msix_entries
= NULL
;
352 pci_disable_msi(pdev
);
355 hcd
->msix_enabled
= 0;
359 static void __maybe_unused
xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
363 if (xhci
->msix_entries
) {
364 for (i
= 0; i
< xhci
->msix_count
; i
++)
365 synchronize_irq(xhci
->msix_entries
[i
].vector
);
369 static int xhci_try_enable_msi(struct usb_hcd
*hcd
)
371 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
372 struct pci_dev
*pdev
;
375 /* The xhci platform device has set up IRQs through usb_add_hcd. */
376 if (xhci
->quirks
& XHCI_PLAT
)
379 pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
381 * Some Fresco Logic host controllers advertise MSI, but fail to
382 * generate interrupts. Don't even try to enable MSI.
384 if (xhci
->quirks
& XHCI_BROKEN_MSI
)
387 /* unregister the legacy interrupt */
389 free_irq(hcd
->irq
, hcd
);
392 ret
= xhci_setup_msix(xhci
);
394 /* fall back to msi*/
395 ret
= xhci_setup_msi(xhci
);
398 /* hcd->irq is 0, we have MSI */
402 xhci_err(xhci
, "No msi-x/msi found and no IRQ in BIOS\n");
407 if (!strlen(hcd
->irq_descr
))
408 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
409 hcd
->driver
->description
, hcd
->self
.busnum
);
411 /* fall back to legacy interrupt*/
412 ret
= request_irq(pdev
->irq
, &usb_hcd_irq
, IRQF_SHARED
,
413 hcd
->irq_descr
, hcd
);
415 xhci_err(xhci
, "request interrupt %d failed\n",
419 hcd
->irq
= pdev
->irq
;
425 static inline int xhci_try_enable_msi(struct usb_hcd
*hcd
)
430 static inline void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
440 static void compliance_mode_recovery(unsigned long arg
)
442 struct xhci_hcd
*xhci
;
447 xhci
= (struct xhci_hcd
*)arg
;
449 for (i
= 0; i
< xhci
->num_usb3_ports
; i
++) {
450 temp
= readl(xhci
->usb3_ports
[i
]);
451 if ((temp
& PORT_PLS_MASK
) == USB_SS_PORT_LS_COMP_MOD
) {
453 * Compliance Mode Detected. Letting USB Core
454 * handle the Warm Reset
456 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
457 "Compliance mode detected->port %d",
459 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
460 "Attempting compliance mode recovery");
461 hcd
= xhci
->shared_hcd
;
463 if (hcd
->state
== HC_STATE_SUSPENDED
)
464 usb_hcd_resume_root_hub(hcd
);
466 usb_hcd_poll_rh_status(hcd
);
470 if (xhci
->port_status_u0
!= ((1 << xhci
->num_usb3_ports
)-1))
471 mod_timer(&xhci
->comp_mode_recovery_timer
,
472 jiffies
+ msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
));
476 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477 * that causes ports behind that hardware to enter compliance mode sometimes.
478 * The quirk creates a timer that polls every 2 seconds the link state of
479 * each host controller's port and recovers it by issuing a Warm reset
480 * if Compliance mode is detected, otherwise the port will become "dead" (no
481 * device connections or disconnections will be detected anymore). Becasue no
482 * status event is generated when entering compliance mode (per xhci spec),
483 * this quirk is needed on systems that have the failing hardware installed.
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd
*xhci
)
487 xhci
->port_status_u0
= 0;
488 setup_timer(&xhci
->comp_mode_recovery_timer
,
489 compliance_mode_recovery
, (unsigned long)xhci
);
490 xhci
->comp_mode_recovery_timer
.expires
= jiffies
+
491 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
);
493 set_timer_slack(&xhci
->comp_mode_recovery_timer
,
494 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
));
495 add_timer(&xhci
->comp_mode_recovery_timer
);
496 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
497 "Compliance mode recovery timer initialized");
501 * This function identifies the systems that have installed the SN65LVPE502CP
502 * USB3.0 re-driver and that need the Compliance Mode Quirk.
504 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
508 const char *dmi_product_name
, *dmi_sys_vendor
;
510 dmi_product_name
= dmi_get_system_info(DMI_PRODUCT_NAME
);
511 dmi_sys_vendor
= dmi_get_system_info(DMI_SYS_VENDOR
);
512 if (!dmi_product_name
|| !dmi_sys_vendor
)
515 if (!(strstr(dmi_sys_vendor
, "Hewlett-Packard")))
518 if (strstr(dmi_product_name
, "Z420") ||
519 strstr(dmi_product_name
, "Z620") ||
520 strstr(dmi_product_name
, "Z820") ||
521 strstr(dmi_product_name
, "Z1 Workstation"))
527 static int xhci_all_ports_seen_u0(struct xhci_hcd
*xhci
)
529 return (xhci
->port_status_u0
== ((1 << xhci
->num_usb3_ports
)-1));
534 * Initialize memory for HCD and xHC (one-time init).
536 * Program the PAGESIZE register, initialize the device context array, create
537 * device contexts (?), set up a command ring segment (or two?), create event
538 * ring (one for now).
540 int xhci_init(struct usb_hcd
*hcd
)
542 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
545 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "xhci_init");
546 spin_lock_init(&xhci
->lock
);
547 if (xhci
->hci_version
== 0x95 && link_quirk
) {
548 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
549 "QUIRK: Not clearing Link TRB chain bits.");
550 xhci
->quirks
|= XHCI_LINK_TRB_QUIRK
;
552 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
553 "xHCI doesn't need link TRB QUIRK");
555 retval
= xhci_mem_init(xhci
, GFP_KERNEL
);
556 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Finished xhci_init");
558 /* Initializing Compliance Mode Recovery Data If Needed */
559 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
560 xhci
->quirks
|= XHCI_COMP_MODE_QUIRK
;
561 compliance_mode_recovery_timer_init(xhci
);
567 /*-------------------------------------------------------------------------*/
570 static int xhci_run_finished(struct xhci_hcd
*xhci
)
572 if (xhci_start(xhci
)) {
576 xhci
->shared_hcd
->state
= HC_STATE_RUNNING
;
577 xhci
->cmd_ring_state
= CMD_RING_STATE_RUNNING
;
579 if (xhci
->quirks
& XHCI_NEC_HOST
)
580 xhci_ring_cmd_db(xhci
);
582 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
583 "Finished xhci_run for USB3 roothub");
588 * Start the HC after it was halted.
590 * This function is called by the USB core when the HC driver is added.
591 * Its opposite is xhci_stop().
593 * xhci_init() must be called once before this function can be called.
594 * Reset the HC, enable device slot contexts, program DCBAAP, and
595 * set command ring pointer and event ring pointer.
597 * Setup MSI-X vectors and enable interrupts.
599 int xhci_run(struct usb_hcd
*hcd
)
604 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
606 /* Start the xHCI host controller running only after the USB 2.0 roothub
610 hcd
->uses_new_polling
= 1;
611 if (!usb_hcd_is_primary_hcd(hcd
))
612 return xhci_run_finished(xhci
);
614 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "xhci_run");
616 ret
= xhci_try_enable_msi(hcd
);
620 xhci_dbg(xhci
, "Command ring memory map follows:\n");
621 xhci_debug_ring(xhci
, xhci
->cmd_ring
);
622 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
623 xhci_dbg_cmd_ptrs(xhci
);
625 xhci_dbg(xhci
, "ERST memory map follows:\n");
626 xhci_dbg_erst(xhci
, &xhci
->erst
);
627 xhci_dbg(xhci
, "Event ring:\n");
628 xhci_debug_ring(xhci
, xhci
->event_ring
);
629 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
630 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
631 temp_64
&= ~ERST_PTR_MASK
;
632 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
633 "ERST deq = 64'h%0lx", (long unsigned int) temp_64
);
635 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
636 "// Set the interrupt modulation register");
637 temp
= readl(&xhci
->ir_set
->irq_control
);
638 temp
&= ~ER_IRQ_INTERVAL_MASK
;
640 * the increment interval is 8 times as much as that defined
641 * in xHCI spec on MTK's controller
643 temp
|= (u32
) ((xhci
->quirks
& XHCI_MTK_HOST
) ? 20 : 160);
644 writel(temp
, &xhci
->ir_set
->irq_control
);
646 /* Set the HCD state before we enable the irqs */
647 temp
= readl(&xhci
->op_regs
->command
);
649 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
650 "// Enable interrupts, cmd = 0x%x.", temp
);
651 writel(temp
, &xhci
->op_regs
->command
);
653 temp
= readl(&xhci
->ir_set
->irq_pending
);
654 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
655 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
656 xhci
->ir_set
, (unsigned int) ER_IRQ_ENABLE(temp
));
657 writel(ER_IRQ_ENABLE(temp
), &xhci
->ir_set
->irq_pending
);
658 xhci_print_ir_set(xhci
, 0);
660 if (xhci
->quirks
& XHCI_NEC_HOST
) {
661 struct xhci_command
*command
;
662 command
= xhci_alloc_command(xhci
, false, false, GFP_KERNEL
);
665 xhci_queue_vendor_command(xhci
, command
, 0, 0, 0,
666 TRB_TYPE(TRB_NEC_GET_FW
));
668 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
669 "Finished xhci_run for USB2 roothub");
672 EXPORT_SYMBOL_GPL(xhci_run
);
677 * This function is called by the USB core when the HC driver is removed.
678 * Its opposite is xhci_run().
680 * Disable device contexts, disable IRQs, and quiesce the HC.
681 * Reset the HC, finish any completed transactions, and cleanup memory.
683 void xhci_stop(struct usb_hcd
*hcd
)
686 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
688 if (xhci
->xhc_state
& XHCI_STATE_HALTED
)
691 mutex_lock(&xhci
->mutex
);
692 spin_lock_irq(&xhci
->lock
);
693 xhci
->xhc_state
|= XHCI_STATE_HALTED
;
694 xhci
->cmd_ring_state
= CMD_RING_STATE_STOPPED
;
696 /* Make sure the xHC is halted for a USB3 roothub
697 * (xhci_stop() could be called as part of failed init).
701 spin_unlock_irq(&xhci
->lock
);
703 xhci_cleanup_msix(xhci
);
705 /* Deleting Compliance Mode Recovery Timer */
706 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
707 (!(xhci_all_ports_seen_u0(xhci
)))) {
708 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
709 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
710 "%s: compliance mode recovery timer deleted",
714 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
717 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
718 "// Disabling event ring interrupts");
719 temp
= readl(&xhci
->op_regs
->status
);
720 writel(temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
721 temp
= readl(&xhci
->ir_set
->irq_pending
);
722 writel(ER_IRQ_DISABLE(temp
), &xhci
->ir_set
->irq_pending
);
723 xhci_print_ir_set(xhci
, 0);
725 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "cleaning up memory");
726 xhci_mem_cleanup(xhci
);
727 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
728 "xhci_stop completed - status = %x",
729 readl(&xhci
->op_regs
->status
));
730 mutex_unlock(&xhci
->mutex
);
734 * Shutdown HC (not bus-specific)
736 * This is called when the machine is rebooting or halting. We assume that the
737 * machine will be powered off, and the HC's internal state will be reset.
738 * Don't bother to free memory.
740 * This will only ever be called with the main usb_hcd (the USB3 roothub).
742 void xhci_shutdown(struct usb_hcd
*hcd
)
744 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
746 if (xhci
->quirks
& XHCI_SPURIOUS_REBOOT
)
747 usb_disable_xhci_ports(to_pci_dev(hcd
->self
.controller
));
749 spin_lock_irq(&xhci
->lock
);
751 /* Workaround for spurious wakeups at shutdown with HSW */
752 if (xhci
->quirks
& XHCI_SPURIOUS_WAKEUP
)
754 spin_unlock_irq(&xhci
->lock
);
756 xhci_cleanup_msix(xhci
);
758 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
759 "xhci_shutdown completed - status = %x",
760 readl(&xhci
->op_regs
->status
));
762 /* Yet another workaround for spurious wakeups at shutdown with HSW */
763 if (xhci
->quirks
& XHCI_SPURIOUS_WAKEUP
)
764 pci_set_power_state(to_pci_dev(hcd
->self
.controller
), PCI_D3hot
);
768 static void xhci_save_registers(struct xhci_hcd
*xhci
)
770 xhci
->s3
.command
= readl(&xhci
->op_regs
->command
);
771 xhci
->s3
.dev_nt
= readl(&xhci
->op_regs
->dev_notification
);
772 xhci
->s3
.dcbaa_ptr
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
773 xhci
->s3
.config_reg
= readl(&xhci
->op_regs
->config_reg
);
774 xhci
->s3
.erst_size
= readl(&xhci
->ir_set
->erst_size
);
775 xhci
->s3
.erst_base
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
776 xhci
->s3
.erst_dequeue
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
777 xhci
->s3
.irq_pending
= readl(&xhci
->ir_set
->irq_pending
);
778 xhci
->s3
.irq_control
= readl(&xhci
->ir_set
->irq_control
);
781 static void xhci_restore_registers(struct xhci_hcd
*xhci
)
783 writel(xhci
->s3
.command
, &xhci
->op_regs
->command
);
784 writel(xhci
->s3
.dev_nt
, &xhci
->op_regs
->dev_notification
);
785 xhci_write_64(xhci
, xhci
->s3
.dcbaa_ptr
, &xhci
->op_regs
->dcbaa_ptr
);
786 writel(xhci
->s3
.config_reg
, &xhci
->op_regs
->config_reg
);
787 writel(xhci
->s3
.erst_size
, &xhci
->ir_set
->erst_size
);
788 xhci_write_64(xhci
, xhci
->s3
.erst_base
, &xhci
->ir_set
->erst_base
);
789 xhci_write_64(xhci
, xhci
->s3
.erst_dequeue
, &xhci
->ir_set
->erst_dequeue
);
790 writel(xhci
->s3
.irq_pending
, &xhci
->ir_set
->irq_pending
);
791 writel(xhci
->s3
.irq_control
, &xhci
->ir_set
->irq_control
);
794 static void xhci_set_cmd_ring_deq(struct xhci_hcd
*xhci
)
798 /* step 2: initialize command ring buffer */
799 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
800 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
801 (xhci_trb_virt_to_dma(xhci
->cmd_ring
->deq_seg
,
802 xhci
->cmd_ring
->dequeue
) &
803 (u64
) ~CMD_RING_RSVD_BITS
) |
804 xhci
->cmd_ring
->cycle_state
;
805 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
806 "// Setting command ring address to 0x%llx",
807 (long unsigned long) val_64
);
808 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
812 * The whole command ring must be cleared to zero when we suspend the host.
814 * The host doesn't save the command ring pointer in the suspend well, so we
815 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
816 * aligned, because of the reserved bits in the command ring dequeue pointer
817 * register. Therefore, we can't just set the dequeue pointer back in the
818 * middle of the ring (TRBs are 16-byte aligned).
820 static void xhci_clear_command_ring(struct xhci_hcd
*xhci
)
822 struct xhci_ring
*ring
;
823 struct xhci_segment
*seg
;
825 ring
= xhci
->cmd_ring
;
829 sizeof(union xhci_trb
) * (TRBS_PER_SEGMENT
- 1));
830 seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
&=
831 cpu_to_le32(~TRB_CYCLE
);
833 } while (seg
!= ring
->deq_seg
);
835 /* Reset the software enqueue and dequeue pointers */
836 ring
->deq_seg
= ring
->first_seg
;
837 ring
->dequeue
= ring
->first_seg
->trbs
;
838 ring
->enq_seg
= ring
->deq_seg
;
839 ring
->enqueue
= ring
->dequeue
;
841 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
843 * Ring is now zeroed, so the HW should look for change of ownership
844 * when the cycle bit is set to 1.
846 ring
->cycle_state
= 1;
849 * Reset the hardware dequeue pointer.
850 * Yes, this will need to be re-written after resume, but we're paranoid
851 * and want to make sure the hardware doesn't access bogus memory
852 * because, say, the BIOS or an SMI started the host without changing
853 * the command ring pointers.
855 xhci_set_cmd_ring_deq(xhci
);
858 static void xhci_disable_port_wake_on_bits(struct xhci_hcd
*xhci
)
861 __le32 __iomem
**port_array
;
865 spin_lock_irqsave(&xhci
->lock
, flags
);
867 /* disble usb3 ports Wake bits*/
868 port_index
= xhci
->num_usb3_ports
;
869 port_array
= xhci
->usb3_ports
;
870 while (port_index
--) {
871 t1
= readl(port_array
[port_index
]);
872 t1
= xhci_port_state_to_neutral(t1
);
873 t2
= t1
& ~PORT_WAKE_BITS
;
875 writel(t2
, port_array
[port_index
]);
878 /* disble usb2 ports Wake bits*/
879 port_index
= xhci
->num_usb2_ports
;
880 port_array
= xhci
->usb2_ports
;
881 while (port_index
--) {
882 t1
= readl(port_array
[port_index
]);
883 t1
= xhci_port_state_to_neutral(t1
);
884 t2
= t1
& ~PORT_WAKE_BITS
;
886 writel(t2
, port_array
[port_index
]);
889 spin_unlock_irqrestore(&xhci
->lock
, flags
);
893 * Stop HC (not bus-specific)
895 * This is called when the machine transition into S3/S4 mode.
898 int xhci_suspend(struct xhci_hcd
*xhci
, bool do_wakeup
)
901 unsigned int delay
= XHCI_MAX_HALT_USEC
;
902 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
908 if (hcd
->state
!= HC_STATE_SUSPENDED
||
909 xhci
->shared_hcd
->state
!= HC_STATE_SUSPENDED
)
912 /* Clear root port wake on bits if wakeup not allowed. */
914 xhci_disable_port_wake_on_bits(xhci
);
916 /* Don't poll the roothubs on bus suspend. */
917 xhci_dbg(xhci
, "%s: stopping port polling.\n", __func__
);
918 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
919 del_timer_sync(&hcd
->rh_timer
);
920 clear_bit(HCD_FLAG_POLL_RH
, &xhci
->shared_hcd
->flags
);
921 del_timer_sync(&xhci
->shared_hcd
->rh_timer
);
923 spin_lock_irq(&xhci
->lock
);
924 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
925 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
926 /* step 1: stop endpoint */
927 /* skipped assuming that port suspend has done */
929 /* step 2: clear Run/Stop bit */
930 command
= readl(&xhci
->op_regs
->command
);
932 writel(command
, &xhci
->op_regs
->command
);
934 /* Some chips from Fresco Logic need an extraordinary delay */
935 delay
*= (xhci
->quirks
& XHCI_SLOW_SUSPEND
) ? 10 : 1;
937 if (xhci_handshake(&xhci
->op_regs
->status
,
938 STS_HALT
, STS_HALT
, delay
)) {
939 xhci_warn(xhci
, "WARN: xHC CMD_RUN timeout\n");
940 spin_unlock_irq(&xhci
->lock
);
943 xhci_clear_command_ring(xhci
);
945 /* step 3: save registers */
946 xhci_save_registers(xhci
);
948 /* step 4: set CSS flag */
949 command
= readl(&xhci
->op_regs
->command
);
951 writel(command
, &xhci
->op_regs
->command
);
952 if (xhci_handshake(&xhci
->op_regs
->status
,
953 STS_SAVE
, 0, 10 * 1000)) {
954 xhci_warn(xhci
, "WARN: xHC save state timeout\n");
955 spin_unlock_irq(&xhci
->lock
);
958 spin_unlock_irq(&xhci
->lock
);
961 * Deleting Compliance Mode Recovery Timer because the xHCI Host
962 * is about to be suspended.
964 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
965 (!(xhci_all_ports_seen_u0(xhci
)))) {
966 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
967 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
968 "%s: compliance mode recovery timer deleted",
972 /* step 5: remove core well power */
973 /* synchronize irq when using MSI-X */
974 xhci_msix_sync_irqs(xhci
);
978 EXPORT_SYMBOL_GPL(xhci_suspend
);
981 * start xHC (not bus-specific)
983 * This is called when the machine transition from S3/S4 mode.
986 int xhci_resume(struct xhci_hcd
*xhci
, bool hibernated
)
988 u32 command
, temp
= 0, status
;
989 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
990 struct usb_hcd
*secondary_hcd
;
992 bool comp_timer_running
= false;
997 /* Wait a bit if either of the roothubs need to settle from the
998 * transition into bus suspend.
1000 if (time_before(jiffies
, xhci
->bus_state
[0].next_statechange
) ||
1001 time_before(jiffies
,
1002 xhci
->bus_state
[1].next_statechange
))
1005 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
1006 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
1008 spin_lock_irq(&xhci
->lock
);
1009 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
1013 /* step 1: restore register */
1014 xhci_restore_registers(xhci
);
1015 /* step 2: initialize command ring buffer */
1016 xhci_set_cmd_ring_deq(xhci
);
1017 /* step 3: restore state and start state*/
1018 /* step 3: set CRS flag */
1019 command
= readl(&xhci
->op_regs
->command
);
1021 writel(command
, &xhci
->op_regs
->command
);
1022 if (xhci_handshake(&xhci
->op_regs
->status
,
1023 STS_RESTORE
, 0, 10 * 1000)) {
1024 xhci_warn(xhci
, "WARN: xHC restore state timeout\n");
1025 spin_unlock_irq(&xhci
->lock
);
1028 temp
= readl(&xhci
->op_regs
->status
);
1031 /* If restore operation fails, re-initialize the HC during resume */
1032 if ((temp
& STS_SRE
) || hibernated
) {
1034 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
1035 !(xhci_all_ports_seen_u0(xhci
))) {
1036 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
1037 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1038 "Compliance Mode Recovery Timer deleted!");
1041 /* Let the USB core know _both_ roothubs lost power. */
1042 usb_root_hub_lost_power(xhci
->main_hcd
->self
.root_hub
);
1043 usb_root_hub_lost_power(xhci
->shared_hcd
->self
.root_hub
);
1045 xhci_dbg(xhci
, "Stop HCD\n");
1048 spin_unlock_irq(&xhci
->lock
);
1049 xhci_cleanup_msix(xhci
);
1051 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
1052 temp
= readl(&xhci
->op_regs
->status
);
1053 writel(temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
1054 temp
= readl(&xhci
->ir_set
->irq_pending
);
1055 writel(ER_IRQ_DISABLE(temp
), &xhci
->ir_set
->irq_pending
);
1056 xhci_print_ir_set(xhci
, 0);
1058 xhci_dbg(xhci
, "cleaning up memory\n");
1059 xhci_mem_cleanup(xhci
);
1060 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
1061 readl(&xhci
->op_regs
->status
));
1063 /* USB core calls the PCI reinit and start functions twice:
1064 * first with the primary HCD, and then with the secondary HCD.
1065 * If we don't do the same, the host will never be started.
1067 if (!usb_hcd_is_primary_hcd(hcd
))
1068 secondary_hcd
= hcd
;
1070 secondary_hcd
= xhci
->shared_hcd
;
1072 xhci_dbg(xhci
, "Initialize the xhci_hcd\n");
1073 retval
= xhci_init(hcd
->primary_hcd
);
1076 comp_timer_running
= true;
1078 xhci_dbg(xhci
, "Start the primary HCD\n");
1079 retval
= xhci_run(hcd
->primary_hcd
);
1081 xhci_dbg(xhci
, "Start the secondary HCD\n");
1082 retval
= xhci_run(secondary_hcd
);
1084 hcd
->state
= HC_STATE_SUSPENDED
;
1085 xhci
->shared_hcd
->state
= HC_STATE_SUSPENDED
;
1089 /* step 4: set Run/Stop bit */
1090 command
= readl(&xhci
->op_regs
->command
);
1092 writel(command
, &xhci
->op_regs
->command
);
1093 xhci_handshake(&xhci
->op_regs
->status
, STS_HALT
,
1096 /* step 5: walk topology and initialize portsc,
1097 * portpmsc and portli
1099 /* this is done in bus_resume */
1101 /* step 6: restart each of the previously
1102 * Running endpoints by ringing their doorbells
1105 spin_unlock_irq(&xhci
->lock
);
1109 /* Resume root hubs only when have pending events. */
1110 status
= readl(&xhci
->op_regs
->status
);
1111 if (status
& STS_EINT
) {
1112 usb_hcd_resume_root_hub(xhci
->shared_hcd
);
1113 usb_hcd_resume_root_hub(hcd
);
1118 * If system is subject to the Quirk, Compliance Mode Timer needs to
1119 * be re-initialized Always after a system resume. Ports are subject
1120 * to suffer the Compliance Mode issue again. It doesn't matter if
1121 * ports have entered previously to U0 before system's suspension.
1123 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) && !comp_timer_running
)
1124 compliance_mode_recovery_timer_init(xhci
);
1126 /* Re-enable port polling. */
1127 xhci_dbg(xhci
, "%s: starting port polling.\n", __func__
);
1128 set_bit(HCD_FLAG_POLL_RH
, &xhci
->shared_hcd
->flags
);
1129 usb_hcd_poll_rh_status(xhci
->shared_hcd
);
1130 set_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
1131 usb_hcd_poll_rh_status(hcd
);
1135 EXPORT_SYMBOL_GPL(xhci_resume
);
1136 #endif /* CONFIG_PM */
1138 /*-------------------------------------------------------------------------*/
1141 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1142 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1143 * value to right shift 1 for the bitmask.
1145 * Index = (epnum * 2) + direction - 1,
1146 * where direction = 0 for OUT, 1 for IN.
1147 * For control endpoints, the IN index is used (OUT index is unused), so
1148 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1150 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor
*desc
)
1153 if (usb_endpoint_xfer_control(desc
))
1154 index
= (unsigned int) (usb_endpoint_num(desc
)*2);
1156 index
= (unsigned int) (usb_endpoint_num(desc
)*2) +
1157 (usb_endpoint_dir_in(desc
) ? 1 : 0) - 1;
1161 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1162 * address from the XHCI endpoint index.
1164 unsigned int xhci_get_endpoint_address(unsigned int ep_index
)
1166 unsigned int number
= DIV_ROUND_UP(ep_index
, 2);
1167 unsigned int direction
= ep_index
% 2 ? USB_DIR_OUT
: USB_DIR_IN
;
1168 return direction
| number
;
1171 /* Find the flag for this endpoint (for use in the control context). Use the
1172 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1175 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor
*desc
)
1177 return 1 << (xhci_get_endpoint_index(desc
) + 1);
1180 /* Find the flag for this endpoint (for use in the control context). Use the
1181 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1184 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index
)
1186 return 1 << (ep_index
+ 1);
1189 /* Compute the last valid endpoint context index. Basically, this is the
1190 * endpoint index plus one. For slot contexts with more than valid endpoint,
1191 * we find the most significant bit set in the added contexts flags.
1192 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1193 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1195 unsigned int xhci_last_valid_endpoint(u32 added_ctxs
)
1197 return fls(added_ctxs
) - 1;
1200 /* Returns 1 if the arguments are OK;
1201 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1203 static int xhci_check_args(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1204 struct usb_host_endpoint
*ep
, int check_ep
, bool check_virt_dev
,
1206 struct xhci_hcd
*xhci
;
1207 struct xhci_virt_device
*virt_dev
;
1209 if (!hcd
|| (check_ep
&& !ep
) || !udev
) {
1210 pr_debug("xHCI %s called with invalid args\n", func
);
1213 if (!udev
->parent
) {
1214 pr_debug("xHCI %s called for root hub\n", func
);
1218 xhci
= hcd_to_xhci(hcd
);
1219 if (check_virt_dev
) {
1220 if (!udev
->slot_id
|| !xhci
->devs
[udev
->slot_id
]) {
1221 xhci_dbg(xhci
, "xHCI %s called with unaddressed device\n",
1226 virt_dev
= xhci
->devs
[udev
->slot_id
];
1227 if (virt_dev
->udev
!= udev
) {
1228 xhci_dbg(xhci
, "xHCI %s called with udev and "
1229 "virt_dev does not match\n", func
);
1234 if (xhci
->xhc_state
& XHCI_STATE_HALTED
)
1240 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
1241 struct usb_device
*udev
, struct xhci_command
*command
,
1242 bool ctx_change
, bool must_succeed
);
1245 * Full speed devices may have a max packet size greater than 8 bytes, but the
1246 * USB core doesn't know that until it reads the first 8 bytes of the
1247 * descriptor. If the usb_device's max packet size changes after that point,
1248 * we need to issue an evaluate context command and wait on it.
1250 static int xhci_check_maxpacket(struct xhci_hcd
*xhci
, unsigned int slot_id
,
1251 unsigned int ep_index
, struct urb
*urb
)
1253 struct xhci_container_ctx
*out_ctx
;
1254 struct xhci_input_control_ctx
*ctrl_ctx
;
1255 struct xhci_ep_ctx
*ep_ctx
;
1256 struct xhci_command
*command
;
1257 int max_packet_size
;
1258 int hw_max_packet_size
;
1261 out_ctx
= xhci
->devs
[slot_id
]->out_ctx
;
1262 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1263 hw_max_packet_size
= MAX_PACKET_DECODED(le32_to_cpu(ep_ctx
->ep_info2
));
1264 max_packet_size
= usb_endpoint_maxp(&urb
->dev
->ep0
.desc
);
1265 if (hw_max_packet_size
!= max_packet_size
) {
1266 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1267 "Max Packet Size for ep 0 changed.");
1268 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1269 "Max packet size in usb_device = %d",
1271 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1272 "Max packet size in xHCI HW = %d",
1273 hw_max_packet_size
);
1274 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1275 "Issuing evaluate context command.");
1277 /* Set up the input context flags for the command */
1278 /* FIXME: This won't work if a non-default control endpoint
1279 * changes max packet sizes.
1282 command
= xhci_alloc_command(xhci
, false, true, GFP_KERNEL
);
1286 command
->in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
1287 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
1289 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1292 goto command_cleanup
;
1294 /* Set up the modified control endpoint 0 */
1295 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
1296 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
1298 ep_ctx
= xhci_get_ep_ctx(xhci
, command
->in_ctx
, ep_index
);
1299 ep_ctx
->ep_info2
&= cpu_to_le32(~MAX_PACKET_MASK
);
1300 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet_size
));
1302 ctrl_ctx
->add_flags
= cpu_to_le32(EP0_FLAG
);
1303 ctrl_ctx
->drop_flags
= 0;
1305 xhci_dbg(xhci
, "Slot %d input context\n", slot_id
);
1306 xhci_dbg_ctx(xhci
, command
->in_ctx
, ep_index
);
1307 xhci_dbg(xhci
, "Slot %d output context\n", slot_id
);
1308 xhci_dbg_ctx(xhci
, out_ctx
, ep_index
);
1310 ret
= xhci_configure_endpoint(xhci
, urb
->dev
, command
,
1313 /* Clean up the input context for later use by bandwidth
1316 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
);
1318 kfree(command
->completion
);
1325 * non-error returns are a promise to giveback() the urb later
1326 * we drop ownership so next owner (or urb unlink) can get it
1328 int xhci_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
, gfp_t mem_flags
)
1330 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1331 struct xhci_td
*buffer
;
1332 unsigned long flags
;
1334 unsigned int slot_id
, ep_index
;
1335 struct urb_priv
*urb_priv
;
1338 if (!urb
|| xhci_check_args(hcd
, urb
->dev
, urb
->ep
,
1339 true, true, __func__
) <= 0)
1342 slot_id
= urb
->dev
->slot_id
;
1343 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1345 if (!HCD_HW_ACCESSIBLE(hcd
)) {
1346 if (!in_interrupt())
1347 xhci_dbg(xhci
, "urb submitted during PCI suspend\n");
1352 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
))
1353 size
= urb
->number_of_packets
;
1354 else if (usb_endpoint_is_bulk_out(&urb
->ep
->desc
) &&
1355 urb
->transfer_buffer_length
> 0 &&
1356 urb
->transfer_flags
& URB_ZERO_PACKET
&&
1357 !(urb
->transfer_buffer_length
% usb_endpoint_maxp(&urb
->ep
->desc
)))
1362 urb_priv
= kzalloc(sizeof(struct urb_priv
) +
1363 size
* sizeof(struct xhci_td
*), mem_flags
);
1367 buffer
= kzalloc(size
* sizeof(struct xhci_td
), mem_flags
);
1373 for (i
= 0; i
< size
; i
++) {
1374 urb_priv
->td
[i
] = buffer
;
1378 urb_priv
->length
= size
;
1379 urb_priv
->td_cnt
= 0;
1380 urb
->hcpriv
= urb_priv
;
1382 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1383 /* Check to see if the max packet size for the default control
1384 * endpoint changed during FS device enumeration
1386 if (urb
->dev
->speed
== USB_SPEED_FULL
) {
1387 ret
= xhci_check_maxpacket(xhci
, slot_id
,
1390 xhci_urb_free_priv(urb_priv
);
1396 /* We have a spinlock and interrupts disabled, so we must pass
1397 * atomic context to this function, which may allocate memory.
1399 spin_lock_irqsave(&xhci
->lock
, flags
);
1400 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1402 ret
= xhci_queue_ctrl_tx(xhci
, GFP_ATOMIC
, urb
,
1406 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1407 } else if (usb_endpoint_xfer_bulk(&urb
->ep
->desc
)) {
1408 spin_lock_irqsave(&xhci
->lock
, flags
);
1409 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1411 if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1412 EP_GETTING_STREAMS
) {
1413 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1414 "is transitioning to using streams.\n");
1416 } else if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1417 EP_GETTING_NO_STREAMS
) {
1418 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1419 "is transitioning to "
1420 "not having streams.\n");
1423 ret
= xhci_queue_bulk_tx(xhci
, GFP_ATOMIC
, urb
,
1428 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1429 } else if (usb_endpoint_xfer_int(&urb
->ep
->desc
)) {
1430 spin_lock_irqsave(&xhci
->lock
, flags
);
1431 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1433 ret
= xhci_queue_intr_tx(xhci
, GFP_ATOMIC
, urb
,
1437 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1439 spin_lock_irqsave(&xhci
->lock
, flags
);
1440 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1442 ret
= xhci_queue_isoc_tx_prepare(xhci
, GFP_ATOMIC
, urb
,
1446 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1451 xhci_dbg(xhci
, "Ep 0x%x: URB %p submitted for "
1452 "non-responsive xHCI host.\n",
1453 urb
->ep
->desc
.bEndpointAddress
, urb
);
1456 xhci_urb_free_priv(urb_priv
);
1458 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1462 /* Get the right ring for the given URB.
1463 * If the endpoint supports streams, boundary check the URB's stream ID.
1464 * If the endpoint doesn't support streams, return the singular endpoint ring.
1466 static struct xhci_ring
*xhci_urb_to_transfer_ring(struct xhci_hcd
*xhci
,
1469 unsigned int slot_id
;
1470 unsigned int ep_index
;
1471 unsigned int stream_id
;
1472 struct xhci_virt_ep
*ep
;
1474 slot_id
= urb
->dev
->slot_id
;
1475 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1476 stream_id
= urb
->stream_id
;
1477 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
1478 /* Common case: no streams */
1479 if (!(ep
->ep_state
& EP_HAS_STREAMS
))
1482 if (stream_id
== 0) {
1484 "WARN: Slot ID %u, ep index %u has streams, "
1485 "but URB has no stream ID.\n",
1490 if (stream_id
< ep
->stream_info
->num_streams
)
1491 return ep
->stream_info
->stream_rings
[stream_id
];
1494 "WARN: Slot ID %u, ep index %u has "
1495 "stream IDs 1 to %u allocated, "
1496 "but stream ID %u is requested.\n",
1498 ep
->stream_info
->num_streams
- 1,
1504 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1505 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1506 * should pick up where it left off in the TD, unless a Set Transfer Ring
1507 * Dequeue Pointer is issued.
1509 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1510 * the ring. Since the ring is a contiguous structure, they can't be physically
1511 * removed. Instead, there are two options:
1513 * 1) If the HC is in the middle of processing the URB to be canceled, we
1514 * simply move the ring's dequeue pointer past those TRBs using the Set
1515 * Transfer Ring Dequeue Pointer command. This will be the common case,
1516 * when drivers timeout on the last submitted URB and attempt to cancel.
1518 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1519 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1520 * HC will need to invalidate the any TRBs it has cached after the stop
1521 * endpoint command, as noted in the xHCI 0.95 errata.
1523 * 3) The TD may have completed by the time the Stop Endpoint Command
1524 * completes, so software needs to handle that case too.
1526 * This function should protect against the TD enqueueing code ringing the
1527 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1528 * It also needs to account for multiple cancellations on happening at the same
1529 * time for the same endpoint.
1531 * Note that this function can be called in any context, or so says
1532 * usb_hcd_unlink_urb()
1534 int xhci_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1536 unsigned long flags
;
1539 struct xhci_hcd
*xhci
;
1540 struct urb_priv
*urb_priv
;
1542 unsigned int ep_index
;
1543 struct xhci_ring
*ep_ring
;
1544 struct xhci_virt_ep
*ep
;
1545 struct xhci_command
*command
;
1547 xhci
= hcd_to_xhci(hcd
);
1548 spin_lock_irqsave(&xhci
->lock
, flags
);
1549 /* Make sure the URB hasn't completed or been unlinked already */
1550 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
1551 if (ret
|| !urb
->hcpriv
)
1553 temp
= readl(&xhci
->op_regs
->status
);
1554 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1555 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1556 "HW died, freeing TD.");
1557 urb_priv
= urb
->hcpriv
;
1558 for (i
= urb_priv
->td_cnt
;
1559 i
< urb_priv
->length
&& xhci
->devs
[urb
->dev
->slot_id
];
1561 td
= urb_priv
->td
[i
];
1562 if (!list_empty(&td
->td_list
))
1563 list_del_init(&td
->td_list
);
1564 if (!list_empty(&td
->cancelled_td_list
))
1565 list_del_init(&td
->cancelled_td_list
);
1568 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1569 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1570 usb_hcd_giveback_urb(hcd
, urb
, -ESHUTDOWN
);
1571 xhci_urb_free_priv(urb_priv
);
1574 if ((xhci
->xhc_state
& XHCI_STATE_DYING
) ||
1575 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1576 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1577 "Ep 0x%x: URB %p to be canceled on "
1578 "non-responsive xHCI host.",
1579 urb
->ep
->desc
.bEndpointAddress
, urb
);
1580 /* Let the stop endpoint command watchdog timer (which set this
1581 * state) finish cleaning up the endpoint TD lists. We must
1582 * have caught it in the middle of dropping a lock and giving
1588 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1589 ep
= &xhci
->devs
[urb
->dev
->slot_id
]->eps
[ep_index
];
1590 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
1596 urb_priv
= urb
->hcpriv
;
1597 i
= urb_priv
->td_cnt
;
1598 if (i
< urb_priv
->length
)
1599 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1600 "Cancel URB %p, dev %s, ep 0x%x, "
1601 "starting at offset 0x%llx",
1602 urb
, urb
->dev
->devpath
,
1603 urb
->ep
->desc
.bEndpointAddress
,
1604 (unsigned long long) xhci_trb_virt_to_dma(
1605 urb_priv
->td
[i
]->start_seg
,
1606 urb_priv
->td
[i
]->first_trb
));
1608 for (; i
< urb_priv
->length
; i
++) {
1609 td
= urb_priv
->td
[i
];
1610 list_add_tail(&td
->cancelled_td_list
, &ep
->cancelled_td_list
);
1613 /* Queue a stop endpoint command, but only if this is
1614 * the first cancellation to be handled.
1616 if (!(ep
->ep_state
& EP_HALT_PENDING
)) {
1617 command
= xhci_alloc_command(xhci
, false, false, GFP_ATOMIC
);
1622 ep
->ep_state
|= EP_HALT_PENDING
;
1623 ep
->stop_cmds_pending
++;
1624 ep
->stop_cmd_timer
.expires
= jiffies
+
1625 XHCI_STOP_EP_CMD_TIMEOUT
* HZ
;
1626 add_timer(&ep
->stop_cmd_timer
);
1627 xhci_queue_stop_endpoint(xhci
, command
, urb
->dev
->slot_id
,
1629 xhci_ring_cmd_db(xhci
);
1632 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1636 /* Drop an endpoint from a new bandwidth configuration for this device.
1637 * Only one call to this function is allowed per endpoint before
1638 * check_bandwidth() or reset_bandwidth() must be called.
1639 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1640 * add the endpoint to the schedule with possibly new parameters denoted by a
1641 * different endpoint descriptor in usb_host_endpoint.
1642 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1645 * The USB core will not allow URBs to be queued to an endpoint that is being
1646 * disabled, so there's no need for mutual exclusion to protect
1647 * the xhci->devs[slot_id] structure.
1649 int xhci_drop_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1650 struct usb_host_endpoint
*ep
)
1652 struct xhci_hcd
*xhci
;
1653 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1654 struct xhci_input_control_ctx
*ctrl_ctx
;
1655 unsigned int ep_index
;
1656 struct xhci_ep_ctx
*ep_ctx
;
1658 u32 new_add_flags
, new_drop_flags
;
1661 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1664 xhci
= hcd_to_xhci(hcd
);
1665 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1668 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
1669 drop_flag
= xhci_get_endpoint_flag(&ep
->desc
);
1670 if (drop_flag
== SLOT_FLAG
|| drop_flag
== EP0_FLAG
) {
1671 xhci_dbg(xhci
, "xHCI %s - can't drop slot or ep 0 %#x\n",
1672 __func__
, drop_flag
);
1676 in_ctx
= xhci
->devs
[udev
->slot_id
]->in_ctx
;
1677 out_ctx
= xhci
->devs
[udev
->slot_id
]->out_ctx
;
1678 ctrl_ctx
= xhci_get_input_control_ctx(in_ctx
);
1680 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1685 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1686 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1687 /* If the HC already knows the endpoint is disabled,
1688 * or the HCD has noted it is disabled, ignore this request
1690 if (((ep_ctx
->ep_info
& cpu_to_le32(EP_STATE_MASK
)) ==
1691 cpu_to_le32(EP_STATE_DISABLED
)) ||
1692 le32_to_cpu(ctrl_ctx
->drop_flags
) &
1693 xhci_get_endpoint_flag(&ep
->desc
)) {
1694 /* Do not warn when called after a usb_device_reset */
1695 if (xhci
->devs
[udev
->slot_id
]->eps
[ep_index
].ring
!= NULL
)
1696 xhci_warn(xhci
, "xHCI %s called with disabled ep %p\n",
1701 ctrl_ctx
->drop_flags
|= cpu_to_le32(drop_flag
);
1702 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1704 ctrl_ctx
->add_flags
&= cpu_to_le32(~drop_flag
);
1705 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1707 xhci_endpoint_zero(xhci
, xhci
->devs
[udev
->slot_id
], ep
);
1709 if (xhci
->quirks
& XHCI_MTK_HOST
)
1710 xhci_mtk_drop_ep_quirk(hcd
, udev
, ep
);
1712 xhci_dbg(xhci
, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1713 (unsigned int) ep
->desc
.bEndpointAddress
,
1715 (unsigned int) new_drop_flags
,
1716 (unsigned int) new_add_flags
);
1720 /* Add an endpoint to a new possible bandwidth configuration for this device.
1721 * Only one call to this function is allowed per endpoint before
1722 * check_bandwidth() or reset_bandwidth() must be called.
1723 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1724 * add the endpoint to the schedule with possibly new parameters denoted by a
1725 * different endpoint descriptor in usb_host_endpoint.
1726 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1729 * The USB core will not allow URBs to be queued to an endpoint until the
1730 * configuration or alt setting is installed in the device, so there's no need
1731 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1733 int xhci_add_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1734 struct usb_host_endpoint
*ep
)
1736 struct xhci_hcd
*xhci
;
1737 struct xhci_container_ctx
*in_ctx
;
1738 unsigned int ep_index
;
1739 struct xhci_input_control_ctx
*ctrl_ctx
;
1741 u32 new_add_flags
, new_drop_flags
;
1742 struct xhci_virt_device
*virt_dev
;
1745 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1747 /* So we won't queue a reset ep command for a root hub */
1751 xhci
= hcd_to_xhci(hcd
);
1752 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1755 added_ctxs
= xhci_get_endpoint_flag(&ep
->desc
);
1756 if (added_ctxs
== SLOT_FLAG
|| added_ctxs
== EP0_FLAG
) {
1757 /* FIXME when we have to issue an evaluate endpoint command to
1758 * deal with ep0 max packet size changing once we get the
1761 xhci_dbg(xhci
, "xHCI %s - can't add slot or ep 0 %#x\n",
1762 __func__
, added_ctxs
);
1766 virt_dev
= xhci
->devs
[udev
->slot_id
];
1767 in_ctx
= virt_dev
->in_ctx
;
1768 ctrl_ctx
= xhci_get_input_control_ctx(in_ctx
);
1770 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1775 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1776 /* If this endpoint is already in use, and the upper layers are trying
1777 * to add it again without dropping it, reject the addition.
1779 if (virt_dev
->eps
[ep_index
].ring
&&
1780 !(le32_to_cpu(ctrl_ctx
->drop_flags
) & added_ctxs
)) {
1781 xhci_warn(xhci
, "Trying to add endpoint 0x%x "
1782 "without dropping it.\n",
1783 (unsigned int) ep
->desc
.bEndpointAddress
);
1787 /* If the HCD has already noted the endpoint is enabled,
1788 * ignore this request.
1790 if (le32_to_cpu(ctrl_ctx
->add_flags
) & added_ctxs
) {
1791 xhci_warn(xhci
, "xHCI %s called with enabled ep %p\n",
1797 * Configuration and alternate setting changes must be done in
1798 * process context, not interrupt context (or so documenation
1799 * for usb_set_interface() and usb_set_configuration() claim).
1801 if (xhci_endpoint_init(xhci
, virt_dev
, udev
, ep
, GFP_NOIO
) < 0) {
1802 dev_dbg(&udev
->dev
, "%s - could not initialize ep %#x\n",
1803 __func__
, ep
->desc
.bEndpointAddress
);
1807 if (xhci
->quirks
& XHCI_MTK_HOST
) {
1808 ret
= xhci_mtk_add_ep_quirk(hcd
, udev
, ep
);
1810 xhci_free_or_cache_endpoint_ring(xhci
,
1811 virt_dev
, ep_index
);
1816 ctrl_ctx
->add_flags
|= cpu_to_le32(added_ctxs
);
1817 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1819 /* If xhci_endpoint_disable() was called for this endpoint, but the
1820 * xHC hasn't been notified yet through the check_bandwidth() call,
1821 * this re-adds a new state for the endpoint from the new endpoint
1822 * descriptors. We must drop and re-add this endpoint, so we leave the
1825 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1827 /* Store the usb_device pointer for later use */
1830 xhci_dbg(xhci
, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1831 (unsigned int) ep
->desc
.bEndpointAddress
,
1833 (unsigned int) new_drop_flags
,
1834 (unsigned int) new_add_flags
);
1838 static void xhci_zero_in_ctx(struct xhci_hcd
*xhci
, struct xhci_virt_device
*virt_dev
)
1840 struct xhci_input_control_ctx
*ctrl_ctx
;
1841 struct xhci_ep_ctx
*ep_ctx
;
1842 struct xhci_slot_ctx
*slot_ctx
;
1845 ctrl_ctx
= xhci_get_input_control_ctx(virt_dev
->in_ctx
);
1847 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1852 /* When a device's add flag and drop flag are zero, any subsequent
1853 * configure endpoint command will leave that endpoint's state
1854 * untouched. Make sure we don't leave any old state in the input
1855 * endpoint contexts.
1857 ctrl_ctx
->drop_flags
= 0;
1858 ctrl_ctx
->add_flags
= 0;
1859 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
1860 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1861 /* Endpoint 0 is always valid */
1862 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1));
1863 for (i
= 1; i
< 31; ++i
) {
1864 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, i
);
1865 ep_ctx
->ep_info
= 0;
1866 ep_ctx
->ep_info2
= 0;
1868 ep_ctx
->tx_info
= 0;
1872 static int xhci_configure_endpoint_result(struct xhci_hcd
*xhci
,
1873 struct usb_device
*udev
, u32
*cmd_status
)
1877 switch (*cmd_status
) {
1878 case COMP_CMD_ABORT
:
1880 xhci_warn(xhci
, "Timeout while waiting for configure endpoint command\n");
1884 dev_warn(&udev
->dev
,
1885 "Not enough host controller resources for new device state.\n");
1887 /* FIXME: can we allocate more resources for the HC? */
1890 case COMP_2ND_BW_ERR
:
1891 dev_warn(&udev
->dev
,
1892 "Not enough bandwidth for new device state.\n");
1894 /* FIXME: can we go back to the old state? */
1897 /* the HCD set up something wrong */
1898 dev_warn(&udev
->dev
, "ERROR: Endpoint drop flag = 0, "
1900 "and endpoint is not disabled.\n");
1904 dev_warn(&udev
->dev
,
1905 "ERROR: Incompatible device for endpoint configure command.\n");
1909 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1910 "Successful Endpoint Configure command");
1914 xhci_err(xhci
, "ERROR: unexpected command completion code 0x%x.\n",
1922 static int xhci_evaluate_context_result(struct xhci_hcd
*xhci
,
1923 struct usb_device
*udev
, u32
*cmd_status
)
1926 struct xhci_virt_device
*virt_dev
= xhci
->devs
[udev
->slot_id
];
1928 switch (*cmd_status
) {
1929 case COMP_CMD_ABORT
:
1931 xhci_warn(xhci
, "Timeout while waiting for evaluate context command\n");
1935 dev_warn(&udev
->dev
,
1936 "WARN: xHCI driver setup invalid evaluate context command.\n");
1940 dev_warn(&udev
->dev
,
1941 "WARN: slot not enabled for evaluate context command.\n");
1944 case COMP_CTX_STATE
:
1945 dev_warn(&udev
->dev
,
1946 "WARN: invalid context state for evaluate context command.\n");
1947 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 1);
1951 dev_warn(&udev
->dev
,
1952 "ERROR: Incompatible device for evaluate context command.\n");
1956 /* Max Exit Latency too large error */
1957 dev_warn(&udev
->dev
, "WARN: Max Exit Latency too large\n");
1961 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1962 "Successful evaluate context command");
1966 xhci_err(xhci
, "ERROR: unexpected command completion code 0x%x.\n",
1974 static u32
xhci_count_num_new_endpoints(struct xhci_hcd
*xhci
,
1975 struct xhci_input_control_ctx
*ctrl_ctx
)
1977 u32 valid_add_flags
;
1978 u32 valid_drop_flags
;
1980 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1981 * (bit 1). The default control endpoint is added during the Address
1982 * Device command and is never removed until the slot is disabled.
1984 valid_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
) >> 2;
1985 valid_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
) >> 2;
1987 /* Use hweight32 to count the number of ones in the add flags, or
1988 * number of endpoints added. Don't count endpoints that are changed
1989 * (both added and dropped).
1991 return hweight32(valid_add_flags
) -
1992 hweight32(valid_add_flags
& valid_drop_flags
);
1995 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd
*xhci
,
1996 struct xhci_input_control_ctx
*ctrl_ctx
)
1998 u32 valid_add_flags
;
1999 u32 valid_drop_flags
;
2001 valid_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
) >> 2;
2002 valid_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
) >> 2;
2004 return hweight32(valid_drop_flags
) -
2005 hweight32(valid_add_flags
& valid_drop_flags
);
2009 * We need to reserve the new number of endpoints before the configure endpoint
2010 * command completes. We can't subtract the dropped endpoints from the number
2011 * of active endpoints until the command completes because we can oversubscribe
2012 * the host in this case:
2014 * - the first configure endpoint command drops more endpoints than it adds
2015 * - a second configure endpoint command that adds more endpoints is queued
2016 * - the first configure endpoint command fails, so the config is unchanged
2017 * - the second command may succeed, even though there isn't enough resources
2019 * Must be called with xhci->lock held.
2021 static int xhci_reserve_host_resources(struct xhci_hcd
*xhci
,
2022 struct xhci_input_control_ctx
*ctrl_ctx
)
2026 added_eps
= xhci_count_num_new_endpoints(xhci
, ctrl_ctx
);
2027 if (xhci
->num_active_eps
+ added_eps
> xhci
->limit_active_eps
) {
2028 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2029 "Not enough ep ctxs: "
2030 "%u active, need to add %u, limit is %u.",
2031 xhci
->num_active_eps
, added_eps
,
2032 xhci
->limit_active_eps
);
2035 xhci
->num_active_eps
+= added_eps
;
2036 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2037 "Adding %u ep ctxs, %u now active.", added_eps
,
2038 xhci
->num_active_eps
);
2043 * The configure endpoint was failed by the xHC for some other reason, so we
2044 * need to revert the resources that failed configuration would have used.
2046 * Must be called with xhci->lock held.
2048 static void xhci_free_host_resources(struct xhci_hcd
*xhci
,
2049 struct xhci_input_control_ctx
*ctrl_ctx
)
2053 num_failed_eps
= xhci_count_num_new_endpoints(xhci
, ctrl_ctx
);
2054 xhci
->num_active_eps
-= num_failed_eps
;
2055 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2056 "Removing %u failed ep ctxs, %u now active.",
2058 xhci
->num_active_eps
);
2062 * Now that the command has completed, clean up the active endpoint count by
2063 * subtracting out the endpoints that were dropped (but not changed).
2065 * Must be called with xhci->lock held.
2067 static void xhci_finish_resource_reservation(struct xhci_hcd
*xhci
,
2068 struct xhci_input_control_ctx
*ctrl_ctx
)
2070 u32 num_dropped_eps
;
2072 num_dropped_eps
= xhci_count_num_dropped_endpoints(xhci
, ctrl_ctx
);
2073 xhci
->num_active_eps
-= num_dropped_eps
;
2074 if (num_dropped_eps
)
2075 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2076 "Removing %u dropped ep ctxs, %u now active.",
2078 xhci
->num_active_eps
);
2081 static unsigned int xhci_get_block_size(struct usb_device
*udev
)
2083 switch (udev
->speed
) {
2085 case USB_SPEED_FULL
:
2087 case USB_SPEED_HIGH
:
2089 case USB_SPEED_SUPER
:
2090 case USB_SPEED_SUPER_PLUS
:
2092 case USB_SPEED_UNKNOWN
:
2093 case USB_SPEED_WIRELESS
:
2095 /* Should never happen */
2101 xhci_get_largest_overhead(struct xhci_interval_bw
*interval_bw
)
2103 if (interval_bw
->overhead
[LS_OVERHEAD_TYPE
])
2105 if (interval_bw
->overhead
[FS_OVERHEAD_TYPE
])
2110 /* If we are changing a LS/FS device under a HS hub,
2111 * make sure (if we are activating a new TT) that the HS bus has enough
2112 * bandwidth for this new TT.
2114 static int xhci_check_tt_bw_table(struct xhci_hcd
*xhci
,
2115 struct xhci_virt_device
*virt_dev
,
2118 struct xhci_interval_bw_table
*bw_table
;
2119 struct xhci_tt_bw_info
*tt_info
;
2121 /* Find the bandwidth table for the root port this TT is attached to. */
2122 bw_table
= &xhci
->rh_bw
[virt_dev
->real_port
- 1].bw_table
;
2123 tt_info
= virt_dev
->tt_info
;
2124 /* If this TT already had active endpoints, the bandwidth for this TT
2125 * has already been added. Removing all periodic endpoints (and thus
2126 * making the TT enactive) will only decrease the bandwidth used.
2130 if (old_active_eps
== 0 && tt_info
->active_eps
!= 0) {
2131 if (bw_table
->bw_used
+ TT_HS_OVERHEAD
> HS_BW_LIMIT
)
2135 /* Not sure why we would have no new active endpoints...
2137 * Maybe because of an Evaluate Context change for a hub update or a
2138 * control endpoint 0 max packet size change?
2139 * FIXME: skip the bandwidth calculation in that case.
2144 static int xhci_check_ss_bw(struct xhci_hcd
*xhci
,
2145 struct xhci_virt_device
*virt_dev
)
2147 unsigned int bw_reserved
;
2149 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_IN
, 100);
2150 if (virt_dev
->bw_table
->ss_bw_in
> (SS_BW_LIMIT_IN
- bw_reserved
))
2153 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_OUT
, 100);
2154 if (virt_dev
->bw_table
->ss_bw_out
> (SS_BW_LIMIT_OUT
- bw_reserved
))
2161 * This algorithm is a very conservative estimate of the worst-case scheduling
2162 * scenario for any one interval. The hardware dynamically schedules the
2163 * packets, so we can't tell which microframe could be the limiting factor in
2164 * the bandwidth scheduling. This only takes into account periodic endpoints.
2166 * Obviously, we can't solve an NP complete problem to find the minimum worst
2167 * case scenario. Instead, we come up with an estimate that is no less than
2168 * the worst case bandwidth used for any one microframe, but may be an
2171 * We walk the requirements for each endpoint by interval, starting with the
2172 * smallest interval, and place packets in the schedule where there is only one
2173 * possible way to schedule packets for that interval. In order to simplify
2174 * this algorithm, we record the largest max packet size for each interval, and
2175 * assume all packets will be that size.
2177 * For interval 0, we obviously must schedule all packets for each interval.
2178 * The bandwidth for interval 0 is just the amount of data to be transmitted
2179 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2180 * the number of packets).
2182 * For interval 1, we have two possible microframes to schedule those packets
2183 * in. For this algorithm, if we can schedule the same number of packets for
2184 * each possible scheduling opportunity (each microframe), we will do so. The
2185 * remaining number of packets will be saved to be transmitted in the gaps in
2186 * the next interval's scheduling sequence.
2188 * As we move those remaining packets to be scheduled with interval 2 packets,
2189 * we have to double the number of remaining packets to transmit. This is
2190 * because the intervals are actually powers of 2, and we would be transmitting
2191 * the previous interval's packets twice in this interval. We also have to be
2192 * sure that when we look at the largest max packet size for this interval, we
2193 * also look at the largest max packet size for the remaining packets and take
2194 * the greater of the two.
2196 * The algorithm continues to evenly distribute packets in each scheduling
2197 * opportunity, and push the remaining packets out, until we get to the last
2198 * interval. Then those packets and their associated overhead are just added
2199 * to the bandwidth used.
2201 static int xhci_check_bw_table(struct xhci_hcd
*xhci
,
2202 struct xhci_virt_device
*virt_dev
,
2205 unsigned int bw_reserved
;
2206 unsigned int max_bandwidth
;
2207 unsigned int bw_used
;
2208 unsigned int block_size
;
2209 struct xhci_interval_bw_table
*bw_table
;
2210 unsigned int packet_size
= 0;
2211 unsigned int overhead
= 0;
2212 unsigned int packets_transmitted
= 0;
2213 unsigned int packets_remaining
= 0;
2216 if (virt_dev
->udev
->speed
>= USB_SPEED_SUPER
)
2217 return xhci_check_ss_bw(xhci
, virt_dev
);
2219 if (virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2220 max_bandwidth
= HS_BW_LIMIT
;
2221 /* Convert percent of bus BW reserved to blocks reserved */
2222 bw_reserved
= DIV_ROUND_UP(HS_BW_RESERVED
* max_bandwidth
, 100);
2224 max_bandwidth
= FS_BW_LIMIT
;
2225 bw_reserved
= DIV_ROUND_UP(FS_BW_RESERVED
* max_bandwidth
, 100);
2228 bw_table
= virt_dev
->bw_table
;
2229 /* We need to translate the max packet size and max ESIT payloads into
2230 * the units the hardware uses.
2232 block_size
= xhci_get_block_size(virt_dev
->udev
);
2234 /* If we are manipulating a LS/FS device under a HS hub, double check
2235 * that the HS bus has enough bandwidth if we are activing a new TT.
2237 if (virt_dev
->tt_info
) {
2238 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2239 "Recalculating BW for rootport %u",
2240 virt_dev
->real_port
);
2241 if (xhci_check_tt_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2242 xhci_warn(xhci
, "Not enough bandwidth on HS bus for "
2243 "newly activated TT.\n");
2246 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2247 "Recalculating BW for TT slot %u port %u",
2248 virt_dev
->tt_info
->slot_id
,
2249 virt_dev
->tt_info
->ttport
);
2251 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2252 "Recalculating BW for rootport %u",
2253 virt_dev
->real_port
);
2256 /* Add in how much bandwidth will be used for interval zero, or the
2257 * rounded max ESIT payload + number of packets * largest overhead.
2259 bw_used
= DIV_ROUND_UP(bw_table
->interval0_esit_payload
, block_size
) +
2260 bw_table
->interval_bw
[0].num_packets
*
2261 xhci_get_largest_overhead(&bw_table
->interval_bw
[0]);
2263 for (i
= 1; i
< XHCI_MAX_INTERVAL
; i
++) {
2264 unsigned int bw_added
;
2265 unsigned int largest_mps
;
2266 unsigned int interval_overhead
;
2269 * How many packets could we transmit in this interval?
2270 * If packets didn't fit in the previous interval, we will need
2271 * to transmit that many packets twice within this interval.
2273 packets_remaining
= 2 * packets_remaining
+
2274 bw_table
->interval_bw
[i
].num_packets
;
2276 /* Find the largest max packet size of this or the previous
2279 if (list_empty(&bw_table
->interval_bw
[i
].endpoints
))
2282 struct xhci_virt_ep
*virt_ep
;
2283 struct list_head
*ep_entry
;
2285 ep_entry
= bw_table
->interval_bw
[i
].endpoints
.next
;
2286 virt_ep
= list_entry(ep_entry
,
2287 struct xhci_virt_ep
, bw_endpoint_list
);
2288 /* Convert to blocks, rounding up */
2289 largest_mps
= DIV_ROUND_UP(
2290 virt_ep
->bw_info
.max_packet_size
,
2293 if (largest_mps
> packet_size
)
2294 packet_size
= largest_mps
;
2296 /* Use the larger overhead of this or the previous interval. */
2297 interval_overhead
= xhci_get_largest_overhead(
2298 &bw_table
->interval_bw
[i
]);
2299 if (interval_overhead
> overhead
)
2300 overhead
= interval_overhead
;
2302 /* How many packets can we evenly distribute across
2303 * (1 << (i + 1)) possible scheduling opportunities?
2305 packets_transmitted
= packets_remaining
>> (i
+ 1);
2307 /* Add in the bandwidth used for those scheduled packets */
2308 bw_added
= packets_transmitted
* (overhead
+ packet_size
);
2310 /* How many packets do we have remaining to transmit? */
2311 packets_remaining
= packets_remaining
% (1 << (i
+ 1));
2313 /* What largest max packet size should those packets have? */
2314 /* If we've transmitted all packets, don't carry over the
2315 * largest packet size.
2317 if (packets_remaining
== 0) {
2320 } else if (packets_transmitted
> 0) {
2321 /* Otherwise if we do have remaining packets, and we've
2322 * scheduled some packets in this interval, take the
2323 * largest max packet size from endpoints with this
2326 packet_size
= largest_mps
;
2327 overhead
= interval_overhead
;
2329 /* Otherwise carry over packet_size and overhead from the last
2330 * time we had a remainder.
2332 bw_used
+= bw_added
;
2333 if (bw_used
> max_bandwidth
) {
2334 xhci_warn(xhci
, "Not enough bandwidth. "
2335 "Proposed: %u, Max: %u\n",
2336 bw_used
, max_bandwidth
);
2341 * Ok, we know we have some packets left over after even-handedly
2342 * scheduling interval 15. We don't know which microframes they will
2343 * fit into, so we over-schedule and say they will be scheduled every
2346 if (packets_remaining
> 0)
2347 bw_used
+= overhead
+ packet_size
;
2349 if (!virt_dev
->tt_info
&& virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2350 unsigned int port_index
= virt_dev
->real_port
- 1;
2352 /* OK, we're manipulating a HS device attached to a
2353 * root port bandwidth domain. Include the number of active TTs
2354 * in the bandwidth used.
2356 bw_used
+= TT_HS_OVERHEAD
*
2357 xhci
->rh_bw
[port_index
].num_active_tts
;
2360 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2361 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2362 "Available: %u " "percent",
2363 bw_used
, max_bandwidth
, bw_reserved
,
2364 (max_bandwidth
- bw_used
- bw_reserved
) * 100 /
2367 bw_used
+= bw_reserved
;
2368 if (bw_used
> max_bandwidth
) {
2369 xhci_warn(xhci
, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2370 bw_used
, max_bandwidth
);
2374 bw_table
->bw_used
= bw_used
;
2378 static bool xhci_is_async_ep(unsigned int ep_type
)
2380 return (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
2381 ep_type
!= ISOC_IN_EP
&&
2382 ep_type
!= INT_IN_EP
);
2385 static bool xhci_is_sync_in_ep(unsigned int ep_type
)
2387 return (ep_type
== ISOC_IN_EP
|| ep_type
== INT_IN_EP
);
2390 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info
*ep_bw
)
2392 unsigned int mps
= DIV_ROUND_UP(ep_bw
->max_packet_size
, SS_BLOCK
);
2394 if (ep_bw
->ep_interval
== 0)
2395 return SS_OVERHEAD_BURST
+
2396 (ep_bw
->mult
* ep_bw
->num_packets
*
2397 (SS_OVERHEAD
+ mps
));
2398 return DIV_ROUND_UP(ep_bw
->mult
* ep_bw
->num_packets
*
2399 (SS_OVERHEAD
+ mps
+ SS_OVERHEAD_BURST
),
2400 1 << ep_bw
->ep_interval
);
2404 void xhci_drop_ep_from_interval_table(struct xhci_hcd
*xhci
,
2405 struct xhci_bw_info
*ep_bw
,
2406 struct xhci_interval_bw_table
*bw_table
,
2407 struct usb_device
*udev
,
2408 struct xhci_virt_ep
*virt_ep
,
2409 struct xhci_tt_bw_info
*tt_info
)
2411 struct xhci_interval_bw
*interval_bw
;
2412 int normalized_interval
;
2414 if (xhci_is_async_ep(ep_bw
->type
))
2417 if (udev
->speed
>= USB_SPEED_SUPER
) {
2418 if (xhci_is_sync_in_ep(ep_bw
->type
))
2419 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
-=
2420 xhci_get_ss_bw_consumed(ep_bw
);
2422 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
-=
2423 xhci_get_ss_bw_consumed(ep_bw
);
2427 /* SuperSpeed endpoints never get added to intervals in the table, so
2428 * this check is only valid for HS/FS/LS devices.
2430 if (list_empty(&virt_ep
->bw_endpoint_list
))
2432 /* For LS/FS devices, we need to translate the interval expressed in
2433 * microframes to frames.
2435 if (udev
->speed
== USB_SPEED_HIGH
)
2436 normalized_interval
= ep_bw
->ep_interval
;
2438 normalized_interval
= ep_bw
->ep_interval
- 3;
2440 if (normalized_interval
== 0)
2441 bw_table
->interval0_esit_payload
-= ep_bw
->max_esit_payload
;
2442 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2443 interval_bw
->num_packets
-= ep_bw
->num_packets
;
2444 switch (udev
->speed
) {
2446 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] -= 1;
2448 case USB_SPEED_FULL
:
2449 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] -= 1;
2451 case USB_SPEED_HIGH
:
2452 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] -= 1;
2454 case USB_SPEED_SUPER
:
2455 case USB_SPEED_SUPER_PLUS
:
2456 case USB_SPEED_UNKNOWN
:
2457 case USB_SPEED_WIRELESS
:
2458 /* Should never happen because only LS/FS/HS endpoints will get
2459 * added to the endpoint list.
2464 tt_info
->active_eps
-= 1;
2465 list_del_init(&virt_ep
->bw_endpoint_list
);
2468 static void xhci_add_ep_to_interval_table(struct xhci_hcd
*xhci
,
2469 struct xhci_bw_info
*ep_bw
,
2470 struct xhci_interval_bw_table
*bw_table
,
2471 struct usb_device
*udev
,
2472 struct xhci_virt_ep
*virt_ep
,
2473 struct xhci_tt_bw_info
*tt_info
)
2475 struct xhci_interval_bw
*interval_bw
;
2476 struct xhci_virt_ep
*smaller_ep
;
2477 int normalized_interval
;
2479 if (xhci_is_async_ep(ep_bw
->type
))
2482 if (udev
->speed
== USB_SPEED_SUPER
) {
2483 if (xhci_is_sync_in_ep(ep_bw
->type
))
2484 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
+=
2485 xhci_get_ss_bw_consumed(ep_bw
);
2487 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
+=
2488 xhci_get_ss_bw_consumed(ep_bw
);
2492 /* For LS/FS devices, we need to translate the interval expressed in
2493 * microframes to frames.
2495 if (udev
->speed
== USB_SPEED_HIGH
)
2496 normalized_interval
= ep_bw
->ep_interval
;
2498 normalized_interval
= ep_bw
->ep_interval
- 3;
2500 if (normalized_interval
== 0)
2501 bw_table
->interval0_esit_payload
+= ep_bw
->max_esit_payload
;
2502 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2503 interval_bw
->num_packets
+= ep_bw
->num_packets
;
2504 switch (udev
->speed
) {
2506 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] += 1;
2508 case USB_SPEED_FULL
:
2509 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] += 1;
2511 case USB_SPEED_HIGH
:
2512 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] += 1;
2514 case USB_SPEED_SUPER
:
2515 case USB_SPEED_SUPER_PLUS
:
2516 case USB_SPEED_UNKNOWN
:
2517 case USB_SPEED_WIRELESS
:
2518 /* Should never happen because only LS/FS/HS endpoints will get
2519 * added to the endpoint list.
2525 tt_info
->active_eps
+= 1;
2526 /* Insert the endpoint into the list, largest max packet size first. */
2527 list_for_each_entry(smaller_ep
, &interval_bw
->endpoints
,
2529 if (ep_bw
->max_packet_size
>=
2530 smaller_ep
->bw_info
.max_packet_size
) {
2531 /* Add the new ep before the smaller endpoint */
2532 list_add_tail(&virt_ep
->bw_endpoint_list
,
2533 &smaller_ep
->bw_endpoint_list
);
2537 /* Add the new endpoint at the end of the list. */
2538 list_add_tail(&virt_ep
->bw_endpoint_list
,
2539 &interval_bw
->endpoints
);
2542 void xhci_update_tt_active_eps(struct xhci_hcd
*xhci
,
2543 struct xhci_virt_device
*virt_dev
,
2546 struct xhci_root_port_bw_info
*rh_bw_info
;
2547 if (!virt_dev
->tt_info
)
2550 rh_bw_info
= &xhci
->rh_bw
[virt_dev
->real_port
- 1];
2551 if (old_active_eps
== 0 &&
2552 virt_dev
->tt_info
->active_eps
!= 0) {
2553 rh_bw_info
->num_active_tts
+= 1;
2554 rh_bw_info
->bw_table
.bw_used
+= TT_HS_OVERHEAD
;
2555 } else if (old_active_eps
!= 0 &&
2556 virt_dev
->tt_info
->active_eps
== 0) {
2557 rh_bw_info
->num_active_tts
-= 1;
2558 rh_bw_info
->bw_table
.bw_used
-= TT_HS_OVERHEAD
;
2562 static int xhci_reserve_bandwidth(struct xhci_hcd
*xhci
,
2563 struct xhci_virt_device
*virt_dev
,
2564 struct xhci_container_ctx
*in_ctx
)
2566 struct xhci_bw_info ep_bw_info
[31];
2568 struct xhci_input_control_ctx
*ctrl_ctx
;
2569 int old_active_eps
= 0;
2571 if (virt_dev
->tt_info
)
2572 old_active_eps
= virt_dev
->tt_info
->active_eps
;
2574 ctrl_ctx
= xhci_get_input_control_ctx(in_ctx
);
2576 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2581 for (i
= 0; i
< 31; i
++) {
2582 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2585 /* Make a copy of the BW info in case we need to revert this */
2586 memcpy(&ep_bw_info
[i
], &virt_dev
->eps
[i
].bw_info
,
2587 sizeof(ep_bw_info
[i
]));
2588 /* Drop the endpoint from the interval table if the endpoint is
2589 * being dropped or changed.
2591 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2592 xhci_drop_ep_from_interval_table(xhci
,
2593 &virt_dev
->eps
[i
].bw_info
,
2599 /* Overwrite the information stored in the endpoints' bw_info */
2600 xhci_update_bw_info(xhci
, virt_dev
->in_ctx
, ctrl_ctx
, virt_dev
);
2601 for (i
= 0; i
< 31; i
++) {
2602 /* Add any changed or added endpoints to the interval table */
2603 if (EP_IS_ADDED(ctrl_ctx
, i
))
2604 xhci_add_ep_to_interval_table(xhci
,
2605 &virt_dev
->eps
[i
].bw_info
,
2612 if (!xhci_check_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2613 /* Ok, this fits in the bandwidth we have.
2614 * Update the number of active TTs.
2616 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
2620 /* We don't have enough bandwidth for this, revert the stored info. */
2621 for (i
= 0; i
< 31; i
++) {
2622 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2625 /* Drop the new copies of any added or changed endpoints from
2626 * the interval table.
2628 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
2629 xhci_drop_ep_from_interval_table(xhci
,
2630 &virt_dev
->eps
[i
].bw_info
,
2636 /* Revert the endpoint back to its old information */
2637 memcpy(&virt_dev
->eps
[i
].bw_info
, &ep_bw_info
[i
],
2638 sizeof(ep_bw_info
[i
]));
2639 /* Add any changed or dropped endpoints back into the table */
2640 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2641 xhci_add_ep_to_interval_table(xhci
,
2642 &virt_dev
->eps
[i
].bw_info
,
2652 /* Issue a configure endpoint command or evaluate context command
2653 * and wait for it to finish.
2655 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
2656 struct usb_device
*udev
,
2657 struct xhci_command
*command
,
2658 bool ctx_change
, bool must_succeed
)
2661 unsigned long flags
;
2662 struct xhci_input_control_ctx
*ctrl_ctx
;
2663 struct xhci_virt_device
*virt_dev
;
2668 spin_lock_irqsave(&xhci
->lock
, flags
);
2669 virt_dev
= xhci
->devs
[udev
->slot_id
];
2671 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
2673 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2674 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2679 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
) &&
2680 xhci_reserve_host_resources(xhci
, ctrl_ctx
)) {
2681 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2682 xhci_warn(xhci
, "Not enough host resources, "
2683 "active endpoint contexts = %u\n",
2684 xhci
->num_active_eps
);
2687 if ((xhci
->quirks
& XHCI_SW_BW_CHECKING
) &&
2688 xhci_reserve_bandwidth(xhci
, virt_dev
, command
->in_ctx
)) {
2689 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2690 xhci_free_host_resources(xhci
, ctrl_ctx
);
2691 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2692 xhci_warn(xhci
, "Not enough bandwidth\n");
2697 ret
= xhci_queue_configure_endpoint(xhci
, command
,
2698 command
->in_ctx
->dma
,
2699 udev
->slot_id
, must_succeed
);
2701 ret
= xhci_queue_evaluate_context(xhci
, command
,
2702 command
->in_ctx
->dma
,
2703 udev
->slot_id
, must_succeed
);
2705 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2706 xhci_free_host_resources(xhci
, ctrl_ctx
);
2707 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2708 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
2709 "FIXME allocate a new ring segment");
2712 xhci_ring_cmd_db(xhci
);
2713 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2715 /* Wait for the configure endpoint command to complete */
2716 wait_for_completion(command
->completion
);
2719 ret
= xhci_configure_endpoint_result(xhci
, udev
,
2722 ret
= xhci_evaluate_context_result(xhci
, udev
,
2725 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
2726 spin_lock_irqsave(&xhci
->lock
, flags
);
2727 /* If the command failed, remove the reserved resources.
2728 * Otherwise, clean up the estimate to include dropped eps.
2731 xhci_free_host_resources(xhci
, ctrl_ctx
);
2733 xhci_finish_resource_reservation(xhci
, ctrl_ctx
);
2734 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2739 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd
*xhci
,
2740 struct xhci_virt_device
*vdev
, int i
)
2742 struct xhci_virt_ep
*ep
= &vdev
->eps
[i
];
2744 if (ep
->ep_state
& EP_HAS_STREAMS
) {
2745 xhci_warn(xhci
, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2746 xhci_get_endpoint_address(i
));
2747 xhci_free_stream_info(xhci
, ep
->stream_info
);
2748 ep
->stream_info
= NULL
;
2749 ep
->ep_state
&= ~EP_HAS_STREAMS
;
2753 /* Called after one or more calls to xhci_add_endpoint() or
2754 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2755 * to call xhci_reset_bandwidth().
2757 * Since we are in the middle of changing either configuration or
2758 * installing a new alt setting, the USB core won't allow URBs to be
2759 * enqueued for any endpoint on the old config or interface. Nothing
2760 * else should be touching the xhci->devs[slot_id] structure, so we
2761 * don't need to take the xhci->lock for manipulating that.
2763 int xhci_check_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2767 struct xhci_hcd
*xhci
;
2768 struct xhci_virt_device
*virt_dev
;
2769 struct xhci_input_control_ctx
*ctrl_ctx
;
2770 struct xhci_slot_ctx
*slot_ctx
;
2771 struct xhci_command
*command
;
2773 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2776 xhci
= hcd_to_xhci(hcd
);
2777 if ((xhci
->xhc_state
& XHCI_STATE_DYING
) ||
2778 (xhci
->xhc_state
& XHCI_STATE_REMOVING
))
2781 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2782 virt_dev
= xhci
->devs
[udev
->slot_id
];
2784 command
= xhci_alloc_command(xhci
, false, true, GFP_KERNEL
);
2788 command
->in_ctx
= virt_dev
->in_ctx
;
2790 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2791 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
2793 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2796 goto command_cleanup
;
2798 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2799 ctrl_ctx
->add_flags
&= cpu_to_le32(~EP0_FLAG
);
2800 ctrl_ctx
->drop_flags
&= cpu_to_le32(~(SLOT_FLAG
| EP0_FLAG
));
2802 /* Don't issue the command if there's no endpoints to update. */
2803 if (ctrl_ctx
->add_flags
== cpu_to_le32(SLOT_FLAG
) &&
2804 ctrl_ctx
->drop_flags
== 0) {
2806 goto command_cleanup
;
2808 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2809 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
2810 for (i
= 31; i
>= 1; i
--) {
2811 __le32 le32
= cpu_to_le32(BIT(i
));
2813 if ((virt_dev
->eps
[i
-1].ring
&& !(ctrl_ctx
->drop_flags
& le32
))
2814 || (ctrl_ctx
->add_flags
& le32
) || i
== 1) {
2815 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
2816 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(i
));
2820 xhci_dbg(xhci
, "New Input Control Context:\n");
2821 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
,
2822 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2824 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
2827 /* Callee should call reset_bandwidth() */
2828 goto command_cleanup
;
2830 xhci_dbg(xhci
, "Output context after successful config ep cmd:\n");
2831 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
,
2832 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2834 /* Free any rings that were dropped, but not changed. */
2835 for (i
= 1; i
< 31; ++i
) {
2836 if ((le32_to_cpu(ctrl_ctx
->drop_flags
) & (1 << (i
+ 1))) &&
2837 !(le32_to_cpu(ctrl_ctx
->add_flags
) & (1 << (i
+ 1)))) {
2838 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2839 xhci_check_bw_drop_ep_streams(xhci
, virt_dev
, i
);
2842 xhci_zero_in_ctx(xhci
, virt_dev
);
2844 * Install any rings for completely new endpoints or changed endpoints,
2845 * and free or cache any old rings from changed endpoints.
2847 for (i
= 1; i
< 31; ++i
) {
2848 if (!virt_dev
->eps
[i
].new_ring
)
2850 /* Only cache or free the old ring if it exists.
2851 * It may not if this is the first add of an endpoint.
2853 if (virt_dev
->eps
[i
].ring
) {
2854 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2856 xhci_check_bw_drop_ep_streams(xhci
, virt_dev
, i
);
2857 virt_dev
->eps
[i
].ring
= virt_dev
->eps
[i
].new_ring
;
2858 virt_dev
->eps
[i
].new_ring
= NULL
;
2861 kfree(command
->completion
);
2867 void xhci_reset_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2869 struct xhci_hcd
*xhci
;
2870 struct xhci_virt_device
*virt_dev
;
2873 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2876 xhci
= hcd_to_xhci(hcd
);
2878 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2879 virt_dev
= xhci
->devs
[udev
->slot_id
];
2880 /* Free any rings allocated for added endpoints */
2881 for (i
= 0; i
< 31; ++i
) {
2882 if (virt_dev
->eps
[i
].new_ring
) {
2883 xhci_ring_free(xhci
, virt_dev
->eps
[i
].new_ring
);
2884 virt_dev
->eps
[i
].new_ring
= NULL
;
2887 xhci_zero_in_ctx(xhci
, virt_dev
);
2890 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd
*xhci
,
2891 struct xhci_container_ctx
*in_ctx
,
2892 struct xhci_container_ctx
*out_ctx
,
2893 struct xhci_input_control_ctx
*ctrl_ctx
,
2894 u32 add_flags
, u32 drop_flags
)
2896 ctrl_ctx
->add_flags
= cpu_to_le32(add_flags
);
2897 ctrl_ctx
->drop_flags
= cpu_to_le32(drop_flags
);
2898 xhci_slot_copy(xhci
, in_ctx
, out_ctx
);
2899 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2901 xhci_dbg(xhci
, "Input Context:\n");
2902 xhci_dbg_ctx(xhci
, in_ctx
, xhci_last_valid_endpoint(add_flags
));
2905 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd
*xhci
,
2906 unsigned int slot_id
, unsigned int ep_index
,
2907 struct xhci_dequeue_state
*deq_state
)
2909 struct xhci_input_control_ctx
*ctrl_ctx
;
2910 struct xhci_container_ctx
*in_ctx
;
2911 struct xhci_ep_ctx
*ep_ctx
;
2915 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
2916 ctrl_ctx
= xhci_get_input_control_ctx(in_ctx
);
2918 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2923 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2924 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
2925 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
2926 addr
= xhci_trb_virt_to_dma(deq_state
->new_deq_seg
,
2927 deq_state
->new_deq_ptr
);
2929 xhci_warn(xhci
, "WARN Cannot submit config ep after "
2930 "reset ep command\n");
2931 xhci_warn(xhci
, "WARN deq seg = %p, deq ptr = %p\n",
2932 deq_state
->new_deq_seg
,
2933 deq_state
->new_deq_ptr
);
2936 ep_ctx
->deq
= cpu_to_le64(addr
| deq_state
->new_cycle_state
);
2938 added_ctxs
= xhci_get_endpoint_flag_from_index(ep_index
);
2939 xhci_setup_input_ctx_for_config_ep(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2940 xhci
->devs
[slot_id
]->out_ctx
, ctrl_ctx
,
2941 added_ctxs
, added_ctxs
);
2944 void xhci_cleanup_stalled_ring(struct xhci_hcd
*xhci
,
2945 unsigned int ep_index
, struct xhci_td
*td
)
2947 struct xhci_dequeue_state deq_state
;
2948 struct xhci_virt_ep
*ep
;
2949 struct usb_device
*udev
= td
->urb
->dev
;
2951 xhci_dbg_trace(xhci
, trace_xhci_dbg_reset_ep
,
2952 "Cleaning up stalled endpoint ring");
2953 ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
2954 /* We need to move the HW's dequeue pointer past this TD,
2955 * or it will attempt to resend it on the next doorbell ring.
2957 xhci_find_new_dequeue_state(xhci
, udev
->slot_id
,
2958 ep_index
, ep
->stopped_stream
, td
, &deq_state
);
2960 if (!deq_state
.new_deq_ptr
|| !deq_state
.new_deq_seg
)
2963 /* HW with the reset endpoint quirk will use the saved dequeue state to
2964 * issue a configure endpoint command later.
2966 if (!(xhci
->quirks
& XHCI_RESET_EP_QUIRK
)) {
2967 xhci_dbg_trace(xhci
, trace_xhci_dbg_reset_ep
,
2968 "Queueing new dequeue state");
2969 xhci_queue_new_dequeue_state(xhci
, udev
->slot_id
,
2970 ep_index
, ep
->stopped_stream
, &deq_state
);
2972 /* Better hope no one uses the input context between now and the
2973 * reset endpoint completion!
2974 * XXX: No idea how this hardware will react when stream rings
2977 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2978 "Setting up input context for "
2979 "configure endpoint command");
2980 xhci_setup_input_ctx_for_quirk(xhci
, udev
->slot_id
,
2981 ep_index
, &deq_state
);
2985 /* Called when clearing halted device. The core should have sent the control
2986 * message to clear the device halt condition. The host side of the halt should
2987 * already be cleared with a reset endpoint command issued when the STALL tx
2988 * event was received.
2990 * Context: in_interrupt
2993 void xhci_endpoint_reset(struct usb_hcd
*hcd
,
2994 struct usb_host_endpoint
*ep
)
2996 struct xhci_hcd
*xhci
;
2998 xhci
= hcd_to_xhci(hcd
);
3001 * We might need to implement the config ep cmd in xhci 4.8.1 note:
3002 * The Reset Endpoint Command may only be issued to endpoints in the
3003 * Halted state. If software wishes reset the Data Toggle or Sequence
3004 * Number of an endpoint that isn't in the Halted state, then software
3005 * may issue a Configure Endpoint Command with the Drop and Add bits set
3006 * for the target endpoint. that is in the Stopped state.
3009 /* For now just print debug to follow the situation */
3010 xhci_dbg(xhci
, "Endpoint 0x%x ep reset callback called\n",
3011 ep
->desc
.bEndpointAddress
);
3014 static int xhci_check_streams_endpoint(struct xhci_hcd
*xhci
,
3015 struct usb_device
*udev
, struct usb_host_endpoint
*ep
,
3016 unsigned int slot_id
)
3019 unsigned int ep_index
;
3020 unsigned int ep_state
;
3024 ret
= xhci_check_args(xhci_to_hcd(xhci
), udev
, ep
, 1, true, __func__
);
3027 if (usb_ss_max_streams(&ep
->ss_ep_comp
) == 0) {
3028 xhci_warn(xhci
, "WARN: SuperSpeed Endpoint Companion"
3029 " descriptor for ep 0x%x does not support streams\n",
3030 ep
->desc
.bEndpointAddress
);
3034 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
3035 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
3036 if (ep_state
& EP_HAS_STREAMS
||
3037 ep_state
& EP_GETTING_STREAMS
) {
3038 xhci_warn(xhci
, "WARN: SuperSpeed bulk endpoint 0x%x "
3039 "already has streams set up.\n",
3040 ep
->desc
.bEndpointAddress
);
3041 xhci_warn(xhci
, "Send email to xHCI maintainer and ask for "
3042 "dynamic stream context array reallocation.\n");
3045 if (!list_empty(&xhci
->devs
[slot_id
]->eps
[ep_index
].ring
->td_list
)) {
3046 xhci_warn(xhci
, "Cannot setup streams for SuperSpeed bulk "
3047 "endpoint 0x%x; URBs are pending.\n",
3048 ep
->desc
.bEndpointAddress
);
3054 static void xhci_calculate_streams_entries(struct xhci_hcd
*xhci
,
3055 unsigned int *num_streams
, unsigned int *num_stream_ctxs
)
3057 unsigned int max_streams
;
3059 /* The stream context array size must be a power of two */
3060 *num_stream_ctxs
= roundup_pow_of_two(*num_streams
);
3062 * Find out how many primary stream array entries the host controller
3063 * supports. Later we may use secondary stream arrays (similar to 2nd
3064 * level page entries), but that's an optional feature for xHCI host
3065 * controllers. xHCs must support at least 4 stream IDs.
3067 max_streams
= HCC_MAX_PSA(xhci
->hcc_params
);
3068 if (*num_stream_ctxs
> max_streams
) {
3069 xhci_dbg(xhci
, "xHCI HW only supports %u stream ctx entries.\n",
3071 *num_stream_ctxs
= max_streams
;
3072 *num_streams
= max_streams
;
3076 /* Returns an error code if one of the endpoint already has streams.
3077 * This does not change any data structures, it only checks and gathers
3080 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd
*xhci
,
3081 struct usb_device
*udev
,
3082 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3083 unsigned int *num_streams
, u32
*changed_ep_bitmask
)
3085 unsigned int max_streams
;
3086 unsigned int endpoint_flag
;
3090 for (i
= 0; i
< num_eps
; i
++) {
3091 ret
= xhci_check_streams_endpoint(xhci
, udev
,
3092 eps
[i
], udev
->slot_id
);
3096 max_streams
= usb_ss_max_streams(&eps
[i
]->ss_ep_comp
);
3097 if (max_streams
< (*num_streams
- 1)) {
3098 xhci_dbg(xhci
, "Ep 0x%x only supports %u stream IDs.\n",
3099 eps
[i
]->desc
.bEndpointAddress
,
3101 *num_streams
= max_streams
+1;
3104 endpoint_flag
= xhci_get_endpoint_flag(&eps
[i
]->desc
);
3105 if (*changed_ep_bitmask
& endpoint_flag
)
3107 *changed_ep_bitmask
|= endpoint_flag
;
3112 static u32
xhci_calculate_no_streams_bitmask(struct xhci_hcd
*xhci
,
3113 struct usb_device
*udev
,
3114 struct usb_host_endpoint
**eps
, unsigned int num_eps
)
3116 u32 changed_ep_bitmask
= 0;
3117 unsigned int slot_id
;
3118 unsigned int ep_index
;
3119 unsigned int ep_state
;
3122 slot_id
= udev
->slot_id
;
3123 if (!xhci
->devs
[slot_id
])
3126 for (i
= 0; i
< num_eps
; i
++) {
3127 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3128 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
3129 /* Are streams already being freed for the endpoint? */
3130 if (ep_state
& EP_GETTING_NO_STREAMS
) {
3131 xhci_warn(xhci
, "WARN Can't disable streams for "
3133 "streams are being disabled already\n",
3134 eps
[i
]->desc
.bEndpointAddress
);
3137 /* Are there actually any streams to free? */
3138 if (!(ep_state
& EP_HAS_STREAMS
) &&
3139 !(ep_state
& EP_GETTING_STREAMS
)) {
3140 xhci_warn(xhci
, "WARN Can't disable streams for "
3142 "streams are already disabled!\n",
3143 eps
[i
]->desc
.bEndpointAddress
);
3144 xhci_warn(xhci
, "WARN xhci_free_streams() called "
3145 "with non-streams endpoint\n");
3148 changed_ep_bitmask
|= xhci_get_endpoint_flag(&eps
[i
]->desc
);
3150 return changed_ep_bitmask
;
3154 * The USB device drivers use this function (through the HCD interface in USB
3155 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3156 * coordinate mass storage command queueing across multiple endpoints (basically
3157 * a stream ID == a task ID).
3159 * Setting up streams involves allocating the same size stream context array
3160 * for each endpoint and issuing a configure endpoint command for all endpoints.
3162 * Don't allow the call to succeed if one endpoint only supports one stream
3163 * (which means it doesn't support streams at all).
3165 * Drivers may get less stream IDs than they asked for, if the host controller
3166 * hardware or endpoints claim they can't support the number of requested
3169 int xhci_alloc_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3170 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3171 unsigned int num_streams
, gfp_t mem_flags
)
3174 struct xhci_hcd
*xhci
;
3175 struct xhci_virt_device
*vdev
;
3176 struct xhci_command
*config_cmd
;
3177 struct xhci_input_control_ctx
*ctrl_ctx
;
3178 unsigned int ep_index
;
3179 unsigned int num_stream_ctxs
;
3180 unsigned long flags
;
3181 u32 changed_ep_bitmask
= 0;
3186 /* Add one to the number of streams requested to account for
3187 * stream 0 that is reserved for xHCI usage.
3190 xhci
= hcd_to_xhci(hcd
);
3191 xhci_dbg(xhci
, "Driver wants %u stream IDs (including stream 0).\n",
3194 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3195 if ((xhci
->quirks
& XHCI_BROKEN_STREAMS
) ||
3196 HCC_MAX_PSA(xhci
->hcc_params
) < 4) {
3197 xhci_dbg(xhci
, "xHCI controller does not support streams.\n");
3201 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
3203 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
3206 ctrl_ctx
= xhci_get_input_control_ctx(config_cmd
->in_ctx
);
3208 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3210 xhci_free_command(xhci
, config_cmd
);
3214 /* Check to make sure all endpoints are not already configured for
3215 * streams. While we're at it, find the maximum number of streams that
3216 * all the endpoints will support and check for duplicate endpoints.
3218 spin_lock_irqsave(&xhci
->lock
, flags
);
3219 ret
= xhci_calculate_streams_and_bitmask(xhci
, udev
, eps
,
3220 num_eps
, &num_streams
, &changed_ep_bitmask
);
3222 xhci_free_command(xhci
, config_cmd
);
3223 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3226 if (num_streams
<= 1) {
3227 xhci_warn(xhci
, "WARN: endpoints can't handle "
3228 "more than one stream.\n");
3229 xhci_free_command(xhci
, config_cmd
);
3230 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3233 vdev
= xhci
->devs
[udev
->slot_id
];
3234 /* Mark each endpoint as being in transition, so
3235 * xhci_urb_enqueue() will reject all URBs.
3237 for (i
= 0; i
< num_eps
; i
++) {
3238 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3239 vdev
->eps
[ep_index
].ep_state
|= EP_GETTING_STREAMS
;
3241 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3243 /* Setup internal data structures and allocate HW data structures for
3244 * streams (but don't install the HW structures in the input context
3245 * until we're sure all memory allocation succeeded).
3247 xhci_calculate_streams_entries(xhci
, &num_streams
, &num_stream_ctxs
);
3248 xhci_dbg(xhci
, "Need %u stream ctx entries for %u stream IDs.\n",
3249 num_stream_ctxs
, num_streams
);
3251 for (i
= 0; i
< num_eps
; i
++) {
3252 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3253 vdev
->eps
[ep_index
].stream_info
= xhci_alloc_stream_info(xhci
,
3255 num_streams
, mem_flags
);
3256 if (!vdev
->eps
[ep_index
].stream_info
)
3258 /* Set maxPstreams in endpoint context and update deq ptr to
3259 * point to stream context array. FIXME
3263 /* Set up the input context for a configure endpoint command. */
3264 for (i
= 0; i
< num_eps
; i
++) {
3265 struct xhci_ep_ctx
*ep_ctx
;
3267 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3268 ep_ctx
= xhci_get_ep_ctx(xhci
, config_cmd
->in_ctx
, ep_index
);
3270 xhci_endpoint_copy(xhci
, config_cmd
->in_ctx
,
3271 vdev
->out_ctx
, ep_index
);
3272 xhci_setup_streams_ep_input_ctx(xhci
, ep_ctx
,
3273 vdev
->eps
[ep_index
].stream_info
);
3275 /* Tell the HW to drop its old copy of the endpoint context info
3276 * and add the updated copy from the input context.
3278 xhci_setup_input_ctx_for_config_ep(xhci
, config_cmd
->in_ctx
,
3279 vdev
->out_ctx
, ctrl_ctx
,
3280 changed_ep_bitmask
, changed_ep_bitmask
);
3282 /* Issue and wait for the configure endpoint command */
3283 ret
= xhci_configure_endpoint(xhci
, udev
, config_cmd
,
3286 /* xHC rejected the configure endpoint command for some reason, so we
3287 * leave the old ring intact and free our internal streams data
3293 spin_lock_irqsave(&xhci
->lock
, flags
);
3294 for (i
= 0; i
< num_eps
; i
++) {
3295 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3296 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3297 xhci_dbg(xhci
, "Slot %u ep ctx %u now has streams.\n",
3298 udev
->slot_id
, ep_index
);
3299 vdev
->eps
[ep_index
].ep_state
|= EP_HAS_STREAMS
;
3301 xhci_free_command(xhci
, config_cmd
);
3302 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3304 /* Subtract 1 for stream 0, which drivers can't use */
3305 return num_streams
- 1;
3308 /* If it didn't work, free the streams! */
3309 for (i
= 0; i
< num_eps
; i
++) {
3310 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3311 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3312 vdev
->eps
[ep_index
].stream_info
= NULL
;
3313 /* FIXME Unset maxPstreams in endpoint context and
3314 * update deq ptr to point to normal string ring.
3316 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3317 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3318 xhci_endpoint_zero(xhci
, vdev
, eps
[i
]);
3320 xhci_free_command(xhci
, config_cmd
);
3324 /* Transition the endpoint from using streams to being a "normal" endpoint
3327 * Modify the endpoint context state, submit a configure endpoint command,
3328 * and free all endpoint rings for streams if that completes successfully.
3330 int xhci_free_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3331 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3335 struct xhci_hcd
*xhci
;
3336 struct xhci_virt_device
*vdev
;
3337 struct xhci_command
*command
;
3338 struct xhci_input_control_ctx
*ctrl_ctx
;
3339 unsigned int ep_index
;
3340 unsigned long flags
;
3341 u32 changed_ep_bitmask
;
3343 xhci
= hcd_to_xhci(hcd
);
3344 vdev
= xhci
->devs
[udev
->slot_id
];
3346 /* Set up a configure endpoint command to remove the streams rings */
3347 spin_lock_irqsave(&xhci
->lock
, flags
);
3348 changed_ep_bitmask
= xhci_calculate_no_streams_bitmask(xhci
,
3349 udev
, eps
, num_eps
);
3350 if (changed_ep_bitmask
== 0) {
3351 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3355 /* Use the xhci_command structure from the first endpoint. We may have
3356 * allocated too many, but the driver may call xhci_free_streams() for
3357 * each endpoint it grouped into one call to xhci_alloc_streams().
3359 ep_index
= xhci_get_endpoint_index(&eps
[0]->desc
);
3360 command
= vdev
->eps
[ep_index
].stream_info
->free_streams_command
;
3361 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
3363 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3364 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3369 for (i
= 0; i
< num_eps
; i
++) {
3370 struct xhci_ep_ctx
*ep_ctx
;
3372 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3373 ep_ctx
= xhci_get_ep_ctx(xhci
, command
->in_ctx
, ep_index
);
3374 xhci
->devs
[udev
->slot_id
]->eps
[ep_index
].ep_state
|=
3375 EP_GETTING_NO_STREAMS
;
3377 xhci_endpoint_copy(xhci
, command
->in_ctx
,
3378 vdev
->out_ctx
, ep_index
);
3379 xhci_setup_no_streams_ep_input_ctx(ep_ctx
,
3380 &vdev
->eps
[ep_index
]);
3382 xhci_setup_input_ctx_for_config_ep(xhci
, command
->in_ctx
,
3383 vdev
->out_ctx
, ctrl_ctx
,
3384 changed_ep_bitmask
, changed_ep_bitmask
);
3385 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3387 /* Issue and wait for the configure endpoint command,
3388 * which must succeed.
3390 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
3393 /* xHC rejected the configure endpoint command for some reason, so we
3394 * leave the streams rings intact.
3399 spin_lock_irqsave(&xhci
->lock
, flags
);
3400 for (i
= 0; i
< num_eps
; i
++) {
3401 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3402 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3403 vdev
->eps
[ep_index
].stream_info
= NULL
;
3404 /* FIXME Unset maxPstreams in endpoint context and
3405 * update deq ptr to point to normal string ring.
3407 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_NO_STREAMS
;
3408 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3410 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3416 * Deletes endpoint resources for endpoints that were active before a Reset
3417 * Device command, or a Disable Slot command. The Reset Device command leaves
3418 * the control endpoint intact, whereas the Disable Slot command deletes it.
3420 * Must be called with xhci->lock held.
3422 void xhci_free_device_endpoint_resources(struct xhci_hcd
*xhci
,
3423 struct xhci_virt_device
*virt_dev
, bool drop_control_ep
)
3426 unsigned int num_dropped_eps
= 0;
3427 unsigned int drop_flags
= 0;
3429 for (i
= (drop_control_ep
? 0 : 1); i
< 31; i
++) {
3430 if (virt_dev
->eps
[i
].ring
) {
3431 drop_flags
|= 1 << i
;
3435 xhci
->num_active_eps
-= num_dropped_eps
;
3436 if (num_dropped_eps
)
3437 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
3438 "Dropped %u ep ctxs, flags = 0x%x, "
3440 num_dropped_eps
, drop_flags
,
3441 xhci
->num_active_eps
);
3445 * This submits a Reset Device Command, which will set the device state to 0,
3446 * set the device address to 0, and disable all the endpoints except the default
3447 * control endpoint. The USB core should come back and call
3448 * xhci_address_device(), and then re-set up the configuration. If this is
3449 * called because of a usb_reset_and_verify_device(), then the old alternate
3450 * settings will be re-installed through the normal bandwidth allocation
3453 * Wait for the Reset Device command to finish. Remove all structures
3454 * associated with the endpoints that were disabled. Clear the input device
3455 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3457 * If the virt_dev to be reset does not exist or does not match the udev,
3458 * it means the device is lost, possibly due to the xHC restore error and
3459 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3460 * re-allocate the device.
3462 int xhci_discover_or_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3465 unsigned long flags
;
3466 struct xhci_hcd
*xhci
;
3467 unsigned int slot_id
;
3468 struct xhci_virt_device
*virt_dev
;
3469 struct xhci_command
*reset_device_cmd
;
3470 int last_freed_endpoint
;
3471 struct xhci_slot_ctx
*slot_ctx
;
3472 int old_active_eps
= 0;
3474 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, false, __func__
);
3477 xhci
= hcd_to_xhci(hcd
);
3478 slot_id
= udev
->slot_id
;
3479 virt_dev
= xhci
->devs
[slot_id
];
3481 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3482 "not exist. Re-allocate the device\n", slot_id
);
3483 ret
= xhci_alloc_dev(hcd
, udev
);
3490 if (virt_dev
->tt_info
)
3491 old_active_eps
= virt_dev
->tt_info
->active_eps
;
3493 if (virt_dev
->udev
!= udev
) {
3494 /* If the virt_dev and the udev does not match, this virt_dev
3495 * may belong to another udev.
3496 * Re-allocate the device.
3498 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3499 "not match the udev. Re-allocate the device\n",
3501 ret
= xhci_alloc_dev(hcd
, udev
);
3508 /* If device is not setup, there is no point in resetting it */
3509 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3510 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx
->dev_state
)) ==
3511 SLOT_STATE_DISABLED
)
3514 xhci_dbg(xhci
, "Resetting device with slot ID %u\n", slot_id
);
3515 /* Allocate the command structure that holds the struct completion.
3516 * Assume we're in process context, since the normal device reset
3517 * process has to wait for the device anyway. Storage devices are
3518 * reset as part of error handling, so use GFP_NOIO instead of
3521 reset_device_cmd
= xhci_alloc_command(xhci
, false, true, GFP_NOIO
);
3522 if (!reset_device_cmd
) {
3523 xhci_dbg(xhci
, "Couldn't allocate command structure.\n");
3527 /* Attempt to submit the Reset Device command to the command ring */
3528 spin_lock_irqsave(&xhci
->lock
, flags
);
3530 ret
= xhci_queue_reset_device(xhci
, reset_device_cmd
, slot_id
);
3532 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3533 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3534 goto command_cleanup
;
3536 xhci_ring_cmd_db(xhci
);
3537 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3539 /* Wait for the Reset Device command to finish */
3540 wait_for_completion(reset_device_cmd
->completion
);
3542 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3543 * unless we tried to reset a slot ID that wasn't enabled,
3544 * or the device wasn't in the addressed or configured state.
3546 ret
= reset_device_cmd
->status
;
3548 case COMP_CMD_ABORT
:
3550 xhci_warn(xhci
, "Timeout waiting for reset device command\n");
3552 goto command_cleanup
;
3553 case COMP_EBADSLT
: /* 0.95 completion code for bad slot ID */
3554 case COMP_CTX_STATE
: /* 0.96 completion code for same thing */
3555 xhci_dbg(xhci
, "Can't reset device (slot ID %u) in %s state\n",
3557 xhci_get_slot_state(xhci
, virt_dev
->out_ctx
));
3558 xhci_dbg(xhci
, "Not freeing device rings.\n");
3559 /* Don't treat this as an error. May change my mind later. */
3561 goto command_cleanup
;
3563 xhci_dbg(xhci
, "Successful reset device command.\n");
3566 if (xhci_is_vendor_info_code(xhci
, ret
))
3568 xhci_warn(xhci
, "Unknown completion code %u for "
3569 "reset device command.\n", ret
);
3571 goto command_cleanup
;
3574 /* Free up host controller endpoint resources */
3575 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3576 spin_lock_irqsave(&xhci
->lock
, flags
);
3577 /* Don't delete the default control endpoint resources */
3578 xhci_free_device_endpoint_resources(xhci
, virt_dev
, false);
3579 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3582 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3583 last_freed_endpoint
= 1;
3584 for (i
= 1; i
< 31; ++i
) {
3585 struct xhci_virt_ep
*ep
= &virt_dev
->eps
[i
];
3587 if (ep
->ep_state
& EP_HAS_STREAMS
) {
3588 xhci_warn(xhci
, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3589 xhci_get_endpoint_address(i
));
3590 xhci_free_stream_info(xhci
, ep
->stream_info
);
3591 ep
->stream_info
= NULL
;
3592 ep
->ep_state
&= ~EP_HAS_STREAMS
;
3596 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
3597 last_freed_endpoint
= i
;
3599 if (!list_empty(&virt_dev
->eps
[i
].bw_endpoint_list
))
3600 xhci_drop_ep_from_interval_table(xhci
,
3601 &virt_dev
->eps
[i
].bw_info
,
3606 xhci_clear_endpoint_bw_info(&virt_dev
->eps
[i
].bw_info
);
3608 /* If necessary, update the number of active TTs on this root port */
3609 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
3611 xhci_dbg(xhci
, "Output context after successful reset device cmd:\n");
3612 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, last_freed_endpoint
);
3616 xhci_free_command(xhci
, reset_device_cmd
);
3621 * At this point, the struct usb_device is about to go away, the device has
3622 * disconnected, and all traffic has been stopped and the endpoints have been
3623 * disabled. Free any HC data structures associated with that device.
3625 void xhci_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3627 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3628 struct xhci_virt_device
*virt_dev
;
3629 unsigned long flags
;
3632 struct xhci_command
*command
;
3634 command
= xhci_alloc_command(xhci
, false, false, GFP_KERNEL
);
3638 #ifndef CONFIG_USB_DEFAULT_PERSIST
3640 * We called pm_runtime_get_noresume when the device was attached.
3641 * Decrement the counter here to allow controller to runtime suspend
3642 * if no devices remain.
3644 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
3645 pm_runtime_put_noidle(hcd
->self
.controller
);
3648 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
3649 /* If the host is halted due to driver unload, we still need to free the
3652 if (ret
<= 0 && ret
!= -ENODEV
) {
3657 virt_dev
= xhci
->devs
[udev
->slot_id
];
3659 /* Stop any wayward timer functions (which may grab the lock) */
3660 for (i
= 0; i
< 31; ++i
) {
3661 virt_dev
->eps
[i
].ep_state
&= ~EP_HALT_PENDING
;
3662 del_timer_sync(&virt_dev
->eps
[i
].stop_cmd_timer
);
3665 spin_lock_irqsave(&xhci
->lock
, flags
);
3666 /* Don't disable the slot if the host controller is dead. */
3667 state
= readl(&xhci
->op_regs
->status
);
3668 if (state
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
) ||
3669 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
3670 xhci_free_virt_device(xhci
, udev
->slot_id
);
3671 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3676 if (xhci_queue_slot_control(xhci
, command
, TRB_DISABLE_SLOT
,
3678 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3679 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3682 xhci_ring_cmd_db(xhci
);
3683 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3686 * Event command completion handler will free any data structures
3687 * associated with the slot. XXX Can free sleep?
3692 * Checks if we have enough host controller resources for the default control
3695 * Must be called with xhci->lock held.
3697 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd
*xhci
)
3699 if (xhci
->num_active_eps
+ 1 > xhci
->limit_active_eps
) {
3700 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
3701 "Not enough ep ctxs: "
3702 "%u active, need to add 1, limit is %u.",
3703 xhci
->num_active_eps
, xhci
->limit_active_eps
);
3706 xhci
->num_active_eps
+= 1;
3707 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
3708 "Adding 1 ep ctx, %u now active.",
3709 xhci
->num_active_eps
);
3715 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3716 * timed out, or allocating memory failed. Returns 1 on success.
3718 int xhci_alloc_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3720 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3721 unsigned long flags
;
3723 struct xhci_command
*command
;
3725 command
= xhci_alloc_command(xhci
, false, false, GFP_KERNEL
);
3729 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3730 mutex_lock(&xhci
->mutex
);
3731 spin_lock_irqsave(&xhci
->lock
, flags
);
3732 command
->completion
= &xhci
->addr_dev
;
3733 ret
= xhci_queue_slot_control(xhci
, command
, TRB_ENABLE_SLOT
, 0);
3735 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3736 mutex_unlock(&xhci
->mutex
);
3737 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3741 xhci_ring_cmd_db(xhci
);
3742 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3744 wait_for_completion(command
->completion
);
3745 slot_id
= xhci
->slot_id
;
3746 mutex_unlock(&xhci
->mutex
);
3748 if (!slot_id
|| command
->status
!= COMP_SUCCESS
) {
3749 xhci_err(xhci
, "Error while assigning device slot ID\n");
3750 xhci_err(xhci
, "Max number of devices this xHCI host supports is %u.\n",
3752 readl(&xhci
->cap_regs
->hcs_params1
)));
3757 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3758 spin_lock_irqsave(&xhci
->lock
, flags
);
3759 ret
= xhci_reserve_host_control_ep_resources(xhci
);
3761 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3762 xhci_warn(xhci
, "Not enough host resources, "
3763 "active endpoint contexts = %u\n",
3764 xhci
->num_active_eps
);
3767 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3769 /* Use GFP_NOIO, since this function can be called from
3770 * xhci_discover_or_reset_device(), which may be called as part of
3771 * mass storage driver error handling.
3773 if (!xhci_alloc_virt_device(xhci
, slot_id
, udev
, GFP_NOIO
)) {
3774 xhci_warn(xhci
, "Could not allocate xHCI USB device data structures\n");
3777 udev
->slot_id
= slot_id
;
3779 #ifndef CONFIG_USB_DEFAULT_PERSIST
3781 * If resetting upon resume, we can't put the controller into runtime
3782 * suspend if there is a device attached.
3784 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
3785 pm_runtime_get_noresume(hcd
->self
.controller
);
3790 /* Is this a LS or FS device under a HS hub? */
3791 /* Hub or peripherial? */
3795 /* Disable slot, if we can do it without mem alloc */
3796 spin_lock_irqsave(&xhci
->lock
, flags
);
3797 command
->completion
= NULL
;
3798 command
->status
= 0;
3799 if (!xhci_queue_slot_control(xhci
, command
, TRB_DISABLE_SLOT
,
3801 xhci_ring_cmd_db(xhci
);
3802 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3807 * Issue an Address Device command and optionally send a corresponding
3808 * SetAddress request to the device.
3810 static int xhci_setup_device(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3811 enum xhci_setup_dev setup
)
3813 const char *act
= setup
== SETUP_CONTEXT_ONLY
? "context" : "address";
3814 unsigned long flags
;
3815 struct xhci_virt_device
*virt_dev
;
3817 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3818 struct xhci_slot_ctx
*slot_ctx
;
3819 struct xhci_input_control_ctx
*ctrl_ctx
;
3821 struct xhci_command
*command
= NULL
;
3823 mutex_lock(&xhci
->mutex
);
3825 if (xhci
->xhc_state
) /* dying, removing or halted */
3828 if (!udev
->slot_id
) {
3829 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3830 "Bad Slot ID %d", udev
->slot_id
);
3835 virt_dev
= xhci
->devs
[udev
->slot_id
];
3837 if (WARN_ON(!virt_dev
)) {
3839 * In plug/unplug torture test with an NEC controller,
3840 * a zero-dereference was observed once due to virt_dev = 0.
3841 * Print useful debug rather than crash if it is observed again!
3843 xhci_warn(xhci
, "Virt dev invalid for slot_id 0x%x!\n",
3849 if (setup
== SETUP_CONTEXT_ONLY
) {
3850 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3851 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx
->dev_state
)) ==
3852 SLOT_STATE_DEFAULT
) {
3853 xhci_dbg(xhci
, "Slot already in default state\n");
3858 command
= xhci_alloc_command(xhci
, false, false, GFP_KERNEL
);
3864 command
->in_ctx
= virt_dev
->in_ctx
;
3865 command
->completion
= &xhci
->addr_dev
;
3867 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
3868 ctrl_ctx
= xhci_get_input_control_ctx(virt_dev
->in_ctx
);
3870 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3876 * If this is the first Set Address since device plug-in or
3877 * virt_device realloaction after a resume with an xHCI power loss,
3878 * then set up the slot context.
3880 if (!slot_ctx
->dev_info
)
3881 xhci_setup_addressable_virt_dev(xhci
, udev
);
3882 /* Otherwise, update the control endpoint ring enqueue pointer. */
3884 xhci_copy_ep0_dequeue_into_input_ctx(xhci
, udev
);
3885 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
| EP0_FLAG
);
3886 ctrl_ctx
->drop_flags
= 0;
3888 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3889 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3890 trace_xhci_address_ctx(xhci
, virt_dev
->in_ctx
,
3891 le32_to_cpu(slot_ctx
->dev_info
) >> 27);
3893 spin_lock_irqsave(&xhci
->lock
, flags
);
3894 ret
= xhci_queue_address_device(xhci
, command
, virt_dev
->in_ctx
->dma
,
3895 udev
->slot_id
, setup
);
3897 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3898 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3899 "FIXME: allocate a command ring segment");
3902 xhci_ring_cmd_db(xhci
);
3903 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3905 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3906 wait_for_completion(command
->completion
);
3908 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3909 * the SetAddress() "recovery interval" required by USB and aborting the
3910 * command on a timeout.
3912 switch (command
->status
) {
3913 case COMP_CMD_ABORT
:
3915 xhci_warn(xhci
, "Timeout while waiting for setup device command\n");
3918 case COMP_CTX_STATE
:
3920 xhci_err(xhci
, "Setup ERROR: setup %s command for slot %d.\n",
3921 act
, udev
->slot_id
);
3925 dev_warn(&udev
->dev
, "Device not responding to setup %s.\n", act
);
3929 dev_warn(&udev
->dev
,
3930 "ERROR: Incompatible device for setup %s command\n", act
);
3934 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3935 "Successful setup %s command", act
);
3939 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3940 act
, command
->status
);
3941 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3942 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3943 trace_xhci_address_ctx(xhci
, virt_dev
->out_ctx
, 1);
3949 temp_64
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
3950 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3951 "Op regs DCBAA ptr = %#016llx", temp_64
);
3952 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3953 "Slot ID %d dcbaa entry @%p = %#016llx",
3955 &xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
],
3956 (unsigned long long)
3957 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
]));
3958 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3959 "Output Context DMA address = %#08llx",
3960 (unsigned long long)virt_dev
->out_ctx
->dma
);
3961 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3962 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3963 trace_xhci_address_ctx(xhci
, virt_dev
->in_ctx
,
3964 le32_to_cpu(slot_ctx
->dev_info
) >> 27);
3965 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3966 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3968 * USB core uses address 1 for the roothubs, so we add one to the
3969 * address given back to us by the HC.
3971 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3972 trace_xhci_address_ctx(xhci
, virt_dev
->out_ctx
,
3973 le32_to_cpu(slot_ctx
->dev_info
) >> 27);
3974 /* Zero the input context control for later use */
3975 ctrl_ctx
->add_flags
= 0;
3976 ctrl_ctx
->drop_flags
= 0;
3978 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3979 "Internal device address = %d",
3980 le32_to_cpu(slot_ctx
->dev_state
) & DEV_ADDR_MASK
);
3982 mutex_unlock(&xhci
->mutex
);
3987 int xhci_address_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3989 return xhci_setup_device(hcd
, udev
, SETUP_CONTEXT_ADDRESS
);
3992 int xhci_enable_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3994 return xhci_setup_device(hcd
, udev
, SETUP_CONTEXT_ONLY
);
3998 * Transfer the port index into real index in the HW port status
3999 * registers. Caculate offset between the port's PORTSC register
4000 * and port status base. Divide the number of per port register
4001 * to get the real index. The raw port number bases 1.
4003 int xhci_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
4005 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4006 __le32 __iomem
*base_addr
= &xhci
->op_regs
->port_status_base
;
4007 __le32 __iomem
*addr
;
4010 if (hcd
->speed
< HCD_USB3
)
4011 addr
= xhci
->usb2_ports
[port1
- 1];
4013 addr
= xhci
->usb3_ports
[port1
- 1];
4015 raw_port
= (addr
- base_addr
)/NUM_PORT_REGS
+ 1;
4020 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4021 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4023 static int __maybe_unused
xhci_change_max_exit_latency(struct xhci_hcd
*xhci
,
4024 struct usb_device
*udev
, u16 max_exit_latency
)
4026 struct xhci_virt_device
*virt_dev
;
4027 struct xhci_command
*command
;
4028 struct xhci_input_control_ctx
*ctrl_ctx
;
4029 struct xhci_slot_ctx
*slot_ctx
;
4030 unsigned long flags
;
4033 spin_lock_irqsave(&xhci
->lock
, flags
);
4035 virt_dev
= xhci
->devs
[udev
->slot_id
];
4038 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4039 * xHC was re-initialized. Exit latency will be set later after
4040 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4043 if (!virt_dev
|| max_exit_latency
== virt_dev
->current_mel
) {
4044 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4048 /* Attempt to issue an Evaluate Context command to change the MEL. */
4049 command
= xhci
->lpm_command
;
4050 ctrl_ctx
= xhci_get_input_control_ctx(command
->in_ctx
);
4052 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4053 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
4058 xhci_slot_copy(xhci
, command
->in_ctx
, virt_dev
->out_ctx
);
4059 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4061 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
4062 slot_ctx
= xhci_get_slot_ctx(xhci
, command
->in_ctx
);
4063 slot_ctx
->dev_info2
&= cpu_to_le32(~((u32
) MAX_EXIT
));
4064 slot_ctx
->dev_info2
|= cpu_to_le32(max_exit_latency
);
4065 slot_ctx
->dev_state
= 0;
4067 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
4068 "Set up evaluate context for LPM MEL change.");
4069 xhci_dbg(xhci
, "Slot %u Input Context:\n", udev
->slot_id
);
4070 xhci_dbg_ctx(xhci
, command
->in_ctx
, 0);
4072 /* Issue and wait for the evaluate context command. */
4073 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
4075 xhci_dbg(xhci
, "Slot %u Output Context:\n", udev
->slot_id
);
4076 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 0);
4079 spin_lock_irqsave(&xhci
->lock
, flags
);
4080 virt_dev
->current_mel
= max_exit_latency
;
4081 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4088 /* BESL to HIRD Encoding array for USB2 LPM */
4089 static int xhci_besl_encoding
[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4090 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4092 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4093 static int xhci_calculate_hird_besl(struct xhci_hcd
*xhci
,
4094 struct usb_device
*udev
)
4096 int u2del
, besl
, besl_host
;
4097 int besl_device
= 0;
4100 u2del
= HCS_U2_LATENCY(xhci
->hcs_params3
);
4101 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
4103 if (field
& USB_BESL_SUPPORT
) {
4104 for (besl_host
= 0; besl_host
< 16; besl_host
++) {
4105 if (xhci_besl_encoding
[besl_host
] >= u2del
)
4108 /* Use baseline BESL value as default */
4109 if (field
& USB_BESL_BASELINE_VALID
)
4110 besl_device
= USB_GET_BESL_BASELINE(field
);
4111 else if (field
& USB_BESL_DEEP_VALID
)
4112 besl_device
= USB_GET_BESL_DEEP(field
);
4117 besl_host
= (u2del
- 51) / 75 + 1;
4120 besl
= besl_host
+ besl_device
;
4127 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4128 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device
*udev
)
4135 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
4137 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4138 l1
= udev
->l1_params
.timeout
/ 256;
4140 /* device has preferred BESLD */
4141 if (field
& USB_BESL_DEEP_VALID
) {
4142 besld
= USB_GET_BESL_DEEP(field
);
4146 return PORT_BESLD(besld
) | PORT_L1_TIMEOUT(l1
) | PORT_HIRDM(hirdm
);
4149 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
4150 struct usb_device
*udev
, int enable
)
4152 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4153 __le32 __iomem
**port_array
;
4154 __le32 __iomem
*pm_addr
, *hlpm_addr
;
4155 u32 pm_val
, hlpm_val
, field
;
4156 unsigned int port_num
;
4157 unsigned long flags
;
4158 int hird
, exit_latency
;
4161 if (hcd
->speed
>= HCD_USB3
|| !xhci
->hw_lpm_support
||
4165 if (!udev
->parent
|| udev
->parent
->parent
||
4166 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
4169 if (udev
->usb2_hw_lpm_capable
!= 1)
4172 spin_lock_irqsave(&xhci
->lock
, flags
);
4174 port_array
= xhci
->usb2_ports
;
4175 port_num
= udev
->portnum
- 1;
4176 pm_addr
= port_array
[port_num
] + PORTPMSC
;
4177 pm_val
= readl(pm_addr
);
4178 hlpm_addr
= port_array
[port_num
] + PORTHLPMC
;
4179 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
4181 xhci_dbg(xhci
, "%s port %d USB2 hardware LPM\n",
4182 enable
? "enable" : "disable", port_num
+ 1);
4185 /* Host supports BESL timeout instead of HIRD */
4186 if (udev
->usb2_hw_lpm_besl_capable
) {
4187 /* if device doesn't have a preferred BESL value use a
4188 * default one which works with mixed HIRD and BESL
4189 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4191 if ((field
& USB_BESL_SUPPORT
) &&
4192 (field
& USB_BESL_BASELINE_VALID
))
4193 hird
= USB_GET_BESL_BASELINE(field
);
4195 hird
= udev
->l1_params
.besl
;
4197 exit_latency
= xhci_besl_encoding
[hird
];
4198 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4200 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4201 * input context for link powermanagement evaluate
4202 * context commands. It is protected by hcd->bandwidth
4203 * mutex and is shared by all devices. We need to set
4204 * the max ext latency in USB 2 BESL LPM as well, so
4205 * use the same mutex and xhci_change_max_exit_latency()
4207 mutex_lock(hcd
->bandwidth_mutex
);
4208 ret
= xhci_change_max_exit_latency(xhci
, udev
,
4210 mutex_unlock(hcd
->bandwidth_mutex
);
4214 spin_lock_irqsave(&xhci
->lock
, flags
);
4216 hlpm_val
= xhci_calculate_usb2_hw_lpm_params(udev
);
4217 writel(hlpm_val
, hlpm_addr
);
4221 hird
= xhci_calculate_hird_besl(xhci
, udev
);
4224 pm_val
&= ~PORT_HIRD_MASK
;
4225 pm_val
|= PORT_HIRD(hird
) | PORT_RWE
| PORT_L1DS(udev
->slot_id
);
4226 writel(pm_val
, pm_addr
);
4227 pm_val
= readl(pm_addr
);
4229 writel(pm_val
, pm_addr
);
4233 pm_val
&= ~(PORT_HLE
| PORT_RWE
| PORT_HIRD_MASK
| PORT_L1DS_MASK
);
4234 writel(pm_val
, pm_addr
);
4237 if (udev
->usb2_hw_lpm_besl_capable
) {
4238 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4239 mutex_lock(hcd
->bandwidth_mutex
);
4240 xhci_change_max_exit_latency(xhci
, udev
, 0);
4241 mutex_unlock(hcd
->bandwidth_mutex
);
4246 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4250 /* check if a usb2 port supports a given extened capability protocol
4251 * only USB2 ports extended protocol capability values are cached.
4252 * Return 1 if capability is supported
4254 static int xhci_check_usb2_port_capability(struct xhci_hcd
*xhci
, int port
,
4255 unsigned capability
)
4257 u32 port_offset
, port_count
;
4260 for (i
= 0; i
< xhci
->num_ext_caps
; i
++) {
4261 if (xhci
->ext_caps
[i
] & capability
) {
4262 /* port offsets starts at 1 */
4263 port_offset
= XHCI_EXT_PORT_OFF(xhci
->ext_caps
[i
]) - 1;
4264 port_count
= XHCI_EXT_PORT_COUNT(xhci
->ext_caps
[i
]);
4265 if (port
>= port_offset
&&
4266 port
< port_offset
+ port_count
)
4273 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4275 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4276 int portnum
= udev
->portnum
- 1;
4278 if (hcd
->speed
>= HCD_USB3
|| !xhci
->sw_lpm_support
||
4282 /* we only support lpm for non-hub device connected to root hub yet */
4283 if (!udev
->parent
|| udev
->parent
->parent
||
4284 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
4287 if (xhci
->hw_lpm_support
== 1 &&
4288 xhci_check_usb2_port_capability(
4289 xhci
, portnum
, XHCI_HLC
)) {
4290 udev
->usb2_hw_lpm_capable
= 1;
4291 udev
->l1_params
.timeout
= XHCI_L1_TIMEOUT
;
4292 udev
->l1_params
.besl
= XHCI_DEFAULT_BESL
;
4293 if (xhci_check_usb2_port_capability(xhci
, portnum
,
4295 udev
->usb2_hw_lpm_besl_capable
= 1;
4301 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4303 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4304 static unsigned long long xhci_service_interval_to_ns(
4305 struct usb_endpoint_descriptor
*desc
)
4307 return (1ULL << (desc
->bInterval
- 1)) * 125 * 1000;
4310 static u16
xhci_get_timeout_no_hub_lpm(struct usb_device
*udev
,
4311 enum usb3_link_state state
)
4313 unsigned long long sel
;
4314 unsigned long long pel
;
4315 unsigned int max_sel_pel
;
4320 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4321 sel
= DIV_ROUND_UP(udev
->u1_params
.sel
, 1000);
4322 pel
= DIV_ROUND_UP(udev
->u1_params
.pel
, 1000);
4323 max_sel_pel
= USB3_LPM_MAX_U1_SEL_PEL
;
4327 sel
= DIV_ROUND_UP(udev
->u2_params
.sel
, 1000);
4328 pel
= DIV_ROUND_UP(udev
->u2_params
.pel
, 1000);
4329 max_sel_pel
= USB3_LPM_MAX_U2_SEL_PEL
;
4333 dev_warn(&udev
->dev
, "%s: Can't get timeout for non-U1 or U2 state.\n",
4335 return USB3_LPM_DISABLED
;
4338 if (sel
<= max_sel_pel
&& pel
<= max_sel_pel
)
4339 return USB3_LPM_DEVICE_INITIATED
;
4341 if (sel
> max_sel_pel
)
4342 dev_dbg(&udev
->dev
, "Device-initiated %s disabled "
4343 "due to long SEL %llu ms\n",
4346 dev_dbg(&udev
->dev
, "Device-initiated %s disabled "
4347 "due to long PEL %llu ms\n",
4349 return USB3_LPM_DISABLED
;
4352 /* The U1 timeout should be the maximum of the following values:
4353 * - For control endpoints, U1 system exit latency (SEL) * 3
4354 * - For bulk endpoints, U1 SEL * 5
4355 * - For interrupt endpoints:
4356 * - Notification EPs, U1 SEL * 3
4357 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4358 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4360 static unsigned long long xhci_calculate_intel_u1_timeout(
4361 struct usb_device
*udev
,
4362 struct usb_endpoint_descriptor
*desc
)
4364 unsigned long long timeout_ns
;
4368 ep_type
= usb_endpoint_type(desc
);
4370 case USB_ENDPOINT_XFER_CONTROL
:
4371 timeout_ns
= udev
->u1_params
.sel
* 3;
4373 case USB_ENDPOINT_XFER_BULK
:
4374 timeout_ns
= udev
->u1_params
.sel
* 5;
4376 case USB_ENDPOINT_XFER_INT
:
4377 intr_type
= usb_endpoint_interrupt_type(desc
);
4378 if (intr_type
== USB_ENDPOINT_INTR_NOTIFICATION
) {
4379 timeout_ns
= udev
->u1_params
.sel
* 3;
4382 /* Otherwise the calculation is the same as isoc eps */
4383 case USB_ENDPOINT_XFER_ISOC
:
4384 timeout_ns
= xhci_service_interval_to_ns(desc
);
4385 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
* 105, 100);
4386 if (timeout_ns
< udev
->u1_params
.sel
* 2)
4387 timeout_ns
= udev
->u1_params
.sel
* 2;
4396 /* Returns the hub-encoded U1 timeout value. */
4397 static u16
xhci_calculate_u1_timeout(struct xhci_hcd
*xhci
,
4398 struct usb_device
*udev
,
4399 struct usb_endpoint_descriptor
*desc
)
4401 unsigned long long timeout_ns
;
4403 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4404 timeout_ns
= xhci_calculate_intel_u1_timeout(udev
, desc
);
4406 timeout_ns
= udev
->u1_params
.sel
;
4408 /* The U1 timeout is encoded in 1us intervals.
4409 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4411 if (timeout_ns
== USB3_LPM_DISABLED
)
4414 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
, 1000);
4416 /* If the necessary timeout value is bigger than what we can set in the
4417 * USB 3.0 hub, we have to disable hub-initiated U1.
4419 if (timeout_ns
<= USB3_LPM_U1_MAX_TIMEOUT
)
4421 dev_dbg(&udev
->dev
, "Hub-initiated U1 disabled "
4422 "due to long timeout %llu ms\n", timeout_ns
);
4423 return xhci_get_timeout_no_hub_lpm(udev
, USB3_LPM_U1
);
4426 /* The U2 timeout should be the maximum of:
4427 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4428 * - largest bInterval of any active periodic endpoint (to avoid going
4429 * into lower power link states between intervals).
4430 * - the U2 Exit Latency of the device
4432 static unsigned long long xhci_calculate_intel_u2_timeout(
4433 struct usb_device
*udev
,
4434 struct usb_endpoint_descriptor
*desc
)
4436 unsigned long long timeout_ns
;
4437 unsigned long long u2_del_ns
;
4439 timeout_ns
= 10 * 1000 * 1000;
4441 if ((usb_endpoint_xfer_int(desc
) || usb_endpoint_xfer_isoc(desc
)) &&
4442 (xhci_service_interval_to_ns(desc
) > timeout_ns
))
4443 timeout_ns
= xhci_service_interval_to_ns(desc
);
4445 u2_del_ns
= le16_to_cpu(udev
->bos
->ss_cap
->bU2DevExitLat
) * 1000ULL;
4446 if (u2_del_ns
> timeout_ns
)
4447 timeout_ns
= u2_del_ns
;
4452 /* Returns the hub-encoded U2 timeout value. */
4453 static u16
xhci_calculate_u2_timeout(struct xhci_hcd
*xhci
,
4454 struct usb_device
*udev
,
4455 struct usb_endpoint_descriptor
*desc
)
4457 unsigned long long timeout_ns
;
4459 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4460 timeout_ns
= xhci_calculate_intel_u2_timeout(udev
, desc
);
4462 timeout_ns
= udev
->u2_params
.sel
;
4464 /* The U2 timeout is encoded in 256us intervals */
4465 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
, 256 * 1000);
4466 /* If the necessary timeout value is bigger than what we can set in the
4467 * USB 3.0 hub, we have to disable hub-initiated U2.
4469 if (timeout_ns
<= USB3_LPM_U2_MAX_TIMEOUT
)
4471 dev_dbg(&udev
->dev
, "Hub-initiated U2 disabled "
4472 "due to long timeout %llu ms\n", timeout_ns
);
4473 return xhci_get_timeout_no_hub_lpm(udev
, USB3_LPM_U2
);
4476 static u16
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd
*xhci
,
4477 struct usb_device
*udev
,
4478 struct usb_endpoint_descriptor
*desc
,
4479 enum usb3_link_state state
,
4482 if (state
== USB3_LPM_U1
)
4483 return xhci_calculate_u1_timeout(xhci
, udev
, desc
);
4484 else if (state
== USB3_LPM_U2
)
4485 return xhci_calculate_u2_timeout(xhci
, udev
, desc
);
4487 return USB3_LPM_DISABLED
;
4490 static int xhci_update_timeout_for_endpoint(struct xhci_hcd
*xhci
,
4491 struct usb_device
*udev
,
4492 struct usb_endpoint_descriptor
*desc
,
4493 enum usb3_link_state state
,
4498 alt_timeout
= xhci_call_host_update_timeout_for_endpoint(xhci
, udev
,
4499 desc
, state
, timeout
);
4501 /* If we found we can't enable hub-initiated LPM, or
4502 * the U1 or U2 exit latency was too high to allow
4503 * device-initiated LPM as well, just stop searching.
4505 if (alt_timeout
== USB3_LPM_DISABLED
||
4506 alt_timeout
== USB3_LPM_DEVICE_INITIATED
) {
4507 *timeout
= alt_timeout
;
4510 if (alt_timeout
> *timeout
)
4511 *timeout
= alt_timeout
;
4515 static int xhci_update_timeout_for_interface(struct xhci_hcd
*xhci
,
4516 struct usb_device
*udev
,
4517 struct usb_host_interface
*alt
,
4518 enum usb3_link_state state
,
4523 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
4524 if (xhci_update_timeout_for_endpoint(xhci
, udev
,
4525 &alt
->endpoint
[j
].desc
, state
, timeout
))
4532 static int xhci_check_intel_tier_policy(struct usb_device
*udev
,
4533 enum usb3_link_state state
)
4535 struct usb_device
*parent
;
4536 unsigned int num_hubs
;
4538 if (state
== USB3_LPM_U2
)
4541 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4542 for (parent
= udev
->parent
, num_hubs
= 0; parent
->parent
;
4543 parent
= parent
->parent
)
4549 dev_dbg(&udev
->dev
, "Disabling U1 link state for device"
4550 " below second-tier hub.\n");
4551 dev_dbg(&udev
->dev
, "Plug device into first-tier hub "
4552 "to decrease power consumption.\n");
4556 static int xhci_check_tier_policy(struct xhci_hcd
*xhci
,
4557 struct usb_device
*udev
,
4558 enum usb3_link_state state
)
4560 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4561 return xhci_check_intel_tier_policy(udev
, state
);
4566 /* Returns the U1 or U2 timeout that should be enabled.
4567 * If the tier check or timeout setting functions return with a non-zero exit
4568 * code, that means the timeout value has been finalized and we shouldn't look
4569 * at any more endpoints.
4571 static u16
xhci_calculate_lpm_timeout(struct usb_hcd
*hcd
,
4572 struct usb_device
*udev
, enum usb3_link_state state
)
4574 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4575 struct usb_host_config
*config
;
4578 u16 timeout
= USB3_LPM_DISABLED
;
4580 if (state
== USB3_LPM_U1
)
4582 else if (state
== USB3_LPM_U2
)
4585 dev_warn(&udev
->dev
, "Can't enable unknown link state %i\n",
4590 if (xhci_check_tier_policy(xhci
, udev
, state
) < 0)
4593 /* Gather some information about the currently installed configuration
4594 * and alternate interface settings.
4596 if (xhci_update_timeout_for_endpoint(xhci
, udev
, &udev
->ep0
.desc
,
4600 config
= udev
->actconfig
;
4604 for (i
= 0; i
< config
->desc
.bNumInterfaces
; i
++) {
4605 struct usb_driver
*driver
;
4606 struct usb_interface
*intf
= config
->interface
[i
];
4611 /* Check if any currently bound drivers want hub-initiated LPM
4614 if (intf
->dev
.driver
) {
4615 driver
= to_usb_driver(intf
->dev
.driver
);
4616 if (driver
&& driver
->disable_hub_initiated_lpm
) {
4617 dev_dbg(&udev
->dev
, "Hub-initiated %s disabled "
4618 "at request of driver %s\n",
4619 state_name
, driver
->name
);
4620 return xhci_get_timeout_no_hub_lpm(udev
, state
);
4624 /* Not sure how this could happen... */
4625 if (!intf
->cur_altsetting
)
4628 if (xhci_update_timeout_for_interface(xhci
, udev
,
4629 intf
->cur_altsetting
,
4636 static int calculate_max_exit_latency(struct usb_device
*udev
,
4637 enum usb3_link_state state_changed
,
4638 u16 hub_encoded_timeout
)
4640 unsigned long long u1_mel_us
= 0;
4641 unsigned long long u2_mel_us
= 0;
4642 unsigned long long mel_us
= 0;
4648 disabling_u1
= (state_changed
== USB3_LPM_U1
&&
4649 hub_encoded_timeout
== USB3_LPM_DISABLED
);
4650 disabling_u2
= (state_changed
== USB3_LPM_U2
&&
4651 hub_encoded_timeout
== USB3_LPM_DISABLED
);
4653 enabling_u1
= (state_changed
== USB3_LPM_U1
&&
4654 hub_encoded_timeout
!= USB3_LPM_DISABLED
);
4655 enabling_u2
= (state_changed
== USB3_LPM_U2
&&
4656 hub_encoded_timeout
!= USB3_LPM_DISABLED
);
4658 /* If U1 was already enabled and we're not disabling it,
4659 * or we're going to enable U1, account for the U1 max exit latency.
4661 if ((udev
->u1_params
.timeout
!= USB3_LPM_DISABLED
&& !disabling_u1
) ||
4663 u1_mel_us
= DIV_ROUND_UP(udev
->u1_params
.mel
, 1000);
4664 if ((udev
->u2_params
.timeout
!= USB3_LPM_DISABLED
&& !disabling_u2
) ||
4666 u2_mel_us
= DIV_ROUND_UP(udev
->u2_params
.mel
, 1000);
4668 if (u1_mel_us
> u2_mel_us
)
4672 /* xHCI host controller max exit latency field is only 16 bits wide. */
4673 if (mel_us
> MAX_EXIT
) {
4674 dev_warn(&udev
->dev
, "Link PM max exit latency of %lluus "
4675 "is too big.\n", mel_us
);
4681 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4682 int xhci_enable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4683 struct usb_device
*udev
, enum usb3_link_state state
)
4685 struct xhci_hcd
*xhci
;
4686 u16 hub_encoded_timeout
;
4690 xhci
= hcd_to_xhci(hcd
);
4691 /* The LPM timeout values are pretty host-controller specific, so don't
4692 * enable hub-initiated timeouts unless the vendor has provided
4693 * information about their timeout algorithm.
4695 if (!xhci
|| !(xhci
->quirks
& XHCI_LPM_SUPPORT
) ||
4696 !xhci
->devs
[udev
->slot_id
])
4697 return USB3_LPM_DISABLED
;
4699 hub_encoded_timeout
= xhci_calculate_lpm_timeout(hcd
, udev
, state
);
4700 mel
= calculate_max_exit_latency(udev
, state
, hub_encoded_timeout
);
4702 /* Max Exit Latency is too big, disable LPM. */
4703 hub_encoded_timeout
= USB3_LPM_DISABLED
;
4707 ret
= xhci_change_max_exit_latency(xhci
, udev
, mel
);
4710 return hub_encoded_timeout
;
4713 int xhci_disable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4714 struct usb_device
*udev
, enum usb3_link_state state
)
4716 struct xhci_hcd
*xhci
;
4719 xhci
= hcd_to_xhci(hcd
);
4720 if (!xhci
|| !(xhci
->quirks
& XHCI_LPM_SUPPORT
) ||
4721 !xhci
->devs
[udev
->slot_id
])
4724 mel
= calculate_max_exit_latency(udev
, state
, USB3_LPM_DISABLED
);
4725 return xhci_change_max_exit_latency(xhci
, udev
, mel
);
4727 #else /* CONFIG_PM */
4729 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
4730 struct usb_device
*udev
, int enable
)
4735 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4740 int xhci_enable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4741 struct usb_device
*udev
, enum usb3_link_state state
)
4743 return USB3_LPM_DISABLED
;
4746 int xhci_disable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4747 struct usb_device
*udev
, enum usb3_link_state state
)
4751 #endif /* CONFIG_PM */
4753 /*-------------------------------------------------------------------------*/
4755 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4756 * internal data structures for the device.
4758 int xhci_update_hub_device(struct usb_hcd
*hcd
, struct usb_device
*hdev
,
4759 struct usb_tt
*tt
, gfp_t mem_flags
)
4761 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4762 struct xhci_virt_device
*vdev
;
4763 struct xhci_command
*config_cmd
;
4764 struct xhci_input_control_ctx
*ctrl_ctx
;
4765 struct xhci_slot_ctx
*slot_ctx
;
4766 unsigned long flags
;
4767 unsigned think_time
;
4770 /* Ignore root hubs */
4774 vdev
= xhci
->devs
[hdev
->slot_id
];
4776 xhci_warn(xhci
, "Cannot update hub desc for unknown device.\n");
4779 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
4781 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
4784 ctrl_ctx
= xhci_get_input_control_ctx(config_cmd
->in_ctx
);
4786 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
4788 xhci_free_command(xhci
, config_cmd
);
4792 spin_lock_irqsave(&xhci
->lock
, flags
);
4793 if (hdev
->speed
== USB_SPEED_HIGH
&&
4794 xhci_alloc_tt_info(xhci
, vdev
, hdev
, tt
, GFP_ATOMIC
)) {
4795 xhci_dbg(xhci
, "Could not allocate xHCI TT structure.\n");
4796 xhci_free_command(xhci
, config_cmd
);
4797 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4801 xhci_slot_copy(xhci
, config_cmd
->in_ctx
, vdev
->out_ctx
);
4802 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
4803 slot_ctx
= xhci_get_slot_ctx(xhci
, config_cmd
->in_ctx
);
4804 slot_ctx
->dev_info
|= cpu_to_le32(DEV_HUB
);
4806 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4807 * but it may be already set to 1 when setup an xHCI virtual
4808 * device, so clear it anyway.
4811 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
4812 else if (hdev
->speed
== USB_SPEED_FULL
)
4813 slot_ctx
->dev_info
&= cpu_to_le32(~DEV_MTT
);
4815 if (xhci
->hci_version
> 0x95) {
4816 xhci_dbg(xhci
, "xHCI version %x needs hub "
4817 "TT think time and number of ports\n",
4818 (unsigned int) xhci
->hci_version
);
4819 slot_ctx
->dev_info2
|= cpu_to_le32(XHCI_MAX_PORTS(hdev
->maxchild
));
4820 /* Set TT think time - convert from ns to FS bit times.
4821 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4822 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4824 * xHCI 1.0: this field shall be 0 if the device is not a
4827 think_time
= tt
->think_time
;
4828 if (think_time
!= 0)
4829 think_time
= (think_time
/ 666) - 1;
4830 if (xhci
->hci_version
< 0x100 || hdev
->speed
== USB_SPEED_HIGH
)
4831 slot_ctx
->tt_info
|=
4832 cpu_to_le32(TT_THINK_TIME(think_time
));
4834 xhci_dbg(xhci
, "xHCI version %x doesn't need hub "
4835 "TT think time or number of ports\n",
4836 (unsigned int) xhci
->hci_version
);
4838 slot_ctx
->dev_state
= 0;
4839 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4841 xhci_dbg(xhci
, "Set up %s for hub device.\n",
4842 (xhci
->hci_version
> 0x95) ?
4843 "configure endpoint" : "evaluate context");
4844 xhci_dbg(xhci
, "Slot %u Input Context:\n", hdev
->slot_id
);
4845 xhci_dbg_ctx(xhci
, config_cmd
->in_ctx
, 0);
4847 /* Issue and wait for the configure endpoint or
4848 * evaluate context command.
4850 if (xhci
->hci_version
> 0x95)
4851 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
4854 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
4857 xhci_dbg(xhci
, "Slot %u Output Context:\n", hdev
->slot_id
);
4858 xhci_dbg_ctx(xhci
, vdev
->out_ctx
, 0);
4860 xhci_free_command(xhci
, config_cmd
);
4864 int xhci_get_frame(struct usb_hcd
*hcd
)
4866 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4867 /* EHCI mods by the periodic size. Why? */
4868 return readl(&xhci
->run_regs
->microframe_index
) >> 3;
4871 int xhci_gen_setup(struct usb_hcd
*hcd
, xhci_get_quirks_t get_quirks
)
4873 struct xhci_hcd
*xhci
;
4874 struct device
*dev
= hcd
->self
.controller
;
4877 /* Accept arbitrarily long scatter-gather lists */
4878 hcd
->self
.sg_tablesize
= ~0;
4880 /* support to build packet from discontinuous buffers */
4881 hcd
->self
.no_sg_constraint
= 1;
4883 /* XHCI controllers don't stop the ep queue on short packets :| */
4884 hcd
->self
.no_stop_on_short
= 1;
4886 xhci
= hcd_to_xhci(hcd
);
4888 if (usb_hcd_is_primary_hcd(hcd
)) {
4889 xhci
->main_hcd
= hcd
;
4890 /* Mark the first roothub as being USB 2.0.
4891 * The xHCI driver will register the USB 3.0 roothub.
4893 hcd
->speed
= HCD_USB2
;
4894 hcd
->self
.root_hub
->speed
= USB_SPEED_HIGH
;
4896 * USB 2.0 roothub under xHCI has an integrated TT,
4897 * (rate matching hub) as opposed to having an OHCI/UHCI
4898 * companion controller.
4902 if (xhci
->sbrn
== 0x31) {
4903 xhci_info(xhci
, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4904 hcd
->speed
= HCD_USB31
;
4905 hcd
->self
.root_hub
->speed
= USB_SPEED_SUPER_PLUS
;
4907 /* xHCI private pointer was set in xhci_pci_probe for the second
4908 * registered roothub.
4913 mutex_init(&xhci
->mutex
);
4914 xhci
->cap_regs
= hcd
->regs
;
4915 xhci
->op_regs
= hcd
->regs
+
4916 HC_LENGTH(readl(&xhci
->cap_regs
->hc_capbase
));
4917 xhci
->run_regs
= hcd
->regs
+
4918 (readl(&xhci
->cap_regs
->run_regs_off
) & RTSOFF_MASK
);
4919 /* Cache read-only capability registers */
4920 xhci
->hcs_params1
= readl(&xhci
->cap_regs
->hcs_params1
);
4921 xhci
->hcs_params2
= readl(&xhci
->cap_regs
->hcs_params2
);
4922 xhci
->hcs_params3
= readl(&xhci
->cap_regs
->hcs_params3
);
4923 xhci
->hcc_params
= readl(&xhci
->cap_regs
->hc_capbase
);
4924 xhci
->hci_version
= HC_VERSION(xhci
->hcc_params
);
4925 xhci
->hcc_params
= readl(&xhci
->cap_regs
->hcc_params
);
4926 if (xhci
->hci_version
> 0x100)
4927 xhci
->hcc_params2
= readl(&xhci
->cap_regs
->hcc_params2
);
4928 xhci_print_registers(xhci
);
4930 xhci
->quirks
= quirks
;
4932 get_quirks(dev
, xhci
);
4934 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4935 * success event after a short transfer. This quirk will ignore such
4938 if (xhci
->hci_version
> 0x96)
4939 xhci
->quirks
|= XHCI_SPURIOUS_SUCCESS
;
4941 /* Make sure the HC is halted. */
4942 retval
= xhci_halt(xhci
);
4946 xhci_dbg(xhci
, "Resetting HCD\n");
4947 /* Reset the internal HC memory state and registers. */
4948 retval
= xhci_reset(xhci
);
4951 xhci_dbg(xhci
, "Reset complete\n");
4954 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4955 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4956 * address memory pointers actually. So, this driver clears the AC64
4957 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4958 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4960 if (xhci
->quirks
& XHCI_NO_64BIT_SUPPORT
)
4961 xhci
->hcc_params
&= ~BIT(0);
4963 /* Set dma_mask and coherent_dma_mask to 64-bits,
4964 * if xHC supports 64-bit addressing */
4965 if (HCC_64BIT_ADDR(xhci
->hcc_params
) &&
4966 !dma_set_mask(dev
, DMA_BIT_MASK(64))) {
4967 xhci_dbg(xhci
, "Enabling 64-bit DMA addresses.\n");
4968 dma_set_coherent_mask(dev
, DMA_BIT_MASK(64));
4971 * This is to avoid error in cases where a 32-bit USB
4972 * controller is used on a 64-bit capable system.
4974 retval
= dma_set_mask(dev
, DMA_BIT_MASK(32));
4977 xhci_dbg(xhci
, "Enabling 32-bit DMA addresses.\n");
4978 dma_set_coherent_mask(dev
, DMA_BIT_MASK(32));
4981 xhci_dbg(xhci
, "Calling HCD init\n");
4982 /* Initialize HCD and host controller data structures. */
4983 retval
= xhci_init(hcd
);
4986 xhci_dbg(xhci
, "Called HCD init\n");
4988 xhci_info(xhci
, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4989 xhci
->hcc_params
, xhci
->hci_version
, xhci
->quirks
);
4993 EXPORT_SYMBOL_GPL(xhci_gen_setup
);
4995 static const struct hc_driver xhci_hc_driver
= {
4996 .description
= "xhci-hcd",
4997 .product_desc
= "xHCI Host Controller",
4998 .hcd_priv_size
= sizeof(struct xhci_hcd
),
5001 * generic hardware linkage
5004 .flags
= HCD_MEMORY
| HCD_USB3
| HCD_SHARED
,
5007 * basic lifecycle operations
5009 .reset
= NULL
, /* set in xhci_init_driver() */
5012 .shutdown
= xhci_shutdown
,
5015 * managing i/o requests and associated device resources
5017 .urb_enqueue
= xhci_urb_enqueue
,
5018 .urb_dequeue
= xhci_urb_dequeue
,
5019 .alloc_dev
= xhci_alloc_dev
,
5020 .free_dev
= xhci_free_dev
,
5021 .alloc_streams
= xhci_alloc_streams
,
5022 .free_streams
= xhci_free_streams
,
5023 .add_endpoint
= xhci_add_endpoint
,
5024 .drop_endpoint
= xhci_drop_endpoint
,
5025 .endpoint_reset
= xhci_endpoint_reset
,
5026 .check_bandwidth
= xhci_check_bandwidth
,
5027 .reset_bandwidth
= xhci_reset_bandwidth
,
5028 .address_device
= xhci_address_device
,
5029 .enable_device
= xhci_enable_device
,
5030 .update_hub_device
= xhci_update_hub_device
,
5031 .reset_device
= xhci_discover_or_reset_device
,
5034 * scheduling support
5036 .get_frame_number
= xhci_get_frame
,
5041 .hub_control
= xhci_hub_control
,
5042 .hub_status_data
= xhci_hub_status_data
,
5043 .bus_suspend
= xhci_bus_suspend
,
5044 .bus_resume
= xhci_bus_resume
,
5047 * call back when device connected and addressed
5049 .update_device
= xhci_update_device
,
5050 .set_usb2_hw_lpm
= xhci_set_usb2_hardware_lpm
,
5051 .enable_usb3_lpm_timeout
= xhci_enable_usb3_lpm_timeout
,
5052 .disable_usb3_lpm_timeout
= xhci_disable_usb3_lpm_timeout
,
5053 .find_raw_port_number
= xhci_find_raw_port_number
,
5056 void xhci_init_driver(struct hc_driver
*drv
,
5057 const struct xhci_driver_overrides
*over
)
5061 /* Copy the generic table to drv then apply the overrides */
5062 *drv
= xhci_hc_driver
;
5065 drv
->hcd_priv_size
+= over
->extra_priv_size
;
5067 drv
->reset
= over
->reset
;
5069 drv
->start
= over
->start
;
5072 EXPORT_SYMBOL_GPL(xhci_init_driver
);
5074 MODULE_DESCRIPTION(DRIVER_DESC
);
5075 MODULE_AUTHOR(DRIVER_AUTHOR
);
5076 MODULE_LICENSE("GPL");
5078 static int __init
xhci_hcd_init(void)
5081 * Check the compiler generated sizes of structures that must be laid
5082 * out in specific ways for hardware access.
5084 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
5085 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx
) != 8*32/8);
5086 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx
) != 8*32/8);
5087 /* xhci_device_control has eight fields, and also
5088 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5090 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx
) != 4*32/8);
5091 BUILD_BUG_ON(sizeof(union xhci_trb
) != 4*32/8);
5092 BUILD_BUG_ON(sizeof(struct xhci_erst_entry
) != 4*32/8);
5093 BUILD_BUG_ON(sizeof(struct xhci_cap_regs
) != 8*32/8);
5094 BUILD_BUG_ON(sizeof(struct xhci_intr_reg
) != 8*32/8);
5095 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5096 BUILD_BUG_ON(sizeof(struct xhci_run_regs
) != (8+8*128)*32/8);
5105 * If an init function is provided, an exit function must also be provided
5106 * to allow module unload.
5108 static void __exit
xhci_hcd_fini(void) { }
5110 module_init(xhci_hcd_init
);
5111 module_exit(xhci_hcd_fini
);