EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / fs / ext4 / page-io.c
blobe4fc8ea45d7888fe3677f052e1af8dff39d443ab
1 /*
2 * linux/fs/ext4/page-io.c
4 * This contains the new page_io functions for ext4
6 * Written by Theodore Ts'o, 2010.
7 */
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 #include <linux/backing-dev.h>
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
32 static struct kmem_cache *io_end_cachep;
34 int __init ext4_init_pageio(void)
36 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
37 if (io_end_cachep == NULL)
38 return -ENOMEM;
39 return 0;
42 void ext4_exit_pageio(void)
44 kmem_cache_destroy(io_end_cachep);
48 * Print an buffer I/O error compatible with the fs/buffer.c. This
49 * provides compatibility with dmesg scrapers that look for a specific
50 * buffer I/O error message. We really need a unified error reporting
51 * structure to userspace ala Digital Unix's uerf system, but it's
52 * probably not going to happen in my lifetime, due to LKML politics...
54 static void buffer_io_error(struct buffer_head *bh)
56 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
57 bh->b_bdev,
58 (unsigned long long)bh->b_blocknr);
61 static void ext4_finish_bio(struct bio *bio)
63 int i;
64 struct bio_vec *bvec;
66 bio_for_each_segment_all(bvec, bio, i) {
67 struct page *page = bvec->bv_page;
68 #ifdef CONFIG_EXT4_FS_ENCRYPTION
69 struct page *data_page = NULL;
70 struct ext4_crypto_ctx *ctx = NULL;
71 #endif
72 struct buffer_head *bh, *head;
73 unsigned bio_start = bvec->bv_offset;
74 unsigned bio_end = bio_start + bvec->bv_len;
75 unsigned under_io = 0;
76 unsigned long flags;
78 if (!page)
79 continue;
81 #ifdef CONFIG_EXT4_FS_ENCRYPTION
82 if (!page->mapping) {
83 /* The bounce data pages are unmapped. */
84 data_page = page;
85 ctx = (struct ext4_crypto_ctx *)page_private(data_page);
86 page = ctx->w.control_page;
88 #endif
90 if (bio->bi_error) {
91 SetPageError(page);
92 set_bit(AS_EIO, &page->mapping->flags);
94 bh = head = page_buffers(page);
96 * We check all buffers in the page under BH_Uptodate_Lock
97 * to avoid races with other end io clearing async_write flags
99 local_irq_save(flags);
100 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
101 do {
102 if (bh_offset(bh) < bio_start ||
103 bh_offset(bh) + bh->b_size > bio_end) {
104 if (buffer_async_write(bh))
105 under_io++;
106 continue;
108 clear_buffer_async_write(bh);
109 if (bio->bi_error)
110 buffer_io_error(bh);
111 } while ((bh = bh->b_this_page) != head);
112 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
113 local_irq_restore(flags);
114 if (!under_io) {
115 #ifdef CONFIG_EXT4_FS_ENCRYPTION
116 if (ctx)
117 ext4_restore_control_page(data_page);
118 #endif
119 end_page_writeback(page);
124 static void ext4_release_io_end(ext4_io_end_t *io_end)
126 struct bio *bio, *next_bio;
128 BUG_ON(!list_empty(&io_end->list));
129 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
130 WARN_ON(io_end->handle);
132 for (bio = io_end->bio; bio; bio = next_bio) {
133 next_bio = bio->bi_private;
134 ext4_finish_bio(bio);
135 bio_put(bio);
137 kmem_cache_free(io_end_cachep, io_end);
141 * Check a range of space and convert unwritten extents to written. Note that
142 * we are protected from truncate touching same part of extent tree by the
143 * fact that truncate code waits for all DIO to finish (thus exclusion from
144 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
145 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
146 * completed (happens from ext4_free_ioend()).
148 static int ext4_end_io(ext4_io_end_t *io)
150 struct inode *inode = io->inode;
151 loff_t offset = io->offset;
152 ssize_t size = io->size;
153 handle_t *handle = io->handle;
154 int ret = 0;
156 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
157 "list->prev 0x%p\n",
158 io, inode->i_ino, io->list.next, io->list.prev);
160 io->handle = NULL; /* Following call will use up the handle */
161 ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
162 if (ret < 0) {
163 ext4_msg(inode->i_sb, KERN_EMERG,
164 "failed to convert unwritten extents to written "
165 "extents -- potential data loss! "
166 "(inode %lu, offset %llu, size %zd, error %d)",
167 inode->i_ino, offset, size, ret);
169 ext4_clear_io_unwritten_flag(io);
170 ext4_release_io_end(io);
171 return ret;
174 static void dump_completed_IO(struct inode *inode, struct list_head *head)
176 #ifdef EXT4FS_DEBUG
177 struct list_head *cur, *before, *after;
178 ext4_io_end_t *io, *io0, *io1;
180 if (list_empty(head))
181 return;
183 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
184 list_for_each_entry(io, head, list) {
185 cur = &io->list;
186 before = cur->prev;
187 io0 = container_of(before, ext4_io_end_t, list);
188 after = cur->next;
189 io1 = container_of(after, ext4_io_end_t, list);
191 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
192 io, inode->i_ino, io0, io1);
194 #endif
197 /* Add the io_end to per-inode completed end_io list. */
198 static void ext4_add_complete_io(ext4_io_end_t *io_end)
200 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
201 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
202 struct workqueue_struct *wq;
203 unsigned long flags;
205 /* Only reserved conversions from writeback should enter here */
206 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
207 WARN_ON(!io_end->handle && sbi->s_journal);
208 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
209 wq = sbi->rsv_conversion_wq;
210 if (list_empty(&ei->i_rsv_conversion_list))
211 queue_work(wq, &ei->i_rsv_conversion_work);
212 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
213 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
216 static int ext4_do_flush_completed_IO(struct inode *inode,
217 struct list_head *head)
219 ext4_io_end_t *io;
220 struct list_head unwritten;
221 unsigned long flags;
222 struct ext4_inode_info *ei = EXT4_I(inode);
223 int err, ret = 0;
225 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
226 dump_completed_IO(inode, head);
227 list_replace_init(head, &unwritten);
228 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
230 while (!list_empty(&unwritten)) {
231 io = list_entry(unwritten.next, ext4_io_end_t, list);
232 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
233 list_del_init(&io->list);
235 err = ext4_end_io(io);
236 if (unlikely(!ret && err))
237 ret = err;
239 return ret;
243 * work on completed IO, to convert unwritten extents to extents
245 void ext4_end_io_rsv_work(struct work_struct *work)
247 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
248 i_rsv_conversion_work);
249 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
252 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
254 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
255 if (io) {
256 io->inode = inode;
257 INIT_LIST_HEAD(&io->list);
258 atomic_set(&io->count, 1);
260 return io;
263 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
265 if (atomic_dec_and_test(&io_end->count)) {
266 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
267 ext4_release_io_end(io_end);
268 return;
270 ext4_add_complete_io(io_end);
274 int ext4_put_io_end(ext4_io_end_t *io_end)
276 int err = 0;
278 if (atomic_dec_and_test(&io_end->count)) {
279 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
280 err = ext4_convert_unwritten_extents(io_end->handle,
281 io_end->inode, io_end->offset,
282 io_end->size);
283 io_end->handle = NULL;
284 ext4_clear_io_unwritten_flag(io_end);
286 ext4_release_io_end(io_end);
288 return err;
291 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
293 atomic_inc(&io_end->count);
294 return io_end;
297 /* BIO completion function for page writeback */
298 static void ext4_end_bio(struct bio *bio)
300 ext4_io_end_t *io_end = bio->bi_private;
301 sector_t bi_sector = bio->bi_iter.bi_sector;
303 BUG_ON(!io_end);
304 bio->bi_end_io = NULL;
306 if (bio->bi_error) {
307 struct inode *inode = io_end->inode;
309 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
310 "(offset %llu size %ld starting block %llu)",
311 bio->bi_error, inode->i_ino,
312 (unsigned long long) io_end->offset,
313 (long) io_end->size,
314 (unsigned long long)
315 bi_sector >> (inode->i_blkbits - 9));
316 mapping_set_error(inode->i_mapping, bio->bi_error);
319 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
321 * Link bio into list hanging from io_end. We have to do it
322 * atomically as bio completions can be racing against each
323 * other.
325 bio->bi_private = xchg(&io_end->bio, bio);
326 ext4_put_io_end_defer(io_end);
327 } else {
329 * Drop io_end reference early. Inode can get freed once
330 * we finish the bio.
332 ext4_put_io_end_defer(io_end);
333 ext4_finish_bio(bio);
334 bio_put(bio);
338 void ext4_io_submit(struct ext4_io_submit *io)
340 struct bio *bio = io->io_bio;
342 if (bio) {
343 int io_op = io->io_wbc->sync_mode == WB_SYNC_ALL ?
344 WRITE_SYNC : WRITE;
345 bio_get(io->io_bio);
346 submit_bio(io_op, io->io_bio);
347 bio_put(io->io_bio);
349 io->io_bio = NULL;
352 void ext4_io_submit_init(struct ext4_io_submit *io,
353 struct writeback_control *wbc)
355 io->io_wbc = wbc;
356 io->io_bio = NULL;
357 io->io_end = NULL;
360 static int io_submit_init_bio(struct ext4_io_submit *io,
361 struct buffer_head *bh)
363 struct bio *bio;
365 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
366 if (!bio)
367 return -ENOMEM;
368 wbc_init_bio(io->io_wbc, bio);
369 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
370 bio->bi_bdev = bh->b_bdev;
371 bio->bi_end_io = ext4_end_bio;
372 bio->bi_private = ext4_get_io_end(io->io_end);
373 io->io_bio = bio;
374 io->io_next_block = bh->b_blocknr;
375 return 0;
378 static int io_submit_add_bh(struct ext4_io_submit *io,
379 struct inode *inode,
380 struct page *page,
381 struct buffer_head *bh)
383 int ret;
385 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
386 submit_and_retry:
387 ext4_io_submit(io);
389 if (io->io_bio == NULL) {
390 ret = io_submit_init_bio(io, bh);
391 if (ret)
392 return ret;
394 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
395 if (ret != bh->b_size)
396 goto submit_and_retry;
397 wbc_account_io(io->io_wbc, page, bh->b_size);
398 io->io_next_block++;
399 return 0;
402 int ext4_bio_write_page(struct ext4_io_submit *io,
403 struct page *page,
404 int len,
405 struct writeback_control *wbc,
406 bool keep_towrite)
408 struct page *data_page = NULL;
409 struct inode *inode = page->mapping->host;
410 unsigned block_start, blocksize;
411 struct buffer_head *bh, *head;
412 int ret = 0;
413 int nr_submitted = 0;
414 int nr_to_submit = 0;
416 blocksize = 1 << inode->i_blkbits;
418 BUG_ON(!PageLocked(page));
419 BUG_ON(PageWriteback(page));
421 if (keep_towrite)
422 set_page_writeback_keepwrite(page);
423 else
424 set_page_writeback(page);
425 ClearPageError(page);
428 * Comments copied from block_write_full_page:
430 * The page straddles i_size. It must be zeroed out on each and every
431 * writepage invocation because it may be mmapped. "A file is mapped
432 * in multiples of the page size. For a file that is not a multiple of
433 * the page size, the remaining memory is zeroed when mapped, and
434 * writes to that region are not written out to the file."
436 if (len < PAGE_SIZE)
437 zero_user_segment(page, len, PAGE_SIZE);
439 * In the first loop we prepare and mark buffers to submit. We have to
440 * mark all buffers in the page before submitting so that
441 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
442 * on the first buffer finishes and we are still working on submitting
443 * the second buffer.
445 bh = head = page_buffers(page);
446 do {
447 block_start = bh_offset(bh);
448 if (block_start >= len) {
449 clear_buffer_dirty(bh);
450 set_buffer_uptodate(bh);
451 continue;
453 if (!buffer_dirty(bh) || buffer_delay(bh) ||
454 !buffer_mapped(bh) || buffer_unwritten(bh)) {
455 /* A hole? We can safely clear the dirty bit */
456 if (!buffer_mapped(bh))
457 clear_buffer_dirty(bh);
458 if (io->io_bio)
459 ext4_io_submit(io);
460 continue;
462 if (buffer_new(bh)) {
463 clear_buffer_new(bh);
464 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
466 set_buffer_async_write(bh);
467 nr_to_submit++;
468 } while ((bh = bh->b_this_page) != head);
470 bh = head = page_buffers(page);
472 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
473 nr_to_submit) {
474 gfp_t gfp_flags = GFP_NOFS;
476 retry_encrypt:
477 data_page = ext4_encrypt(inode, page, gfp_flags);
478 if (IS_ERR(data_page)) {
479 ret = PTR_ERR(data_page);
480 if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
481 if (io->io_bio) {
482 ext4_io_submit(io);
483 congestion_wait(BLK_RW_ASYNC, HZ/50);
485 gfp_flags |= __GFP_NOFAIL;
486 goto retry_encrypt;
488 data_page = NULL;
489 goto out;
493 /* Now submit buffers to write */
494 do {
495 if (!buffer_async_write(bh))
496 continue;
497 ret = io_submit_add_bh(io, inode,
498 data_page ? data_page : page, bh);
499 if (ret) {
501 * We only get here on ENOMEM. Not much else
502 * we can do but mark the page as dirty, and
503 * better luck next time.
505 break;
507 nr_submitted++;
508 clear_buffer_dirty(bh);
509 } while ((bh = bh->b_this_page) != head);
511 /* Error stopped previous loop? Clean up buffers... */
512 if (ret) {
513 out:
514 if (data_page)
515 ext4_restore_control_page(data_page);
516 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
517 redirty_page_for_writepage(wbc, page);
518 do {
519 clear_buffer_async_write(bh);
520 bh = bh->b_this_page;
521 } while (bh != head);
523 unlock_page(page);
524 /* Nothing submitted - we have to end page writeback */
525 if (!nr_submitted)
526 end_page_writeback(page);
527 return ret;