EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / fs / splice.c
blobb018eb485019b1ed1bed2ccdc6c7b9914c575963
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
49 lock_page(page);
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
83 out_unlock:
84 unlock_page(page);
85 return 1;
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 put_page(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
103 int err;
105 if (!PageUptodate(page)) {
106 lock_page(page);
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
126 * Page is ok afterall, we are done.
128 unlock_page(page);
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
188 if (!spd_pages)
189 return 0;
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
195 pipe_lock(pipe);
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
221 if (pipe->files)
222 do_wakeup = 1;
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
229 break;
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
257 pipe_unlock(pipe);
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
265 return ret;
267 EXPORT_SYMBOL_GPL(splice_to_pipe);
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
271 put_page(spd->pages[i]);
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
289 if (spd->pages && spd->partial)
290 return 0;
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
302 kfree(spd->pages);
303 kfree(spd->partial);
306 static int
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
331 index = *ppos >> PAGE_SHIFT;
332 loff = *ppos & ~PAGE_MASK;
333 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
337 * Lookup the (hopefully) full range of pages we need.
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
356 page = find_get_page(mapping, index);
357 if (!page) {
359 * page didn't exist, allocate one.
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
365 error = add_to_page_cache_lru(page, mapping, index,
366 mapping_gfp_constraint(mapping, GFP_KERNEL));
367 if (unlikely(error)) {
368 put_page(page);
369 if (error == -EEXIST)
370 continue;
371 break;
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
377 unlock_page(page);
380 spd.pages[spd.nr_pages++] = page;
381 index++;
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
388 index = *ppos >> PAGE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
394 if (!len)
395 break;
398 * this_len is the max we'll use from this page
400 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
401 page = spd.pages[page_nr];
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
408 * If the page isn't uptodate, we may need to start io on it
410 if (!PageUptodate(page)) {
411 lock_page(page);
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
419 if (!page->mapping) {
420 unlock_page(page);
421 retry_lookup:
422 page = find_or_create_page(mapping, index,
423 mapping_gfp_mask(mapping));
425 if (!page) {
426 error = -ENOMEM;
427 break;
429 put_page(spd.pages[page_nr]);
430 spd.pages[page_nr] = page;
433 * page was already under io and is now done, great
435 if (PageUptodate(page)) {
436 unlock_page(page);
437 goto fill_it;
441 * need to read in the page
443 error = mapping->a_ops->readpage(in, page);
444 if (unlikely(error)) {
446 * Re-lookup the page
448 if (error == AOP_TRUNCATED_PAGE)
449 goto retry_lookup;
451 break;
454 fill_it:
456 * i_size must be checked after PageUptodate.
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_SHIFT;
460 if (unlikely(!isize || index > end_index))
461 break;
464 * if this is the last page, see if we need to shrink
465 * the length and stop
467 if (end_index == index) {
468 unsigned int plen;
471 * max good bytes in this page
473 plen = ((isize - 1) & ~PAGE_MASK) + 1;
474 if (plen <= loff)
475 break;
478 * force quit after adding this page
480 this_len = min(this_len, plen - loff);
481 len = this_len;
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
486 len -= this_len;
487 loff = 0;
488 spd.nr_pages++;
489 index++;
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
496 while (page_nr < nr_pages)
497 put_page(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
500 if (spd.nr_pages)
501 error = splice_to_pipe(pipe, &spd);
503 splice_shrink_spd(&spd);
504 return error;
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
515 * Description:
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
518 * a readpage() hook.
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
523 unsigned int flags)
525 loff_t isize, left;
526 int ret;
528 if (IS_DAX(in->f_mapping->host))
529 return default_file_splice_read(in, ppos, pipe, len, flags);
531 isize = i_size_read(in->f_mapping->host);
532 if (unlikely(*ppos >= isize))
533 return 0;
535 left = isize - *ppos;
536 if (unlikely(left < len))
537 len = left;
539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
540 if (ret > 0) {
541 *ppos += ret;
542 file_accessed(in);
545 return ret;
547 EXPORT_SYMBOL(generic_file_splice_read);
549 static const struct pipe_buf_operations default_pipe_buf_ops = {
550 .can_merge = 0,
551 .confirm = generic_pipe_buf_confirm,
552 .release = generic_pipe_buf_release,
553 .steal = generic_pipe_buf_steal,
554 .get = generic_pipe_buf_get,
557 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558 struct pipe_buffer *buf)
560 return 1;
563 /* Pipe buffer operations for a socket and similar. */
564 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
565 .can_merge = 0,
566 .confirm = generic_pipe_buf_confirm,
567 .release = generic_pipe_buf_release,
568 .steal = generic_pipe_buf_nosteal,
569 .get = generic_pipe_buf_get,
571 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
573 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
574 unsigned long vlen, loff_t offset)
576 mm_segment_t old_fs;
577 loff_t pos = offset;
578 ssize_t res;
580 old_fs = get_fs();
581 set_fs(get_ds());
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
584 set_fs(old_fs);
586 return res;
589 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
590 loff_t pos)
592 mm_segment_t old_fs;
593 ssize_t res;
595 old_fs = get_fs();
596 set_fs(get_ds());
597 /* The cast to a user pointer is valid due to the set_fs() */
598 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
599 set_fs(old_fs);
601 return res;
603 EXPORT_SYMBOL(kernel_write);
605 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
606 struct pipe_inode_info *pipe, size_t len,
607 unsigned int flags)
609 unsigned int nr_pages;
610 unsigned int nr_freed;
611 size_t offset;
612 struct page *pages[PIPE_DEF_BUFFERS];
613 struct partial_page partial[PIPE_DEF_BUFFERS];
614 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
615 ssize_t res;
616 size_t this_len;
617 int error;
618 int i;
619 struct splice_pipe_desc spd = {
620 .pages = pages,
621 .partial = partial,
622 .nr_pages_max = PIPE_DEF_BUFFERS,
623 .flags = flags,
624 .ops = &default_pipe_buf_ops,
625 .spd_release = spd_release_page,
628 if (splice_grow_spd(pipe, &spd))
629 return -ENOMEM;
631 res = -ENOMEM;
632 vec = __vec;
633 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
634 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
635 if (!vec)
636 goto shrink_ret;
639 offset = *ppos & ~PAGE_MASK;
640 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
642 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
643 struct page *page;
645 page = alloc_page(GFP_USER);
646 error = -ENOMEM;
647 if (!page)
648 goto err;
650 this_len = min_t(size_t, len, PAGE_SIZE - offset);
651 vec[i].iov_base = (void __user *) page_address(page);
652 vec[i].iov_len = this_len;
653 spd.pages[i] = page;
654 spd.nr_pages++;
655 len -= this_len;
656 offset = 0;
659 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
660 if (res < 0) {
661 error = res;
662 goto err;
665 error = 0;
666 if (!res)
667 goto err;
669 nr_freed = 0;
670 for (i = 0; i < spd.nr_pages; i++) {
671 this_len = min_t(size_t, vec[i].iov_len, res);
672 spd.partial[i].offset = 0;
673 spd.partial[i].len = this_len;
674 if (!this_len) {
675 __free_page(spd.pages[i]);
676 spd.pages[i] = NULL;
677 nr_freed++;
679 res -= this_len;
681 spd.nr_pages -= nr_freed;
683 res = splice_to_pipe(pipe, &spd);
684 if (res > 0)
685 *ppos += res;
687 shrink_ret:
688 if (vec != __vec)
689 kfree(vec);
690 splice_shrink_spd(&spd);
691 return res;
693 err:
694 for (i = 0; i < spd.nr_pages; i++)
695 __free_page(spd.pages[i]);
697 res = error;
698 goto shrink_ret;
700 EXPORT_SYMBOL(default_file_splice_read);
703 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
704 * using sendpage(). Return the number of bytes sent.
706 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
707 struct pipe_buffer *buf, struct splice_desc *sd)
709 struct file *file = sd->u.file;
710 loff_t pos = sd->pos;
711 int more;
713 if (!likely(file->f_op->sendpage))
714 return -EINVAL;
716 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
718 if (sd->len < sd->total_len && pipe->nrbufs > 1)
719 more |= MSG_SENDPAGE_NOTLAST;
721 return file->f_op->sendpage(file, buf->page, buf->offset,
722 sd->len, &pos, more);
725 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
727 smp_mb();
728 if (waitqueue_active(&pipe->wait))
729 wake_up_interruptible(&pipe->wait);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
734 * splice_from_pipe_feed - feed available data from a pipe to a file
735 * @pipe: pipe to splice from
736 * @sd: information to @actor
737 * @actor: handler that splices the data
739 * Description:
740 * This function loops over the pipe and calls @actor to do the
741 * actual moving of a single struct pipe_buffer to the desired
742 * destination. It returns when there's no more buffers left in
743 * the pipe or if the requested number of bytes (@sd->total_len)
744 * have been copied. It returns a positive number (one) if the
745 * pipe needs to be filled with more data, zero if the required
746 * number of bytes have been copied and -errno on error.
748 * This, together with splice_from_pipe_{begin,end,next}, may be
749 * used to implement the functionality of __splice_from_pipe() when
750 * locking is required around copying the pipe buffers to the
751 * destination.
753 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
754 splice_actor *actor)
756 int ret;
758 while (pipe->nrbufs) {
759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 const struct pipe_buf_operations *ops = buf->ops;
762 sd->len = buf->len;
763 if (sd->len > sd->total_len)
764 sd->len = sd->total_len;
766 ret = buf->ops->confirm(pipe, buf);
767 if (unlikely(ret)) {
768 if (ret == -ENODATA)
769 ret = 0;
770 return ret;
773 ret = actor(pipe, buf, sd);
774 if (ret <= 0)
775 return ret;
777 buf->offset += ret;
778 buf->len -= ret;
780 sd->num_spliced += ret;
781 sd->len -= ret;
782 sd->pos += ret;
783 sd->total_len -= ret;
785 if (!buf->len) {
786 buf->ops = NULL;
787 ops->release(pipe, buf);
788 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
789 pipe->nrbufs--;
790 if (pipe->files)
791 sd->need_wakeup = true;
794 if (!sd->total_len)
795 return 0;
798 return 1;
802 * splice_from_pipe_next - wait for some data to splice from
803 * @pipe: pipe to splice from
804 * @sd: information about the splice operation
806 * Description:
807 * This function will wait for some data and return a positive
808 * value (one) if pipe buffers are available. It will return zero
809 * or -errno if no more data needs to be spliced.
811 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
814 * Check for signal early to make process killable when there are
815 * always buffers available
817 if (signal_pending(current))
818 return -ERESTARTSYS;
820 while (!pipe->nrbufs) {
821 if (!pipe->writers)
822 return 0;
824 if (!pipe->waiting_writers && sd->num_spliced)
825 return 0;
827 if (sd->flags & SPLICE_F_NONBLOCK)
828 return -EAGAIN;
830 if (signal_pending(current))
831 return -ERESTARTSYS;
833 if (sd->need_wakeup) {
834 wakeup_pipe_writers(pipe);
835 sd->need_wakeup = false;
838 pipe_wait(pipe);
841 return 1;
845 * splice_from_pipe_begin - start splicing from pipe
846 * @sd: information about the splice operation
848 * Description:
849 * This function should be called before a loop containing
850 * splice_from_pipe_next() and splice_from_pipe_feed() to
851 * initialize the necessary fields of @sd.
853 static void splice_from_pipe_begin(struct splice_desc *sd)
855 sd->num_spliced = 0;
856 sd->need_wakeup = false;
860 * splice_from_pipe_end - finish splicing from pipe
861 * @pipe: pipe to splice from
862 * @sd: information about the splice operation
864 * Description:
865 * This function will wake up pipe writers if necessary. It should
866 * be called after a loop containing splice_from_pipe_next() and
867 * splice_from_pipe_feed().
869 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
871 if (sd->need_wakeup)
872 wakeup_pipe_writers(pipe);
876 * __splice_from_pipe - splice data from a pipe to given actor
877 * @pipe: pipe to splice from
878 * @sd: information to @actor
879 * @actor: handler that splices the data
881 * Description:
882 * This function does little more than loop over the pipe and call
883 * @actor to do the actual moving of a single struct pipe_buffer to
884 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
885 * pipe_to_user.
888 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
889 splice_actor *actor)
891 int ret;
893 splice_from_pipe_begin(sd);
894 do {
895 cond_resched();
896 ret = splice_from_pipe_next(pipe, sd);
897 if (ret > 0)
898 ret = splice_from_pipe_feed(pipe, sd, actor);
899 } while (ret > 0);
900 splice_from_pipe_end(pipe, sd);
902 return sd->num_spliced ? sd->num_spliced : ret;
904 EXPORT_SYMBOL(__splice_from_pipe);
907 * splice_from_pipe - splice data from a pipe to a file
908 * @pipe: pipe to splice from
909 * @out: file to splice to
910 * @ppos: position in @out
911 * @len: how many bytes to splice
912 * @flags: splice modifier flags
913 * @actor: handler that splices the data
915 * Description:
916 * See __splice_from_pipe. This function locks the pipe inode,
917 * otherwise it's identical to __splice_from_pipe().
920 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
921 loff_t *ppos, size_t len, unsigned int flags,
922 splice_actor *actor)
924 ssize_t ret;
925 struct splice_desc sd = {
926 .total_len = len,
927 .flags = flags,
928 .pos = *ppos,
929 .u.file = out,
932 pipe_lock(pipe);
933 ret = __splice_from_pipe(pipe, &sd, actor);
934 pipe_unlock(pipe);
936 return ret;
940 * iter_file_splice_write - splice data from a pipe to a file
941 * @pipe: pipe info
942 * @out: file to write to
943 * @ppos: position in @out
944 * @len: number of bytes to splice
945 * @flags: splice modifier flags
947 * Description:
948 * Will either move or copy pages (determined by @flags options) from
949 * the given pipe inode to the given file.
950 * This one is ->write_iter-based.
953 ssize_t
954 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
955 loff_t *ppos, size_t len, unsigned int flags)
957 struct splice_desc sd = {
958 .total_len = len,
959 .flags = flags,
960 .pos = *ppos,
961 .u.file = out,
963 int nbufs = pipe->buffers;
964 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
965 GFP_KERNEL);
966 ssize_t ret;
968 if (unlikely(!array))
969 return -ENOMEM;
971 pipe_lock(pipe);
973 splice_from_pipe_begin(&sd);
974 while (sd.total_len) {
975 struct iov_iter from;
976 size_t left;
977 int n, idx;
979 ret = splice_from_pipe_next(pipe, &sd);
980 if (ret <= 0)
981 break;
983 if (unlikely(nbufs < pipe->buffers)) {
984 kfree(array);
985 nbufs = pipe->buffers;
986 array = kcalloc(nbufs, sizeof(struct bio_vec),
987 GFP_KERNEL);
988 if (!array) {
989 ret = -ENOMEM;
990 break;
994 /* build the vector */
995 left = sd.total_len;
996 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
997 struct pipe_buffer *buf = pipe->bufs + idx;
998 size_t this_len = buf->len;
1000 if (this_len > left)
1001 this_len = left;
1003 if (idx == pipe->buffers - 1)
1004 idx = -1;
1006 ret = buf->ops->confirm(pipe, buf);
1007 if (unlikely(ret)) {
1008 if (ret == -ENODATA)
1009 ret = 0;
1010 goto done;
1013 array[n].bv_page = buf->page;
1014 array[n].bv_len = this_len;
1015 array[n].bv_offset = buf->offset;
1016 left -= this_len;
1019 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1020 sd.total_len - left);
1021 ret = vfs_iter_write(out, &from, &sd.pos);
1022 if (ret <= 0)
1023 break;
1025 sd.num_spliced += ret;
1026 sd.total_len -= ret;
1027 *ppos = sd.pos;
1029 /* dismiss the fully eaten buffers, adjust the partial one */
1030 while (ret) {
1031 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032 if (ret >= buf->len) {
1033 const struct pipe_buf_operations *ops = buf->ops;
1034 ret -= buf->len;
1035 buf->len = 0;
1036 buf->ops = NULL;
1037 ops->release(pipe, buf);
1038 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1039 pipe->nrbufs--;
1040 if (pipe->files)
1041 sd.need_wakeup = true;
1042 } else {
1043 buf->offset += ret;
1044 buf->len -= ret;
1045 ret = 0;
1049 done:
1050 kfree(array);
1051 splice_from_pipe_end(pipe, &sd);
1053 pipe_unlock(pipe);
1055 if (sd.num_spliced)
1056 ret = sd.num_spliced;
1058 return ret;
1061 EXPORT_SYMBOL(iter_file_splice_write);
1063 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 struct splice_desc *sd)
1066 int ret;
1067 void *data;
1068 loff_t tmp = sd->pos;
1070 data = kmap(buf->page);
1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 kunmap(buf->page);
1074 return ret;
1077 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 struct file *out, loff_t *ppos,
1079 size_t len, unsigned int flags)
1081 ssize_t ret;
1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 if (ret > 0)
1085 *ppos += ret;
1087 return ret;
1091 * generic_splice_sendpage - splice data from a pipe to a socket
1092 * @pipe: pipe to splice from
1093 * @out: socket to write to
1094 * @ppos: position in @out
1095 * @len: number of bytes to splice
1096 * @flags: splice modifier flags
1098 * Description:
1099 * Will send @len bytes from the pipe to a network socket. No data copying
1100 * is involved.
1103 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 loff_t *ppos, size_t len, unsigned int flags)
1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1109 EXPORT_SYMBOL(generic_splice_sendpage);
1112 * Attempt to initiate a splice from pipe to file.
1114 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 loff_t *, size_t, unsigned int);
1120 if (out->f_op->splice_write)
1121 splice_write = out->f_op->splice_write;
1122 else
1123 splice_write = default_file_splice_write;
1125 return splice_write(pipe, out, ppos, len, flags);
1129 * Attempt to initiate a splice from a file to a pipe.
1131 static long do_splice_to(struct file *in, loff_t *ppos,
1132 struct pipe_inode_info *pipe, size_t len,
1133 unsigned int flags)
1135 ssize_t (*splice_read)(struct file *, loff_t *,
1136 struct pipe_inode_info *, size_t, unsigned int);
1137 int ret;
1139 if (unlikely(!(in->f_mode & FMODE_READ)))
1140 return -EBADF;
1142 ret = rw_verify_area(READ, in, ppos, len);
1143 if (unlikely(ret < 0))
1144 return ret;
1146 if (in->f_op->splice_read)
1147 splice_read = in->f_op->splice_read;
1148 else
1149 splice_read = default_file_splice_read;
1151 return splice_read(in, ppos, pipe, len, flags);
1155 * splice_direct_to_actor - splices data directly between two non-pipes
1156 * @in: file to splice from
1157 * @sd: actor information on where to splice to
1158 * @actor: handles the data splicing
1160 * Description:
1161 * This is a special case helper to splice directly between two
1162 * points, without requiring an explicit pipe. Internally an allocated
1163 * pipe is cached in the process, and reused during the lifetime of
1164 * that process.
1167 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1168 splice_direct_actor *actor)
1170 struct pipe_inode_info *pipe;
1171 long ret, bytes;
1172 umode_t i_mode;
1173 size_t len;
1174 int i, flags, more;
1177 * We require the input being a regular file, as we don't want to
1178 * randomly drop data for eg socket -> socket splicing. Use the
1179 * piped splicing for that!
1181 i_mode = file_inode(in)->i_mode;
1182 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1183 return -EINVAL;
1186 * neither in nor out is a pipe, setup an internal pipe attached to
1187 * 'out' and transfer the wanted data from 'in' to 'out' through that
1189 pipe = current->splice_pipe;
1190 if (unlikely(!pipe)) {
1191 pipe = alloc_pipe_info();
1192 if (!pipe)
1193 return -ENOMEM;
1196 * We don't have an immediate reader, but we'll read the stuff
1197 * out of the pipe right after the splice_to_pipe(). So set
1198 * PIPE_READERS appropriately.
1200 pipe->readers = 1;
1202 current->splice_pipe = pipe;
1206 * Do the splice.
1208 ret = 0;
1209 bytes = 0;
1210 len = sd->total_len;
1211 flags = sd->flags;
1214 * Don't block on output, we have to drain the direct pipe.
1216 sd->flags &= ~SPLICE_F_NONBLOCK;
1217 more = sd->flags & SPLICE_F_MORE;
1219 while (len) {
1220 size_t read_len;
1221 loff_t pos = sd->pos, prev_pos = pos;
1223 ret = do_splice_to(in, &pos, pipe, len, flags);
1224 if (unlikely(ret <= 0))
1225 goto out_release;
1227 read_len = ret;
1228 sd->total_len = read_len;
1231 * If more data is pending, set SPLICE_F_MORE
1232 * If this is the last data and SPLICE_F_MORE was not set
1233 * initially, clears it.
1235 if (read_len < len)
1236 sd->flags |= SPLICE_F_MORE;
1237 else if (!more)
1238 sd->flags &= ~SPLICE_F_MORE;
1240 * NOTE: nonblocking mode only applies to the input. We
1241 * must not do the output in nonblocking mode as then we
1242 * could get stuck data in the internal pipe:
1244 ret = actor(pipe, sd);
1245 if (unlikely(ret <= 0)) {
1246 sd->pos = prev_pos;
1247 goto out_release;
1250 bytes += ret;
1251 len -= ret;
1252 sd->pos = pos;
1254 if (ret < read_len) {
1255 sd->pos = prev_pos + ret;
1256 goto out_release;
1260 done:
1261 pipe->nrbufs = pipe->curbuf = 0;
1262 file_accessed(in);
1263 return bytes;
1265 out_release:
1267 * If we did an incomplete transfer we must release
1268 * the pipe buffers in question:
1270 for (i = 0; i < pipe->buffers; i++) {
1271 struct pipe_buffer *buf = pipe->bufs + i;
1273 if (buf->ops) {
1274 buf->ops->release(pipe, buf);
1275 buf->ops = NULL;
1279 if (!bytes)
1280 bytes = ret;
1282 goto done;
1284 EXPORT_SYMBOL(splice_direct_to_actor);
1286 static int direct_splice_actor(struct pipe_inode_info *pipe,
1287 struct splice_desc *sd)
1289 struct file *file = sd->u.file;
1291 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1292 sd->flags);
1296 * do_splice_direct - splices data directly between two files
1297 * @in: file to splice from
1298 * @ppos: input file offset
1299 * @out: file to splice to
1300 * @opos: output file offset
1301 * @len: number of bytes to splice
1302 * @flags: splice modifier flags
1304 * Description:
1305 * For use by do_sendfile(). splice can easily emulate sendfile, but
1306 * doing it in the application would incur an extra system call
1307 * (splice in + splice out, as compared to just sendfile()). So this helper
1308 * can splice directly through a process-private pipe.
1311 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1312 loff_t *opos, size_t len, unsigned int flags)
1314 struct splice_desc sd = {
1315 .len = len,
1316 .total_len = len,
1317 .flags = flags,
1318 .pos = *ppos,
1319 .u.file = out,
1320 .opos = opos,
1322 long ret;
1324 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1325 return -EBADF;
1327 if (unlikely(out->f_flags & O_APPEND))
1328 return -EINVAL;
1330 ret = rw_verify_area(WRITE, out, opos, len);
1331 if (unlikely(ret < 0))
1332 return ret;
1334 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1335 if (ret > 0)
1336 *ppos = sd.pos;
1338 return ret;
1340 EXPORT_SYMBOL(do_splice_direct);
1342 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1343 struct pipe_inode_info *opipe,
1344 size_t len, unsigned int flags);
1347 * Determine where to splice to/from.
1349 static long do_splice(struct file *in, loff_t __user *off_in,
1350 struct file *out, loff_t __user *off_out,
1351 size_t len, unsigned int flags)
1353 struct pipe_inode_info *ipipe;
1354 struct pipe_inode_info *opipe;
1355 loff_t offset;
1356 long ret;
1358 ipipe = get_pipe_info(in);
1359 opipe = get_pipe_info(out);
1361 if (ipipe && opipe) {
1362 if (off_in || off_out)
1363 return -ESPIPE;
1365 if (!(in->f_mode & FMODE_READ))
1366 return -EBADF;
1368 if (!(out->f_mode & FMODE_WRITE))
1369 return -EBADF;
1371 /* Splicing to self would be fun, but... */
1372 if (ipipe == opipe)
1373 return -EINVAL;
1375 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1378 if (ipipe) {
1379 if (off_in)
1380 return -ESPIPE;
1381 if (off_out) {
1382 if (!(out->f_mode & FMODE_PWRITE))
1383 return -EINVAL;
1384 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1385 return -EFAULT;
1386 } else {
1387 offset = out->f_pos;
1390 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1391 return -EBADF;
1393 if (unlikely(out->f_flags & O_APPEND))
1394 return -EINVAL;
1396 ret = rw_verify_area(WRITE, out, &offset, len);
1397 if (unlikely(ret < 0))
1398 return ret;
1400 file_start_write(out);
1401 ret = do_splice_from(ipipe, out, &offset, len, flags);
1402 file_end_write(out);
1404 if (!off_out)
1405 out->f_pos = offset;
1406 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1407 ret = -EFAULT;
1409 return ret;
1412 if (opipe) {
1413 if (off_out)
1414 return -ESPIPE;
1415 if (off_in) {
1416 if (!(in->f_mode & FMODE_PREAD))
1417 return -EINVAL;
1418 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1419 return -EFAULT;
1420 } else {
1421 offset = in->f_pos;
1424 ret = do_splice_to(in, &offset, opipe, len, flags);
1426 if (!off_in)
1427 in->f_pos = offset;
1428 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1429 ret = -EFAULT;
1431 return ret;
1434 return -EINVAL;
1438 * Map an iov into an array of pages and offset/length tupples. With the
1439 * partial_page structure, we can map several non-contiguous ranges into
1440 * our ones pages[] map instead of splitting that operation into pieces.
1441 * Could easily be exported as a generic helper for other users, in which
1442 * case one would probably want to add a 'max_nr_pages' parameter as well.
1444 static int get_iovec_page_array(const struct iovec __user *iov,
1445 unsigned int nr_vecs, struct page **pages,
1446 struct partial_page *partial, bool aligned,
1447 unsigned int pipe_buffers)
1449 int buffers = 0, error = 0;
1451 while (nr_vecs) {
1452 unsigned long off, npages;
1453 struct iovec entry;
1454 void __user *base;
1455 size_t len;
1456 int i;
1458 error = -EFAULT;
1459 if (copy_from_user(&entry, iov, sizeof(entry)))
1460 break;
1462 base = entry.iov_base;
1463 len = entry.iov_len;
1466 * Sanity check this iovec. 0 read succeeds.
1468 error = 0;
1469 if (unlikely(!len))
1470 break;
1471 error = -EFAULT;
1472 if (!access_ok(VERIFY_READ, base, len))
1473 break;
1476 * Get this base offset and number of pages, then map
1477 * in the user pages.
1479 off = (unsigned long) base & ~PAGE_MASK;
1482 * If asked for alignment, the offset must be zero and the
1483 * length a multiple of the PAGE_SIZE.
1485 error = -EINVAL;
1486 if (aligned && (off || len & ~PAGE_MASK))
1487 break;
1489 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490 if (npages > pipe_buffers - buffers)
1491 npages = pipe_buffers - buffers;
1493 error = get_user_pages_fast((unsigned long)base, npages,
1494 0, &pages[buffers]);
1496 if (unlikely(error <= 0))
1497 break;
1500 * Fill this contiguous range into the partial page map.
1502 for (i = 0; i < error; i++) {
1503 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1505 partial[buffers].offset = off;
1506 partial[buffers].len = plen;
1508 off = 0;
1509 len -= plen;
1510 buffers++;
1514 * We didn't complete this iov, stop here since it probably
1515 * means we have to move some of this into a pipe to
1516 * be able to continue.
1518 if (len)
1519 break;
1522 * Don't continue if we mapped fewer pages than we asked for,
1523 * or if we mapped the max number of pages that we have
1524 * room for.
1526 if (error < npages || buffers == pipe_buffers)
1527 break;
1529 nr_vecs--;
1530 iov++;
1533 if (buffers)
1534 return buffers;
1536 return error;
1539 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1540 struct splice_desc *sd)
1542 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1543 return n == sd->len ? n : -EFAULT;
1547 * For lack of a better implementation, implement vmsplice() to userspace
1548 * as a simple copy of the pipes pages to the user iov.
1550 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1551 unsigned long nr_segs, unsigned int flags)
1553 struct pipe_inode_info *pipe;
1554 struct splice_desc sd;
1555 long ret;
1556 struct iovec iovstack[UIO_FASTIOV];
1557 struct iovec *iov = iovstack;
1558 struct iov_iter iter;
1560 pipe = get_pipe_info(file);
1561 if (!pipe)
1562 return -EBADF;
1564 ret = import_iovec(READ, uiov, nr_segs,
1565 ARRAY_SIZE(iovstack), &iov, &iter);
1566 if (ret < 0)
1567 return ret;
1569 sd.total_len = iov_iter_count(&iter);
1570 sd.len = 0;
1571 sd.flags = flags;
1572 sd.u.data = &iter;
1573 sd.pos = 0;
1575 if (sd.total_len) {
1576 pipe_lock(pipe);
1577 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578 pipe_unlock(pipe);
1581 kfree(iov);
1582 return ret;
1586 * vmsplice splices a user address range into a pipe. It can be thought of
1587 * as splice-from-memory, where the regular splice is splice-from-file (or
1588 * to file). In both cases the output is a pipe, naturally.
1590 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1591 unsigned long nr_segs, unsigned int flags)
1593 struct pipe_inode_info *pipe;
1594 struct page *pages[PIPE_DEF_BUFFERS];
1595 struct partial_page partial[PIPE_DEF_BUFFERS];
1596 struct splice_pipe_desc spd = {
1597 .pages = pages,
1598 .partial = partial,
1599 .nr_pages_max = PIPE_DEF_BUFFERS,
1600 .flags = flags,
1601 .ops = &user_page_pipe_buf_ops,
1602 .spd_release = spd_release_page,
1604 long ret;
1606 pipe = get_pipe_info(file);
1607 if (!pipe)
1608 return -EBADF;
1610 if (splice_grow_spd(pipe, &spd))
1611 return -ENOMEM;
1613 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1614 spd.partial, false,
1615 spd.nr_pages_max);
1616 if (spd.nr_pages <= 0)
1617 ret = spd.nr_pages;
1618 else
1619 ret = splice_to_pipe(pipe, &spd);
1621 splice_shrink_spd(&spd);
1622 return ret;
1626 * Note that vmsplice only really supports true splicing _from_ user memory
1627 * to a pipe, not the other way around. Splicing from user memory is a simple
1628 * operation that can be supported without any funky alignment restrictions
1629 * or nasty vm tricks. We simply map in the user memory and fill them into
1630 * a pipe. The reverse isn't quite as easy, though. There are two possible
1631 * solutions for that:
1633 * - memcpy() the data internally, at which point we might as well just
1634 * do a regular read() on the buffer anyway.
1635 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1636 * has restriction limitations on both ends of the pipe).
1638 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1641 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1642 unsigned long, nr_segs, unsigned int, flags)
1644 struct fd f;
1645 long error;
1647 if (unlikely(nr_segs > UIO_MAXIOV))
1648 return -EINVAL;
1649 else if (unlikely(!nr_segs))
1650 return 0;
1652 error = -EBADF;
1653 f = fdget(fd);
1654 if (f.file) {
1655 if (f.file->f_mode & FMODE_WRITE)
1656 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1657 else if (f.file->f_mode & FMODE_READ)
1658 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1660 fdput(f);
1663 return error;
1666 #ifdef CONFIG_COMPAT
1667 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1668 unsigned int, nr_segs, unsigned int, flags)
1670 unsigned i;
1671 struct iovec __user *iov;
1672 if (nr_segs > UIO_MAXIOV)
1673 return -EINVAL;
1674 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1675 for (i = 0; i < nr_segs; i++) {
1676 struct compat_iovec v;
1677 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1678 get_user(v.iov_len, &iov32[i].iov_len) ||
1679 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1680 put_user(v.iov_len, &iov[i].iov_len))
1681 return -EFAULT;
1683 return sys_vmsplice(fd, iov, nr_segs, flags);
1685 #endif
1687 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1688 int, fd_out, loff_t __user *, off_out,
1689 size_t, len, unsigned int, flags)
1691 struct fd in, out;
1692 long error;
1694 if (unlikely(!len))
1695 return 0;
1697 error = -EBADF;
1698 in = fdget(fd_in);
1699 if (in.file) {
1700 if (in.file->f_mode & FMODE_READ) {
1701 out = fdget(fd_out);
1702 if (out.file) {
1703 if (out.file->f_mode & FMODE_WRITE)
1704 error = do_splice(in.file, off_in,
1705 out.file, off_out,
1706 len, flags);
1707 fdput(out);
1710 fdput(in);
1712 return error;
1716 * Make sure there's data to read. Wait for input if we can, otherwise
1717 * return an appropriate error.
1719 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1721 int ret;
1724 * Check ->nrbufs without the inode lock first. This function
1725 * is speculative anyways, so missing one is ok.
1727 if (pipe->nrbufs)
1728 return 0;
1730 ret = 0;
1731 pipe_lock(pipe);
1733 while (!pipe->nrbufs) {
1734 if (signal_pending(current)) {
1735 ret = -ERESTARTSYS;
1736 break;
1738 if (!pipe->writers)
1739 break;
1740 if (!pipe->waiting_writers) {
1741 if (flags & SPLICE_F_NONBLOCK) {
1742 ret = -EAGAIN;
1743 break;
1746 pipe_wait(pipe);
1749 pipe_unlock(pipe);
1750 return ret;
1754 * Make sure there's writeable room. Wait for room if we can, otherwise
1755 * return an appropriate error.
1757 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1759 int ret;
1762 * Check ->nrbufs without the inode lock first. This function
1763 * is speculative anyways, so missing one is ok.
1765 if (pipe->nrbufs < pipe->buffers)
1766 return 0;
1768 ret = 0;
1769 pipe_lock(pipe);
1771 while (pipe->nrbufs >= pipe->buffers) {
1772 if (!pipe->readers) {
1773 send_sig(SIGPIPE, current, 0);
1774 ret = -EPIPE;
1775 break;
1777 if (flags & SPLICE_F_NONBLOCK) {
1778 ret = -EAGAIN;
1779 break;
1781 if (signal_pending(current)) {
1782 ret = -ERESTARTSYS;
1783 break;
1785 pipe->waiting_writers++;
1786 pipe_wait(pipe);
1787 pipe->waiting_writers--;
1790 pipe_unlock(pipe);
1791 return ret;
1795 * Splice contents of ipipe to opipe.
1797 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1798 struct pipe_inode_info *opipe,
1799 size_t len, unsigned int flags)
1801 struct pipe_buffer *ibuf, *obuf;
1802 int ret = 0, nbuf;
1803 bool input_wakeup = false;
1806 retry:
1807 ret = ipipe_prep(ipipe, flags);
1808 if (ret)
1809 return ret;
1811 ret = opipe_prep(opipe, flags);
1812 if (ret)
1813 return ret;
1816 * Potential ABBA deadlock, work around it by ordering lock
1817 * grabbing by pipe info address. Otherwise two different processes
1818 * could deadlock (one doing tee from A -> B, the other from B -> A).
1820 pipe_double_lock(ipipe, opipe);
1822 do {
1823 if (!opipe->readers) {
1824 send_sig(SIGPIPE, current, 0);
1825 if (!ret)
1826 ret = -EPIPE;
1827 break;
1830 if (!ipipe->nrbufs && !ipipe->writers)
1831 break;
1834 * Cannot make any progress, because either the input
1835 * pipe is empty or the output pipe is full.
1837 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1838 /* Already processed some buffers, break */
1839 if (ret)
1840 break;
1842 if (flags & SPLICE_F_NONBLOCK) {
1843 ret = -EAGAIN;
1844 break;
1848 * We raced with another reader/writer and haven't
1849 * managed to process any buffers. A zero return
1850 * value means EOF, so retry instead.
1852 pipe_unlock(ipipe);
1853 pipe_unlock(opipe);
1854 goto retry;
1857 ibuf = ipipe->bufs + ipipe->curbuf;
1858 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1859 obuf = opipe->bufs + nbuf;
1861 if (len >= ibuf->len) {
1863 * Simply move the whole buffer from ipipe to opipe
1865 *obuf = *ibuf;
1866 ibuf->ops = NULL;
1867 opipe->nrbufs++;
1868 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1869 ipipe->nrbufs--;
1870 input_wakeup = true;
1871 } else {
1873 * Get a reference to this pipe buffer,
1874 * so we can copy the contents over.
1876 ibuf->ops->get(ipipe, ibuf);
1877 *obuf = *ibuf;
1880 * Don't inherit the gift flag, we need to
1881 * prevent multiple steals of this page.
1883 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1885 obuf->len = len;
1886 opipe->nrbufs++;
1887 ibuf->offset += obuf->len;
1888 ibuf->len -= obuf->len;
1890 ret += obuf->len;
1891 len -= obuf->len;
1892 } while (len);
1894 pipe_unlock(ipipe);
1895 pipe_unlock(opipe);
1898 * If we put data in the output pipe, wakeup any potential readers.
1900 if (ret > 0)
1901 wakeup_pipe_readers(opipe);
1903 if (input_wakeup)
1904 wakeup_pipe_writers(ipipe);
1906 return ret;
1910 * Link contents of ipipe to opipe.
1912 static int link_pipe(struct pipe_inode_info *ipipe,
1913 struct pipe_inode_info *opipe,
1914 size_t len, unsigned int flags)
1916 struct pipe_buffer *ibuf, *obuf;
1917 int ret = 0, i = 0, nbuf;
1920 * Potential ABBA deadlock, work around it by ordering lock
1921 * grabbing by pipe info address. Otherwise two different processes
1922 * could deadlock (one doing tee from A -> B, the other from B -> A).
1924 pipe_double_lock(ipipe, opipe);
1926 do {
1927 if (!opipe->readers) {
1928 send_sig(SIGPIPE, current, 0);
1929 if (!ret)
1930 ret = -EPIPE;
1931 break;
1935 * If we have iterated all input buffers or ran out of
1936 * output room, break.
1938 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1939 break;
1941 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1942 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1945 * Get a reference to this pipe buffer,
1946 * so we can copy the contents over.
1948 ibuf->ops->get(ipipe, ibuf);
1950 obuf = opipe->bufs + nbuf;
1951 *obuf = *ibuf;
1954 * Don't inherit the gift flag, we need to
1955 * prevent multiple steals of this page.
1957 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1959 if (obuf->len > len)
1960 obuf->len = len;
1962 opipe->nrbufs++;
1963 ret += obuf->len;
1964 len -= obuf->len;
1965 i++;
1966 } while (len);
1969 * return EAGAIN if we have the potential of some data in the
1970 * future, otherwise just return 0
1972 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1973 ret = -EAGAIN;
1975 pipe_unlock(ipipe);
1976 pipe_unlock(opipe);
1979 * If we put data in the output pipe, wakeup any potential readers.
1981 if (ret > 0)
1982 wakeup_pipe_readers(opipe);
1984 return ret;
1988 * This is a tee(1) implementation that works on pipes. It doesn't copy
1989 * any data, it simply references the 'in' pages on the 'out' pipe.
1990 * The 'flags' used are the SPLICE_F_* variants, currently the only
1991 * applicable one is SPLICE_F_NONBLOCK.
1993 static long do_tee(struct file *in, struct file *out, size_t len,
1994 unsigned int flags)
1996 struct pipe_inode_info *ipipe = get_pipe_info(in);
1997 struct pipe_inode_info *opipe = get_pipe_info(out);
1998 int ret = -EINVAL;
2001 * Duplicate the contents of ipipe to opipe without actually
2002 * copying the data.
2004 if (ipipe && opipe && ipipe != opipe) {
2006 * Keep going, unless we encounter an error. The ipipe/opipe
2007 * ordering doesn't really matter.
2009 ret = ipipe_prep(ipipe, flags);
2010 if (!ret) {
2011 ret = opipe_prep(opipe, flags);
2012 if (!ret)
2013 ret = link_pipe(ipipe, opipe, len, flags);
2017 return ret;
2020 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2022 struct fd in;
2023 int error;
2025 if (unlikely(!len))
2026 return 0;
2028 error = -EBADF;
2029 in = fdget(fdin);
2030 if (in.file) {
2031 if (in.file->f_mode & FMODE_READ) {
2032 struct fd out = fdget(fdout);
2033 if (out.file) {
2034 if (out.file->f_mode & FMODE_WRITE)
2035 error = do_tee(in.file, out.file,
2036 len, flags);
2037 fdput(out);
2040 fdput(in);
2043 return error;