EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / kernel / smpboot.c
blob13bc43d1fb227f8ee0c55a411460200a2ac3b067
1 /*
2 * Common SMP CPU bringup/teardown functions
3 */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
17 #include "smpboot.h"
19 #ifdef CONFIG_SMP
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
23 * For the hotplug case we keep the task structs around and reuse
24 * them.
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
28 struct task_struct *idle_thread_get(unsigned int cpu)
30 struct task_struct *tsk = per_cpu(idle_threads, cpu);
32 if (!tsk)
33 return ERR_PTR(-ENOMEM);
34 init_idle(tsk, cpu);
35 return tsk;
38 void __init idle_thread_set_boot_cpu(void)
40 per_cpu(idle_threads, smp_processor_id()) = current;
43 /**
44 * idle_init - Initialize the idle thread for a cpu
45 * @cpu: The cpu for which the idle thread should be initialized
47 * Creates the thread if it does not exist.
49 static inline void idle_init(unsigned int cpu)
51 struct task_struct *tsk = per_cpu(idle_threads, cpu);
53 if (!tsk) {
54 tsk = fork_idle(cpu);
55 if (IS_ERR(tsk))
56 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57 else
58 per_cpu(idle_threads, cpu) = tsk;
62 /**
63 * idle_threads_init - Initialize idle threads for all cpus
65 void __init idle_threads_init(void)
67 unsigned int cpu, boot_cpu;
69 boot_cpu = smp_processor_id();
71 for_each_possible_cpu(cpu) {
72 if (cpu != boot_cpu)
73 idle_init(cpu);
76 #endif
78 #endif /* #ifdef CONFIG_SMP */
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
83 struct smpboot_thread_data {
84 unsigned int cpu;
85 unsigned int status;
86 struct smp_hotplug_thread *ht;
89 enum {
90 HP_THREAD_NONE = 0,
91 HP_THREAD_ACTIVE,
92 HP_THREAD_PARKED,
95 /**
96 * smpboot_thread_fn - percpu hotplug thread loop function
97 * @data: thread data pointer
99 * Checks for thread stop and park conditions. Calls the necessary
100 * setup, cleanup, park and unpark functions for the registered
101 * thread.
103 * Returns 1 when the thread should exit, 0 otherwise.
105 static int smpboot_thread_fn(void *data)
107 struct smpboot_thread_data *td = data;
108 struct smp_hotplug_thread *ht = td->ht;
110 while (1) {
111 set_current_state(TASK_INTERRUPTIBLE);
112 preempt_disable();
113 if (kthread_should_stop()) {
114 __set_current_state(TASK_RUNNING);
115 preempt_enable();
116 /* cleanup must mirror setup */
117 if (ht->cleanup && td->status != HP_THREAD_NONE)
118 ht->cleanup(td->cpu, cpu_online(td->cpu));
119 kfree(td);
120 return 0;
123 if (kthread_should_park()) {
124 __set_current_state(TASK_RUNNING);
125 preempt_enable();
126 if (ht->park && td->status == HP_THREAD_ACTIVE) {
127 BUG_ON(td->cpu != smp_processor_id());
128 ht->park(td->cpu);
129 td->status = HP_THREAD_PARKED;
131 kthread_parkme();
132 /* We might have been woken for stop */
133 continue;
136 BUG_ON(td->cpu != smp_processor_id());
138 /* Check for state change setup */
139 switch (td->status) {
140 case HP_THREAD_NONE:
141 __set_current_state(TASK_RUNNING);
142 preempt_enable();
143 if (ht->setup)
144 ht->setup(td->cpu);
145 td->status = HP_THREAD_ACTIVE;
146 continue;
148 case HP_THREAD_PARKED:
149 __set_current_state(TASK_RUNNING);
150 preempt_enable();
151 if (ht->unpark)
152 ht->unpark(td->cpu);
153 td->status = HP_THREAD_ACTIVE;
154 continue;
157 if (!ht->thread_should_run(td->cpu)) {
158 preempt_enable_no_resched();
159 schedule();
160 } else {
161 __set_current_state(TASK_RUNNING);
162 preempt_enable();
163 ht->thread_fn(td->cpu);
168 static int
169 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
171 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
172 struct smpboot_thread_data *td;
174 if (tsk)
175 return 0;
177 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
178 if (!td)
179 return -ENOMEM;
180 td->cpu = cpu;
181 td->ht = ht;
183 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
184 ht->thread_comm);
185 if (IS_ERR(tsk)) {
186 kfree(td);
187 return PTR_ERR(tsk);
189 get_task_struct(tsk);
190 *per_cpu_ptr(ht->store, cpu) = tsk;
191 if (ht->create) {
193 * Make sure that the task has actually scheduled out
194 * into park position, before calling the create
195 * callback. At least the migration thread callback
196 * requires that the task is off the runqueue.
198 if (!wait_task_inactive(tsk, TASK_PARKED))
199 WARN_ON(1);
200 else
201 ht->create(cpu);
203 return 0;
206 int smpboot_create_threads(unsigned int cpu)
208 struct smp_hotplug_thread *cur;
209 int ret = 0;
211 mutex_lock(&smpboot_threads_lock);
212 list_for_each_entry(cur, &hotplug_threads, list) {
213 ret = __smpboot_create_thread(cur, cpu);
214 if (ret)
215 break;
217 mutex_unlock(&smpboot_threads_lock);
218 return ret;
221 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
223 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
225 if (!ht->selfparking)
226 kthread_unpark(tsk);
229 int smpboot_unpark_threads(unsigned int cpu)
231 struct smp_hotplug_thread *cur;
233 mutex_lock(&smpboot_threads_lock);
234 list_for_each_entry(cur, &hotplug_threads, list)
235 if (cpumask_test_cpu(cpu, cur->cpumask))
236 smpboot_unpark_thread(cur, cpu);
237 mutex_unlock(&smpboot_threads_lock);
238 return 0;
241 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
243 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
245 if (tsk && !ht->selfparking)
246 kthread_park(tsk);
249 int smpboot_park_threads(unsigned int cpu)
251 struct smp_hotplug_thread *cur;
253 mutex_lock(&smpboot_threads_lock);
254 list_for_each_entry_reverse(cur, &hotplug_threads, list)
255 smpboot_park_thread(cur, cpu);
256 mutex_unlock(&smpboot_threads_lock);
257 return 0;
260 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
262 unsigned int cpu;
264 /* We need to destroy also the parked threads of offline cpus */
265 for_each_possible_cpu(cpu) {
266 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
268 if (tsk) {
269 kthread_stop(tsk);
270 put_task_struct(tsk);
271 *per_cpu_ptr(ht->store, cpu) = NULL;
277 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
278 * to hotplug
279 * @plug_thread: Hotplug thread descriptor
280 * @cpumask: The cpumask where threads run
282 * Creates and starts the threads on all online cpus.
284 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
285 const struct cpumask *cpumask)
287 unsigned int cpu;
288 int ret = 0;
290 if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
291 return -ENOMEM;
292 cpumask_copy(plug_thread->cpumask, cpumask);
294 get_online_cpus();
295 mutex_lock(&smpboot_threads_lock);
296 for_each_online_cpu(cpu) {
297 ret = __smpboot_create_thread(plug_thread, cpu);
298 if (ret) {
299 smpboot_destroy_threads(plug_thread);
300 free_cpumask_var(plug_thread->cpumask);
301 goto out;
303 if (cpumask_test_cpu(cpu, cpumask))
304 smpboot_unpark_thread(plug_thread, cpu);
306 list_add(&plug_thread->list, &hotplug_threads);
307 out:
308 mutex_unlock(&smpboot_threads_lock);
309 put_online_cpus();
310 return ret;
312 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
315 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
316 * @plug_thread: Hotplug thread descriptor
318 * Stops all threads on all possible cpus.
320 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
322 get_online_cpus();
323 mutex_lock(&smpboot_threads_lock);
324 list_del(&plug_thread->list);
325 smpboot_destroy_threads(plug_thread);
326 mutex_unlock(&smpboot_threads_lock);
327 put_online_cpus();
328 free_cpumask_var(plug_thread->cpumask);
330 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
333 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
334 * @plug_thread: Hotplug thread descriptor
335 * @new: Revised mask to use
337 * The cpumask field in the smp_hotplug_thread must not be updated directly
338 * by the client, but only by calling this function.
339 * This function can only be called on a registered smp_hotplug_thread.
341 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
342 const struct cpumask *new)
344 struct cpumask *old = plug_thread->cpumask;
345 cpumask_var_t tmp;
346 unsigned int cpu;
348 if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
349 return -ENOMEM;
351 get_online_cpus();
352 mutex_lock(&smpboot_threads_lock);
354 /* Park threads that were exclusively enabled on the old mask. */
355 cpumask_andnot(tmp, old, new);
356 for_each_cpu_and(cpu, tmp, cpu_online_mask)
357 smpboot_park_thread(plug_thread, cpu);
359 /* Unpark threads that are exclusively enabled on the new mask. */
360 cpumask_andnot(tmp, new, old);
361 for_each_cpu_and(cpu, tmp, cpu_online_mask)
362 smpboot_unpark_thread(plug_thread, cpu);
364 cpumask_copy(old, new);
366 mutex_unlock(&smpboot_threads_lock);
367 put_online_cpus();
369 free_cpumask_var(tmp);
371 return 0;
373 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
375 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
378 * Called to poll specified CPU's state, for example, when waiting for
379 * a CPU to come online.
381 int cpu_report_state(int cpu)
383 return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
387 * If CPU has died properly, set its state to CPU_UP_PREPARE and
388 * return success. Otherwise, return -EBUSY if the CPU died after
389 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN
390 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
391 * to dying. In the latter two cases, the CPU might not be set up
392 * properly, but it is up to the arch-specific code to decide.
393 * Finally, -EIO indicates an unanticipated problem.
395 * Note that it is permissible to omit this call entirely, as is
396 * done in architectures that do no CPU-hotplug error checking.
398 int cpu_check_up_prepare(int cpu)
400 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
401 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
402 return 0;
405 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
407 case CPU_POST_DEAD:
409 /* The CPU died properly, so just start it up again. */
410 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
411 return 0;
413 case CPU_DEAD_FROZEN:
416 * Timeout during CPU death, so let caller know.
417 * The outgoing CPU completed its processing, but after
418 * cpu_wait_death() timed out and reported the error. The
419 * caller is free to proceed, in which case the state
420 * will be reset properly by cpu_set_state_online().
421 * Proceeding despite this -EBUSY return makes sense
422 * for systems where the outgoing CPUs take themselves
423 * offline, with no post-death manipulation required from
424 * a surviving CPU.
426 return -EBUSY;
428 case CPU_BROKEN:
431 * The most likely reason we got here is that there was
432 * a timeout during CPU death, and the outgoing CPU never
433 * did complete its processing. This could happen on
434 * a virtualized system if the outgoing VCPU gets preempted
435 * for more than five seconds, and the user attempts to
436 * immediately online that same CPU. Trying again later
437 * might return -EBUSY above, hence -EAGAIN.
439 return -EAGAIN;
441 default:
443 /* Should not happen. Famous last words. */
444 return -EIO;
449 * Mark the specified CPU online.
451 * Note that it is permissible to omit this call entirely, as is
452 * done in architectures that do no CPU-hotplug error checking.
454 void cpu_set_state_online(int cpu)
456 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
459 #ifdef CONFIG_HOTPLUG_CPU
462 * Wait for the specified CPU to exit the idle loop and die.
464 bool cpu_wait_death(unsigned int cpu, int seconds)
466 int jf_left = seconds * HZ;
467 int oldstate;
468 bool ret = true;
469 int sleep_jf = 1;
471 might_sleep();
473 /* The outgoing CPU will normally get done quite quickly. */
474 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
475 goto update_state;
476 udelay(5);
478 /* But if the outgoing CPU dawdles, wait increasingly long times. */
479 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
480 schedule_timeout_uninterruptible(sleep_jf);
481 jf_left -= sleep_jf;
482 if (jf_left <= 0)
483 break;
484 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
486 update_state:
487 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
488 if (oldstate == CPU_DEAD) {
489 /* Outgoing CPU died normally, update state. */
490 smp_mb(); /* atomic_read() before update. */
491 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
492 } else {
493 /* Outgoing CPU still hasn't died, set state accordingly. */
494 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
495 oldstate, CPU_BROKEN) != oldstate)
496 goto update_state;
497 ret = false;
499 return ret;
503 * Called by the outgoing CPU to report its successful death. Return
504 * false if this report follows the surviving CPU's timing out.
506 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
507 * timed out. This approach allows architectures to omit calls to
508 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
509 * the next cpu_wait_death()'s polling loop.
511 bool cpu_report_death(void)
513 int oldstate;
514 int newstate;
515 int cpu = smp_processor_id();
517 do {
518 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
519 if (oldstate != CPU_BROKEN)
520 newstate = CPU_DEAD;
521 else
522 newstate = CPU_DEAD_FROZEN;
523 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
524 oldstate, newstate) != oldstate);
525 return newstate == CPU_DEAD;
528 #endif /* #ifdef CONFIG_HOTPLUG_CPU */