Linux 3.16.75
[linux/fpc-iii.git] / kernel / sched / sched.h
blob41e3547263d4bf268ef40e416308785e83d36f88
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/smt.h>
6 #include <linux/sched/deadline.h>
7 #include <linux/mutex.h>
8 #include <linux/spinlock.h>
9 #include <linux/stop_machine.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
13 #include "cpupri.h"
14 #include "cpudeadline.h"
15 #include "cpuacct.h"
17 struct rq;
19 extern __read_mostly int scheduler_running;
21 extern unsigned long calc_load_update;
22 extern atomic_long_t calc_load_tasks;
24 extern long calc_load_fold_active(struct rq *this_rq);
25 extern void update_cpu_load_active(struct rq *this_rq);
28 * Helpers for converting nanosecond timing to jiffy resolution
30 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33 * Increase resolution of nice-level calculations for 64-bit architectures.
34 * The extra resolution improves shares distribution and load balancing of
35 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
36 * hierarchies, especially on larger systems. This is not a user-visible change
37 * and does not change the user-interface for setting shares/weights.
39 * We increase resolution only if we have enough bits to allow this increased
40 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
41 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
42 * increased costs.
44 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
45 # define SCHED_LOAD_RESOLUTION 10
46 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
47 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
48 #else
49 # define SCHED_LOAD_RESOLUTION 0
50 # define scale_load(w) (w)
51 # define scale_load_down(w) (w)
52 #endif
54 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
55 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
57 #define NICE_0_LOAD SCHED_LOAD_SCALE
58 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
61 * Single value that decides SCHED_DEADLINE internal math precision.
62 * 10 -> just above 1us
63 * 9 -> just above 0.5us
65 #define DL_SCALE (10)
68 * These are the 'tuning knobs' of the scheduler:
72 * single value that denotes runtime == period, ie unlimited time.
74 #define RUNTIME_INF ((u64)~0ULL)
76 static inline int fair_policy(int policy)
78 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
81 static inline int rt_policy(int policy)
83 return policy == SCHED_FIFO || policy == SCHED_RR;
86 static inline int dl_policy(int policy)
88 return policy == SCHED_DEADLINE;
91 static inline int task_has_rt_policy(struct task_struct *p)
93 return rt_policy(p->policy);
96 static inline int task_has_dl_policy(struct task_struct *p)
98 return dl_policy(p->policy);
101 static inline bool dl_time_before(u64 a, u64 b)
103 return (s64)(a - b) < 0;
107 * Tells if entity @a should preempt entity @b.
109 static inline bool
110 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
112 return dl_time_before(a->deadline, b->deadline);
116 * This is the priority-queue data structure of the RT scheduling class:
118 struct rt_prio_array {
119 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
120 struct list_head queue[MAX_RT_PRIO];
123 struct rt_bandwidth {
124 /* nests inside the rq lock: */
125 raw_spinlock_t rt_runtime_lock;
126 ktime_t rt_period;
127 u64 rt_runtime;
128 struct hrtimer rt_period_timer;
131 * To keep the bandwidth of -deadline tasks and groups under control
132 * we need some place where:
133 * - store the maximum -deadline bandwidth of the system (the group);
134 * - cache the fraction of that bandwidth that is currently allocated.
136 * This is all done in the data structure below. It is similar to the
137 * one used for RT-throttling (rt_bandwidth), with the main difference
138 * that, since here we are only interested in admission control, we
139 * do not decrease any runtime while the group "executes", neither we
140 * need a timer to replenish it.
142 * With respect to SMP, the bandwidth is given on a per-CPU basis,
143 * meaning that:
144 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
145 * - dl_total_bw array contains, in the i-eth element, the currently
146 * allocated bandwidth on the i-eth CPU.
147 * Moreover, groups consume bandwidth on each CPU, while tasks only
148 * consume bandwidth on the CPU they're running on.
149 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
150 * that will be shown the next time the proc or cgroup controls will
151 * be red. It on its turn can be changed by writing on its own
152 * control.
154 struct dl_bandwidth {
155 raw_spinlock_t dl_runtime_lock;
156 u64 dl_runtime;
157 u64 dl_period;
160 static inline int dl_bandwidth_enabled(void)
162 return sysctl_sched_rt_runtime >= 0;
165 extern struct dl_bw *dl_bw_of(int i);
167 struct dl_bw {
168 raw_spinlock_t lock;
169 u64 bw, total_bw;
172 extern struct mutex sched_domains_mutex;
174 #ifdef CONFIG_CGROUP_SCHED
176 #include <linux/cgroup.h>
178 struct cfs_rq;
179 struct rt_rq;
181 extern struct list_head task_groups;
183 struct cfs_bandwidth {
184 #ifdef CONFIG_CFS_BANDWIDTH
185 raw_spinlock_t lock;
186 ktime_t period;
187 u64 quota, runtime;
188 s64 hierarchal_quota;
189 u64 runtime_expires;
190 int expires_seq;
192 int idle, timer_active;
193 struct hrtimer period_timer, slack_timer;
194 struct list_head throttled_cfs_rq;
196 /* statistics */
197 int nr_periods, nr_throttled;
198 u64 throttled_time;
199 #endif
202 /* task group related information */
203 struct task_group {
204 struct cgroup_subsys_state css;
206 #ifdef CONFIG_FAIR_GROUP_SCHED
207 /* schedulable entities of this group on each cpu */
208 struct sched_entity **se;
209 /* runqueue "owned" by this group on each cpu */
210 struct cfs_rq **cfs_rq;
211 unsigned long shares;
213 #ifdef CONFIG_SMP
214 atomic_long_t load_avg;
215 atomic_t runnable_avg;
216 #endif
217 #endif
219 #ifdef CONFIG_RT_GROUP_SCHED
220 struct sched_rt_entity **rt_se;
221 struct rt_rq **rt_rq;
223 struct rt_bandwidth rt_bandwidth;
224 #endif
226 struct rcu_head rcu;
227 struct list_head list;
229 struct task_group *parent;
230 struct list_head siblings;
231 struct list_head children;
233 #ifdef CONFIG_SCHED_AUTOGROUP
234 struct autogroup *autogroup;
235 #endif
237 struct cfs_bandwidth cfs_bandwidth;
240 #ifdef CONFIG_FAIR_GROUP_SCHED
241 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
244 * A weight of 0 or 1 can cause arithmetics problems.
245 * A weight of a cfs_rq is the sum of weights of which entities
246 * are queued on this cfs_rq, so a weight of a entity should not be
247 * too large, so as the shares value of a task group.
248 * (The default weight is 1024 - so there's no practical
249 * limitation from this.)
251 #define MIN_SHARES (1UL << 1)
252 #define MAX_SHARES (1UL << 18)
253 #endif
255 typedef int (*tg_visitor)(struct task_group *, void *);
257 extern int walk_tg_tree_from(struct task_group *from,
258 tg_visitor down, tg_visitor up, void *data);
261 * Iterate the full tree, calling @down when first entering a node and @up when
262 * leaving it for the final time.
264 * Caller must hold rcu_lock or sufficient equivalent.
266 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
268 return walk_tg_tree_from(&root_task_group, down, up, data);
271 extern int tg_nop(struct task_group *tg, void *data);
273 extern void free_fair_sched_group(struct task_group *tg);
274 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
275 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
276 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
277 struct sched_entity *se, int cpu,
278 struct sched_entity *parent);
279 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
280 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
282 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
283 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
284 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
286 extern void free_rt_sched_group(struct task_group *tg);
287 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
288 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
289 struct sched_rt_entity *rt_se, int cpu,
290 struct sched_rt_entity *parent);
292 extern struct task_group *sched_create_group(struct task_group *parent);
293 extern void sched_online_group(struct task_group *tg,
294 struct task_group *parent);
295 extern void sched_destroy_group(struct task_group *tg);
296 extern void sched_offline_group(struct task_group *tg);
298 extern void sched_move_task(struct task_struct *tsk);
300 #ifdef CONFIG_FAIR_GROUP_SCHED
301 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
302 #endif
304 #else /* CONFIG_CGROUP_SCHED */
306 struct cfs_bandwidth { };
308 #endif /* CONFIG_CGROUP_SCHED */
310 /* CFS-related fields in a runqueue */
311 struct cfs_rq {
312 struct load_weight load;
313 unsigned int nr_running, h_nr_running;
315 u64 exec_clock;
316 u64 min_vruntime;
317 #ifndef CONFIG_64BIT
318 u64 min_vruntime_copy;
319 #endif
321 struct rb_root tasks_timeline;
322 struct rb_node *rb_leftmost;
325 * 'curr' points to currently running entity on this cfs_rq.
326 * It is set to NULL otherwise (i.e when none are currently running).
328 struct sched_entity *curr, *next, *last, *skip;
330 #ifdef CONFIG_SCHED_DEBUG
331 unsigned int nr_spread_over;
332 #endif
334 #ifdef CONFIG_SMP
336 * CFS Load tracking
337 * Under CFS, load is tracked on a per-entity basis and aggregated up.
338 * This allows for the description of both thread and group usage (in
339 * the FAIR_GROUP_SCHED case).
341 unsigned long runnable_load_avg, blocked_load_avg;
342 atomic64_t decay_counter;
343 u64 last_decay;
344 atomic_long_t removed_load;
346 #ifdef CONFIG_FAIR_GROUP_SCHED
347 /* Required to track per-cpu representation of a task_group */
348 u32 tg_runnable_contrib;
349 unsigned long tg_load_contrib;
352 * h_load = weight * f(tg)
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
357 unsigned long h_load;
358 u64 last_h_load_update;
359 struct sched_entity *h_load_next;
360 #endif /* CONFIG_FAIR_GROUP_SCHED */
361 #endif /* CONFIG_SMP */
363 #ifdef CONFIG_FAIR_GROUP_SCHED
364 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
367 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
368 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
369 * (like users, containers etc.)
371 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
372 * list is used during load balance.
374 int on_list;
375 struct list_head leaf_cfs_rq_list;
376 struct task_group *tg; /* group that "owns" this runqueue */
378 #ifdef CONFIG_CFS_BANDWIDTH
379 int runtime_enabled;
380 int expires_seq;
381 u64 runtime_expires;
382 s64 runtime_remaining;
384 u64 throttled_clock, throttled_clock_task;
385 u64 throttled_clock_task_time;
386 int throttled, throttle_count;
387 struct list_head throttled_list;
388 #endif /* CONFIG_CFS_BANDWIDTH */
389 #endif /* CONFIG_FAIR_GROUP_SCHED */
392 static inline int rt_bandwidth_enabled(void)
394 return sysctl_sched_rt_runtime >= 0;
397 /* Real-Time classes' related field in a runqueue: */
398 struct rt_rq {
399 struct rt_prio_array active;
400 unsigned int rt_nr_running;
401 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
402 struct {
403 int curr; /* highest queued rt task prio */
404 #ifdef CONFIG_SMP
405 int next; /* next highest */
406 #endif
407 } highest_prio;
408 #endif
409 #ifdef CONFIG_SMP
410 unsigned long rt_nr_migratory;
411 unsigned long rt_nr_total;
412 int overloaded;
413 struct plist_head pushable_tasks;
414 #endif
415 int rt_queued;
417 int rt_throttled;
418 u64 rt_time;
419 u64 rt_runtime;
420 /* Nests inside the rq lock: */
421 raw_spinlock_t rt_runtime_lock;
423 #ifdef CONFIG_RT_GROUP_SCHED
424 unsigned long rt_nr_boosted;
426 struct rq *rq;
427 struct task_group *tg;
428 #endif
431 /* Deadline class' related fields in a runqueue */
432 struct dl_rq {
433 /* runqueue is an rbtree, ordered by deadline */
434 struct rb_root rb_root;
435 struct rb_node *rb_leftmost;
437 unsigned long dl_nr_running;
439 #ifdef CONFIG_SMP
441 * Deadline values of the currently executing and the
442 * earliest ready task on this rq. Caching these facilitates
443 * the decision wether or not a ready but not running task
444 * should migrate somewhere else.
446 struct {
447 u64 curr;
448 u64 next;
449 } earliest_dl;
451 unsigned long dl_nr_migratory;
452 int overloaded;
455 * Tasks on this rq that can be pushed away. They are kept in
456 * an rb-tree, ordered by tasks' deadlines, with caching
457 * of the leftmost (earliest deadline) element.
459 struct rb_root pushable_dl_tasks_root;
460 struct rb_node *pushable_dl_tasks_leftmost;
461 #else
462 struct dl_bw dl_bw;
463 #endif
466 #ifdef CONFIG_SMP
469 * We add the notion of a root-domain which will be used to define per-domain
470 * variables. Each exclusive cpuset essentially defines an island domain by
471 * fully partitioning the member cpus from any other cpuset. Whenever a new
472 * exclusive cpuset is created, we also create and attach a new root-domain
473 * object.
476 struct root_domain {
477 atomic_t refcount;
478 atomic_t rto_count;
479 struct rcu_head rcu;
480 cpumask_var_t span;
481 cpumask_var_t online;
484 * The bit corresponding to a CPU gets set here if such CPU has more
485 * than one runnable -deadline task (as it is below for RT tasks).
487 cpumask_var_t dlo_mask;
488 atomic_t dlo_count;
489 struct dl_bw dl_bw;
490 struct cpudl cpudl;
493 * The "RT overload" flag: it gets set if a CPU has more than
494 * one runnable RT task.
496 cpumask_var_t rto_mask;
497 struct cpupri cpupri;
500 extern struct root_domain def_root_domain;
502 #endif /* CONFIG_SMP */
505 * This is the main, per-CPU runqueue data structure.
507 * Locking rule: those places that want to lock multiple runqueues
508 * (such as the load balancing or the thread migration code), lock
509 * acquire operations must be ordered by ascending &runqueue.
511 struct rq {
512 /* runqueue lock: */
513 raw_spinlock_t lock;
516 * nr_running and cpu_load should be in the same cacheline because
517 * remote CPUs use both these fields when doing load calculation.
519 unsigned int nr_running;
520 #ifdef CONFIG_NUMA_BALANCING
521 unsigned int nr_numa_running;
522 unsigned int nr_preferred_running;
523 #endif
524 #define CPU_LOAD_IDX_MAX 5
525 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
526 unsigned long last_load_update_tick;
527 #ifdef CONFIG_NO_HZ_COMMON
528 u64 nohz_stamp;
529 unsigned long nohz_flags;
530 #endif
531 #ifdef CONFIG_NO_HZ_FULL
532 unsigned long last_sched_tick;
533 #endif
534 int skip_clock_update;
536 /* capture load from *all* tasks on this cpu: */
537 struct load_weight load;
538 unsigned long nr_load_updates;
539 u64 nr_switches;
541 struct cfs_rq cfs;
542 struct rt_rq rt;
543 struct dl_rq dl;
545 #ifdef CONFIG_FAIR_GROUP_SCHED
546 /* list of leaf cfs_rq on this cpu: */
547 struct list_head leaf_cfs_rq_list;
549 struct sched_avg avg;
550 #endif /* CONFIG_FAIR_GROUP_SCHED */
553 * This is part of a global counter where only the total sum
554 * over all CPUs matters. A task can increase this counter on
555 * one CPU and if it got migrated afterwards it may decrease
556 * it on another CPU. Always updated under the runqueue lock:
558 unsigned long nr_uninterruptible;
560 struct task_struct *curr, *idle, *stop;
561 unsigned long next_balance;
562 struct mm_struct *prev_mm;
564 u64 clock;
565 u64 clock_task;
567 atomic_t nr_iowait;
569 #ifdef CONFIG_SMP
570 struct root_domain *rd;
571 struct sched_domain *sd;
573 unsigned long cpu_capacity;
575 struct callback_head *balance_callback;
577 unsigned char idle_balance;
578 /* For active balancing */
579 int active_balance;
580 int push_cpu;
581 struct cpu_stop_work active_balance_work;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
586 struct list_head cfs_tasks;
588 u64 rt_avg;
589 u64 age_stamp;
590 u64 idle_stamp;
591 u64 avg_idle;
593 /* This is used to determine avg_idle's max value */
594 u64 max_idle_balance_cost;
595 #endif
597 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
598 u64 prev_irq_time;
599 #endif
600 #ifdef CONFIG_PARAVIRT
601 u64 prev_steal_time;
602 #endif
603 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
604 u64 prev_steal_time_rq;
605 #endif
607 /* calc_load related fields */
608 unsigned long calc_load_update;
609 long calc_load_active;
611 #ifdef CONFIG_SCHED_HRTICK
612 #ifdef CONFIG_SMP
613 int hrtick_csd_pending;
614 struct call_single_data hrtick_csd;
615 #endif
616 struct hrtimer hrtick_timer;
617 #endif
619 #ifdef CONFIG_SCHEDSTATS
620 /* latency stats */
621 struct sched_info rq_sched_info;
622 unsigned long long rq_cpu_time;
623 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
625 /* sys_sched_yield() stats */
626 unsigned int yld_count;
628 /* schedule() stats */
629 unsigned int sched_count;
630 unsigned int sched_goidle;
632 /* try_to_wake_up() stats */
633 unsigned int ttwu_count;
634 unsigned int ttwu_local;
635 #endif
637 #ifdef CONFIG_SMP
638 struct llist_head wake_list;
639 #endif
642 static inline int cpu_of(struct rq *rq)
644 #ifdef CONFIG_SMP
645 return rq->cpu;
646 #else
647 return 0;
648 #endif
651 DECLARE_PER_CPU(struct rq, runqueues);
653 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
654 #define this_rq() (&__get_cpu_var(runqueues))
655 #define task_rq(p) cpu_rq(task_cpu(p))
656 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
657 #define raw_rq() (&__raw_get_cpu_var(runqueues))
659 static inline u64 rq_clock(struct rq *rq)
661 return rq->clock;
664 static inline u64 rq_clock_task(struct rq *rq)
666 return rq->clock_task;
669 #ifdef CONFIG_NUMA_BALANCING
670 extern void sched_setnuma(struct task_struct *p, int node);
671 extern int migrate_task_to(struct task_struct *p, int cpu);
672 extern int migrate_swap(struct task_struct *, struct task_struct *);
673 #endif /* CONFIG_NUMA_BALANCING */
675 #ifdef CONFIG_SMP
677 static inline void
678 queue_balance_callback(struct rq *rq,
679 struct callback_head *head,
680 void (*func)(struct rq *rq))
682 lockdep_assert_held(&rq->lock);
684 if (unlikely(head->next))
685 return;
687 head->func = (void (*)(struct callback_head *))func;
688 head->next = rq->balance_callback;
689 rq->balance_callback = head;
692 extern void sched_ttwu_pending(void);
694 #define rcu_dereference_check_sched_domain(p) \
695 rcu_dereference_check((p), \
696 lockdep_is_held(&sched_domains_mutex))
699 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
700 * See detach_destroy_domains: synchronize_sched for details.
702 * The domain tree of any CPU may only be accessed from within
703 * preempt-disabled sections.
705 #define for_each_domain(cpu, __sd) \
706 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
707 __sd; __sd = __sd->parent)
709 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
712 * highest_flag_domain - Return highest sched_domain containing flag.
713 * @cpu: The cpu whose highest level of sched domain is to
714 * be returned.
715 * @flag: The flag to check for the highest sched_domain
716 * for the given cpu.
718 * Returns the highest sched_domain of a cpu which contains the given flag.
720 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
722 struct sched_domain *sd, *hsd = NULL;
724 for_each_domain(cpu, sd) {
725 if (!(sd->flags & flag))
726 break;
727 hsd = sd;
730 return hsd;
733 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
735 struct sched_domain *sd;
737 for_each_domain(cpu, sd) {
738 if (sd->flags & flag)
739 break;
742 return sd;
745 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
746 DECLARE_PER_CPU(int, sd_llc_size);
747 DECLARE_PER_CPU(int, sd_llc_id);
748 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
749 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
750 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
752 struct sched_group_capacity {
753 atomic_t ref;
755 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
756 * for a single CPU.
758 unsigned int capacity, capacity_orig;
759 unsigned long next_update;
760 int imbalance; /* XXX unrelated to capacity but shared group state */
762 * Number of busy cpus in this group.
764 atomic_t nr_busy_cpus;
766 unsigned long cpumask[0]; /* iteration mask */
769 struct sched_group {
770 struct sched_group *next; /* Must be a circular list */
771 atomic_t ref;
773 unsigned int group_weight;
774 struct sched_group_capacity *sgc;
777 * The CPUs this group covers.
779 * NOTE: this field is variable length. (Allocated dynamically
780 * by attaching extra space to the end of the structure,
781 * depending on how many CPUs the kernel has booted up with)
783 unsigned long cpumask[0];
786 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
788 return to_cpumask(sg->cpumask);
792 * cpumask masking which cpus in the group are allowed to iterate up the domain
793 * tree.
795 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
797 return to_cpumask(sg->sgc->cpumask);
801 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
802 * @group: The group whose first cpu is to be returned.
804 static inline unsigned int group_first_cpu(struct sched_group *group)
806 return cpumask_first(sched_group_cpus(group));
809 extern int group_balance_cpu(struct sched_group *sg);
811 #else
813 static inline void sched_ttwu_pending(void) { }
815 #endif /* CONFIG_SMP */
817 #include "stats.h"
818 #include "auto_group.h"
820 #ifdef CONFIG_CGROUP_SCHED
823 * Return the group to which this tasks belongs.
825 * We cannot use task_css() and friends because the cgroup subsystem
826 * changes that value before the cgroup_subsys::attach() method is called,
827 * therefore we cannot pin it and might observe the wrong value.
829 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
830 * core changes this before calling sched_move_task().
832 * Instead we use a 'copy' which is updated from sched_move_task() while
833 * holding both task_struct::pi_lock and rq::lock.
835 static inline struct task_group *task_group(struct task_struct *p)
837 return p->sched_task_group;
840 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
841 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
843 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
844 struct task_group *tg = task_group(p);
845 #endif
847 #ifdef CONFIG_FAIR_GROUP_SCHED
848 p->se.cfs_rq = tg->cfs_rq[cpu];
849 p->se.parent = tg->se[cpu];
850 #endif
852 #ifdef CONFIG_RT_GROUP_SCHED
853 p->rt.rt_rq = tg->rt_rq[cpu];
854 p->rt.parent = tg->rt_se[cpu];
855 #endif
858 #else /* CONFIG_CGROUP_SCHED */
860 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
861 static inline struct task_group *task_group(struct task_struct *p)
863 return NULL;
866 #endif /* CONFIG_CGROUP_SCHED */
868 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
870 set_task_rq(p, cpu);
871 #ifdef CONFIG_SMP
873 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
874 * successfuly executed on another CPU. We must ensure that updates of
875 * per-task data have been completed by this moment.
877 smp_wmb();
878 task_thread_info(p)->cpu = cpu;
879 p->wake_cpu = cpu;
880 #endif
884 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
886 #ifdef CONFIG_SCHED_DEBUG
887 # include <linux/static_key.h>
888 # define const_debug __read_mostly
889 #else
890 # define const_debug const
891 #endif
893 extern const_debug unsigned int sysctl_sched_features;
895 #define SCHED_FEAT(name, enabled) \
896 __SCHED_FEAT_##name ,
898 enum {
899 #include "features.h"
900 __SCHED_FEAT_NR,
903 #undef SCHED_FEAT
905 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
906 static __always_inline bool static_branch__true(struct static_key *key)
908 return static_key_true(key); /* Not out of line branch. */
911 static __always_inline bool static_branch__false(struct static_key *key)
913 return static_key_false(key); /* Out of line branch. */
916 #define SCHED_FEAT(name, enabled) \
917 static __always_inline bool static_branch_##name(struct static_key *key) \
919 return static_branch__##enabled(key); \
922 #include "features.h"
924 #undef SCHED_FEAT
926 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
927 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
928 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
929 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
930 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
932 #ifdef CONFIG_NUMA_BALANCING
933 #define sched_feat_numa(x) sched_feat(x)
934 #ifdef CONFIG_SCHED_DEBUG
935 #define numabalancing_enabled sched_feat_numa(NUMA)
936 #else
937 extern bool numabalancing_enabled;
938 #endif /* CONFIG_SCHED_DEBUG */
939 #else
940 #define sched_feat_numa(x) (0)
941 #define numabalancing_enabled (0)
942 #endif /* CONFIG_NUMA_BALANCING */
944 static inline u64 global_rt_period(void)
946 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
949 static inline u64 global_rt_runtime(void)
951 if (sysctl_sched_rt_runtime < 0)
952 return RUNTIME_INF;
954 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
957 static inline int task_current(struct rq *rq, struct task_struct *p)
959 return rq->curr == p;
962 static inline int task_running(struct rq *rq, struct task_struct *p)
964 #ifdef CONFIG_SMP
965 return p->on_cpu;
966 #else
967 return task_current(rq, p);
968 #endif
972 #ifndef prepare_arch_switch
973 # define prepare_arch_switch(next) do { } while (0)
974 #endif
975 #ifndef finish_arch_switch
976 # define finish_arch_switch(prev) do { } while (0)
977 #endif
978 #ifndef finish_arch_post_lock_switch
979 # define finish_arch_post_lock_switch() do { } while (0)
980 #endif
982 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
983 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
985 #ifdef CONFIG_SMP
987 * We can optimise this out completely for !SMP, because the
988 * SMP rebalancing from interrupt is the only thing that cares
989 * here.
991 next->on_cpu = 1;
992 #endif
995 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
997 #ifdef CONFIG_SMP
999 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1000 * We must ensure this doesn't happen until the switch is completely
1001 * finished.
1003 * Pairs with the control dependency and rmb in try_to_wake_up().
1005 smp_store_release(&prev->on_cpu, 0);
1006 #endif
1007 #ifdef CONFIG_DEBUG_SPINLOCK
1008 /* this is a valid case when another task releases the spinlock */
1009 rq->lock.owner = current;
1010 #endif
1012 * If we are tracking spinlock dependencies then we have to
1013 * fix up the runqueue lock - which gets 'carried over' from
1014 * prev into current:
1016 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1018 raw_spin_unlock_irq(&rq->lock);
1021 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1022 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1024 #ifdef CONFIG_SMP
1026 * We can optimise this out completely for !SMP, because the
1027 * SMP rebalancing from interrupt is the only thing that cares
1028 * here.
1030 next->on_cpu = 1;
1031 #endif
1032 raw_spin_unlock(&rq->lock);
1035 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1037 #ifdef CONFIG_SMP
1039 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1040 * We must ensure this doesn't happen until the switch is completely
1041 * finished.
1043 smp_wmb();
1044 prev->on_cpu = 0;
1045 #endif
1046 local_irq_enable();
1048 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1051 * wake flags
1053 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1054 #define WF_FORK 0x02 /* child wakeup after fork */
1055 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1058 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1059 * of tasks with abnormal "nice" values across CPUs the contribution that
1060 * each task makes to its run queue's load is weighted according to its
1061 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1062 * scaled version of the new time slice allocation that they receive on time
1063 * slice expiry etc.
1066 #define WEIGHT_IDLEPRIO 3
1067 #define WMULT_IDLEPRIO 1431655765
1070 * Nice levels are multiplicative, with a gentle 10% change for every
1071 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1072 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1073 * that remained on nice 0.
1075 * The "10% effect" is relative and cumulative: from _any_ nice level,
1076 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1077 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1078 * If a task goes up by ~10% and another task goes down by ~10% then
1079 * the relative distance between them is ~25%.)
1081 static const int prio_to_weight[40] = {
1082 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1083 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1084 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1085 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1086 /* 0 */ 1024, 820, 655, 526, 423,
1087 /* 5 */ 335, 272, 215, 172, 137,
1088 /* 10 */ 110, 87, 70, 56, 45,
1089 /* 15 */ 36, 29, 23, 18, 15,
1093 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1095 * In cases where the weight does not change often, we can use the
1096 * precalculated inverse to speed up arithmetics by turning divisions
1097 * into multiplications:
1099 static const u32 prio_to_wmult[40] = {
1100 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1101 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1102 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1103 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1104 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1105 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1106 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1107 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1110 #define ENQUEUE_WAKEUP 1
1111 #define ENQUEUE_HEAD 2
1112 #ifdef CONFIG_SMP
1113 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1114 #else
1115 #define ENQUEUE_WAKING 0
1116 #endif
1117 #define ENQUEUE_REPLENISH 8
1119 #define DEQUEUE_SLEEP 1
1121 #define RETRY_TASK ((void *)-1UL)
1123 struct sched_class {
1124 const struct sched_class *next;
1126 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1127 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1128 void (*yield_task) (struct rq *rq);
1129 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1131 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1134 * It is the responsibility of the pick_next_task() method that will
1135 * return the next task to call put_prev_task() on the @prev task or
1136 * something equivalent.
1138 * May return RETRY_TASK when it finds a higher prio class has runnable
1139 * tasks.
1141 struct task_struct * (*pick_next_task) (struct rq *rq,
1142 struct task_struct *prev);
1143 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1145 #ifdef CONFIG_SMP
1146 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1147 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1149 void (*task_waking) (struct task_struct *task);
1150 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1152 void (*set_cpus_allowed)(struct task_struct *p,
1153 const struct cpumask *newmask);
1155 void (*rq_online)(struct rq *rq);
1156 void (*rq_offline)(struct rq *rq);
1157 #endif
1159 void (*set_curr_task) (struct rq *rq);
1160 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1161 void (*task_fork) (struct task_struct *p);
1162 void (*task_dead) (struct task_struct *p);
1164 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1165 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1166 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1167 int oldprio);
1169 unsigned int (*get_rr_interval) (struct rq *rq,
1170 struct task_struct *task);
1172 #ifdef CONFIG_FAIR_GROUP_SCHED
1173 void (*task_move_group) (struct task_struct *p, int on_rq);
1174 #endif
1177 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1179 prev->sched_class->put_prev_task(rq, prev);
1182 #define sched_class_highest (&stop_sched_class)
1183 #define for_each_class(class) \
1184 for (class = sched_class_highest; class; class = class->next)
1186 extern const struct sched_class stop_sched_class;
1187 extern const struct sched_class dl_sched_class;
1188 extern const struct sched_class rt_sched_class;
1189 extern const struct sched_class fair_sched_class;
1190 extern const struct sched_class idle_sched_class;
1193 #ifdef CONFIG_SMP
1195 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1197 extern void trigger_load_balance(struct rq *rq);
1199 extern void idle_enter_fair(struct rq *this_rq);
1200 extern void idle_exit_fair(struct rq *this_rq);
1202 #else
1204 static inline void idle_enter_fair(struct rq *rq) { }
1205 static inline void idle_exit_fair(struct rq *rq) { }
1207 #endif
1209 extern void sysrq_sched_debug_show(void);
1210 extern void sched_init_granularity(void);
1211 extern void update_max_interval(void);
1213 extern void init_sched_dl_class(void);
1214 extern void init_sched_rt_class(void);
1215 extern void init_sched_fair_class(void);
1216 extern void init_sched_dl_class(void);
1218 extern void resched_task(struct task_struct *p);
1219 extern void resched_cpu(int cpu);
1221 extern struct rt_bandwidth def_rt_bandwidth;
1222 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1224 extern struct dl_bandwidth def_dl_bandwidth;
1225 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1226 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1228 unsigned long to_ratio(u64 period, u64 runtime);
1230 extern void update_idle_cpu_load(struct rq *this_rq);
1232 extern void init_task_runnable_average(struct task_struct *p);
1234 static inline void add_nr_running(struct rq *rq, unsigned count)
1236 unsigned prev_nr = rq->nr_running;
1238 rq->nr_running = prev_nr + count;
1240 #ifdef CONFIG_NO_HZ_FULL
1241 if (prev_nr < 2 && rq->nr_running >= 2) {
1242 if (tick_nohz_full_cpu(rq->cpu)) {
1243 /* Order rq->nr_running write against the IPI */
1244 smp_wmb();
1245 smp_send_reschedule(rq->cpu);
1248 #endif
1251 static inline void sub_nr_running(struct rq *rq, unsigned count)
1253 rq->nr_running -= count;
1256 static inline void rq_last_tick_reset(struct rq *rq)
1258 #ifdef CONFIG_NO_HZ_FULL
1259 rq->last_sched_tick = jiffies;
1260 #endif
1263 extern void update_rq_clock(struct rq *rq);
1265 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1266 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1268 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1270 extern const_debug unsigned int sysctl_sched_time_avg;
1271 extern const_debug unsigned int sysctl_sched_nr_migrate;
1272 extern const_debug unsigned int sysctl_sched_migration_cost;
1274 static inline u64 sched_avg_period(void)
1276 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1279 #ifdef CONFIG_SCHED_HRTICK
1282 * Use hrtick when:
1283 * - enabled by features
1284 * - hrtimer is actually high res
1286 static inline int hrtick_enabled(struct rq *rq)
1288 if (!sched_feat(HRTICK))
1289 return 0;
1290 if (!cpu_active(cpu_of(rq)))
1291 return 0;
1292 return hrtimer_is_hres_active(&rq->hrtick_timer);
1295 void hrtick_start(struct rq *rq, u64 delay);
1297 #else
1299 static inline int hrtick_enabled(struct rq *rq)
1301 return 0;
1304 #endif /* CONFIG_SCHED_HRTICK */
1306 #ifdef CONFIG_SMP
1307 extern void sched_avg_update(struct rq *rq);
1308 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1310 rq->rt_avg += rt_delta;
1311 sched_avg_update(rq);
1313 #else
1314 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1315 static inline void sched_avg_update(struct rq *rq) { }
1316 #endif
1318 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1320 #ifdef CONFIG_SMP
1321 #ifdef CONFIG_PREEMPT
1323 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1326 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1327 * way at the expense of forcing extra atomic operations in all
1328 * invocations. This assures that the double_lock is acquired using the
1329 * same underlying policy as the spinlock_t on this architecture, which
1330 * reduces latency compared to the unfair variant below. However, it
1331 * also adds more overhead and therefore may reduce throughput.
1333 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1334 __releases(this_rq->lock)
1335 __acquires(busiest->lock)
1336 __acquires(this_rq->lock)
1338 raw_spin_unlock(&this_rq->lock);
1339 double_rq_lock(this_rq, busiest);
1341 return 1;
1344 #else
1346 * Unfair double_lock_balance: Optimizes throughput at the expense of
1347 * latency by eliminating extra atomic operations when the locks are
1348 * already in proper order on entry. This favors lower cpu-ids and will
1349 * grant the double lock to lower cpus over higher ids under contention,
1350 * regardless of entry order into the function.
1352 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1353 __releases(this_rq->lock)
1354 __acquires(busiest->lock)
1355 __acquires(this_rq->lock)
1357 int ret = 0;
1359 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1360 if (busiest < this_rq) {
1361 raw_spin_unlock(&this_rq->lock);
1362 raw_spin_lock(&busiest->lock);
1363 raw_spin_lock_nested(&this_rq->lock,
1364 SINGLE_DEPTH_NESTING);
1365 ret = 1;
1366 } else
1367 raw_spin_lock_nested(&busiest->lock,
1368 SINGLE_DEPTH_NESTING);
1370 return ret;
1373 #endif /* CONFIG_PREEMPT */
1376 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1378 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1380 if (unlikely(!irqs_disabled())) {
1381 /* printk() doesn't work good under rq->lock */
1382 raw_spin_unlock(&this_rq->lock);
1383 BUG_ON(1);
1386 return _double_lock_balance(this_rq, busiest);
1389 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1390 __releases(busiest->lock)
1392 raw_spin_unlock(&busiest->lock);
1393 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1396 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1398 if (l1 > l2)
1399 swap(l1, l2);
1401 spin_lock(l1);
1402 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1405 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1407 if (l1 > l2)
1408 swap(l1, l2);
1410 spin_lock_irq(l1);
1411 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1414 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1416 if (l1 > l2)
1417 swap(l1, l2);
1419 raw_spin_lock(l1);
1420 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1424 * double_rq_lock - safely lock two runqueues
1426 * Note this does not disable interrupts like task_rq_lock,
1427 * you need to do so manually before calling.
1429 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1430 __acquires(rq1->lock)
1431 __acquires(rq2->lock)
1433 BUG_ON(!irqs_disabled());
1434 if (rq1 == rq2) {
1435 raw_spin_lock(&rq1->lock);
1436 __acquire(rq2->lock); /* Fake it out ;) */
1437 } else {
1438 if (rq1 < rq2) {
1439 raw_spin_lock(&rq1->lock);
1440 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1441 } else {
1442 raw_spin_lock(&rq2->lock);
1443 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1449 * double_rq_unlock - safely unlock two runqueues
1451 * Note this does not restore interrupts like task_rq_unlock,
1452 * you need to do so manually after calling.
1454 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1455 __releases(rq1->lock)
1456 __releases(rq2->lock)
1458 raw_spin_unlock(&rq1->lock);
1459 if (rq1 != rq2)
1460 raw_spin_unlock(&rq2->lock);
1461 else
1462 __release(rq2->lock);
1465 #else /* CONFIG_SMP */
1468 * double_rq_lock - safely lock two runqueues
1470 * Note this does not disable interrupts like task_rq_lock,
1471 * you need to do so manually before calling.
1473 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1474 __acquires(rq1->lock)
1475 __acquires(rq2->lock)
1477 BUG_ON(!irqs_disabled());
1478 BUG_ON(rq1 != rq2);
1479 raw_spin_lock(&rq1->lock);
1480 __acquire(rq2->lock); /* Fake it out ;) */
1484 * double_rq_unlock - safely unlock two runqueues
1486 * Note this does not restore interrupts like task_rq_unlock,
1487 * you need to do so manually after calling.
1489 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1490 __releases(rq1->lock)
1491 __releases(rq2->lock)
1493 BUG_ON(rq1 != rq2);
1494 raw_spin_unlock(&rq1->lock);
1495 __release(rq2->lock);
1498 #endif
1500 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1501 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1502 extern void print_cfs_stats(struct seq_file *m, int cpu);
1503 extern void print_rt_stats(struct seq_file *m, int cpu);
1505 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1506 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1507 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1509 extern void cfs_bandwidth_usage_inc(void);
1510 extern void cfs_bandwidth_usage_dec(void);
1512 #ifdef CONFIG_NO_HZ_COMMON
1513 enum rq_nohz_flag_bits {
1514 NOHZ_TICK_STOPPED,
1515 NOHZ_BALANCE_KICK,
1518 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1519 #endif
1521 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1523 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1524 DECLARE_PER_CPU(u64, cpu_softirq_time);
1526 #ifndef CONFIG_64BIT
1527 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1529 static inline void irq_time_write_begin(void)
1531 __this_cpu_inc(irq_time_seq.sequence);
1532 smp_wmb();
1535 static inline void irq_time_write_end(void)
1537 smp_wmb();
1538 __this_cpu_inc(irq_time_seq.sequence);
1541 static inline u64 irq_time_read(int cpu)
1543 u64 irq_time;
1544 unsigned seq;
1546 do {
1547 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1548 irq_time = per_cpu(cpu_softirq_time, cpu) +
1549 per_cpu(cpu_hardirq_time, cpu);
1550 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1552 return irq_time;
1554 #else /* CONFIG_64BIT */
1555 static inline void irq_time_write_begin(void)
1559 static inline void irq_time_write_end(void)
1563 static inline u64 irq_time_read(int cpu)
1565 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1567 #endif /* CONFIG_64BIT */
1568 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */