2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/smt.h>
6 #include <linux/sched/deadline.h>
7 #include <linux/mutex.h>
8 #include <linux/spinlock.h>
9 #include <linux/stop_machine.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
14 #include "cpudeadline.h"
19 extern __read_mostly
int scheduler_running
;
21 extern unsigned long calc_load_update
;
22 extern atomic_long_t calc_load_tasks
;
24 extern long calc_load_fold_active(struct rq
*this_rq
);
25 extern void update_cpu_load_active(struct rq
*this_rq
);
28 * Helpers for converting nanosecond timing to jiffy resolution
30 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33 * Increase resolution of nice-level calculations for 64-bit architectures.
34 * The extra resolution improves shares distribution and load balancing of
35 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
36 * hierarchies, especially on larger systems. This is not a user-visible change
37 * and does not change the user-interface for setting shares/weights.
39 * We increase resolution only if we have enough bits to allow this increased
40 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
41 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
44 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
45 # define SCHED_LOAD_RESOLUTION 10
46 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
47 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
49 # define SCHED_LOAD_RESOLUTION 0
50 # define scale_load(w) (w)
51 # define scale_load_down(w) (w)
54 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
55 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
57 #define NICE_0_LOAD SCHED_LOAD_SCALE
58 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
61 * Single value that decides SCHED_DEADLINE internal math precision.
62 * 10 -> just above 1us
63 * 9 -> just above 0.5us
68 * These are the 'tuning knobs' of the scheduler:
72 * single value that denotes runtime == period, ie unlimited time.
74 #define RUNTIME_INF ((u64)~0ULL)
76 static inline int fair_policy(int policy
)
78 return policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
;
81 static inline int rt_policy(int policy
)
83 return policy
== SCHED_FIFO
|| policy
== SCHED_RR
;
86 static inline int dl_policy(int policy
)
88 return policy
== SCHED_DEADLINE
;
91 static inline int task_has_rt_policy(struct task_struct
*p
)
93 return rt_policy(p
->policy
);
96 static inline int task_has_dl_policy(struct task_struct
*p
)
98 return dl_policy(p
->policy
);
101 static inline bool dl_time_before(u64 a
, u64 b
)
103 return (s64
)(a
- b
) < 0;
107 * Tells if entity @a should preempt entity @b.
110 dl_entity_preempt(struct sched_dl_entity
*a
, struct sched_dl_entity
*b
)
112 return dl_time_before(a
->deadline
, b
->deadline
);
116 * This is the priority-queue data structure of the RT scheduling class:
118 struct rt_prio_array
{
119 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
120 struct list_head queue
[MAX_RT_PRIO
];
123 struct rt_bandwidth
{
124 /* nests inside the rq lock: */
125 raw_spinlock_t rt_runtime_lock
;
128 struct hrtimer rt_period_timer
;
131 * To keep the bandwidth of -deadline tasks and groups under control
132 * we need some place where:
133 * - store the maximum -deadline bandwidth of the system (the group);
134 * - cache the fraction of that bandwidth that is currently allocated.
136 * This is all done in the data structure below. It is similar to the
137 * one used for RT-throttling (rt_bandwidth), with the main difference
138 * that, since here we are only interested in admission control, we
139 * do not decrease any runtime while the group "executes", neither we
140 * need a timer to replenish it.
142 * With respect to SMP, the bandwidth is given on a per-CPU basis,
144 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
145 * - dl_total_bw array contains, in the i-eth element, the currently
146 * allocated bandwidth on the i-eth CPU.
147 * Moreover, groups consume bandwidth on each CPU, while tasks only
148 * consume bandwidth on the CPU they're running on.
149 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
150 * that will be shown the next time the proc or cgroup controls will
151 * be red. It on its turn can be changed by writing on its own
154 struct dl_bandwidth
{
155 raw_spinlock_t dl_runtime_lock
;
160 static inline int dl_bandwidth_enabled(void)
162 return sysctl_sched_rt_runtime
>= 0;
165 extern struct dl_bw
*dl_bw_of(int i
);
172 extern struct mutex sched_domains_mutex
;
174 #ifdef CONFIG_CGROUP_SCHED
176 #include <linux/cgroup.h>
181 extern struct list_head task_groups
;
183 struct cfs_bandwidth
{
184 #ifdef CONFIG_CFS_BANDWIDTH
188 s64 hierarchal_quota
;
192 int idle
, timer_active
;
193 struct hrtimer period_timer
, slack_timer
;
194 struct list_head throttled_cfs_rq
;
197 int nr_periods
, nr_throttled
;
202 /* task group related information */
204 struct cgroup_subsys_state css
;
206 #ifdef CONFIG_FAIR_GROUP_SCHED
207 /* schedulable entities of this group on each cpu */
208 struct sched_entity
**se
;
209 /* runqueue "owned" by this group on each cpu */
210 struct cfs_rq
**cfs_rq
;
211 unsigned long shares
;
214 atomic_long_t load_avg
;
215 atomic_t runnable_avg
;
219 #ifdef CONFIG_RT_GROUP_SCHED
220 struct sched_rt_entity
**rt_se
;
221 struct rt_rq
**rt_rq
;
223 struct rt_bandwidth rt_bandwidth
;
227 struct list_head list
;
229 struct task_group
*parent
;
230 struct list_head siblings
;
231 struct list_head children
;
233 #ifdef CONFIG_SCHED_AUTOGROUP
234 struct autogroup
*autogroup
;
237 struct cfs_bandwidth cfs_bandwidth
;
240 #ifdef CONFIG_FAIR_GROUP_SCHED
241 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
244 * A weight of 0 or 1 can cause arithmetics problems.
245 * A weight of a cfs_rq is the sum of weights of which entities
246 * are queued on this cfs_rq, so a weight of a entity should not be
247 * too large, so as the shares value of a task group.
248 * (The default weight is 1024 - so there's no practical
249 * limitation from this.)
251 #define MIN_SHARES (1UL << 1)
252 #define MAX_SHARES (1UL << 18)
255 typedef int (*tg_visitor
)(struct task_group
*, void *);
257 extern int walk_tg_tree_from(struct task_group
*from
,
258 tg_visitor down
, tg_visitor up
, void *data
);
261 * Iterate the full tree, calling @down when first entering a node and @up when
262 * leaving it for the final time.
264 * Caller must hold rcu_lock or sufficient equivalent.
266 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
268 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
271 extern int tg_nop(struct task_group
*tg
, void *data
);
273 extern void free_fair_sched_group(struct task_group
*tg
);
274 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
275 extern void unregister_fair_sched_group(struct task_group
*tg
, int cpu
);
276 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
277 struct sched_entity
*se
, int cpu
,
278 struct sched_entity
*parent
);
279 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
280 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
282 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
283 extern void __start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
, bool force
);
284 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
286 extern void free_rt_sched_group(struct task_group
*tg
);
287 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
288 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
289 struct sched_rt_entity
*rt_se
, int cpu
,
290 struct sched_rt_entity
*parent
);
292 extern struct task_group
*sched_create_group(struct task_group
*parent
);
293 extern void sched_online_group(struct task_group
*tg
,
294 struct task_group
*parent
);
295 extern void sched_destroy_group(struct task_group
*tg
);
296 extern void sched_offline_group(struct task_group
*tg
);
298 extern void sched_move_task(struct task_struct
*tsk
);
300 #ifdef CONFIG_FAIR_GROUP_SCHED
301 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
304 #else /* CONFIG_CGROUP_SCHED */
306 struct cfs_bandwidth
{ };
308 #endif /* CONFIG_CGROUP_SCHED */
310 /* CFS-related fields in a runqueue */
312 struct load_weight load
;
313 unsigned int nr_running
, h_nr_running
;
318 u64 min_vruntime_copy
;
321 struct rb_root tasks_timeline
;
322 struct rb_node
*rb_leftmost
;
325 * 'curr' points to currently running entity on this cfs_rq.
326 * It is set to NULL otherwise (i.e when none are currently running).
328 struct sched_entity
*curr
, *next
, *last
, *skip
;
330 #ifdef CONFIG_SCHED_DEBUG
331 unsigned int nr_spread_over
;
337 * Under CFS, load is tracked on a per-entity basis and aggregated up.
338 * This allows for the description of both thread and group usage (in
339 * the FAIR_GROUP_SCHED case).
341 unsigned long runnable_load_avg
, blocked_load_avg
;
342 atomic64_t decay_counter
;
344 atomic_long_t removed_load
;
346 #ifdef CONFIG_FAIR_GROUP_SCHED
347 /* Required to track per-cpu representation of a task_group */
348 u32 tg_runnable_contrib
;
349 unsigned long tg_load_contrib
;
352 * h_load = weight * f(tg)
354 * Where f(tg) is the recursive weight fraction assigned to
357 unsigned long h_load
;
358 u64 last_h_load_update
;
359 struct sched_entity
*h_load_next
;
360 #endif /* CONFIG_FAIR_GROUP_SCHED */
361 #endif /* CONFIG_SMP */
363 #ifdef CONFIG_FAIR_GROUP_SCHED
364 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
367 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
368 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
369 * (like users, containers etc.)
371 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
372 * list is used during load balance.
375 struct list_head leaf_cfs_rq_list
;
376 struct task_group
*tg
; /* group that "owns" this runqueue */
378 #ifdef CONFIG_CFS_BANDWIDTH
382 s64 runtime_remaining
;
384 u64 throttled_clock
, throttled_clock_task
;
385 u64 throttled_clock_task_time
;
386 int throttled
, throttle_count
;
387 struct list_head throttled_list
;
388 #endif /* CONFIG_CFS_BANDWIDTH */
389 #endif /* CONFIG_FAIR_GROUP_SCHED */
392 static inline int rt_bandwidth_enabled(void)
394 return sysctl_sched_rt_runtime
>= 0;
397 /* Real-Time classes' related field in a runqueue: */
399 struct rt_prio_array active
;
400 unsigned int rt_nr_running
;
401 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
403 int curr
; /* highest queued rt task prio */
405 int next
; /* next highest */
410 unsigned long rt_nr_migratory
;
411 unsigned long rt_nr_total
;
413 struct plist_head pushable_tasks
;
420 /* Nests inside the rq lock: */
421 raw_spinlock_t rt_runtime_lock
;
423 #ifdef CONFIG_RT_GROUP_SCHED
424 unsigned long rt_nr_boosted
;
427 struct task_group
*tg
;
431 /* Deadline class' related fields in a runqueue */
433 /* runqueue is an rbtree, ordered by deadline */
434 struct rb_root rb_root
;
435 struct rb_node
*rb_leftmost
;
437 unsigned long dl_nr_running
;
441 * Deadline values of the currently executing and the
442 * earliest ready task on this rq. Caching these facilitates
443 * the decision wether or not a ready but not running task
444 * should migrate somewhere else.
451 unsigned long dl_nr_migratory
;
455 * Tasks on this rq that can be pushed away. They are kept in
456 * an rb-tree, ordered by tasks' deadlines, with caching
457 * of the leftmost (earliest deadline) element.
459 struct rb_root pushable_dl_tasks_root
;
460 struct rb_node
*pushable_dl_tasks_leftmost
;
469 * We add the notion of a root-domain which will be used to define per-domain
470 * variables. Each exclusive cpuset essentially defines an island domain by
471 * fully partitioning the member cpus from any other cpuset. Whenever a new
472 * exclusive cpuset is created, we also create and attach a new root-domain
481 cpumask_var_t online
;
484 * The bit corresponding to a CPU gets set here if such CPU has more
485 * than one runnable -deadline task (as it is below for RT tasks).
487 cpumask_var_t dlo_mask
;
493 * The "RT overload" flag: it gets set if a CPU has more than
494 * one runnable RT task.
496 cpumask_var_t rto_mask
;
497 struct cpupri cpupri
;
500 extern struct root_domain def_root_domain
;
502 #endif /* CONFIG_SMP */
505 * This is the main, per-CPU runqueue data structure.
507 * Locking rule: those places that want to lock multiple runqueues
508 * (such as the load balancing or the thread migration code), lock
509 * acquire operations must be ordered by ascending &runqueue.
516 * nr_running and cpu_load should be in the same cacheline because
517 * remote CPUs use both these fields when doing load calculation.
519 unsigned int nr_running
;
520 #ifdef CONFIG_NUMA_BALANCING
521 unsigned int nr_numa_running
;
522 unsigned int nr_preferred_running
;
524 #define CPU_LOAD_IDX_MAX 5
525 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
526 unsigned long last_load_update_tick
;
527 #ifdef CONFIG_NO_HZ_COMMON
529 unsigned long nohz_flags
;
531 #ifdef CONFIG_NO_HZ_FULL
532 unsigned long last_sched_tick
;
534 int skip_clock_update
;
536 /* capture load from *all* tasks on this cpu: */
537 struct load_weight load
;
538 unsigned long nr_load_updates
;
545 #ifdef CONFIG_FAIR_GROUP_SCHED
546 /* list of leaf cfs_rq on this cpu: */
547 struct list_head leaf_cfs_rq_list
;
549 struct sched_avg avg
;
550 #endif /* CONFIG_FAIR_GROUP_SCHED */
553 * This is part of a global counter where only the total sum
554 * over all CPUs matters. A task can increase this counter on
555 * one CPU and if it got migrated afterwards it may decrease
556 * it on another CPU. Always updated under the runqueue lock:
558 unsigned long nr_uninterruptible
;
560 struct task_struct
*curr
, *idle
, *stop
;
561 unsigned long next_balance
;
562 struct mm_struct
*prev_mm
;
570 struct root_domain
*rd
;
571 struct sched_domain
*sd
;
573 unsigned long cpu_capacity
;
575 struct callback_head
*balance_callback
;
577 unsigned char idle_balance
;
578 /* For active balancing */
581 struct cpu_stop_work active_balance_work
;
582 /* cpu of this runqueue: */
586 struct list_head cfs_tasks
;
593 /* This is used to determine avg_idle's max value */
594 u64 max_idle_balance_cost
;
597 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
600 #ifdef CONFIG_PARAVIRT
603 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
604 u64 prev_steal_time_rq
;
607 /* calc_load related fields */
608 unsigned long calc_load_update
;
609 long calc_load_active
;
611 #ifdef CONFIG_SCHED_HRTICK
613 int hrtick_csd_pending
;
614 struct call_single_data hrtick_csd
;
616 struct hrtimer hrtick_timer
;
619 #ifdef CONFIG_SCHEDSTATS
621 struct sched_info rq_sched_info
;
622 unsigned long long rq_cpu_time
;
623 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
625 /* sys_sched_yield() stats */
626 unsigned int yld_count
;
628 /* schedule() stats */
629 unsigned int sched_count
;
630 unsigned int sched_goidle
;
632 /* try_to_wake_up() stats */
633 unsigned int ttwu_count
;
634 unsigned int ttwu_local
;
638 struct llist_head wake_list
;
642 static inline int cpu_of(struct rq
*rq
)
651 DECLARE_PER_CPU(struct rq
, runqueues
);
653 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
654 #define this_rq() (&__get_cpu_var(runqueues))
655 #define task_rq(p) cpu_rq(task_cpu(p))
656 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
657 #define raw_rq() (&__raw_get_cpu_var(runqueues))
659 static inline u64
rq_clock(struct rq
*rq
)
664 static inline u64
rq_clock_task(struct rq
*rq
)
666 return rq
->clock_task
;
669 #ifdef CONFIG_NUMA_BALANCING
670 extern void sched_setnuma(struct task_struct
*p
, int node
);
671 extern int migrate_task_to(struct task_struct
*p
, int cpu
);
672 extern int migrate_swap(struct task_struct
*, struct task_struct
*);
673 #endif /* CONFIG_NUMA_BALANCING */
678 queue_balance_callback(struct rq
*rq
,
679 struct callback_head
*head
,
680 void (*func
)(struct rq
*rq
))
682 lockdep_assert_held(&rq
->lock
);
684 if (unlikely(head
->next
))
687 head
->func
= (void (*)(struct callback_head
*))func
;
688 head
->next
= rq
->balance_callback
;
689 rq
->balance_callback
= head
;
692 extern void sched_ttwu_pending(void);
694 #define rcu_dereference_check_sched_domain(p) \
695 rcu_dereference_check((p), \
696 lockdep_is_held(&sched_domains_mutex))
699 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
700 * See detach_destroy_domains: synchronize_sched for details.
702 * The domain tree of any CPU may only be accessed from within
703 * preempt-disabled sections.
705 #define for_each_domain(cpu, __sd) \
706 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
707 __sd; __sd = __sd->parent)
709 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
712 * highest_flag_domain - Return highest sched_domain containing flag.
713 * @cpu: The cpu whose highest level of sched domain is to
715 * @flag: The flag to check for the highest sched_domain
718 * Returns the highest sched_domain of a cpu which contains the given flag.
720 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
722 struct sched_domain
*sd
, *hsd
= NULL
;
724 for_each_domain(cpu
, sd
) {
725 if (!(sd
->flags
& flag
))
733 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
735 struct sched_domain
*sd
;
737 for_each_domain(cpu
, sd
) {
738 if (sd
->flags
& flag
)
745 DECLARE_PER_CPU(struct sched_domain
*, sd_llc
);
746 DECLARE_PER_CPU(int, sd_llc_size
);
747 DECLARE_PER_CPU(int, sd_llc_id
);
748 DECLARE_PER_CPU(struct sched_domain
*, sd_numa
);
749 DECLARE_PER_CPU(struct sched_domain
*, sd_busy
);
750 DECLARE_PER_CPU(struct sched_domain
*, sd_asym
);
752 struct sched_group_capacity
{
755 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
758 unsigned int capacity
, capacity_orig
;
759 unsigned long next_update
;
760 int imbalance
; /* XXX unrelated to capacity but shared group state */
762 * Number of busy cpus in this group.
764 atomic_t nr_busy_cpus
;
766 unsigned long cpumask
[0]; /* iteration mask */
770 struct sched_group
*next
; /* Must be a circular list */
773 unsigned int group_weight
;
774 struct sched_group_capacity
*sgc
;
777 * The CPUs this group covers.
779 * NOTE: this field is variable length. (Allocated dynamically
780 * by attaching extra space to the end of the structure,
781 * depending on how many CPUs the kernel has booted up with)
783 unsigned long cpumask
[0];
786 static inline struct cpumask
*sched_group_cpus(struct sched_group
*sg
)
788 return to_cpumask(sg
->cpumask
);
792 * cpumask masking which cpus in the group are allowed to iterate up the domain
795 static inline struct cpumask
*sched_group_mask(struct sched_group
*sg
)
797 return to_cpumask(sg
->sgc
->cpumask
);
801 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
802 * @group: The group whose first cpu is to be returned.
804 static inline unsigned int group_first_cpu(struct sched_group
*group
)
806 return cpumask_first(sched_group_cpus(group
));
809 extern int group_balance_cpu(struct sched_group
*sg
);
813 static inline void sched_ttwu_pending(void) { }
815 #endif /* CONFIG_SMP */
818 #include "auto_group.h"
820 #ifdef CONFIG_CGROUP_SCHED
823 * Return the group to which this tasks belongs.
825 * We cannot use task_css() and friends because the cgroup subsystem
826 * changes that value before the cgroup_subsys::attach() method is called,
827 * therefore we cannot pin it and might observe the wrong value.
829 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
830 * core changes this before calling sched_move_task().
832 * Instead we use a 'copy' which is updated from sched_move_task() while
833 * holding both task_struct::pi_lock and rq::lock.
835 static inline struct task_group
*task_group(struct task_struct
*p
)
837 return p
->sched_task_group
;
840 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
841 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
843 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
844 struct task_group
*tg
= task_group(p
);
847 #ifdef CONFIG_FAIR_GROUP_SCHED
848 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
849 p
->se
.parent
= tg
->se
[cpu
];
852 #ifdef CONFIG_RT_GROUP_SCHED
853 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
854 p
->rt
.parent
= tg
->rt_se
[cpu
];
858 #else /* CONFIG_CGROUP_SCHED */
860 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
861 static inline struct task_group
*task_group(struct task_struct
*p
)
866 #endif /* CONFIG_CGROUP_SCHED */
868 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
873 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
874 * successfuly executed on another CPU. We must ensure that updates of
875 * per-task data have been completed by this moment.
878 task_thread_info(p
)->cpu
= cpu
;
884 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
886 #ifdef CONFIG_SCHED_DEBUG
887 # include <linux/static_key.h>
888 # define const_debug __read_mostly
890 # define const_debug const
893 extern const_debug
unsigned int sysctl_sched_features
;
895 #define SCHED_FEAT(name, enabled) \
896 __SCHED_FEAT_##name ,
899 #include "features.h"
905 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
906 static __always_inline
bool static_branch__true(struct static_key
*key
)
908 return static_key_true(key
); /* Not out of line branch. */
911 static __always_inline
bool static_branch__false(struct static_key
*key
)
913 return static_key_false(key
); /* Out of line branch. */
916 #define SCHED_FEAT(name, enabled) \
917 static __always_inline bool static_branch_##name(struct static_key *key) \
919 return static_branch__##enabled(key); \
922 #include "features.h"
926 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
927 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
928 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
929 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
930 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
932 #ifdef CONFIG_NUMA_BALANCING
933 #define sched_feat_numa(x) sched_feat(x)
934 #ifdef CONFIG_SCHED_DEBUG
935 #define numabalancing_enabled sched_feat_numa(NUMA)
937 extern bool numabalancing_enabled
;
938 #endif /* CONFIG_SCHED_DEBUG */
940 #define sched_feat_numa(x) (0)
941 #define numabalancing_enabled (0)
942 #endif /* CONFIG_NUMA_BALANCING */
944 static inline u64
global_rt_period(void)
946 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
949 static inline u64
global_rt_runtime(void)
951 if (sysctl_sched_rt_runtime
< 0)
954 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
957 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
959 return rq
->curr
== p
;
962 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
967 return task_current(rq
, p
);
972 #ifndef prepare_arch_switch
973 # define prepare_arch_switch(next) do { } while (0)
975 #ifndef finish_arch_switch
976 # define finish_arch_switch(prev) do { } while (0)
978 #ifndef finish_arch_post_lock_switch
979 # define finish_arch_post_lock_switch() do { } while (0)
982 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
983 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
987 * We can optimise this out completely for !SMP, because the
988 * SMP rebalancing from interrupt is the only thing that cares
995 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
999 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1000 * We must ensure this doesn't happen until the switch is completely
1003 * Pairs with the control dependency and rmb in try_to_wake_up().
1005 smp_store_release(&prev
->on_cpu
, 0);
1007 #ifdef CONFIG_DEBUG_SPINLOCK
1008 /* this is a valid case when another task releases the spinlock */
1009 rq
->lock
.owner
= current
;
1012 * If we are tracking spinlock dependencies then we have to
1013 * fix up the runqueue lock - which gets 'carried over' from
1014 * prev into current:
1016 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1018 raw_spin_unlock_irq(&rq
->lock
);
1021 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1022 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1026 * We can optimise this out completely for !SMP, because the
1027 * SMP rebalancing from interrupt is the only thing that cares
1032 raw_spin_unlock(&rq
->lock
);
1035 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1039 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1040 * We must ensure this doesn't happen until the switch is completely
1048 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1053 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1054 #define WF_FORK 0x02 /* child wakeup after fork */
1055 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1058 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1059 * of tasks with abnormal "nice" values across CPUs the contribution that
1060 * each task makes to its run queue's load is weighted according to its
1061 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1062 * scaled version of the new time slice allocation that they receive on time
1066 #define WEIGHT_IDLEPRIO 3
1067 #define WMULT_IDLEPRIO 1431655765
1070 * Nice levels are multiplicative, with a gentle 10% change for every
1071 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1072 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1073 * that remained on nice 0.
1075 * The "10% effect" is relative and cumulative: from _any_ nice level,
1076 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1077 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1078 * If a task goes up by ~10% and another task goes down by ~10% then
1079 * the relative distance between them is ~25%.)
1081 static const int prio_to_weight
[40] = {
1082 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1083 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1084 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1085 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1086 /* 0 */ 1024, 820, 655, 526, 423,
1087 /* 5 */ 335, 272, 215, 172, 137,
1088 /* 10 */ 110, 87, 70, 56, 45,
1089 /* 15 */ 36, 29, 23, 18, 15,
1093 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1095 * In cases where the weight does not change often, we can use the
1096 * precalculated inverse to speed up arithmetics by turning divisions
1097 * into multiplications:
1099 static const u32 prio_to_wmult
[40] = {
1100 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1101 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1102 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1103 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1104 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1105 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1106 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1107 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1110 #define ENQUEUE_WAKEUP 1
1111 #define ENQUEUE_HEAD 2
1113 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1115 #define ENQUEUE_WAKING 0
1117 #define ENQUEUE_REPLENISH 8
1119 #define DEQUEUE_SLEEP 1
1121 #define RETRY_TASK ((void *)-1UL)
1123 struct sched_class
{
1124 const struct sched_class
*next
;
1126 void (*enqueue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1127 void (*dequeue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1128 void (*yield_task
) (struct rq
*rq
);
1129 bool (*yield_to_task
) (struct rq
*rq
, struct task_struct
*p
, bool preempt
);
1131 void (*check_preempt_curr
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1134 * It is the responsibility of the pick_next_task() method that will
1135 * return the next task to call put_prev_task() on the @prev task or
1136 * something equivalent.
1138 * May return RETRY_TASK when it finds a higher prio class has runnable
1141 struct task_struct
* (*pick_next_task
) (struct rq
*rq
,
1142 struct task_struct
*prev
);
1143 void (*put_prev_task
) (struct rq
*rq
, struct task_struct
*p
);
1146 int (*select_task_rq
)(struct task_struct
*p
, int task_cpu
, int sd_flag
, int flags
);
1147 void (*migrate_task_rq
)(struct task_struct
*p
, int next_cpu
);
1149 void (*task_waking
) (struct task_struct
*task
);
1150 void (*task_woken
) (struct rq
*this_rq
, struct task_struct
*task
);
1152 void (*set_cpus_allowed
)(struct task_struct
*p
,
1153 const struct cpumask
*newmask
);
1155 void (*rq_online
)(struct rq
*rq
);
1156 void (*rq_offline
)(struct rq
*rq
);
1159 void (*set_curr_task
) (struct rq
*rq
);
1160 void (*task_tick
) (struct rq
*rq
, struct task_struct
*p
, int queued
);
1161 void (*task_fork
) (struct task_struct
*p
);
1162 void (*task_dead
) (struct task_struct
*p
);
1164 void (*switched_from
) (struct rq
*this_rq
, struct task_struct
*task
);
1165 void (*switched_to
) (struct rq
*this_rq
, struct task_struct
*task
);
1166 void (*prio_changed
) (struct rq
*this_rq
, struct task_struct
*task
,
1169 unsigned int (*get_rr_interval
) (struct rq
*rq
,
1170 struct task_struct
*task
);
1172 #ifdef CONFIG_FAIR_GROUP_SCHED
1173 void (*task_move_group
) (struct task_struct
*p
, int on_rq
);
1177 static inline void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
1179 prev
->sched_class
->put_prev_task(rq
, prev
);
1182 #define sched_class_highest (&stop_sched_class)
1183 #define for_each_class(class) \
1184 for (class = sched_class_highest; class; class = class->next)
1186 extern const struct sched_class stop_sched_class
;
1187 extern const struct sched_class dl_sched_class
;
1188 extern const struct sched_class rt_sched_class
;
1189 extern const struct sched_class fair_sched_class
;
1190 extern const struct sched_class idle_sched_class
;
1195 extern void update_group_capacity(struct sched_domain
*sd
, int cpu
);
1197 extern void trigger_load_balance(struct rq
*rq
);
1199 extern void idle_enter_fair(struct rq
*this_rq
);
1200 extern void idle_exit_fair(struct rq
*this_rq
);
1204 static inline void idle_enter_fair(struct rq
*rq
) { }
1205 static inline void idle_exit_fair(struct rq
*rq
) { }
1209 extern void sysrq_sched_debug_show(void);
1210 extern void sched_init_granularity(void);
1211 extern void update_max_interval(void);
1213 extern void init_sched_dl_class(void);
1214 extern void init_sched_rt_class(void);
1215 extern void init_sched_fair_class(void);
1216 extern void init_sched_dl_class(void);
1218 extern void resched_task(struct task_struct
*p
);
1219 extern void resched_cpu(int cpu
);
1221 extern struct rt_bandwidth def_rt_bandwidth
;
1222 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
1224 extern struct dl_bandwidth def_dl_bandwidth
;
1225 extern void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
);
1226 extern void init_dl_task_timer(struct sched_dl_entity
*dl_se
);
1228 unsigned long to_ratio(u64 period
, u64 runtime
);
1230 extern void update_idle_cpu_load(struct rq
*this_rq
);
1232 extern void init_task_runnable_average(struct task_struct
*p
);
1234 static inline void add_nr_running(struct rq
*rq
, unsigned count
)
1236 unsigned prev_nr
= rq
->nr_running
;
1238 rq
->nr_running
= prev_nr
+ count
;
1240 #ifdef CONFIG_NO_HZ_FULL
1241 if (prev_nr
< 2 && rq
->nr_running
>= 2) {
1242 if (tick_nohz_full_cpu(rq
->cpu
)) {
1243 /* Order rq->nr_running write against the IPI */
1245 smp_send_reschedule(rq
->cpu
);
1251 static inline void sub_nr_running(struct rq
*rq
, unsigned count
)
1253 rq
->nr_running
-= count
;
1256 static inline void rq_last_tick_reset(struct rq
*rq
)
1258 #ifdef CONFIG_NO_HZ_FULL
1259 rq
->last_sched_tick
= jiffies
;
1263 extern void update_rq_clock(struct rq
*rq
);
1265 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1266 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1268 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
1270 extern const_debug
unsigned int sysctl_sched_time_avg
;
1271 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
1272 extern const_debug
unsigned int sysctl_sched_migration_cost
;
1274 static inline u64
sched_avg_period(void)
1276 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1279 #ifdef CONFIG_SCHED_HRTICK
1283 * - enabled by features
1284 * - hrtimer is actually high res
1286 static inline int hrtick_enabled(struct rq
*rq
)
1288 if (!sched_feat(HRTICK
))
1290 if (!cpu_active(cpu_of(rq
)))
1292 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1295 void hrtick_start(struct rq
*rq
, u64 delay
);
1299 static inline int hrtick_enabled(struct rq
*rq
)
1304 #endif /* CONFIG_SCHED_HRTICK */
1307 extern void sched_avg_update(struct rq
*rq
);
1308 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1310 rq
->rt_avg
+= rt_delta
;
1311 sched_avg_update(rq
);
1314 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
) { }
1315 static inline void sched_avg_update(struct rq
*rq
) { }
1318 extern void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
);
1321 #ifdef CONFIG_PREEMPT
1323 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1326 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1327 * way at the expense of forcing extra atomic operations in all
1328 * invocations. This assures that the double_lock is acquired using the
1329 * same underlying policy as the spinlock_t on this architecture, which
1330 * reduces latency compared to the unfair variant below. However, it
1331 * also adds more overhead and therefore may reduce throughput.
1333 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1334 __releases(this_rq
->lock
)
1335 __acquires(busiest
->lock
)
1336 __acquires(this_rq
->lock
)
1338 raw_spin_unlock(&this_rq
->lock
);
1339 double_rq_lock(this_rq
, busiest
);
1346 * Unfair double_lock_balance: Optimizes throughput at the expense of
1347 * latency by eliminating extra atomic operations when the locks are
1348 * already in proper order on entry. This favors lower cpu-ids and will
1349 * grant the double lock to lower cpus over higher ids under contention,
1350 * regardless of entry order into the function.
1352 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1353 __releases(this_rq
->lock
)
1354 __acquires(busiest
->lock
)
1355 __acquires(this_rq
->lock
)
1359 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1360 if (busiest
< this_rq
) {
1361 raw_spin_unlock(&this_rq
->lock
);
1362 raw_spin_lock(&busiest
->lock
);
1363 raw_spin_lock_nested(&this_rq
->lock
,
1364 SINGLE_DEPTH_NESTING
);
1367 raw_spin_lock_nested(&busiest
->lock
,
1368 SINGLE_DEPTH_NESTING
);
1373 #endif /* CONFIG_PREEMPT */
1376 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1378 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1380 if (unlikely(!irqs_disabled())) {
1381 /* printk() doesn't work good under rq->lock */
1382 raw_spin_unlock(&this_rq
->lock
);
1386 return _double_lock_balance(this_rq
, busiest
);
1389 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1390 __releases(busiest
->lock
)
1392 raw_spin_unlock(&busiest
->lock
);
1393 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1396 static inline void double_lock(spinlock_t
*l1
, spinlock_t
*l2
)
1402 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1405 static inline void double_lock_irq(spinlock_t
*l1
, spinlock_t
*l2
)
1411 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1414 static inline void double_raw_lock(raw_spinlock_t
*l1
, raw_spinlock_t
*l2
)
1420 raw_spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1424 * double_rq_lock - safely lock two runqueues
1426 * Note this does not disable interrupts like task_rq_lock,
1427 * you need to do so manually before calling.
1429 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1430 __acquires(rq1
->lock
)
1431 __acquires(rq2
->lock
)
1433 BUG_ON(!irqs_disabled());
1435 raw_spin_lock(&rq1
->lock
);
1436 __acquire(rq2
->lock
); /* Fake it out ;) */
1439 raw_spin_lock(&rq1
->lock
);
1440 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1442 raw_spin_lock(&rq2
->lock
);
1443 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1449 * double_rq_unlock - safely unlock two runqueues
1451 * Note this does not restore interrupts like task_rq_unlock,
1452 * you need to do so manually after calling.
1454 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1455 __releases(rq1
->lock
)
1456 __releases(rq2
->lock
)
1458 raw_spin_unlock(&rq1
->lock
);
1460 raw_spin_unlock(&rq2
->lock
);
1462 __release(rq2
->lock
);
1465 #else /* CONFIG_SMP */
1468 * double_rq_lock - safely lock two runqueues
1470 * Note this does not disable interrupts like task_rq_lock,
1471 * you need to do so manually before calling.
1473 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1474 __acquires(rq1
->lock
)
1475 __acquires(rq2
->lock
)
1477 BUG_ON(!irqs_disabled());
1479 raw_spin_lock(&rq1
->lock
);
1480 __acquire(rq2
->lock
); /* Fake it out ;) */
1484 * double_rq_unlock - safely unlock two runqueues
1486 * Note this does not restore interrupts like task_rq_unlock,
1487 * you need to do so manually after calling.
1489 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1490 __releases(rq1
->lock
)
1491 __releases(rq2
->lock
)
1494 raw_spin_unlock(&rq1
->lock
);
1495 __release(rq2
->lock
);
1500 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
1501 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
1502 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
1503 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
1505 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
1506 extern void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
);
1507 extern void init_dl_rq(struct dl_rq
*dl_rq
, struct rq
*rq
);
1509 extern void cfs_bandwidth_usage_inc(void);
1510 extern void cfs_bandwidth_usage_dec(void);
1512 #ifdef CONFIG_NO_HZ_COMMON
1513 enum rq_nohz_flag_bits
{
1518 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1521 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1523 DECLARE_PER_CPU(u64
, cpu_hardirq_time
);
1524 DECLARE_PER_CPU(u64
, cpu_softirq_time
);
1526 #ifndef CONFIG_64BIT
1527 DECLARE_PER_CPU(seqcount_t
, irq_time_seq
);
1529 static inline void irq_time_write_begin(void)
1531 __this_cpu_inc(irq_time_seq
.sequence
);
1535 static inline void irq_time_write_end(void)
1538 __this_cpu_inc(irq_time_seq
.sequence
);
1541 static inline u64
irq_time_read(int cpu
)
1547 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1548 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1549 per_cpu(cpu_hardirq_time
, cpu
);
1550 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1554 #else /* CONFIG_64BIT */
1555 static inline void irq_time_write_begin(void)
1559 static inline void irq_time_write_end(void)
1563 static inline u64
irq_time_read(int cpu
)
1565 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1567 #endif /* CONFIG_64BIT */
1568 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */