Linux 3.16.75
[linux/fpc-iii.git] / kernel / time.c
blob7c9074858b0a43dd49f0c49af3fc415c81c613e4
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
38 #include <linux/fs.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
45 #include "timeconst.h"
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
51 struct timezone sys_tz;
53 EXPORT_SYMBOL(sys_tz);
55 #ifdef __ARCH_WANT_SYS_TIME
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 time_t i = get_seconds();
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
71 force_successful_syscall_return();
72 return i;
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
84 struct timespec tv;
85 int err;
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
90 tv.tv_nsec = 0;
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
96 do_settimeofday(&tv);
97 return 0;
100 #endif /* __ARCH_WANT_SYS_TIME */
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
115 return 0;
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
122 int persistent_clock_is_local;
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
134 * - TYT, 1992-01-01
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
140 static inline void warp_clock(void)
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
165 static int firsttime = 1;
166 int error = 0;
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
175 if (tz) {
176 sys_tz = *tz;
177 update_vsyscall_tz();
178 if (firsttime) {
179 firsttime = 0;
180 if (!tv)
181 warp_clock();
184 if (tv)
185 return do_settimeofday(tv);
186 return 0;
189 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 struct timezone __user *, tz)
192 struct timeval user_tv;
193 struct timespec new_ts;
194 struct timezone new_tz;
196 if (tv) {
197 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 return -EFAULT;
200 if (!timeval_valid(&user_tv))
201 return -EINVAL;
203 new_ts.tv_sec = user_tv.tv_sec;
204 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
206 if (tz) {
207 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
208 return -EFAULT;
211 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
214 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
216 struct timex txc; /* Local copy of parameter */
217 int ret;
219 /* Copy the user data space into the kernel copy
220 * structure. But bear in mind that the structures
221 * may change
223 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
224 return -EFAULT;
225 ret = do_adjtimex(&txc);
226 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
230 * current_fs_time - Return FS time
231 * @sb: Superblock.
233 * Return the current time truncated to the time granularity supported by
234 * the fs.
236 struct timespec current_fs_time(struct super_block *sb)
238 struct timespec now = current_kernel_time();
239 return timespec_trunc(now, sb->s_time_gran);
241 EXPORT_SYMBOL(current_fs_time);
244 * Convert jiffies to milliseconds and back.
246 * Avoid unnecessary multiplications/divisions in the
247 * two most common HZ cases:
249 unsigned int jiffies_to_msecs(const unsigned long j)
251 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
252 return (MSEC_PER_SEC / HZ) * j;
253 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
254 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
255 #else
256 # if BITS_PER_LONG == 32
257 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
258 HZ_TO_MSEC_SHR32;
259 # else
260 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
261 # endif
262 #endif
264 EXPORT_SYMBOL(jiffies_to_msecs);
266 unsigned int jiffies_to_usecs(const unsigned long j)
268 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
269 return (USEC_PER_SEC / HZ) * j;
270 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
271 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
272 #else
273 # if BITS_PER_LONG == 32
274 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
275 # else
276 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
277 # endif
278 #endif
280 EXPORT_SYMBOL(jiffies_to_usecs);
283 * timespec_trunc - Truncate timespec to a granularity
284 * @t: Timespec
285 * @gran: Granularity in ns.
287 * Truncate a timespec to a granularity. gran must be smaller than a second.
288 * Always rounds down.
290 * This function should be only used for timestamps returned by
291 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
292 * it doesn't handle the better resolution of the latter.
294 struct timespec timespec_trunc(struct timespec t, unsigned gran)
297 * Division is pretty slow so avoid it for common cases.
298 * Currently current_kernel_time() never returns better than
299 * jiffies resolution. Exploit that.
301 if (gran <= jiffies_to_usecs(1) * 1000) {
302 /* nothing */
303 } else if (gran == 1000000000) {
304 t.tv_nsec = 0;
305 } else {
306 t.tv_nsec -= t.tv_nsec % gran;
308 return t;
310 EXPORT_SYMBOL(timespec_trunc);
312 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
313 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
314 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
316 * [For the Julian calendar (which was used in Russia before 1917,
317 * Britain & colonies before 1752, anywhere else before 1582,
318 * and is still in use by some communities) leave out the
319 * -year/100+year/400 terms, and add 10.]
321 * This algorithm was first published by Gauss (I think).
323 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
324 * machines where long is 32-bit! (However, as time_t is signed, we
325 * will already get problems at other places on 2038-01-19 03:14:08)
327 unsigned long
328 mktime(const unsigned int year0, const unsigned int mon0,
329 const unsigned int day, const unsigned int hour,
330 const unsigned int min, const unsigned int sec)
332 unsigned int mon = mon0, year = year0;
334 /* 1..12 -> 11,12,1..10 */
335 if (0 >= (int) (mon -= 2)) {
336 mon += 12; /* Puts Feb last since it has leap day */
337 year -= 1;
340 return ((((unsigned long)
341 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
342 year*365 - 719499
343 )*24 + hour /* now have hours */
344 )*60 + min /* now have minutes */
345 )*60 + sec; /* finally seconds */
348 EXPORT_SYMBOL(mktime);
351 * set_normalized_timespec - set timespec sec and nsec parts and normalize
353 * @ts: pointer to timespec variable to be set
354 * @sec: seconds to set
355 * @nsec: nanoseconds to set
357 * Set seconds and nanoseconds field of a timespec variable and
358 * normalize to the timespec storage format
360 * Note: The tv_nsec part is always in the range of
361 * 0 <= tv_nsec < NSEC_PER_SEC
362 * For negative values only the tv_sec field is negative !
364 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
366 while (nsec >= NSEC_PER_SEC) {
368 * The following asm() prevents the compiler from
369 * optimising this loop into a modulo operation. See
370 * also __iter_div_u64_rem() in include/linux/time.h
372 asm("" : "+rm"(nsec));
373 nsec -= NSEC_PER_SEC;
374 ++sec;
376 while (nsec < 0) {
377 asm("" : "+rm"(nsec));
378 nsec += NSEC_PER_SEC;
379 --sec;
381 ts->tv_sec = sec;
382 ts->tv_nsec = nsec;
384 EXPORT_SYMBOL(set_normalized_timespec);
387 * ns_to_timespec - Convert nanoseconds to timespec
388 * @nsec: the nanoseconds value to be converted
390 * Returns the timespec representation of the nsec parameter.
392 struct timespec ns_to_timespec(const s64 nsec)
394 struct timespec ts;
395 s32 rem;
397 if (!nsec)
398 return (struct timespec) {0, 0};
400 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
401 if (unlikely(rem < 0)) {
402 ts.tv_sec--;
403 rem += NSEC_PER_SEC;
405 ts.tv_nsec = rem;
407 return ts;
409 EXPORT_SYMBOL(ns_to_timespec);
412 * ns_to_timeval - Convert nanoseconds to timeval
413 * @nsec: the nanoseconds value to be converted
415 * Returns the timeval representation of the nsec parameter.
417 struct timeval ns_to_timeval(const s64 nsec)
419 struct timespec ts = ns_to_timespec(nsec);
420 struct timeval tv;
422 tv.tv_sec = ts.tv_sec;
423 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
425 return tv;
427 EXPORT_SYMBOL(ns_to_timeval);
430 * When we convert to jiffies then we interpret incoming values
431 * the following way:
433 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
435 * - 'too large' values [that would result in larger than
436 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
438 * - all other values are converted to jiffies by either multiplying
439 * the input value by a factor or dividing it with a factor
441 * We must also be careful about 32-bit overflows.
443 unsigned long msecs_to_jiffies(const unsigned int m)
446 * Negative value, means infinite timeout:
448 if ((int)m < 0)
449 return MAX_JIFFY_OFFSET;
451 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
453 * HZ is equal to or smaller than 1000, and 1000 is a nice
454 * round multiple of HZ, divide with the factor between them,
455 * but round upwards:
457 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
458 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
460 * HZ is larger than 1000, and HZ is a nice round multiple of
461 * 1000 - simply multiply with the factor between them.
463 * But first make sure the multiplication result cannot
464 * overflow:
466 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
467 return MAX_JIFFY_OFFSET;
469 return m * (HZ / MSEC_PER_SEC);
470 #else
472 * Generic case - multiply, round and divide. But first
473 * check that if we are doing a net multiplication, that
474 * we wouldn't overflow:
476 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
477 return MAX_JIFFY_OFFSET;
479 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
480 >> MSEC_TO_HZ_SHR32;
481 #endif
483 EXPORT_SYMBOL(msecs_to_jiffies);
485 unsigned long usecs_to_jiffies(const unsigned int u)
487 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
488 return MAX_JIFFY_OFFSET;
489 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
490 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
491 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
492 return u * (HZ / USEC_PER_SEC);
493 #else
494 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
495 >> USEC_TO_HZ_SHR32;
496 #endif
498 EXPORT_SYMBOL(usecs_to_jiffies);
501 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
502 * that a remainder subtract here would not do the right thing as the
503 * resolution values don't fall on second boundries. I.e. the line:
504 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
505 * Note that due to the small error in the multiplier here, this
506 * rounding is incorrect for sufficiently large values of tv_nsec, but
507 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
508 * OK.
510 * Rather, we just shift the bits off the right.
512 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
513 * value to a scaled second value.
515 static unsigned long
516 __timespec_to_jiffies(unsigned long sec, long nsec)
518 nsec = nsec + TICK_NSEC - 1;
520 if (sec >= MAX_SEC_IN_JIFFIES){
521 sec = MAX_SEC_IN_JIFFIES;
522 nsec = 0;
524 return (((u64)sec * SEC_CONVERSION) +
525 (((u64)nsec * NSEC_CONVERSION) >>
526 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
530 unsigned long
531 timespec_to_jiffies(const struct timespec *value)
533 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
536 EXPORT_SYMBOL(timespec_to_jiffies);
538 void
539 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
542 * Convert jiffies to nanoseconds and separate with
543 * one divide.
545 u32 rem;
546 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
547 NSEC_PER_SEC, &rem);
548 value->tv_nsec = rem;
550 EXPORT_SYMBOL(jiffies_to_timespec);
553 * We could use a similar algorithm to timespec_to_jiffies (with a
554 * different multiplier for usec instead of nsec). But this has a
555 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
556 * usec value, since it's not necessarily integral.
558 * We could instead round in the intermediate scaled representation
559 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
560 * perilous: the scaling introduces a small positive error, which
561 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
562 * units to the intermediate before shifting) leads to accidental
563 * overflow and overestimates.
565 * At the cost of one additional multiplication by a constant, just
566 * use the timespec implementation.
568 unsigned long
569 timeval_to_jiffies(const struct timeval *value)
571 return __timespec_to_jiffies(value->tv_sec,
572 value->tv_usec * NSEC_PER_USEC);
574 EXPORT_SYMBOL(timeval_to_jiffies);
576 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
579 * Convert jiffies to nanoseconds and separate with
580 * one divide.
582 u32 rem;
584 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
585 NSEC_PER_SEC, &rem);
586 value->tv_usec = rem / NSEC_PER_USEC;
588 EXPORT_SYMBOL(jiffies_to_timeval);
591 * Convert jiffies/jiffies_64 to clock_t and back.
593 clock_t jiffies_to_clock_t(unsigned long x)
595 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
596 # if HZ < USER_HZ
597 return x * (USER_HZ / HZ);
598 # else
599 return x / (HZ / USER_HZ);
600 # endif
601 #else
602 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
603 #endif
605 EXPORT_SYMBOL(jiffies_to_clock_t);
607 unsigned long clock_t_to_jiffies(unsigned long x)
609 #if (HZ % USER_HZ)==0
610 if (x >= ~0UL / (HZ / USER_HZ))
611 return ~0UL;
612 return x * (HZ / USER_HZ);
613 #else
614 /* Don't worry about loss of precision here .. */
615 if (x >= ~0UL / HZ * USER_HZ)
616 return ~0UL;
618 /* .. but do try to contain it here */
619 return div_u64((u64)x * HZ, USER_HZ);
620 #endif
622 EXPORT_SYMBOL(clock_t_to_jiffies);
624 u64 jiffies_64_to_clock_t(u64 x)
626 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
627 # if HZ < USER_HZ
628 x = div_u64(x * USER_HZ, HZ);
629 # elif HZ > USER_HZ
630 x = div_u64(x, HZ / USER_HZ);
631 # else
632 /* Nothing to do */
633 # endif
634 #else
636 * There are better ways that don't overflow early,
637 * but even this doesn't overflow in hundreds of years
638 * in 64 bits, so..
640 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
641 #endif
642 return x;
644 EXPORT_SYMBOL(jiffies_64_to_clock_t);
646 u64 nsec_to_clock_t(u64 x)
648 #if (NSEC_PER_SEC % USER_HZ) == 0
649 return div_u64(x, NSEC_PER_SEC / USER_HZ);
650 #elif (USER_HZ % 512) == 0
651 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
652 #else
654 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
655 * overflow after 64.99 years.
656 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
658 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
659 #endif
663 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
665 * @n: nsecs in u64
667 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
668 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
669 * for scheduler, not for use in device drivers to calculate timeout value.
671 * note:
672 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
673 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
675 u64 nsecs_to_jiffies64(u64 n)
677 #if (NSEC_PER_SEC % HZ) == 0
678 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
679 return div_u64(n, NSEC_PER_SEC / HZ);
680 #elif (HZ % 512) == 0
681 /* overflow after 292 years if HZ = 1024 */
682 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
683 #else
685 * Generic case - optimized for cases where HZ is a multiple of 3.
686 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
688 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
689 #endif
693 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
695 * @n: nsecs in u64
697 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
698 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
699 * for scheduler, not for use in device drivers to calculate timeout value.
701 * note:
702 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
703 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
705 unsigned long nsecs_to_jiffies(u64 n)
707 return (unsigned long)nsecs_to_jiffies64(n);
711 * Add two timespec values and do a safety check for overflow.
712 * It's assumed that both values are valid (>= 0)
714 struct timespec timespec_add_safe(const struct timespec lhs,
715 const struct timespec rhs)
717 struct timespec res;
719 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
720 lhs.tv_nsec + rhs.tv_nsec);
722 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
723 res.tv_sec = TIME_T_MAX;
725 return res;