Linux 3.16.75
[linux/fpc-iii.git] / mm / memory-failure.c
blobc3d2a606f86ea213293759f438ccfc3b7e808392
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
62 int sysctl_memory_failure_recovery __read_mostly = 1;
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
79 static int hwpoison_filter_dev(struct page *p)
81 struct address_space *mapping;
82 dev_t dev;
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
89 * page_mapping() does not accept slab pages.
91 if (PageSlab(p))
92 return -EINVAL;
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
106 return 0;
109 static int hwpoison_filter_flags(struct page *p)
111 if (!hwpoison_filter_flags_mask)
112 return 0;
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
140 if (!hwpoison_filter_memcg)
141 return 0;
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
147 css = mem_cgroup_css(mem);
148 ino = cgroup_ino(css->cgroup);
149 css_put(css);
151 if (!ino || ino != hwpoison_filter_memcg)
152 return -EINVAL;
154 return 0;
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
160 int hwpoison_filter(struct page *p)
162 if (!hwpoison_filter_enable)
163 return 0;
165 if (hwpoison_filter_dev(p))
166 return -EINVAL;
168 if (hwpoison_filter_flags(p))
169 return -EINVAL;
171 if (hwpoison_filter_task(p))
172 return -EINVAL;
174 return 0;
176 #else
177 int hwpoison_filter(struct page *p)
179 return 0;
181 #endif
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
193 struct siginfo si;
194 int ret;
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
204 #endif
205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 si.si_code = BUS_MCEERR_AR;
209 ret = force_sig_info(SIGBUS, &si, current);
210 } else {
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
220 if (ret < 0)
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
223 return ret;
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
230 void shake_page(struct page *p, int access)
232 if (!PageSlab(p)) {
233 lru_add_drain_all();
234 if (PageLRU(p))
235 return;
236 drain_all_pages();
237 if (PageLRU(p) || is_free_buddy_page(p))
238 return;
242 * Only call shrink_slab here (which would also shrink other caches) if
243 * access is not potentially fatal.
245 if (access) {
246 int nr;
247 int nid = page_to_nid(p);
248 do {
249 struct shrink_control shrink = {
250 .gfp_mask = GFP_KERNEL,
252 node_set(nid, shrink.nodes_to_scan);
254 nr = shrink_slab(&shrink, 1000, 1000);
255 if (page_count(p) == 1)
256 break;
257 } while (nr > 10);
260 EXPORT_SYMBOL_GPL(shake_page);
263 * Kill all processes that have a poisoned page mapped and then isolate
264 * the page.
266 * General strategy:
267 * Find all processes having the page mapped and kill them.
268 * But we keep a page reference around so that the page is not
269 * actually freed yet.
270 * Then stash the page away
272 * There's no convenient way to get back to mapped processes
273 * from the VMAs. So do a brute-force search over all
274 * running processes.
276 * Remember that machine checks are not common (or rather
277 * if they are common you have other problems), so this shouldn't
278 * be a performance issue.
280 * Also there are some races possible while we get from the
281 * error detection to actually handle it.
284 struct to_kill {
285 struct list_head nd;
286 struct task_struct *tsk;
287 unsigned long addr;
288 char addr_valid;
292 * Failure handling: if we can't find or can't kill a process there's
293 * not much we can do. We just print a message and ignore otherwise.
297 * Schedule a process for later kill.
298 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
299 * TBD would GFP_NOIO be enough?
301 static void add_to_kill(struct task_struct *tsk, struct page *p,
302 struct vm_area_struct *vma,
303 struct list_head *to_kill,
304 struct to_kill **tkc)
306 struct to_kill *tk;
308 if (*tkc) {
309 tk = *tkc;
310 *tkc = NULL;
311 } else {
312 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
313 if (!tk) {
314 printk(KERN_ERR
315 "MCE: Out of memory while machine check handling\n");
316 return;
319 tk->addr = page_address_in_vma(p, vma);
320 tk->addr_valid = 1;
323 * In theory we don't have to kill when the page was
324 * munmaped. But it could be also a mremap. Since that's
325 * likely very rare kill anyways just out of paranoia, but use
326 * a SIGKILL because the error is not contained anymore.
328 if (tk->addr == -EFAULT) {
329 pr_info("MCE: Unable to find user space address %lx in %s\n",
330 page_to_pfn(p), tsk->comm);
331 tk->addr_valid = 0;
333 get_task_struct(tsk);
334 tk->tsk = tsk;
335 list_add_tail(&tk->nd, to_kill);
339 * Kill the processes that have been collected earlier.
341 * Only do anything when DOIT is set, otherwise just free the list
342 * (this is used for clean pages which do not need killing)
343 * Also when FAIL is set do a force kill because something went
344 * wrong earlier.
346 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
347 int fail, struct page *page, unsigned long pfn,
348 int flags)
350 struct to_kill *tk, *next;
352 list_for_each_entry_safe (tk, next, to_kill, nd) {
353 if (forcekill) {
355 * In case something went wrong with munmapping
356 * make sure the process doesn't catch the
357 * signal and then access the memory. Just kill it.
359 if (fail || tk->addr_valid == 0) {
360 printk(KERN_ERR
361 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
362 pfn, tk->tsk->comm, tk->tsk->pid);
363 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
364 tk->tsk, PIDTYPE_PID);
368 * In theory the process could have mapped
369 * something else on the address in-between. We could
370 * check for that, but we need to tell the
371 * process anyways.
373 else if (kill_proc(tk->tsk, tk->addr, trapno,
374 pfn, page, flags) < 0)
375 printk(KERN_ERR
376 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
377 pfn, tk->tsk->comm, tk->tsk->pid);
379 put_task_struct(tk->tsk);
380 kfree(tk);
385 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
386 * on behalf of the thread group. Return task_struct of the (first found)
387 * dedicated thread if found, and return NULL otherwise.
389 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
390 * have to call rcu_read_lock/unlock() in this function.
392 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
394 struct task_struct *t;
396 for_each_thread(tsk, t)
397 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
398 return t;
399 return NULL;
403 * Determine whether a given process is "early kill" process which expects
404 * to be signaled when some page under the process is hwpoisoned.
405 * Return task_struct of the dedicated thread (main thread unless explicitly
406 * specified) if the process is "early kill," and otherwise returns NULL.
408 static struct task_struct *task_early_kill(struct task_struct *tsk,
409 int force_early)
411 struct task_struct *t;
412 if (!tsk->mm)
413 return NULL;
414 if (force_early)
415 return tsk;
416 t = find_early_kill_thread(tsk);
417 if (t)
418 return t;
419 if (sysctl_memory_failure_early_kill)
420 return tsk;
421 return NULL;
425 * Collect processes when the error hit an anonymous page.
427 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
428 struct to_kill **tkc, int force_early)
430 struct vm_area_struct *vma;
431 struct task_struct *tsk;
432 struct anon_vma *av;
433 pgoff_t pgoff;
435 av = page_lock_anon_vma_read(page);
436 if (av == NULL) /* Not actually mapped anymore */
437 return;
439 pgoff = page_to_pgoff(page);
440 read_lock(&tasklist_lock);
441 for_each_process (tsk) {
442 struct anon_vma_chain *vmac;
443 struct task_struct *t = task_early_kill(tsk, force_early);
445 if (!t)
446 continue;
447 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
448 pgoff, pgoff) {
449 vma = vmac->vma;
450 if (!page_mapped_in_vma(page, vma))
451 continue;
452 if (vma->vm_mm == t->mm)
453 add_to_kill(t, page, vma, to_kill, tkc);
456 read_unlock(&tasklist_lock);
457 page_unlock_anon_vma_read(av);
461 * Collect processes when the error hit a file mapped page.
463 static void collect_procs_file(struct page *page, struct list_head *to_kill,
464 struct to_kill **tkc, int force_early)
466 struct vm_area_struct *vma;
467 struct task_struct *tsk;
468 struct address_space *mapping = page->mapping;
470 mutex_lock(&mapping->i_mmap_mutex);
471 read_lock(&tasklist_lock);
472 for_each_process(tsk) {
473 pgoff_t pgoff = page_to_pgoff(page);
474 struct task_struct *t = task_early_kill(tsk, force_early);
476 if (!t)
477 continue;
478 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
479 pgoff) {
481 * Send early kill signal to tasks where a vma covers
482 * the page but the corrupted page is not necessarily
483 * mapped it in its pte.
484 * Assume applications who requested early kill want
485 * to be informed of all such data corruptions.
487 if (vma->vm_mm == t->mm)
488 add_to_kill(t, page, vma, to_kill, tkc);
491 read_unlock(&tasklist_lock);
492 mutex_unlock(&mapping->i_mmap_mutex);
496 * Collect the processes who have the corrupted page mapped to kill.
497 * This is done in two steps for locking reasons.
498 * First preallocate one tokill structure outside the spin locks,
499 * so that we can kill at least one process reasonably reliable.
501 static void collect_procs(struct page *page, struct list_head *tokill,
502 int force_early)
504 struct to_kill *tk;
506 if (!page->mapping)
507 return;
509 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
510 if (!tk)
511 return;
512 if (PageAnon(page))
513 collect_procs_anon(page, tokill, &tk, force_early);
514 else
515 collect_procs_file(page, tokill, &tk, force_early);
516 kfree(tk);
520 * Error handlers for various types of pages.
523 enum outcome {
524 IGNORED, /* Error: cannot be handled */
525 FAILED, /* Error: handling failed */
526 DELAYED, /* Will be handled later */
527 RECOVERED, /* Successfully recovered */
530 static const char *action_name[] = {
531 [IGNORED] = "Ignored",
532 [FAILED] = "Failed",
533 [DELAYED] = "Delayed",
534 [RECOVERED] = "Recovered",
538 * XXX: It is possible that a page is isolated from LRU cache,
539 * and then kept in swap cache or failed to remove from page cache.
540 * The page count will stop it from being freed by unpoison.
541 * Stress tests should be aware of this memory leak problem.
543 static int delete_from_lru_cache(struct page *p)
545 if (!isolate_lru_page(p)) {
547 * Clear sensible page flags, so that the buddy system won't
548 * complain when the page is unpoison-and-freed.
550 ClearPageActive(p);
551 ClearPageUnevictable(p);
553 * drop the page count elevated by isolate_lru_page()
555 page_cache_release(p);
556 return 0;
558 return -EIO;
562 * Error hit kernel page.
563 * Do nothing, try to be lucky and not touch this instead. For a few cases we
564 * could be more sophisticated.
566 static int me_kernel(struct page *p, unsigned long pfn)
568 return IGNORED;
572 * Page in unknown state. Do nothing.
574 static int me_unknown(struct page *p, unsigned long pfn)
576 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
577 return FAILED;
581 * Clean (or cleaned) page cache page.
583 static int me_pagecache_clean(struct page *p, unsigned long pfn)
585 int err;
586 int ret = FAILED;
587 struct address_space *mapping;
589 delete_from_lru_cache(p);
592 * For anonymous pages we're done the only reference left
593 * should be the one m_f() holds.
595 if (PageAnon(p))
596 return RECOVERED;
599 * Now truncate the page in the page cache. This is really
600 * more like a "temporary hole punch"
601 * Don't do this for block devices when someone else
602 * has a reference, because it could be file system metadata
603 * and that's not safe to truncate.
605 mapping = page_mapping(p);
606 if (!mapping) {
608 * Page has been teared down in the meanwhile
610 return FAILED;
614 * Truncation is a bit tricky. Enable it per file system for now.
616 * Open: to take i_mutex or not for this? Right now we don't.
618 if (mapping->a_ops->error_remove_page) {
619 err = mapping->a_ops->error_remove_page(mapping, p);
620 if (err != 0) {
621 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
622 pfn, err);
623 } else if (page_has_private(p) &&
624 !try_to_release_page(p, GFP_NOIO)) {
625 pr_info("MCE %#lx: failed to release buffers\n", pfn);
626 } else {
627 ret = RECOVERED;
629 } else {
631 * If the file system doesn't support it just invalidate
632 * This fails on dirty or anything with private pages
634 if (invalidate_inode_page(p))
635 ret = RECOVERED;
636 else
637 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
638 pfn);
640 return ret;
644 * Dirty pagecache page
645 * Issues: when the error hit a hole page the error is not properly
646 * propagated.
648 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
650 struct address_space *mapping = page_mapping(p);
652 SetPageError(p);
653 /* TBD: print more information about the file. */
654 if (mapping) {
656 * IO error will be reported by write(), fsync(), etc.
657 * who check the mapping.
658 * This way the application knows that something went
659 * wrong with its dirty file data.
661 * There's one open issue:
663 * The EIO will be only reported on the next IO
664 * operation and then cleared through the IO map.
665 * Normally Linux has two mechanisms to pass IO error
666 * first through the AS_EIO flag in the address space
667 * and then through the PageError flag in the page.
668 * Since we drop pages on memory failure handling the
669 * only mechanism open to use is through AS_AIO.
671 * This has the disadvantage that it gets cleared on
672 * the first operation that returns an error, while
673 * the PageError bit is more sticky and only cleared
674 * when the page is reread or dropped. If an
675 * application assumes it will always get error on
676 * fsync, but does other operations on the fd before
677 * and the page is dropped between then the error
678 * will not be properly reported.
680 * This can already happen even without hwpoisoned
681 * pages: first on metadata IO errors (which only
682 * report through AS_EIO) or when the page is dropped
683 * at the wrong time.
685 * So right now we assume that the application DTRT on
686 * the first EIO, but we're not worse than other parts
687 * of the kernel.
689 mapping_set_error(mapping, EIO);
692 return me_pagecache_clean(p, pfn);
696 * Clean and dirty swap cache.
698 * Dirty swap cache page is tricky to handle. The page could live both in page
699 * cache and swap cache(ie. page is freshly swapped in). So it could be
700 * referenced concurrently by 2 types of PTEs:
701 * normal PTEs and swap PTEs. We try to handle them consistently by calling
702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
703 * and then
704 * - clear dirty bit to prevent IO
705 * - remove from LRU
706 * - but keep in the swap cache, so that when we return to it on
707 * a later page fault, we know the application is accessing
708 * corrupted data and shall be killed (we installed simple
709 * interception code in do_swap_page to catch it).
711 * Clean swap cache pages can be directly isolated. A later page fault will
712 * bring in the known good data from disk.
714 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
716 ClearPageDirty(p);
717 /* Trigger EIO in shmem: */
718 ClearPageUptodate(p);
720 if (!delete_from_lru_cache(p))
721 return DELAYED;
722 else
723 return FAILED;
726 static int me_swapcache_clean(struct page *p, unsigned long pfn)
728 delete_from_swap_cache(p);
730 if (!delete_from_lru_cache(p))
731 return RECOVERED;
732 else
733 return FAILED;
737 * Huge pages. Needs work.
738 * Issues:
739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
740 * To narrow down kill region to one page, we need to break up pmd.
742 static int me_huge_page(struct page *p, unsigned long pfn)
744 int res = 0;
745 struct page *hpage = compound_head(p);
747 * We can safely recover from error on free or reserved (i.e.
748 * not in-use) hugepage by dequeuing it from freelist.
749 * To check whether a hugepage is in-use or not, we can't use
750 * page->lru because it can be used in other hugepage operations,
751 * such as __unmap_hugepage_range() and gather_surplus_pages().
752 * So instead we use page_mapping() and PageAnon().
753 * We assume that this function is called with page lock held,
754 * so there is no race between isolation and mapping/unmapping.
756 if (!(page_mapping(hpage) || PageAnon(hpage))) {
757 res = dequeue_hwpoisoned_huge_page(hpage);
758 if (!res)
759 return RECOVERED;
761 return DELAYED;
765 * Various page states we can handle.
767 * A page state is defined by its current page->flags bits.
768 * The table matches them in order and calls the right handler.
770 * This is quite tricky because we can access page at any time
771 * in its live cycle, so all accesses have to be extremely careful.
773 * This is not complete. More states could be added.
774 * For any missing state don't attempt recovery.
777 #define dirty (1UL << PG_dirty)
778 #define sc (1UL << PG_swapcache)
779 #define unevict (1UL << PG_unevictable)
780 #define mlock (1UL << PG_mlocked)
781 #define writeback (1UL << PG_writeback)
782 #define lru (1UL << PG_lru)
783 #define swapbacked (1UL << PG_swapbacked)
784 #define head (1UL << PG_head)
785 #define tail (1UL << PG_tail)
786 #define compound (1UL << PG_compound)
787 #define slab (1UL << PG_slab)
788 #define reserved (1UL << PG_reserved)
790 static struct page_state {
791 unsigned long mask;
792 unsigned long res;
793 char *msg;
794 int (*action)(struct page *p, unsigned long pfn);
795 } error_states[] = {
796 { reserved, reserved, "reserved kernel", me_kernel },
798 * free pages are specially detected outside this table:
799 * PG_buddy pages only make a small fraction of all free pages.
803 * Could in theory check if slab page is free or if we can drop
804 * currently unused objects without touching them. But just
805 * treat it as standard kernel for now.
807 { slab, slab, "kernel slab", me_kernel },
809 #ifdef CONFIG_PAGEFLAGS_EXTENDED
810 { head, head, "huge", me_huge_page },
811 { tail, tail, "huge", me_huge_page },
812 #else
813 { compound, compound, "huge", me_huge_page },
814 #endif
816 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
817 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
819 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
820 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
822 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
823 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
825 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
826 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
829 * Catchall entry: must be at end.
831 { 0, 0, "unknown page state", me_unknown },
834 #undef dirty
835 #undef sc
836 #undef unevict
837 #undef mlock
838 #undef writeback
839 #undef lru
840 #undef swapbacked
841 #undef head
842 #undef tail
843 #undef compound
844 #undef slab
845 #undef reserved
848 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
849 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
851 static void action_result(unsigned long pfn, char *msg, int result)
853 pr_err("MCE %#lx: %s page recovery: %s\n",
854 pfn, msg, action_name[result]);
857 static int page_action(struct page_state *ps, struct page *p,
858 unsigned long pfn)
860 int result;
861 int count;
863 result = ps->action(p, pfn);
864 action_result(pfn, ps->msg, result);
866 count = page_count(p) - 1;
867 if (ps->action == me_swapcache_dirty && result == DELAYED)
868 count--;
869 if (count != 0) {
870 printk(KERN_ERR
871 "MCE %#lx: %s page still referenced by %d users\n",
872 pfn, ps->msg, count);
873 result = FAILED;
876 /* Could do more checks here if page looks ok */
878 * Could adjust zone counters here to correct for the missing page.
881 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
885 * Do all that is necessary to remove user space mappings. Unmap
886 * the pages and send SIGBUS to the processes if the data was dirty.
888 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
889 int trapno, int flags, struct page **hpagep)
891 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
892 struct address_space *mapping;
893 LIST_HEAD(tokill);
894 int ret;
895 int kill = 1, forcekill;
896 struct page *hpage = *hpagep;
897 struct page *ppage;
900 * Here we are interested only in user-mapped pages, so skip any
901 * other types of pages.
903 if (PageReserved(p) || PageSlab(p))
904 return SWAP_SUCCESS;
905 if (!(PageLRU(hpage) || PageHuge(p)))
906 return SWAP_SUCCESS;
909 * This check implies we don't kill processes if their pages
910 * are in the swap cache early. Those are always late kills.
912 if (!page_mapped(hpage))
913 return SWAP_SUCCESS;
915 if (PageKsm(p)) {
916 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
917 return SWAP_FAIL;
920 if (PageSwapCache(p)) {
921 printk(KERN_ERR
922 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
923 ttu |= TTU_IGNORE_HWPOISON;
927 * Propagate the dirty bit from PTEs to struct page first, because we
928 * need this to decide if we should kill or just drop the page.
929 * XXX: the dirty test could be racy: set_page_dirty() may not always
930 * be called inside page lock (it's recommended but not enforced).
932 mapping = page_mapping(hpage);
933 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
934 mapping_cap_writeback_dirty(mapping)) {
935 if (page_mkclean(hpage)) {
936 SetPageDirty(hpage);
937 } else {
938 kill = 0;
939 ttu |= TTU_IGNORE_HWPOISON;
940 printk(KERN_INFO
941 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
942 pfn);
947 * ppage: poisoned page
948 * if p is regular page(4k page)
949 * ppage == real poisoned page;
950 * else p is hugetlb or THP, ppage == head page.
952 ppage = hpage;
954 if (PageTransHuge(hpage)) {
956 * Verify that this isn't a hugetlbfs head page, the check for
957 * PageAnon is just for avoid tripping a split_huge_page
958 * internal debug check, as split_huge_page refuses to deal with
959 * anything that isn't an anon page. PageAnon can't go away fro
960 * under us because we hold a refcount on the hpage, without a
961 * refcount on the hpage. split_huge_page can't be safely called
962 * in the first place, having a refcount on the tail isn't
963 * enough * to be safe.
965 if (!PageHuge(hpage) && PageAnon(hpage)) {
966 if (unlikely(split_huge_page(hpage))) {
968 * FIXME: if splitting THP is failed, it is
969 * better to stop the following operation rather
970 * than causing panic by unmapping. System might
971 * survive if the page is freed later.
973 printk(KERN_INFO
974 "MCE %#lx: failed to split THP\n", pfn);
976 BUG_ON(!PageHWPoison(p));
977 return SWAP_FAIL;
980 * We pinned the head page for hwpoison handling,
981 * now we split the thp and we are interested in
982 * the hwpoisoned raw page, so move the refcount
983 * to it. Similarly, page lock is shifted.
985 if (hpage != p) {
986 if (!(flags & MF_COUNT_INCREASED)) {
987 put_page(hpage);
988 get_page(p);
990 lock_page(p);
991 unlock_page(hpage);
992 *hpagep = p;
994 /* THP is split, so ppage should be the real poisoned page. */
995 ppage = p;
1000 * First collect all the processes that have the page
1001 * mapped in dirty form. This has to be done before try_to_unmap,
1002 * because ttu takes the rmap data structures down.
1004 * Error handling: We ignore errors here because
1005 * there's nothing that can be done.
1007 if (kill)
1008 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1010 ret = try_to_unmap(ppage, ttu);
1011 if (ret != SWAP_SUCCESS)
1012 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1013 pfn, page_mapcount(ppage));
1016 * Now that the dirty bit has been propagated to the
1017 * struct page and all unmaps done we can decide if
1018 * killing is needed or not. Only kill when the page
1019 * was dirty or the process is not restartable,
1020 * otherwise the tokill list is merely
1021 * freed. When there was a problem unmapping earlier
1022 * use a more force-full uncatchable kill to prevent
1023 * any accesses to the poisoned memory.
1025 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1026 kill_procs(&tokill, forcekill, trapno,
1027 ret != SWAP_SUCCESS, p, pfn, flags);
1029 return ret;
1032 static void set_page_hwpoison_huge_page(struct page *hpage)
1034 int i;
1035 int nr_pages = 1 << compound_order(hpage);
1036 for (i = 0; i < nr_pages; i++)
1037 SetPageHWPoison(hpage + i);
1040 static void clear_page_hwpoison_huge_page(struct page *hpage)
1042 int i;
1043 int nr_pages = 1 << compound_order(hpage);
1044 for (i = 0; i < nr_pages; i++)
1045 ClearPageHWPoison(hpage + i);
1049 * memory_failure - Handle memory failure of a page.
1050 * @pfn: Page Number of the corrupted page
1051 * @trapno: Trap number reported in the signal to user space.
1052 * @flags: fine tune action taken
1054 * This function is called by the low level machine check code
1055 * of an architecture when it detects hardware memory corruption
1056 * of a page. It tries its best to recover, which includes
1057 * dropping pages, killing processes etc.
1059 * The function is primarily of use for corruptions that
1060 * happen outside the current execution context (e.g. when
1061 * detected by a background scrubber)
1063 * Must run in process context (e.g. a work queue) with interrupts
1064 * enabled and no spinlocks hold.
1066 int memory_failure(unsigned long pfn, int trapno, int flags)
1068 struct page_state *ps;
1069 struct page *p;
1070 struct page *hpage;
1071 int res;
1072 unsigned int nr_pages;
1073 unsigned long page_flags;
1075 if (!sysctl_memory_failure_recovery)
1076 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1078 if (!pfn_valid(pfn)) {
1079 printk(KERN_ERR
1080 "MCE %#lx: memory outside kernel control\n",
1081 pfn);
1082 return -ENXIO;
1085 p = pfn_to_page(pfn);
1086 hpage = compound_head(p);
1087 if (TestSetPageHWPoison(p)) {
1088 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1089 return 0;
1093 * Currently errors on hugetlbfs pages are measured in hugepage units,
1094 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1095 * transparent hugepages, they are supposed to be split and error
1096 * measurement is done in normal page units. So nr_pages should be one
1097 * in this case.
1099 if (PageHuge(p))
1100 nr_pages = 1 << compound_order(hpage);
1101 else /* normal page or thp */
1102 nr_pages = 1;
1103 atomic_long_add(nr_pages, &num_poisoned_pages);
1106 * We need/can do nothing about count=0 pages.
1107 * 1) it's a free page, and therefore in safe hand:
1108 * prep_new_page() will be the gate keeper.
1109 * 2) it's a free hugepage, which is also safe:
1110 * an affected hugepage will be dequeued from hugepage freelist,
1111 * so there's no concern about reusing it ever after.
1112 * 3) it's part of a non-compound high order page.
1113 * Implies some kernel user: cannot stop them from
1114 * R/W the page; let's pray that the page has been
1115 * used and will be freed some time later.
1116 * In fact it's dangerous to directly bump up page count from 0,
1117 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1119 if (!(flags & MF_COUNT_INCREASED) &&
1120 !get_page_unless_zero(hpage)) {
1121 if (is_free_buddy_page(p)) {
1122 action_result(pfn, "free buddy", DELAYED);
1123 return 0;
1124 } else if (PageHuge(hpage)) {
1126 * Check "filter hit" and "race with other subpage."
1128 lock_page(hpage);
1129 if (PageHWPoison(hpage)) {
1130 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1131 || (p != hpage && TestSetPageHWPoison(hpage))) {
1132 atomic_long_sub(nr_pages, &num_poisoned_pages);
1133 unlock_page(hpage);
1134 return 0;
1137 set_page_hwpoison_huge_page(hpage);
1138 res = dequeue_hwpoisoned_huge_page(hpage);
1139 action_result(pfn, "free huge",
1140 res ? IGNORED : DELAYED);
1141 unlock_page(hpage);
1142 return res;
1143 } else {
1144 action_result(pfn, "high order kernel", IGNORED);
1145 return -EBUSY;
1150 * We ignore non-LRU pages for good reasons.
1151 * - PG_locked is only well defined for LRU pages and a few others
1152 * - to avoid races with __set_page_locked()
1153 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1154 * The check (unnecessarily) ignores LRU pages being isolated and
1155 * walked by the page reclaim code, however that's not a big loss.
1157 if (!PageHuge(p)) {
1158 if (!PageLRU(hpage))
1159 shake_page(hpage, 0);
1160 if (!PageLRU(hpage)) {
1162 * shake_page could have turned it free.
1164 if (is_free_buddy_page(p)) {
1165 if (flags & MF_COUNT_INCREASED)
1166 action_result(pfn, "free buddy", DELAYED);
1167 else
1168 action_result(pfn, "free buddy, 2nd try", DELAYED);
1169 return 0;
1174 lock_page(hpage);
1177 * We use page flags to determine what action should be taken, but
1178 * the flags can be modified by the error containment action. One
1179 * example is an mlocked page, where PG_mlocked is cleared by
1180 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1181 * correctly, we save a copy of the page flags at this time.
1183 if (PageHuge(p))
1184 page_flags = hpage->flags;
1185 else
1186 page_flags = p->flags;
1189 * unpoison always clear PG_hwpoison inside page lock
1191 if (!PageHWPoison(p)) {
1192 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1193 atomic_long_sub(nr_pages, &num_poisoned_pages);
1194 put_page(hpage);
1195 res = 0;
1196 goto out;
1198 if (hwpoison_filter(p)) {
1199 if (TestClearPageHWPoison(p))
1200 atomic_long_sub(nr_pages, &num_poisoned_pages);
1201 unlock_page(hpage);
1202 put_page(hpage);
1203 return 0;
1206 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1207 goto identify_page_state;
1210 * For error on the tail page, we should set PG_hwpoison
1211 * on the head page to show that the hugepage is hwpoisoned
1213 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1214 action_result(pfn, "hugepage already hardware poisoned",
1215 IGNORED);
1216 unlock_page(hpage);
1217 put_page(hpage);
1218 return 0;
1221 * Set PG_hwpoison on all pages in an error hugepage,
1222 * because containment is done in hugepage unit for now.
1223 * Since we have done TestSetPageHWPoison() for the head page with
1224 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1226 if (PageHuge(p))
1227 set_page_hwpoison_huge_page(hpage);
1230 * It's very difficult to mess with pages currently under IO
1231 * and in many cases impossible, so we just avoid it here.
1233 wait_on_page_writeback(p);
1236 * Now take care of user space mappings.
1237 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1239 * When the raw error page is thp tail page, hpage points to the raw
1240 * page after thp split.
1242 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1243 != SWAP_SUCCESS) {
1244 action_result(pfn, "unmapping failed", IGNORED);
1245 res = -EBUSY;
1246 goto out;
1250 * Torn down by someone else?
1252 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1253 action_result(pfn, "already truncated LRU", IGNORED);
1254 res = -EBUSY;
1255 goto out;
1258 identify_page_state:
1259 res = -EBUSY;
1261 * The first check uses the current page flags which may not have any
1262 * relevant information. The second check with the saved page flagss is
1263 * carried out only if the first check can't determine the page status.
1265 for (ps = error_states;; ps++)
1266 if ((p->flags & ps->mask) == ps->res)
1267 break;
1269 page_flags |= (p->flags & (1UL << PG_dirty));
1271 if (!ps->mask)
1272 for (ps = error_states;; ps++)
1273 if ((page_flags & ps->mask) == ps->res)
1274 break;
1275 res = page_action(ps, p, pfn);
1276 out:
1277 unlock_page(hpage);
1278 return res;
1280 EXPORT_SYMBOL_GPL(memory_failure);
1282 #define MEMORY_FAILURE_FIFO_ORDER 4
1283 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1285 struct memory_failure_entry {
1286 unsigned long pfn;
1287 int trapno;
1288 int flags;
1291 struct memory_failure_cpu {
1292 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1293 MEMORY_FAILURE_FIFO_SIZE);
1294 spinlock_t lock;
1295 struct work_struct work;
1298 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1301 * memory_failure_queue - Schedule handling memory failure of a page.
1302 * @pfn: Page Number of the corrupted page
1303 * @trapno: Trap number reported in the signal to user space.
1304 * @flags: Flags for memory failure handling
1306 * This function is called by the low level hardware error handler
1307 * when it detects hardware memory corruption of a page. It schedules
1308 * the recovering of error page, including dropping pages, killing
1309 * processes etc.
1311 * The function is primarily of use for corruptions that
1312 * happen outside the current execution context (e.g. when
1313 * detected by a background scrubber)
1315 * Can run in IRQ context.
1317 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1319 struct memory_failure_cpu *mf_cpu;
1320 unsigned long proc_flags;
1321 struct memory_failure_entry entry = {
1322 .pfn = pfn,
1323 .trapno = trapno,
1324 .flags = flags,
1327 mf_cpu = &get_cpu_var(memory_failure_cpu);
1328 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1329 if (kfifo_put(&mf_cpu->fifo, entry))
1330 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1331 else
1332 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1333 pfn);
1334 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1335 put_cpu_var(memory_failure_cpu);
1337 EXPORT_SYMBOL_GPL(memory_failure_queue);
1339 static void memory_failure_work_func(struct work_struct *work)
1341 struct memory_failure_cpu *mf_cpu;
1342 struct memory_failure_entry entry = { 0, };
1343 unsigned long proc_flags;
1344 int gotten;
1346 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1347 for (;;) {
1348 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1349 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1350 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1351 if (!gotten)
1352 break;
1353 if (entry.flags & MF_SOFT_OFFLINE)
1354 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1355 else
1356 memory_failure(entry.pfn, entry.trapno, entry.flags);
1360 static int __init memory_failure_init(void)
1362 struct memory_failure_cpu *mf_cpu;
1363 int cpu;
1365 for_each_possible_cpu(cpu) {
1366 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1367 spin_lock_init(&mf_cpu->lock);
1368 INIT_KFIFO(mf_cpu->fifo);
1369 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1372 return 0;
1374 core_initcall(memory_failure_init);
1377 * unpoison_memory - Unpoison a previously poisoned page
1378 * @pfn: Page number of the to be unpoisoned page
1380 * Software-unpoison a page that has been poisoned by
1381 * memory_failure() earlier.
1383 * This is only done on the software-level, so it only works
1384 * for linux injected failures, not real hardware failures
1386 * Returns 0 for success, otherwise -errno.
1388 int unpoison_memory(unsigned long pfn)
1390 struct page *page;
1391 struct page *p;
1392 int freeit = 0;
1393 unsigned int nr_pages;
1395 if (!pfn_valid(pfn))
1396 return -ENXIO;
1398 p = pfn_to_page(pfn);
1399 page = compound_head(p);
1401 if (!PageHWPoison(p)) {
1402 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1403 return 0;
1407 * unpoison_memory() can encounter thp only when the thp is being
1408 * worked by memory_failure() and the page lock is not held yet.
1409 * In such case, we yield to memory_failure() and make unpoison fail.
1411 if (!PageHuge(page) && PageTransHuge(page)) {
1412 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1413 return 0;
1416 nr_pages = 1 << compound_order(page);
1418 if (!get_page_unless_zero(page)) {
1420 * Since HWPoisoned hugepage should have non-zero refcount,
1421 * race between memory failure and unpoison seems to happen.
1422 * In such case unpoison fails and memory failure runs
1423 * to the end.
1425 if (PageHuge(page)) {
1426 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1427 return 0;
1429 if (TestClearPageHWPoison(p))
1430 atomic_long_dec(&num_poisoned_pages);
1431 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1432 return 0;
1435 lock_page(page);
1437 * This test is racy because PG_hwpoison is set outside of page lock.
1438 * That's acceptable because that won't trigger kernel panic. Instead,
1439 * the PG_hwpoison page will be caught and isolated on the entrance to
1440 * the free buddy page pool.
1442 if (TestClearPageHWPoison(page)) {
1443 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1444 atomic_long_sub(nr_pages, &num_poisoned_pages);
1445 freeit = 1;
1446 if (PageHuge(page))
1447 clear_page_hwpoison_huge_page(page);
1449 unlock_page(page);
1451 put_page(page);
1452 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1453 put_page(page);
1455 return 0;
1457 EXPORT_SYMBOL(unpoison_memory);
1459 static struct page *new_page(struct page *p, unsigned long private, int **x)
1461 int nid = page_to_nid(p);
1462 if (PageHuge(p))
1463 return alloc_huge_page_node(page_hstate(compound_head(p)),
1464 nid);
1465 else
1466 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1470 * Safely get reference count of an arbitrary page.
1471 * Returns 0 for a free page, -EIO for a zero refcount page
1472 * that is not free, and 1 for any other page type.
1473 * For 1 the page is returned with increased page count, otherwise not.
1475 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1477 int ret;
1479 if (flags & MF_COUNT_INCREASED)
1480 return 1;
1483 * When the target page is a free hugepage, just remove it
1484 * from free hugepage list.
1486 if (!get_page_unless_zero(compound_head(p))) {
1487 if (PageHuge(p)) {
1488 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1489 ret = 0;
1490 } else if (is_free_buddy_page(p)) {
1491 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1492 ret = 0;
1493 } else {
1494 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1495 __func__, pfn, p->flags);
1496 ret = -EIO;
1498 } else {
1499 /* Not a free page */
1500 ret = 1;
1502 return ret;
1505 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1507 int ret = __get_any_page(page, pfn, flags);
1509 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1511 * Try to free it.
1513 put_page(page);
1514 shake_page(page, 1);
1517 * Did it turn free?
1519 ret = __get_any_page(page, pfn, 0);
1520 if (ret == 1 && !PageLRU(page)) {
1521 /* Drop page reference which is from __get_any_page() */
1522 put_page(page);
1523 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1524 pfn, page->flags);
1525 return -EIO;
1528 return ret;
1531 static int soft_offline_huge_page(struct page *page, int flags)
1533 int ret;
1534 unsigned long pfn = page_to_pfn(page);
1535 struct page *hpage = compound_head(page);
1536 LIST_HEAD(pagelist);
1539 * This double-check of PageHWPoison is to avoid the race with
1540 * memory_failure(). See also comment in __soft_offline_page().
1542 lock_page(hpage);
1543 if (PageHWPoison(hpage)) {
1544 unlock_page(hpage);
1545 put_page(hpage);
1546 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1547 return -EBUSY;
1549 unlock_page(hpage);
1551 /* Keep page count to indicate a given hugepage is isolated. */
1552 list_move(&hpage->lru, &pagelist);
1553 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1554 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1555 if (ret) {
1556 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1557 pfn, ret, page->flags);
1558 if (!list_empty(&pagelist))
1559 putback_movable_pages(&pagelist);
1560 if (ret > 0)
1561 ret = -EIO;
1562 } else {
1563 /* overcommit hugetlb page will be freed to buddy */
1564 if (PageHuge(page)) {
1565 set_page_hwpoison_huge_page(hpage);
1566 dequeue_hwpoisoned_huge_page(hpage);
1567 atomic_long_add(1 << compound_order(hpage),
1568 &num_poisoned_pages);
1569 } else {
1570 SetPageHWPoison(page);
1571 atomic_long_inc(&num_poisoned_pages);
1574 return ret;
1577 static int __soft_offline_page(struct page *page, int flags)
1579 int ret;
1580 unsigned long pfn = page_to_pfn(page);
1583 * Check PageHWPoison again inside page lock because PageHWPoison
1584 * is set by memory_failure() outside page lock. Note that
1585 * memory_failure() also double-checks PageHWPoison inside page lock,
1586 * so there's no race between soft_offline_page() and memory_failure().
1588 lock_page(page);
1589 wait_on_page_writeback(page);
1590 if (PageHWPoison(page)) {
1591 unlock_page(page);
1592 put_page(page);
1593 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1594 return -EBUSY;
1597 * Try to invalidate first. This should work for
1598 * non dirty unmapped page cache pages.
1600 ret = invalidate_inode_page(page);
1601 unlock_page(page);
1603 * RED-PEN would be better to keep it isolated here, but we
1604 * would need to fix isolation locking first.
1606 if (ret == 1) {
1607 put_page(page);
1608 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1609 SetPageHWPoison(page);
1610 atomic_long_inc(&num_poisoned_pages);
1611 return 0;
1615 * Simple invalidation didn't work.
1616 * Try to migrate to a new page instead. migrate.c
1617 * handles a large number of cases for us.
1619 ret = isolate_lru_page(page);
1621 * Drop page reference which is came from get_any_page()
1622 * successful isolate_lru_page() already took another one.
1624 put_page(page);
1625 if (!ret) {
1626 LIST_HEAD(pagelist);
1627 inc_zone_page_state(page, NR_ISOLATED_ANON +
1628 page_is_file_cache(page));
1629 list_add(&page->lru, &pagelist);
1630 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1631 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1632 if (ret) {
1633 if (!list_empty(&pagelist)) {
1634 list_del(&page->lru);
1635 dec_zone_page_state(page, NR_ISOLATED_ANON +
1636 page_is_file_cache(page));
1637 putback_lru_page(page);
1640 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1641 pfn, ret, page->flags);
1642 if (ret > 0)
1643 ret = -EIO;
1644 } else {
1646 * After page migration succeeds, the source page can
1647 * be trapped in pagevec and actual freeing is delayed.
1648 * Freeing code works differently based on PG_hwpoison,
1649 * so there's a race. We need to make sure that the
1650 * source page should be freed back to buddy before
1651 * setting PG_hwpoison.
1653 if (!is_free_buddy_page(page))
1654 drain_all_pages();
1655 SetPageHWPoison(page);
1656 if (!is_free_buddy_page(page))
1657 pr_info("soft offline: %#lx: page leaked\n",
1658 pfn);
1659 atomic_long_inc(&num_poisoned_pages);
1661 } else {
1662 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1663 pfn, ret, page_count(page), page->flags);
1665 return ret;
1669 * soft_offline_page - Soft offline a page.
1670 * @page: page to offline
1671 * @flags: flags. Same as memory_failure().
1673 * Returns 0 on success, otherwise negated errno.
1675 * Soft offline a page, by migration or invalidation,
1676 * without killing anything. This is for the case when
1677 * a page is not corrupted yet (so it's still valid to access),
1678 * but has had a number of corrected errors and is better taken
1679 * out.
1681 * The actual policy on when to do that is maintained by
1682 * user space.
1684 * This should never impact any application or cause data loss,
1685 * however it might take some time.
1687 * This is not a 100% solution for all memory, but tries to be
1688 * ``good enough'' for the majority of memory.
1690 int soft_offline_page(struct page *page, int flags)
1692 int ret;
1693 unsigned long pfn = page_to_pfn(page);
1694 struct page *hpage = compound_head(page);
1696 if (PageHWPoison(page)) {
1697 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1698 return -EBUSY;
1700 if (!PageHuge(page) && PageTransHuge(hpage)) {
1701 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1702 pr_info("soft offline: %#lx: failed to split THP\n",
1703 pfn);
1704 return -EBUSY;
1708 get_online_mems();
1711 * Isolate the page, so that it doesn't get reallocated if it
1712 * was free. This flag should be kept set until the source page
1713 * is freed and PG_hwpoison on it is set.
1715 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1716 set_migratetype_isolate(page, true);
1718 ret = get_any_page(page, pfn, flags);
1719 put_online_mems();
1720 if (ret > 0) { /* for in-use pages */
1721 if (PageHuge(page))
1722 ret = soft_offline_huge_page(page, flags);
1723 else
1724 ret = __soft_offline_page(page, flags);
1725 } else if (ret == 0) { /* for free pages */
1726 if (PageHuge(page)) {
1727 set_page_hwpoison_huge_page(hpage);
1728 if (!dequeue_hwpoisoned_huge_page(hpage))
1729 atomic_long_add(1 << compound_order(hpage),
1730 &num_poisoned_pages);
1731 } else {
1732 if (!TestSetPageHWPoison(page))
1733 atomic_long_inc(&num_poisoned_pages);
1736 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1737 return ret;