Linux 3.16.75
[linux/fpc-iii.git] / mm / mempolicy.c
blobaaf4c2e002e2c764d8eec01c6a4e598ad407cf8f
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
102 #include "internal.h"
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
116 * run-time system-wide default policy => local allocation
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
126 static struct mempolicy *get_task_policy(struct task_struct *p)
128 struct mempolicy *pol = p->mempolicy;
130 if (!pol) {
131 int node = numa_node_id();
133 if (node != NUMA_NO_NODE) {
134 pol = &preferred_node_policy[node];
136 * preferred_node_policy is not initialised early in
137 * boot
139 if (!pol->mode)
140 pol = NULL;
144 return pol;
147 static const struct mempolicy_operations {
148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
150 * If read-side task has no lock to protect task->mempolicy, write-side
151 * task will rebind the task->mempolicy by two step. The first step is
152 * setting all the newly nodes, and the second step is cleaning all the
153 * disallowed nodes. In this way, we can avoid finding no node to alloc
154 * page.
155 * If we have a lock to protect task->mempolicy in read-side, we do
156 * rebind directly.
158 * step:
159 * MPOL_REBIND_ONCE - do rebind work at once
160 * MPOL_REBIND_STEP1 - set all the newly nodes
161 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
163 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
164 enum mpol_rebind_step step);
165 } mpol_ops[MPOL_MAX];
167 /* Check that the nodemask contains at least one populated zone */
168 static int is_valid_nodemask(const nodemask_t *nodemask)
170 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
173 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
175 return pol->flags & MPOL_MODE_FLAGS;
178 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
179 const nodemask_t *rel)
181 nodemask_t tmp;
182 nodes_fold(tmp, *orig, nodes_weight(*rel));
183 nodes_onto(*ret, tmp, *rel);
186 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
194 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
196 if (!nodes)
197 pol->flags |= MPOL_F_LOCAL; /* local allocation */
198 else if (nodes_empty(*nodes))
199 return -EINVAL; /* no allowed nodes */
200 else
201 pol->v.preferred_node = first_node(*nodes);
202 return 0;
205 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
207 if (!is_valid_nodemask(nodes))
208 return -EINVAL;
209 pol->v.nodes = *nodes;
210 return 0;
214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215 * any, for the new policy. mpol_new() has already validated the nodes
216 * parameter with respect to the policy mode and flags. But, we need to
217 * handle an empty nodemask with MPOL_PREFERRED here.
219 * Must be called holding task's alloc_lock to protect task's mems_allowed
220 * and mempolicy. May also be called holding the mmap_semaphore for write.
222 static int mpol_set_nodemask(struct mempolicy *pol,
223 const nodemask_t *nodes, struct nodemask_scratch *nsc)
225 int ret;
227 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
228 if (pol == NULL)
229 return 0;
230 /* Check N_MEMORY */
231 nodes_and(nsc->mask1,
232 cpuset_current_mems_allowed, node_states[N_MEMORY]);
234 VM_BUG_ON(!nodes);
235 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
236 nodes = NULL; /* explicit local allocation */
237 else {
238 if (pol->flags & MPOL_F_RELATIVE_NODES)
239 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
240 else
241 nodes_and(nsc->mask2, *nodes, nsc->mask1);
243 if (mpol_store_user_nodemask(pol))
244 pol->w.user_nodemask = *nodes;
245 else
246 pol->w.cpuset_mems_allowed =
247 cpuset_current_mems_allowed;
250 if (nodes)
251 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
252 else
253 ret = mpol_ops[pol->mode].create(pol, NULL);
254 return ret;
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 nodemask_t *nodes)
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
272 return NULL;
274 VM_BUG_ON(!nodes);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
287 } else if (mode == MPOL_LOCAL) {
288 if (!nodes_empty(*nodes))
289 return ERR_PTR(-EINVAL);
290 mode = MPOL_PREFERRED;
291 } else if (nodes_empty(*nodes))
292 return ERR_PTR(-EINVAL);
293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
294 if (!policy)
295 return ERR_PTR(-ENOMEM);
296 atomic_set(&policy->refcnt, 1);
297 policy->mode = mode;
298 policy->flags = flags;
300 return policy;
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy *p)
306 if (!atomic_dec_and_test(&p->refcnt))
307 return;
308 kmem_cache_free(policy_cache, p);
311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
312 enum mpol_rebind_step step)
317 * step:
318 * MPOL_REBIND_ONCE - do rebind work at once
319 * MPOL_REBIND_STEP1 - set all the newly nodes
320 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
322 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
323 enum mpol_rebind_step step)
325 nodemask_t tmp;
327 if (pol->flags & MPOL_F_STATIC_NODES)
328 nodes_and(tmp, pol->w.user_nodemask, *nodes);
329 else if (pol->flags & MPOL_F_RELATIVE_NODES)
330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
331 else {
333 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
334 * result
336 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
337 nodes_remap(tmp, pol->v.nodes,
338 pol->w.cpuset_mems_allowed, *nodes);
339 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
340 } else if (step == MPOL_REBIND_STEP2) {
341 tmp = pol->w.cpuset_mems_allowed;
342 pol->w.cpuset_mems_allowed = *nodes;
343 } else
344 BUG();
347 if (nodes_empty(tmp))
348 tmp = *nodes;
350 if (step == MPOL_REBIND_STEP1)
351 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
352 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
353 pol->v.nodes = tmp;
354 else
355 BUG();
357 if (!node_isset(current->il_next, tmp)) {
358 current->il_next = next_node(current->il_next, tmp);
359 if (current->il_next >= MAX_NUMNODES)
360 current->il_next = first_node(tmp);
361 if (current->il_next >= MAX_NUMNODES)
362 current->il_next = numa_node_id();
366 static void mpol_rebind_preferred(struct mempolicy *pol,
367 const nodemask_t *nodes,
368 enum mpol_rebind_step step)
370 nodemask_t tmp;
372 if (pol->flags & MPOL_F_STATIC_NODES) {
373 int node = first_node(pol->w.user_nodemask);
375 if (node_isset(node, *nodes)) {
376 pol->v.preferred_node = node;
377 pol->flags &= ~MPOL_F_LOCAL;
378 } else
379 pol->flags |= MPOL_F_LOCAL;
380 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
381 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
382 pol->v.preferred_node = first_node(tmp);
383 } else if (!(pol->flags & MPOL_F_LOCAL)) {
384 pol->v.preferred_node = node_remap(pol->v.preferred_node,
385 pol->w.cpuset_mems_allowed,
386 *nodes);
387 pol->w.cpuset_mems_allowed = *nodes;
392 * mpol_rebind_policy - Migrate a policy to a different set of nodes
394 * If read-side task has no lock to protect task->mempolicy, write-side
395 * task will rebind the task->mempolicy by two step. The first step is
396 * setting all the newly nodes, and the second step is cleaning all the
397 * disallowed nodes. In this way, we can avoid finding no node to alloc
398 * page.
399 * If we have a lock to protect task->mempolicy in read-side, we do
400 * rebind directly.
402 * step:
403 * MPOL_REBIND_ONCE - do rebind work at once
404 * MPOL_REBIND_STEP1 - set all the newly nodes
405 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
407 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
408 enum mpol_rebind_step step)
410 if (!pol)
411 return;
412 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
413 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
414 return;
416 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
417 return;
419 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
420 BUG();
422 if (step == MPOL_REBIND_STEP1)
423 pol->flags |= MPOL_F_REBINDING;
424 else if (step == MPOL_REBIND_STEP2)
425 pol->flags &= ~MPOL_F_REBINDING;
426 else if (step >= MPOL_REBIND_NSTEP)
427 BUG();
429 mpol_ops[pol->mode].rebind(pol, newmask, step);
433 * Wrapper for mpol_rebind_policy() that just requires task
434 * pointer, and updates task mempolicy.
436 * Called with task's alloc_lock held.
439 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
440 enum mpol_rebind_step step)
442 mpol_rebind_policy(tsk->mempolicy, new, step);
446 * Rebind each vma in mm to new nodemask.
448 * Call holding a reference to mm. Takes mm->mmap_sem during call.
451 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
453 struct vm_area_struct *vma;
455 down_write(&mm->mmap_sem);
456 for (vma = mm->mmap; vma; vma = vma->vm_next)
457 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
458 up_write(&mm->mmap_sem);
461 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
462 [MPOL_DEFAULT] = {
463 .rebind = mpol_rebind_default,
465 [MPOL_INTERLEAVE] = {
466 .create = mpol_new_interleave,
467 .rebind = mpol_rebind_nodemask,
469 [MPOL_PREFERRED] = {
470 .create = mpol_new_preferred,
471 .rebind = mpol_rebind_preferred,
473 [MPOL_BIND] = {
474 .create = mpol_new_bind,
475 .rebind = mpol_rebind_nodemask,
479 static void migrate_page_add(struct page *page, struct list_head *pagelist,
480 unsigned long flags);
483 * Scan through pages checking if pages follow certain conditions,
484 * and move them to the pagelist if they do.
486 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
487 unsigned long addr, unsigned long end,
488 const nodemask_t *nodes, unsigned long flags,
489 void *private)
491 pte_t *orig_pte;
492 pte_t *pte;
493 spinlock_t *ptl;
495 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
496 do {
497 struct page *page;
498 int nid;
500 if (!pte_present(*pte))
501 continue;
502 page = vm_normal_page(vma, addr, *pte);
503 if (!page)
504 continue;
506 * vm_normal_page() filters out zero pages, but there might
507 * still be PageReserved pages to skip, perhaps in a VDSO.
509 if (PageReserved(page))
510 continue;
511 nid = page_to_nid(page);
512 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
513 continue;
515 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
516 migrate_page_add(page, private, flags);
517 else
518 break;
519 } while (pte++, addr += PAGE_SIZE, addr != end);
520 pte_unmap_unlock(orig_pte, ptl);
521 return addr != end;
524 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
525 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
526 void *private)
528 #ifdef CONFIG_HUGETLB_PAGE
529 int nid;
530 struct page *page;
531 spinlock_t *ptl;
532 pte_t entry;
534 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
535 entry = huge_ptep_get((pte_t *)pmd);
536 if (!pte_present(entry))
537 goto unlock;
538 page = pte_page(entry);
539 nid = page_to_nid(page);
540 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
541 goto unlock;
542 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
543 if (flags & (MPOL_MF_MOVE_ALL) ||
544 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
545 isolate_huge_page(page, private);
546 unlock:
547 spin_unlock(ptl);
548 #else
549 BUG();
550 #endif
553 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
554 unsigned long addr, unsigned long end,
555 const nodemask_t *nodes, unsigned long flags,
556 void *private)
558 pmd_t *pmd;
559 unsigned long next;
561 pmd = pmd_offset(pud, addr);
562 do {
563 next = pmd_addr_end(addr, end);
564 if (!pmd_present(*pmd))
565 continue;
566 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
567 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
568 flags, private);
569 continue;
571 split_huge_page_pmd(vma, addr, pmd);
572 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
573 continue;
574 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
575 flags, private))
576 return -EIO;
577 } while (pmd++, addr = next, addr != end);
578 return 0;
581 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
582 unsigned long addr, unsigned long end,
583 const nodemask_t *nodes, unsigned long flags,
584 void *private)
586 pud_t *pud;
587 unsigned long next;
589 pud = pud_offset(pgd, addr);
590 do {
591 next = pud_addr_end(addr, end);
592 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
593 continue;
594 if (pud_none_or_clear_bad(pud))
595 continue;
596 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
597 flags, private))
598 return -EIO;
599 } while (pud++, addr = next, addr != end);
600 return 0;
603 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
604 unsigned long addr, unsigned long end,
605 const nodemask_t *nodes, unsigned long flags,
606 void *private)
608 pgd_t *pgd;
609 unsigned long next;
611 pgd = pgd_offset(vma->vm_mm, addr);
612 do {
613 next = pgd_addr_end(addr, end);
614 if (pgd_none_or_clear_bad(pgd))
615 continue;
616 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
617 flags, private))
618 return -EIO;
619 } while (pgd++, addr = next, addr != end);
620 return 0;
623 #ifdef CONFIG_NUMA_BALANCING
625 * This is used to mark a range of virtual addresses to be inaccessible.
626 * These are later cleared by a NUMA hinting fault. Depending on these
627 * faults, pages may be migrated for better NUMA placement.
629 * This is assuming that NUMA faults are handled using PROT_NONE. If
630 * an architecture makes a different choice, it will need further
631 * changes to the core.
633 unsigned long change_prot_numa(struct vm_area_struct *vma,
634 unsigned long addr, unsigned long end)
636 int nr_updated;
638 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
639 if (nr_updated)
640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
642 return nr_updated;
644 #else
645 static unsigned long change_prot_numa(struct vm_area_struct *vma,
646 unsigned long addr, unsigned long end)
648 return 0;
650 #endif /* CONFIG_NUMA_BALANCING */
653 * Walk through page tables and collect pages to be migrated.
655 * If pages found in a given range are on a set of nodes (determined by
656 * @nodes and @flags,) it's isolated and queued to the pagelist which is
657 * passed via @private.)
659 static int
660 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
661 const nodemask_t *nodes, unsigned long flags, void *private)
663 int err = 0;
664 struct vm_area_struct *vma, *prev;
666 vma = find_vma(mm, start);
667 if (!vma)
668 return -EFAULT;
669 prev = NULL;
670 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
671 unsigned long endvma = vma->vm_end;
673 if (endvma > end)
674 endvma = end;
675 if (vma->vm_start > start)
676 start = vma->vm_start;
678 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
679 if (!vma->vm_next && vma->vm_end < end)
680 return -EFAULT;
681 if (prev && prev->vm_end < vma->vm_start)
682 return -EFAULT;
685 if (flags & MPOL_MF_LAZY) {
686 change_prot_numa(vma, start, endvma);
687 goto next;
690 if ((flags & MPOL_MF_STRICT) ||
691 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
692 vma_migratable(vma))) {
694 err = queue_pages_pgd_range(vma, start, endvma, nodes,
695 flags, private);
696 if (err)
697 break;
699 next:
700 prev = vma;
702 return err;
706 * Apply policy to a single VMA
707 * This must be called with the mmap_sem held for writing.
709 static int vma_replace_policy(struct vm_area_struct *vma,
710 struct mempolicy *pol)
712 int err;
713 struct mempolicy *old;
714 struct mempolicy *new;
716 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
717 vma->vm_start, vma->vm_end, vma->vm_pgoff,
718 vma->vm_ops, vma->vm_file,
719 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
721 new = mpol_dup(pol);
722 if (IS_ERR(new))
723 return PTR_ERR(new);
725 if (vma->vm_ops && vma->vm_ops->set_policy) {
726 err = vma->vm_ops->set_policy(vma, new);
727 if (err)
728 goto err_out;
731 old = vma->vm_policy;
732 vma->vm_policy = new; /* protected by mmap_sem */
733 mpol_put(old);
735 return 0;
736 err_out:
737 mpol_put(new);
738 return err;
741 /* Step 2: apply policy to a range and do splits. */
742 static int mbind_range(struct mm_struct *mm, unsigned long start,
743 unsigned long end, struct mempolicy *new_pol)
745 struct vm_area_struct *next;
746 struct vm_area_struct *prev;
747 struct vm_area_struct *vma;
748 int err = 0;
749 pgoff_t pgoff;
750 unsigned long vmstart;
751 unsigned long vmend;
753 vma = find_vma(mm, start);
754 if (!vma || vma->vm_start > start)
755 return -EFAULT;
757 prev = vma->vm_prev;
758 if (start > vma->vm_start)
759 prev = vma;
761 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
762 next = vma->vm_next;
763 vmstart = max(start, vma->vm_start);
764 vmend = min(end, vma->vm_end);
766 if (mpol_equal(vma_policy(vma), new_pol))
767 continue;
769 pgoff = vma->vm_pgoff +
770 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
771 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
772 vma->anon_vma, vma->vm_file, pgoff,
773 new_pol);
774 if (prev) {
775 vma = prev;
776 next = vma->vm_next;
777 if (mpol_equal(vma_policy(vma), new_pol))
778 continue;
779 /* vma_merge() joined vma && vma->next, case 8 */
780 goto replace;
782 if (vma->vm_start != vmstart) {
783 err = split_vma(vma->vm_mm, vma, vmstart, 1);
784 if (err)
785 goto out;
787 if (vma->vm_end != vmend) {
788 err = split_vma(vma->vm_mm, vma, vmend, 0);
789 if (err)
790 goto out;
792 replace:
793 err = vma_replace_policy(vma, new_pol);
794 if (err)
795 goto out;
798 out:
799 return err;
802 /* Set the process memory policy */
803 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
804 nodemask_t *nodes)
806 struct mempolicy *new, *old;
807 struct mm_struct *mm = current->mm;
808 NODEMASK_SCRATCH(scratch);
809 int ret;
811 if (!scratch)
812 return -ENOMEM;
814 new = mpol_new(mode, flags, nodes);
815 if (IS_ERR(new)) {
816 ret = PTR_ERR(new);
817 goto out;
820 * prevent changing our mempolicy while show_numa_maps()
821 * is using it.
822 * Note: do_set_mempolicy() can be called at init time
823 * with no 'mm'.
825 if (mm)
826 down_write(&mm->mmap_sem);
827 task_lock(current);
828 ret = mpol_set_nodemask(new, nodes, scratch);
829 if (ret) {
830 task_unlock(current);
831 if (mm)
832 up_write(&mm->mmap_sem);
833 mpol_put(new);
834 goto out;
836 old = current->mempolicy;
837 current->mempolicy = new;
838 if (new && new->mode == MPOL_INTERLEAVE &&
839 nodes_weight(new->v.nodes))
840 current->il_next = first_node(new->v.nodes);
841 task_unlock(current);
842 if (mm)
843 up_write(&mm->mmap_sem);
845 mpol_put(old);
846 ret = 0;
847 out:
848 NODEMASK_SCRATCH_FREE(scratch);
849 return ret;
853 * Return nodemask for policy for get_mempolicy() query
855 * Called with task's alloc_lock held
857 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
859 nodes_clear(*nodes);
860 if (p == &default_policy)
861 return;
863 switch (p->mode) {
864 case MPOL_BIND:
865 /* Fall through */
866 case MPOL_INTERLEAVE:
867 *nodes = p->v.nodes;
868 break;
869 case MPOL_PREFERRED:
870 if (!(p->flags & MPOL_F_LOCAL))
871 node_set(p->v.preferred_node, *nodes);
872 /* else return empty node mask for local allocation */
873 break;
874 default:
875 BUG();
879 static int lookup_node(struct mm_struct *mm, unsigned long addr)
881 struct page *p;
882 int err;
884 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
885 if (err >= 0) {
886 err = page_to_nid(p);
887 put_page(p);
889 return err;
892 /* Retrieve NUMA policy */
893 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
894 unsigned long addr, unsigned long flags)
896 int err;
897 struct mm_struct *mm = current->mm;
898 struct vm_area_struct *vma = NULL;
899 struct mempolicy *pol = current->mempolicy;
901 if (flags &
902 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
903 return -EINVAL;
905 if (flags & MPOL_F_MEMS_ALLOWED) {
906 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
907 return -EINVAL;
908 *policy = 0; /* just so it's initialized */
909 task_lock(current);
910 *nmask = cpuset_current_mems_allowed;
911 task_unlock(current);
912 return 0;
915 if (flags & MPOL_F_ADDR) {
917 * Do NOT fall back to task policy if the
918 * vma/shared policy at addr is NULL. We
919 * want to return MPOL_DEFAULT in this case.
921 down_read(&mm->mmap_sem);
922 vma = find_vma_intersection(mm, addr, addr+1);
923 if (!vma) {
924 up_read(&mm->mmap_sem);
925 return -EFAULT;
927 if (vma->vm_ops && vma->vm_ops->get_policy)
928 pol = vma->vm_ops->get_policy(vma, addr);
929 else
930 pol = vma->vm_policy;
931 } else if (addr)
932 return -EINVAL;
934 if (!pol)
935 pol = &default_policy; /* indicates default behavior */
937 if (flags & MPOL_F_NODE) {
938 if (flags & MPOL_F_ADDR) {
939 err = lookup_node(mm, addr);
940 if (err < 0)
941 goto out;
942 *policy = err;
943 } else if (pol == current->mempolicy &&
944 pol->mode == MPOL_INTERLEAVE) {
945 *policy = current->il_next;
946 } else {
947 err = -EINVAL;
948 goto out;
950 } else {
951 *policy = pol == &default_policy ? MPOL_DEFAULT :
952 pol->mode;
954 * Internal mempolicy flags must be masked off before exposing
955 * the policy to userspace.
957 *policy |= (pol->flags & MPOL_MODE_FLAGS);
960 err = 0;
961 if (nmask) {
962 if (mpol_store_user_nodemask(pol)) {
963 *nmask = pol->w.user_nodemask;
964 } else {
965 task_lock(current);
966 get_policy_nodemask(pol, nmask);
967 task_unlock(current);
971 out:
972 mpol_cond_put(pol);
973 if (vma)
974 up_read(&current->mm->mmap_sem);
975 return err;
978 #ifdef CONFIG_MIGRATION
980 * page migration
982 static void migrate_page_add(struct page *page, struct list_head *pagelist,
983 unsigned long flags)
986 * Avoid migrating a page that is shared with others.
988 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
989 if (!isolate_lru_page(page)) {
990 list_add_tail(&page->lru, pagelist);
991 inc_zone_page_state(page, NR_ISOLATED_ANON +
992 page_is_file_cache(page));
997 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
999 if (PageHuge(page))
1000 return alloc_huge_page_node(page_hstate(compound_head(page)),
1001 node);
1002 else
1003 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1007 * Migrate pages from one node to a target node.
1008 * Returns error or the number of pages not migrated.
1010 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1011 int flags)
1013 nodemask_t nmask;
1014 LIST_HEAD(pagelist);
1015 int err = 0;
1017 nodes_clear(nmask);
1018 node_set(source, nmask);
1021 * This does not "check" the range but isolates all pages that
1022 * need migration. Between passing in the full user address
1023 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1025 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1026 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1027 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1029 if (!list_empty(&pagelist)) {
1030 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1031 MIGRATE_SYNC, MR_SYSCALL);
1032 if (err)
1033 putback_movable_pages(&pagelist);
1036 return err;
1040 * Move pages between the two nodesets so as to preserve the physical
1041 * layout as much as possible.
1043 * Returns the number of page that could not be moved.
1045 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1046 const nodemask_t *to, int flags)
1048 int busy = 0;
1049 int err;
1050 nodemask_t tmp;
1052 err = migrate_prep();
1053 if (err)
1054 return err;
1056 down_read(&mm->mmap_sem);
1058 err = migrate_vmas(mm, from, to, flags);
1059 if (err)
1060 goto out;
1063 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1064 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1065 * bit in 'tmp', and return that <source, dest> pair for migration.
1066 * The pair of nodemasks 'to' and 'from' define the map.
1068 * If no pair of bits is found that way, fallback to picking some
1069 * pair of 'source' and 'dest' bits that are not the same. If the
1070 * 'source' and 'dest' bits are the same, this represents a node
1071 * that will be migrating to itself, so no pages need move.
1073 * If no bits are left in 'tmp', or if all remaining bits left
1074 * in 'tmp' correspond to the same bit in 'to', return false
1075 * (nothing left to migrate).
1077 * This lets us pick a pair of nodes to migrate between, such that
1078 * if possible the dest node is not already occupied by some other
1079 * source node, minimizing the risk of overloading the memory on a
1080 * node that would happen if we migrated incoming memory to a node
1081 * before migrating outgoing memory source that same node.
1083 * A single scan of tmp is sufficient. As we go, we remember the
1084 * most recent <s, d> pair that moved (s != d). If we find a pair
1085 * that not only moved, but what's better, moved to an empty slot
1086 * (d is not set in tmp), then we break out then, with that pair.
1087 * Otherwise when we finish scanning from_tmp, we at least have the
1088 * most recent <s, d> pair that moved. If we get all the way through
1089 * the scan of tmp without finding any node that moved, much less
1090 * moved to an empty node, then there is nothing left worth migrating.
1093 tmp = *from;
1094 while (!nodes_empty(tmp)) {
1095 int s,d;
1096 int source = NUMA_NO_NODE;
1097 int dest = 0;
1099 for_each_node_mask(s, tmp) {
1102 * do_migrate_pages() tries to maintain the relative
1103 * node relationship of the pages established between
1104 * threads and memory areas.
1106 * However if the number of source nodes is not equal to
1107 * the number of destination nodes we can not preserve
1108 * this node relative relationship. In that case, skip
1109 * copying memory from a node that is in the destination
1110 * mask.
1112 * Example: [2,3,4] -> [3,4,5] moves everything.
1113 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1116 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1117 (node_isset(s, *to)))
1118 continue;
1120 d = node_remap(s, *from, *to);
1121 if (s == d)
1122 continue;
1124 source = s; /* Node moved. Memorize */
1125 dest = d;
1127 /* dest not in remaining from nodes? */
1128 if (!node_isset(dest, tmp))
1129 break;
1131 if (source == NUMA_NO_NODE)
1132 break;
1134 node_clear(source, tmp);
1135 err = migrate_to_node(mm, source, dest, flags);
1136 if (err > 0)
1137 busy += err;
1138 if (err < 0)
1139 break;
1141 out:
1142 up_read(&mm->mmap_sem);
1143 if (err < 0)
1144 return err;
1145 return busy;
1150 * Allocate a new page for page migration based on vma policy.
1151 * Start by assuming the page is mapped by the same vma as contains @start.
1152 * Search forward from there, if not. N.B., this assumes that the
1153 * list of pages handed to migrate_pages()--which is how we get here--
1154 * is in virtual address order.
1156 static struct page *new_page(struct page *page, unsigned long start, int **x)
1158 struct vm_area_struct *vma;
1159 unsigned long uninitialized_var(address);
1161 vma = find_vma(current->mm, start);
1162 while (vma) {
1163 address = page_address_in_vma(page, vma);
1164 if (address != -EFAULT)
1165 break;
1166 vma = vma->vm_next;
1169 if (PageHuge(page)) {
1170 BUG_ON(!vma);
1171 return alloc_huge_page_noerr(vma, address, 1);
1174 * if !vma, alloc_page_vma() will use task or system default policy
1176 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1178 #else
1180 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1181 unsigned long flags)
1185 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1186 const nodemask_t *to, int flags)
1188 return -ENOSYS;
1191 static struct page *new_page(struct page *page, unsigned long start, int **x)
1193 return NULL;
1195 #endif
1197 static long do_mbind(unsigned long start, unsigned long len,
1198 unsigned short mode, unsigned short mode_flags,
1199 nodemask_t *nmask, unsigned long flags)
1201 struct mm_struct *mm = current->mm;
1202 struct mempolicy *new;
1203 unsigned long end;
1204 int err;
1205 LIST_HEAD(pagelist);
1207 if (flags & ~(unsigned long)MPOL_MF_VALID)
1208 return -EINVAL;
1209 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1210 return -EPERM;
1212 if (start & ~PAGE_MASK)
1213 return -EINVAL;
1215 if (mode == MPOL_DEFAULT)
1216 flags &= ~MPOL_MF_STRICT;
1218 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1219 end = start + len;
1221 if (end < start)
1222 return -EINVAL;
1223 if (end == start)
1224 return 0;
1226 new = mpol_new(mode, mode_flags, nmask);
1227 if (IS_ERR(new))
1228 return PTR_ERR(new);
1230 if (flags & MPOL_MF_LAZY)
1231 new->flags |= MPOL_F_MOF;
1234 * If we are using the default policy then operation
1235 * on discontinuous address spaces is okay after all
1237 if (!new)
1238 flags |= MPOL_MF_DISCONTIG_OK;
1240 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1241 start, start + len, mode, mode_flags,
1242 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1244 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1246 err = migrate_prep();
1247 if (err)
1248 goto mpol_out;
1251 NODEMASK_SCRATCH(scratch);
1252 if (scratch) {
1253 down_write(&mm->mmap_sem);
1254 task_lock(current);
1255 err = mpol_set_nodemask(new, nmask, scratch);
1256 task_unlock(current);
1257 if (err)
1258 up_write(&mm->mmap_sem);
1259 } else
1260 err = -ENOMEM;
1261 NODEMASK_SCRATCH_FREE(scratch);
1263 if (err)
1264 goto mpol_out;
1266 err = queue_pages_range(mm, start, end, nmask,
1267 flags | MPOL_MF_INVERT, &pagelist);
1268 if (!err)
1269 err = mbind_range(mm, start, end, new);
1271 if (!err) {
1272 int nr_failed = 0;
1274 if (!list_empty(&pagelist)) {
1275 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1276 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1277 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1278 if (nr_failed)
1279 putback_movable_pages(&pagelist);
1282 if (nr_failed && (flags & MPOL_MF_STRICT))
1283 err = -EIO;
1284 } else
1285 putback_movable_pages(&pagelist);
1287 up_write(&mm->mmap_sem);
1288 mpol_out:
1289 mpol_put(new);
1290 return err;
1294 * User space interface with variable sized bitmaps for nodelists.
1297 /* Copy a node mask from user space. */
1298 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1299 unsigned long maxnode)
1301 unsigned long k;
1302 unsigned long nlongs;
1303 unsigned long endmask;
1305 --maxnode;
1306 nodes_clear(*nodes);
1307 if (maxnode == 0 || !nmask)
1308 return 0;
1309 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1310 return -EINVAL;
1312 nlongs = BITS_TO_LONGS(maxnode);
1313 if ((maxnode % BITS_PER_LONG) == 0)
1314 endmask = ~0UL;
1315 else
1316 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1318 /* When the user specified more nodes than supported just check
1319 if the non supported part is all zero. */
1320 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1321 if (nlongs > PAGE_SIZE/sizeof(long))
1322 return -EINVAL;
1323 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1324 unsigned long t;
1325 if (get_user(t, nmask + k))
1326 return -EFAULT;
1327 if (k == nlongs - 1) {
1328 if (t & endmask)
1329 return -EINVAL;
1330 } else if (t)
1331 return -EINVAL;
1333 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1334 endmask = ~0UL;
1337 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1338 return -EFAULT;
1339 nodes_addr(*nodes)[nlongs-1] &= endmask;
1340 return 0;
1343 /* Copy a kernel node mask to user space */
1344 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1345 nodemask_t *nodes)
1347 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1348 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1350 if (copy > nbytes) {
1351 if (copy > PAGE_SIZE)
1352 return -EINVAL;
1353 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1354 return -EFAULT;
1355 copy = nbytes;
1357 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1360 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1361 unsigned long, mode, const unsigned long __user *, nmask,
1362 unsigned long, maxnode, unsigned, flags)
1364 nodemask_t nodes;
1365 int err;
1366 unsigned short mode_flags;
1368 mode_flags = mode & MPOL_MODE_FLAGS;
1369 mode &= ~MPOL_MODE_FLAGS;
1370 if (mode >= MPOL_MAX)
1371 return -EINVAL;
1372 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1373 (mode_flags & MPOL_F_RELATIVE_NODES))
1374 return -EINVAL;
1375 err = get_nodes(&nodes, nmask, maxnode);
1376 if (err)
1377 return err;
1378 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1381 /* Set the process memory policy */
1382 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1383 unsigned long, maxnode)
1385 int err;
1386 nodemask_t nodes;
1387 unsigned short flags;
1389 flags = mode & MPOL_MODE_FLAGS;
1390 mode &= ~MPOL_MODE_FLAGS;
1391 if ((unsigned int)mode >= MPOL_MAX)
1392 return -EINVAL;
1393 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1394 return -EINVAL;
1395 err = get_nodes(&nodes, nmask, maxnode);
1396 if (err)
1397 return err;
1398 return do_set_mempolicy(mode, flags, &nodes);
1401 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1402 const unsigned long __user *, old_nodes,
1403 const unsigned long __user *, new_nodes)
1405 const struct cred *cred = current_cred(), *tcred;
1406 struct mm_struct *mm = NULL;
1407 struct task_struct *task;
1408 nodemask_t task_nodes;
1409 int err;
1410 nodemask_t *old;
1411 nodemask_t *new;
1412 NODEMASK_SCRATCH(scratch);
1414 if (!scratch)
1415 return -ENOMEM;
1417 old = &scratch->mask1;
1418 new = &scratch->mask2;
1420 err = get_nodes(old, old_nodes, maxnode);
1421 if (err)
1422 goto out;
1424 err = get_nodes(new, new_nodes, maxnode);
1425 if (err)
1426 goto out;
1428 /* Find the mm_struct */
1429 rcu_read_lock();
1430 task = pid ? find_task_by_vpid(pid) : current;
1431 if (!task) {
1432 rcu_read_unlock();
1433 err = -ESRCH;
1434 goto out;
1436 get_task_struct(task);
1438 err = -EINVAL;
1441 * Check if this process has the right to modify the specified
1442 * process. The right exists if the process has administrative
1443 * capabilities, superuser privileges or the same
1444 * userid as the target process.
1446 tcred = __task_cred(task);
1447 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1448 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1449 !capable(CAP_SYS_NICE)) {
1450 rcu_read_unlock();
1451 err = -EPERM;
1452 goto out_put;
1454 rcu_read_unlock();
1456 task_nodes = cpuset_mems_allowed(task);
1457 /* Is the user allowed to access the target nodes? */
1458 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1459 err = -EPERM;
1460 goto out_put;
1463 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1464 err = -EINVAL;
1465 goto out_put;
1468 err = security_task_movememory(task);
1469 if (err)
1470 goto out_put;
1472 mm = get_task_mm(task);
1473 put_task_struct(task);
1475 if (!mm) {
1476 err = -EINVAL;
1477 goto out;
1480 err = do_migrate_pages(mm, old, new,
1481 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1483 mmput(mm);
1484 out:
1485 NODEMASK_SCRATCH_FREE(scratch);
1487 return err;
1489 out_put:
1490 put_task_struct(task);
1491 goto out;
1496 /* Retrieve NUMA policy */
1497 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1498 unsigned long __user *, nmask, unsigned long, maxnode,
1499 unsigned long, addr, unsigned long, flags)
1501 int err;
1502 int uninitialized_var(pval);
1503 nodemask_t nodes;
1505 if (nmask != NULL && maxnode < MAX_NUMNODES)
1506 return -EINVAL;
1508 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1510 if (err)
1511 return err;
1513 if (policy && put_user(pval, policy))
1514 return -EFAULT;
1516 if (nmask)
1517 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1519 return err;
1522 #ifdef CONFIG_COMPAT
1524 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1525 compat_ulong_t __user *, nmask,
1526 compat_ulong_t, maxnode,
1527 compat_ulong_t, addr, compat_ulong_t, flags)
1529 long err;
1530 unsigned long __user *nm = NULL;
1531 unsigned long nr_bits, alloc_size;
1532 DECLARE_BITMAP(bm, MAX_NUMNODES);
1534 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1535 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1537 if (nmask)
1538 nm = compat_alloc_user_space(alloc_size);
1540 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1542 if (!err && nmask) {
1543 unsigned long copy_size;
1544 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1545 err = copy_from_user(bm, nm, copy_size);
1546 /* ensure entire bitmap is zeroed */
1547 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1548 err |= compat_put_bitmap(nmask, bm, nr_bits);
1551 return err;
1554 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1555 compat_ulong_t, maxnode)
1557 unsigned long __user *nm = NULL;
1558 unsigned long nr_bits, alloc_size;
1559 DECLARE_BITMAP(bm, MAX_NUMNODES);
1561 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1562 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1564 if (nmask) {
1565 if (compat_get_bitmap(bm, nmask, nr_bits))
1566 return -EFAULT;
1567 nm = compat_alloc_user_space(alloc_size);
1568 if (copy_to_user(nm, bm, alloc_size))
1569 return -EFAULT;
1572 return sys_set_mempolicy(mode, nm, nr_bits+1);
1575 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1576 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1577 compat_ulong_t, maxnode, compat_ulong_t, flags)
1579 unsigned long __user *nm = NULL;
1580 unsigned long nr_bits, alloc_size;
1581 nodemask_t bm;
1583 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1584 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1586 if (nmask) {
1587 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1588 return -EFAULT;
1589 nm = compat_alloc_user_space(alloc_size);
1590 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1591 return -EFAULT;
1594 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1597 #endif
1600 * get_vma_policy(@task, @vma, @addr)
1601 * @task: task for fallback if vma policy == default
1602 * @vma: virtual memory area whose policy is sought
1603 * @addr: address in @vma for shared policy lookup
1605 * Returns effective policy for a VMA at specified address.
1606 * Falls back to @task or system default policy, as necessary.
1607 * Current or other task's task mempolicy and non-shared vma policies must be
1608 * protected by task_lock(task) by the caller.
1609 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1610 * count--added by the get_policy() vm_op, as appropriate--to protect against
1611 * freeing by another task. It is the caller's responsibility to free the
1612 * extra reference for shared policies.
1614 struct mempolicy *get_vma_policy(struct task_struct *task,
1615 struct vm_area_struct *vma, unsigned long addr)
1617 struct mempolicy *pol = get_task_policy(task);
1619 if (vma) {
1620 if (vma->vm_ops && vma->vm_ops->get_policy) {
1621 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1622 addr);
1623 if (vpol)
1624 pol = vpol;
1625 } else if (vma->vm_policy) {
1626 pol = vma->vm_policy;
1629 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1630 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1631 * count on these policies which will be dropped by
1632 * mpol_cond_put() later
1634 if (mpol_needs_cond_ref(pol))
1635 mpol_get(pol);
1638 if (!pol)
1639 pol = &default_policy;
1640 return pol;
1643 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1645 struct mempolicy *pol = get_task_policy(task);
1646 if (vma) {
1647 if (vma->vm_ops && vma->vm_ops->get_policy) {
1648 bool ret = false;
1650 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1651 if (pol && (pol->flags & MPOL_F_MOF))
1652 ret = true;
1653 mpol_cond_put(pol);
1655 return ret;
1656 } else if (vma->vm_policy) {
1657 pol = vma->vm_policy;
1661 if (!pol)
1662 return default_policy.flags & MPOL_F_MOF;
1664 return pol->flags & MPOL_F_MOF;
1667 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1669 enum zone_type dynamic_policy_zone = policy_zone;
1671 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1674 * if policy->v.nodes has movable memory only,
1675 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1677 * policy->v.nodes is intersect with node_states[N_MEMORY].
1678 * so if the following test faile, it implies
1679 * policy->v.nodes has movable memory only.
1681 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1682 dynamic_policy_zone = ZONE_MOVABLE;
1684 return zone >= dynamic_policy_zone;
1688 * Return a nodemask representing a mempolicy for filtering nodes for
1689 * page allocation
1691 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1693 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1694 if (unlikely(policy->mode == MPOL_BIND) &&
1695 apply_policy_zone(policy, gfp_zone(gfp)) &&
1696 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1697 return &policy->v.nodes;
1699 return NULL;
1702 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1703 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1704 int nd)
1706 switch (policy->mode) {
1707 case MPOL_PREFERRED:
1708 if (!(policy->flags & MPOL_F_LOCAL))
1709 nd = policy->v.preferred_node;
1710 break;
1711 case MPOL_BIND:
1713 * Normally, MPOL_BIND allocations are node-local within the
1714 * allowed nodemask. However, if __GFP_THISNODE is set and the
1715 * current node isn't part of the mask, we use the zonelist for
1716 * the first node in the mask instead.
1718 if (unlikely(gfp & __GFP_THISNODE) &&
1719 unlikely(!node_isset(nd, policy->v.nodes)))
1720 nd = first_node(policy->v.nodes);
1721 break;
1722 default:
1723 BUG();
1725 return node_zonelist(nd, gfp);
1728 /* Do dynamic interleaving for a process */
1729 static unsigned interleave_nodes(struct mempolicy *policy)
1731 unsigned nid, next;
1732 struct task_struct *me = current;
1734 nid = me->il_next;
1735 next = next_node(nid, policy->v.nodes);
1736 if (next >= MAX_NUMNODES)
1737 next = first_node(policy->v.nodes);
1738 if (next < MAX_NUMNODES)
1739 me->il_next = next;
1740 return nid;
1744 * Depending on the memory policy provide a node from which to allocate the
1745 * next slab entry.
1747 unsigned int mempolicy_slab_node(void)
1749 struct mempolicy *policy;
1750 int node = numa_mem_id();
1752 if (in_interrupt())
1753 return node;
1755 policy = current->mempolicy;
1756 if (!policy || policy->flags & MPOL_F_LOCAL)
1757 return node;
1759 switch (policy->mode) {
1760 case MPOL_PREFERRED:
1762 * handled MPOL_F_LOCAL above
1764 return policy->v.preferred_node;
1766 case MPOL_INTERLEAVE:
1767 return interleave_nodes(policy);
1769 case MPOL_BIND: {
1771 * Follow bind policy behavior and start allocation at the
1772 * first node.
1774 struct zonelist *zonelist;
1775 struct zone *zone;
1776 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1777 zonelist = &NODE_DATA(node)->node_zonelists[0];
1778 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1779 &policy->v.nodes,
1780 &zone);
1781 return zone ? zone->node : node;
1784 default:
1785 BUG();
1789 /* Do static interleaving for a VMA with known offset. */
1790 static unsigned offset_il_node(struct mempolicy *pol,
1791 struct vm_area_struct *vma, unsigned long off)
1793 unsigned nnodes = nodes_weight(pol->v.nodes);
1794 unsigned target;
1795 int c;
1796 int nid = NUMA_NO_NODE;
1798 if (!nnodes)
1799 return numa_node_id();
1800 target = (unsigned int)off % nnodes;
1801 c = 0;
1802 do {
1803 nid = next_node(nid, pol->v.nodes);
1804 c++;
1805 } while (c <= target);
1806 return nid;
1809 /* Determine a node number for interleave */
1810 static inline unsigned interleave_nid(struct mempolicy *pol,
1811 struct vm_area_struct *vma, unsigned long addr, int shift)
1813 if (vma) {
1814 unsigned long off;
1817 * for small pages, there is no difference between
1818 * shift and PAGE_SHIFT, so the bit-shift is safe.
1819 * for huge pages, since vm_pgoff is in units of small
1820 * pages, we need to shift off the always 0 bits to get
1821 * a useful offset.
1823 BUG_ON(shift < PAGE_SHIFT);
1824 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1825 off += (addr - vma->vm_start) >> shift;
1826 return offset_il_node(pol, vma, off);
1827 } else
1828 return interleave_nodes(pol);
1832 * Return the bit number of a random bit set in the nodemask.
1833 * (returns NUMA_NO_NODE if nodemask is empty)
1835 int node_random(const nodemask_t *maskp)
1837 int w, bit = NUMA_NO_NODE;
1839 w = nodes_weight(*maskp);
1840 if (w)
1841 bit = bitmap_ord_to_pos(maskp->bits,
1842 get_random_int() % w, MAX_NUMNODES);
1843 return bit;
1846 #ifdef CONFIG_HUGETLBFS
1848 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1849 * @vma: virtual memory area whose policy is sought
1850 * @addr: address in @vma for shared policy lookup and interleave policy
1851 * @gfp_flags: for requested zone
1852 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1853 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1855 * Returns a zonelist suitable for a huge page allocation and a pointer
1856 * to the struct mempolicy for conditional unref after allocation.
1857 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1858 * @nodemask for filtering the zonelist.
1860 * Must be protected by read_mems_allowed_begin()
1862 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1863 gfp_t gfp_flags, struct mempolicy **mpol,
1864 nodemask_t **nodemask)
1866 struct zonelist *zl;
1868 *mpol = get_vma_policy(current, vma, addr);
1869 *nodemask = NULL; /* assume !MPOL_BIND */
1871 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1872 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1873 huge_page_shift(hstate_vma(vma))), gfp_flags);
1874 } else {
1875 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1876 if ((*mpol)->mode == MPOL_BIND)
1877 *nodemask = &(*mpol)->v.nodes;
1879 return zl;
1883 * init_nodemask_of_mempolicy
1885 * If the current task's mempolicy is "default" [NULL], return 'false'
1886 * to indicate default policy. Otherwise, extract the policy nodemask
1887 * for 'bind' or 'interleave' policy into the argument nodemask, or
1888 * initialize the argument nodemask to contain the single node for
1889 * 'preferred' or 'local' policy and return 'true' to indicate presence
1890 * of non-default mempolicy.
1892 * We don't bother with reference counting the mempolicy [mpol_get/put]
1893 * because the current task is examining it's own mempolicy and a task's
1894 * mempolicy is only ever changed by the task itself.
1896 * N.B., it is the caller's responsibility to free a returned nodemask.
1898 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1900 struct mempolicy *mempolicy;
1901 int nid;
1903 if (!(mask && current->mempolicy))
1904 return false;
1906 task_lock(current);
1907 mempolicy = current->mempolicy;
1908 switch (mempolicy->mode) {
1909 case MPOL_PREFERRED:
1910 if (mempolicy->flags & MPOL_F_LOCAL)
1911 nid = numa_node_id();
1912 else
1913 nid = mempolicy->v.preferred_node;
1914 init_nodemask_of_node(mask, nid);
1915 break;
1917 case MPOL_BIND:
1918 /* Fall through */
1919 case MPOL_INTERLEAVE:
1920 *mask = mempolicy->v.nodes;
1921 break;
1923 default:
1924 BUG();
1926 task_unlock(current);
1928 return true;
1930 #endif
1933 * mempolicy_nodemask_intersects
1935 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1936 * policy. Otherwise, check for intersection between mask and the policy
1937 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1938 * policy, always return true since it may allocate elsewhere on fallback.
1940 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1942 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1943 const nodemask_t *mask)
1945 struct mempolicy *mempolicy;
1946 bool ret = true;
1948 if (!mask)
1949 return ret;
1950 task_lock(tsk);
1951 mempolicy = tsk->mempolicy;
1952 if (!mempolicy)
1953 goto out;
1955 switch (mempolicy->mode) {
1956 case MPOL_PREFERRED:
1958 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1959 * allocate from, they may fallback to other nodes when oom.
1960 * Thus, it's possible for tsk to have allocated memory from
1961 * nodes in mask.
1963 break;
1964 case MPOL_BIND:
1965 case MPOL_INTERLEAVE:
1966 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1967 break;
1968 default:
1969 BUG();
1971 out:
1972 task_unlock(tsk);
1973 return ret;
1976 /* Allocate a page in interleaved policy.
1977 Own path because it needs to do special accounting. */
1978 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1979 unsigned nid)
1981 struct zonelist *zl;
1982 struct page *page;
1984 zl = node_zonelist(nid, gfp);
1985 page = __alloc_pages(gfp, order, zl);
1986 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1987 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1988 return page;
1992 * alloc_pages_vma - Allocate a page for a VMA.
1994 * @gfp:
1995 * %GFP_USER user allocation.
1996 * %GFP_KERNEL kernel allocations,
1997 * %GFP_HIGHMEM highmem/user allocations,
1998 * %GFP_FS allocation should not call back into a file system.
1999 * %GFP_ATOMIC don't sleep.
2001 * @order:Order of the GFP allocation.
2002 * @vma: Pointer to VMA or NULL if not available.
2003 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2005 * This function allocates a page from the kernel page pool and applies
2006 * a NUMA policy associated with the VMA or the current process.
2007 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2008 * mm_struct of the VMA to prevent it from going away. Should be used for
2009 * all allocations for pages that will be mapped into
2010 * user space. Returns NULL when no page can be allocated.
2012 * Should be called with the mm_sem of the vma hold.
2014 struct page *
2015 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2016 unsigned long addr, int node)
2018 struct mempolicy *pol;
2019 struct page *page;
2020 unsigned int cpuset_mems_cookie;
2022 retry_cpuset:
2023 pol = get_vma_policy(current, vma, addr);
2024 cpuset_mems_cookie = read_mems_allowed_begin();
2026 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2027 unsigned nid;
2029 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2030 mpol_cond_put(pol);
2031 page = alloc_page_interleave(gfp, order, nid);
2032 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2033 goto retry_cpuset;
2035 return page;
2037 page = __alloc_pages_nodemask(gfp, order,
2038 policy_zonelist(gfp, pol, node),
2039 policy_nodemask(gfp, pol));
2040 if (unlikely(mpol_needs_cond_ref(pol)))
2041 __mpol_put(pol);
2042 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2043 goto retry_cpuset;
2044 return page;
2048 * alloc_pages_current - Allocate pages.
2050 * @gfp:
2051 * %GFP_USER user allocation,
2052 * %GFP_KERNEL kernel allocation,
2053 * %GFP_HIGHMEM highmem allocation,
2054 * %GFP_FS don't call back into a file system.
2055 * %GFP_ATOMIC don't sleep.
2056 * @order: Power of two of allocation size in pages. 0 is a single page.
2058 * Allocate a page from the kernel page pool. When not in
2059 * interrupt context and apply the current process NUMA policy.
2060 * Returns NULL when no page can be allocated.
2062 * Don't call cpuset_update_task_memory_state() unless
2063 * 1) it's ok to take cpuset_sem (can WAIT), and
2064 * 2) allocating for current task (not interrupt).
2066 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2068 struct mempolicy *pol = get_task_policy(current);
2069 struct page *page;
2070 unsigned int cpuset_mems_cookie;
2072 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2073 pol = &default_policy;
2075 retry_cpuset:
2076 cpuset_mems_cookie = read_mems_allowed_begin();
2079 * No reference counting needed for current->mempolicy
2080 * nor system default_policy
2082 if (pol->mode == MPOL_INTERLEAVE)
2083 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2084 else
2085 page = __alloc_pages_nodemask(gfp, order,
2086 policy_zonelist(gfp, pol, numa_node_id()),
2087 policy_nodemask(gfp, pol));
2089 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2090 goto retry_cpuset;
2092 return page;
2094 EXPORT_SYMBOL(alloc_pages_current);
2096 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2098 struct mempolicy *pol = mpol_dup(vma_policy(src));
2100 if (IS_ERR(pol))
2101 return PTR_ERR(pol);
2102 dst->vm_policy = pol;
2103 return 0;
2107 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2108 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2109 * with the mems_allowed returned by cpuset_mems_allowed(). This
2110 * keeps mempolicies cpuset relative after its cpuset moves. See
2111 * further kernel/cpuset.c update_nodemask().
2113 * current's mempolicy may be rebinded by the other task(the task that changes
2114 * cpuset's mems), so we needn't do rebind work for current task.
2117 /* Slow path of a mempolicy duplicate */
2118 struct mempolicy *__mpol_dup(struct mempolicy *old)
2120 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2122 if (!new)
2123 return ERR_PTR(-ENOMEM);
2125 /* task's mempolicy is protected by alloc_lock */
2126 if (old == current->mempolicy) {
2127 task_lock(current);
2128 *new = *old;
2129 task_unlock(current);
2130 } else
2131 *new = *old;
2133 if (current_cpuset_is_being_rebound()) {
2134 nodemask_t mems = cpuset_mems_allowed(current);
2135 if (new->flags & MPOL_F_REBINDING)
2136 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2137 else
2138 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2140 atomic_set(&new->refcnt, 1);
2141 return new;
2144 /* Slow path of a mempolicy comparison */
2145 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2147 if (!a || !b)
2148 return false;
2149 if (a->mode != b->mode)
2150 return false;
2151 if (a->flags != b->flags)
2152 return false;
2153 if (mpol_store_user_nodemask(a))
2154 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2155 return false;
2157 switch (a->mode) {
2158 case MPOL_BIND:
2159 /* Fall through */
2160 case MPOL_INTERLEAVE:
2161 return !!nodes_equal(a->v.nodes, b->v.nodes);
2162 case MPOL_PREFERRED:
2163 /* a's ->flags is the same as b's */
2164 if (a->flags & MPOL_F_LOCAL)
2165 return true;
2166 return a->v.preferred_node == b->v.preferred_node;
2167 default:
2168 BUG();
2169 return false;
2174 * Shared memory backing store policy support.
2176 * Remember policies even when nobody has shared memory mapped.
2177 * The policies are kept in Red-Black tree linked from the inode.
2178 * They are protected by the sp->lock spinlock, which should be held
2179 * for any accesses to the tree.
2182 /* lookup first element intersecting start-end */
2183 /* Caller holds sp->lock */
2184 static struct sp_node *
2185 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2187 struct rb_node *n = sp->root.rb_node;
2189 while (n) {
2190 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2192 if (start >= p->end)
2193 n = n->rb_right;
2194 else if (end <= p->start)
2195 n = n->rb_left;
2196 else
2197 break;
2199 if (!n)
2200 return NULL;
2201 for (;;) {
2202 struct sp_node *w = NULL;
2203 struct rb_node *prev = rb_prev(n);
2204 if (!prev)
2205 break;
2206 w = rb_entry(prev, struct sp_node, nd);
2207 if (w->end <= start)
2208 break;
2209 n = prev;
2211 return rb_entry(n, struct sp_node, nd);
2214 /* Insert a new shared policy into the list. */
2215 /* Caller holds sp->lock */
2216 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2218 struct rb_node **p = &sp->root.rb_node;
2219 struct rb_node *parent = NULL;
2220 struct sp_node *nd;
2222 while (*p) {
2223 parent = *p;
2224 nd = rb_entry(parent, struct sp_node, nd);
2225 if (new->start < nd->start)
2226 p = &(*p)->rb_left;
2227 else if (new->end > nd->end)
2228 p = &(*p)->rb_right;
2229 else
2230 BUG();
2232 rb_link_node(&new->nd, parent, p);
2233 rb_insert_color(&new->nd, &sp->root);
2234 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2235 new->policy ? new->policy->mode : 0);
2238 /* Find shared policy intersecting idx */
2239 struct mempolicy *
2240 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2242 struct mempolicy *pol = NULL;
2243 struct sp_node *sn;
2245 if (!sp->root.rb_node)
2246 return NULL;
2247 spin_lock(&sp->lock);
2248 sn = sp_lookup(sp, idx, idx+1);
2249 if (sn) {
2250 mpol_get(sn->policy);
2251 pol = sn->policy;
2253 spin_unlock(&sp->lock);
2254 return pol;
2257 static void sp_free(struct sp_node *n)
2259 mpol_put(n->policy);
2260 kmem_cache_free(sn_cache, n);
2264 * mpol_misplaced - check whether current page node is valid in policy
2266 * @page: page to be checked
2267 * @vma: vm area where page mapped
2268 * @addr: virtual address where page mapped
2270 * Lookup current policy node id for vma,addr and "compare to" page's
2271 * node id.
2273 * Returns:
2274 * -1 - not misplaced, page is in the right node
2275 * node - node id where the page should be
2277 * Policy determination "mimics" alloc_page_vma().
2278 * Called from fault path where we know the vma and faulting address.
2280 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2282 struct mempolicy *pol;
2283 struct zone *zone;
2284 int curnid = page_to_nid(page);
2285 unsigned long pgoff;
2286 int thiscpu = raw_smp_processor_id();
2287 int thisnid = cpu_to_node(thiscpu);
2288 int polnid = -1;
2289 int ret = -1;
2291 BUG_ON(!vma);
2293 pol = get_vma_policy(current, vma, addr);
2294 if (!(pol->flags & MPOL_F_MOF))
2295 goto out;
2297 switch (pol->mode) {
2298 case MPOL_INTERLEAVE:
2299 BUG_ON(addr >= vma->vm_end);
2300 BUG_ON(addr < vma->vm_start);
2302 pgoff = vma->vm_pgoff;
2303 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2304 polnid = offset_il_node(pol, vma, pgoff);
2305 break;
2307 case MPOL_PREFERRED:
2308 if (pol->flags & MPOL_F_LOCAL)
2309 polnid = numa_node_id();
2310 else
2311 polnid = pol->v.preferred_node;
2312 break;
2314 case MPOL_BIND:
2316 * allows binding to multiple nodes.
2317 * use current page if in policy nodemask,
2318 * else select nearest allowed node, if any.
2319 * If no allowed nodes, use current [!misplaced].
2321 if (node_isset(curnid, pol->v.nodes))
2322 goto out;
2323 (void)first_zones_zonelist(
2324 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2325 gfp_zone(GFP_HIGHUSER),
2326 &pol->v.nodes, &zone);
2327 polnid = zone->node;
2328 break;
2330 default:
2331 BUG();
2334 /* Migrate the page towards the node whose CPU is referencing it */
2335 if (pol->flags & MPOL_F_MORON) {
2336 polnid = thisnid;
2338 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2339 goto out;
2342 if (curnid != polnid)
2343 ret = polnid;
2344 out:
2345 mpol_cond_put(pol);
2347 return ret;
2350 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2352 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2353 rb_erase(&n->nd, &sp->root);
2354 sp_free(n);
2357 static void sp_node_init(struct sp_node *node, unsigned long start,
2358 unsigned long end, struct mempolicy *pol)
2360 node->start = start;
2361 node->end = end;
2362 node->policy = pol;
2365 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2366 struct mempolicy *pol)
2368 struct sp_node *n;
2369 struct mempolicy *newpol;
2371 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2372 if (!n)
2373 return NULL;
2375 newpol = mpol_dup(pol);
2376 if (IS_ERR(newpol)) {
2377 kmem_cache_free(sn_cache, n);
2378 return NULL;
2380 newpol->flags |= MPOL_F_SHARED;
2381 sp_node_init(n, start, end, newpol);
2383 return n;
2386 /* Replace a policy range. */
2387 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2388 unsigned long end, struct sp_node *new)
2390 struct sp_node *n;
2391 struct sp_node *n_new = NULL;
2392 struct mempolicy *mpol_new = NULL;
2393 int ret = 0;
2395 restart:
2396 spin_lock(&sp->lock);
2397 n = sp_lookup(sp, start, end);
2398 /* Take care of old policies in the same range. */
2399 while (n && n->start < end) {
2400 struct rb_node *next = rb_next(&n->nd);
2401 if (n->start >= start) {
2402 if (n->end <= end)
2403 sp_delete(sp, n);
2404 else
2405 n->start = end;
2406 } else {
2407 /* Old policy spanning whole new range. */
2408 if (n->end > end) {
2409 if (!n_new)
2410 goto alloc_new;
2412 *mpol_new = *n->policy;
2413 atomic_set(&mpol_new->refcnt, 1);
2414 sp_node_init(n_new, end, n->end, mpol_new);
2415 n->end = start;
2416 sp_insert(sp, n_new);
2417 n_new = NULL;
2418 mpol_new = NULL;
2419 break;
2420 } else
2421 n->end = start;
2423 if (!next)
2424 break;
2425 n = rb_entry(next, struct sp_node, nd);
2427 if (new)
2428 sp_insert(sp, new);
2429 spin_unlock(&sp->lock);
2430 ret = 0;
2432 err_out:
2433 if (mpol_new)
2434 mpol_put(mpol_new);
2435 if (n_new)
2436 kmem_cache_free(sn_cache, n_new);
2438 return ret;
2440 alloc_new:
2441 spin_unlock(&sp->lock);
2442 ret = -ENOMEM;
2443 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2444 if (!n_new)
2445 goto err_out;
2446 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2447 if (!mpol_new)
2448 goto err_out;
2449 goto restart;
2453 * mpol_shared_policy_init - initialize shared policy for inode
2454 * @sp: pointer to inode shared policy
2455 * @mpol: struct mempolicy to install
2457 * Install non-NULL @mpol in inode's shared policy rb-tree.
2458 * On entry, the current task has a reference on a non-NULL @mpol.
2459 * This must be released on exit.
2460 * This is called at get_inode() calls and we can use GFP_KERNEL.
2462 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2464 int ret;
2466 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2467 spin_lock_init(&sp->lock);
2469 if (mpol) {
2470 struct vm_area_struct pvma;
2471 struct mempolicy *new;
2472 NODEMASK_SCRATCH(scratch);
2474 if (!scratch)
2475 goto put_mpol;
2476 /* contextualize the tmpfs mount point mempolicy */
2477 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2478 if (IS_ERR(new))
2479 goto free_scratch; /* no valid nodemask intersection */
2481 task_lock(current);
2482 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2483 task_unlock(current);
2484 if (ret)
2485 goto put_new;
2487 /* Create pseudo-vma that contains just the policy */
2488 memset(&pvma, 0, sizeof(struct vm_area_struct));
2489 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2490 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2492 put_new:
2493 mpol_put(new); /* drop initial ref */
2494 free_scratch:
2495 NODEMASK_SCRATCH_FREE(scratch);
2496 put_mpol:
2497 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2501 int mpol_set_shared_policy(struct shared_policy *info,
2502 struct vm_area_struct *vma, struct mempolicy *npol)
2504 int err;
2505 struct sp_node *new = NULL;
2506 unsigned long sz = vma_pages(vma);
2508 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2509 vma->vm_pgoff,
2510 sz, npol ? npol->mode : -1,
2511 npol ? npol->flags : -1,
2512 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2514 if (npol) {
2515 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2516 if (!new)
2517 return -ENOMEM;
2519 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2520 if (err && new)
2521 sp_free(new);
2522 return err;
2525 /* Free a backing policy store on inode delete. */
2526 void mpol_free_shared_policy(struct shared_policy *p)
2528 struct sp_node *n;
2529 struct rb_node *next;
2531 if (!p->root.rb_node)
2532 return;
2533 spin_lock(&p->lock);
2534 next = rb_first(&p->root);
2535 while (next) {
2536 n = rb_entry(next, struct sp_node, nd);
2537 next = rb_next(&n->nd);
2538 sp_delete(p, n);
2540 spin_unlock(&p->lock);
2543 #ifdef CONFIG_NUMA_BALANCING
2544 static int __initdata numabalancing_override;
2546 static void __init check_numabalancing_enable(void)
2548 bool numabalancing_default = false;
2550 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2551 numabalancing_default = true;
2553 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2554 if (numabalancing_override)
2555 set_numabalancing_state(numabalancing_override == 1);
2557 if (num_online_nodes() > 1 && !numabalancing_override) {
2558 pr_info("%s automatic NUMA balancing. "
2559 "Configure with numa_balancing= or the "
2560 "kernel.numa_balancing sysctl",
2561 numabalancing_default ? "Enabling" : "Disabling");
2562 set_numabalancing_state(numabalancing_default);
2566 static int __init setup_numabalancing(char *str)
2568 int ret = 0;
2569 if (!str)
2570 goto out;
2572 if (!strcmp(str, "enable")) {
2573 numabalancing_override = 1;
2574 ret = 1;
2575 } else if (!strcmp(str, "disable")) {
2576 numabalancing_override = -1;
2577 ret = 1;
2579 out:
2580 if (!ret)
2581 pr_warn("Unable to parse numa_balancing=\n");
2583 return ret;
2585 __setup("numa_balancing=", setup_numabalancing);
2586 #else
2587 static inline void __init check_numabalancing_enable(void)
2590 #endif /* CONFIG_NUMA_BALANCING */
2592 /* assumes fs == KERNEL_DS */
2593 void __init numa_policy_init(void)
2595 nodemask_t interleave_nodes;
2596 unsigned long largest = 0;
2597 int nid, prefer = 0;
2599 policy_cache = kmem_cache_create("numa_policy",
2600 sizeof(struct mempolicy),
2601 0, SLAB_PANIC, NULL);
2603 sn_cache = kmem_cache_create("shared_policy_node",
2604 sizeof(struct sp_node),
2605 0, SLAB_PANIC, NULL);
2607 for_each_node(nid) {
2608 preferred_node_policy[nid] = (struct mempolicy) {
2609 .refcnt = ATOMIC_INIT(1),
2610 .mode = MPOL_PREFERRED,
2611 .flags = MPOL_F_MOF | MPOL_F_MORON,
2612 .v = { .preferred_node = nid, },
2617 * Set interleaving policy for system init. Interleaving is only
2618 * enabled across suitably sized nodes (default is >= 16MB), or
2619 * fall back to the largest node if they're all smaller.
2621 nodes_clear(interleave_nodes);
2622 for_each_node_state(nid, N_MEMORY) {
2623 unsigned long total_pages = node_present_pages(nid);
2625 /* Preserve the largest node */
2626 if (largest < total_pages) {
2627 largest = total_pages;
2628 prefer = nid;
2631 /* Interleave this node? */
2632 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2633 node_set(nid, interleave_nodes);
2636 /* All too small, use the largest */
2637 if (unlikely(nodes_empty(interleave_nodes)))
2638 node_set(prefer, interleave_nodes);
2640 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2641 pr_err("%s: interleaving failed\n", __func__);
2643 check_numabalancing_enable();
2646 /* Reset policy of current process to default */
2647 void numa_default_policy(void)
2649 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2653 * Parse and format mempolicy from/to strings
2657 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2659 static const char * const policy_modes[] =
2661 [MPOL_DEFAULT] = "default",
2662 [MPOL_PREFERRED] = "prefer",
2663 [MPOL_BIND] = "bind",
2664 [MPOL_INTERLEAVE] = "interleave",
2665 [MPOL_LOCAL] = "local",
2669 #ifdef CONFIG_TMPFS
2671 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2672 * @str: string containing mempolicy to parse
2673 * @mpol: pointer to struct mempolicy pointer, returned on success.
2675 * Format of input:
2676 * <mode>[=<flags>][:<nodelist>]
2678 * On success, returns 0, else 1
2680 int mpol_parse_str(char *str, struct mempolicy **mpol)
2682 struct mempolicy *new = NULL;
2683 unsigned short mode;
2684 unsigned short mode_flags;
2685 nodemask_t nodes;
2686 char *nodelist = strchr(str, ':');
2687 char *flags = strchr(str, '=');
2688 int err = 1;
2690 if (nodelist) {
2691 /* NUL-terminate mode or flags string */
2692 *nodelist++ = '\0';
2693 if (nodelist_parse(nodelist, nodes))
2694 goto out;
2695 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2696 goto out;
2697 } else
2698 nodes_clear(nodes);
2700 if (flags)
2701 *flags++ = '\0'; /* terminate mode string */
2703 for (mode = 0; mode < MPOL_MAX; mode++) {
2704 if (!strcmp(str, policy_modes[mode])) {
2705 break;
2708 if (mode >= MPOL_MAX)
2709 goto out;
2711 switch (mode) {
2712 case MPOL_PREFERRED:
2714 * Insist on a nodelist of one node only
2716 if (nodelist) {
2717 char *rest = nodelist;
2718 while (isdigit(*rest))
2719 rest++;
2720 if (*rest)
2721 goto out;
2723 break;
2724 case MPOL_INTERLEAVE:
2726 * Default to online nodes with memory if no nodelist
2728 if (!nodelist)
2729 nodes = node_states[N_MEMORY];
2730 break;
2731 case MPOL_LOCAL:
2733 * Don't allow a nodelist; mpol_new() checks flags
2735 if (nodelist)
2736 goto out;
2737 mode = MPOL_PREFERRED;
2738 break;
2739 case MPOL_DEFAULT:
2741 * Insist on a empty nodelist
2743 if (!nodelist)
2744 err = 0;
2745 goto out;
2746 case MPOL_BIND:
2748 * Insist on a nodelist
2750 if (!nodelist)
2751 goto out;
2754 mode_flags = 0;
2755 if (flags) {
2757 * Currently, we only support two mutually exclusive
2758 * mode flags.
2760 if (!strcmp(flags, "static"))
2761 mode_flags |= MPOL_F_STATIC_NODES;
2762 else if (!strcmp(flags, "relative"))
2763 mode_flags |= MPOL_F_RELATIVE_NODES;
2764 else
2765 goto out;
2768 new = mpol_new(mode, mode_flags, &nodes);
2769 if (IS_ERR(new))
2770 goto out;
2773 * Save nodes for mpol_to_str() to show the tmpfs mount options
2774 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2776 if (mode != MPOL_PREFERRED)
2777 new->v.nodes = nodes;
2778 else if (nodelist)
2779 new->v.preferred_node = first_node(nodes);
2780 else
2781 new->flags |= MPOL_F_LOCAL;
2784 * Save nodes for contextualization: this will be used to "clone"
2785 * the mempolicy in a specific context [cpuset] at a later time.
2787 new->w.user_nodemask = nodes;
2789 err = 0;
2791 out:
2792 /* Restore string for error message */
2793 if (nodelist)
2794 *--nodelist = ':';
2795 if (flags)
2796 *--flags = '=';
2797 if (!err)
2798 *mpol = new;
2799 return err;
2801 #endif /* CONFIG_TMPFS */
2804 * mpol_to_str - format a mempolicy structure for printing
2805 * @buffer: to contain formatted mempolicy string
2806 * @maxlen: length of @buffer
2807 * @pol: pointer to mempolicy to be formatted
2809 * Convert @pol into a string. If @buffer is too short, truncate the string.
2810 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2811 * longest flag, "relative", and to display at least a few node ids.
2813 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2815 char *p = buffer;
2816 nodemask_t nodes = NODE_MASK_NONE;
2817 unsigned short mode = MPOL_DEFAULT;
2818 unsigned short flags = 0;
2820 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2821 mode = pol->mode;
2822 flags = pol->flags;
2825 switch (mode) {
2826 case MPOL_DEFAULT:
2827 break;
2828 case MPOL_PREFERRED:
2829 if (flags & MPOL_F_LOCAL)
2830 mode = MPOL_LOCAL;
2831 else
2832 node_set(pol->v.preferred_node, nodes);
2833 break;
2834 case MPOL_BIND:
2835 case MPOL_INTERLEAVE:
2836 nodes = pol->v.nodes;
2837 break;
2838 default:
2839 WARN_ON_ONCE(1);
2840 snprintf(p, maxlen, "unknown");
2841 return;
2844 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2846 if (flags & MPOL_MODE_FLAGS) {
2847 p += snprintf(p, buffer + maxlen - p, "=");
2850 * Currently, the only defined flags are mutually exclusive
2852 if (flags & MPOL_F_STATIC_NODES)
2853 p += snprintf(p, buffer + maxlen - p, "static");
2854 else if (flags & MPOL_F_RELATIVE_NODES)
2855 p += snprintf(p, buffer + maxlen - p, "relative");
2858 if (!nodes_empty(nodes)) {
2859 p += snprintf(p, buffer + maxlen - p, ":");
2860 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);