2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
102 #include "internal.h"
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
108 static struct kmem_cache
*policy_cache
;
109 static struct kmem_cache
*sn_cache
;
111 /* Highest zone. An specific allocation for a zone below that is not
113 enum zone_type policy_zone
= 0;
116 * run-time system-wide default policy => local allocation
118 static struct mempolicy default_policy
= {
119 .refcnt
= ATOMIC_INIT(1), /* never free it */
120 .mode
= MPOL_PREFERRED
,
121 .flags
= MPOL_F_LOCAL
,
124 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
126 static struct mempolicy
*get_task_policy(struct task_struct
*p
)
128 struct mempolicy
*pol
= p
->mempolicy
;
131 int node
= numa_node_id();
133 if (node
!= NUMA_NO_NODE
) {
134 pol
= &preferred_node_policy
[node
];
136 * preferred_node_policy is not initialised early in
147 static const struct mempolicy_operations
{
148 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
150 * If read-side task has no lock to protect task->mempolicy, write-side
151 * task will rebind the task->mempolicy by two step. The first step is
152 * setting all the newly nodes, and the second step is cleaning all the
153 * disallowed nodes. In this way, we can avoid finding no node to alloc
155 * If we have a lock to protect task->mempolicy in read-side, we do
159 * MPOL_REBIND_ONCE - do rebind work at once
160 * MPOL_REBIND_STEP1 - set all the newly nodes
161 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
163 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
,
164 enum mpol_rebind_step step
);
165 } mpol_ops
[MPOL_MAX
];
167 /* Check that the nodemask contains at least one populated zone */
168 static int is_valid_nodemask(const nodemask_t
*nodemask
)
170 return nodes_intersects(*nodemask
, node_states
[N_MEMORY
]);
173 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
175 return pol
->flags
& MPOL_MODE_FLAGS
;
178 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
179 const nodemask_t
*rel
)
182 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
183 nodes_onto(*ret
, tmp
, *rel
);
186 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
188 if (nodes_empty(*nodes
))
190 pol
->v
.nodes
= *nodes
;
194 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
197 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
198 else if (nodes_empty(*nodes
))
199 return -EINVAL
; /* no allowed nodes */
201 pol
->v
.preferred_node
= first_node(*nodes
);
205 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
207 if (!is_valid_nodemask(nodes
))
209 pol
->v
.nodes
= *nodes
;
214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215 * any, for the new policy. mpol_new() has already validated the nodes
216 * parameter with respect to the policy mode and flags. But, we need to
217 * handle an empty nodemask with MPOL_PREFERRED here.
219 * Must be called holding task's alloc_lock to protect task's mems_allowed
220 * and mempolicy. May also be called holding the mmap_semaphore for write.
222 static int mpol_set_nodemask(struct mempolicy
*pol
,
223 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
227 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
231 nodes_and(nsc
->mask1
,
232 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
235 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
236 nodes
= NULL
; /* explicit local allocation */
238 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
239 mpol_relative_nodemask(&nsc
->mask2
, nodes
,&nsc
->mask1
);
241 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
243 if (mpol_store_user_nodemask(pol
))
244 pol
->w
.user_nodemask
= *nodes
;
246 pol
->w
.cpuset_mems_allowed
=
247 cpuset_current_mems_allowed
;
251 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
253 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
264 struct mempolicy
*policy
;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
269 if (mode
== MPOL_DEFAULT
) {
270 if (nodes
&& !nodes_empty(*nodes
))
271 return ERR_PTR(-EINVAL
);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode
== MPOL_PREFERRED
) {
282 if (nodes_empty(*nodes
)) {
283 if (((flags
& MPOL_F_STATIC_NODES
) ||
284 (flags
& MPOL_F_RELATIVE_NODES
)))
285 return ERR_PTR(-EINVAL
);
287 } else if (mode
== MPOL_LOCAL
) {
288 if (!nodes_empty(*nodes
))
289 return ERR_PTR(-EINVAL
);
290 mode
= MPOL_PREFERRED
;
291 } else if (nodes_empty(*nodes
))
292 return ERR_PTR(-EINVAL
);
293 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
295 return ERR_PTR(-ENOMEM
);
296 atomic_set(&policy
->refcnt
, 1);
298 policy
->flags
= flags
;
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy
*p
)
306 if (!atomic_dec_and_test(&p
->refcnt
))
308 kmem_cache_free(policy_cache
, p
);
311 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
,
312 enum mpol_rebind_step step
)
318 * MPOL_REBIND_ONCE - do rebind work at once
319 * MPOL_REBIND_STEP1 - set all the newly nodes
320 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
322 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
,
323 enum mpol_rebind_step step
)
327 if (pol
->flags
& MPOL_F_STATIC_NODES
)
328 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
329 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
330 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
333 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
336 if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP1
) {
337 nodes_remap(tmp
, pol
->v
.nodes
,
338 pol
->w
.cpuset_mems_allowed
, *nodes
);
339 pol
->w
.cpuset_mems_allowed
= step
? tmp
: *nodes
;
340 } else if (step
== MPOL_REBIND_STEP2
) {
341 tmp
= pol
->w
.cpuset_mems_allowed
;
342 pol
->w
.cpuset_mems_allowed
= *nodes
;
347 if (nodes_empty(tmp
))
350 if (step
== MPOL_REBIND_STEP1
)
351 nodes_or(pol
->v
.nodes
, pol
->v
.nodes
, tmp
);
352 else if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP2
)
357 if (!node_isset(current
->il_next
, tmp
)) {
358 current
->il_next
= next_node(current
->il_next
, tmp
);
359 if (current
->il_next
>= MAX_NUMNODES
)
360 current
->il_next
= first_node(tmp
);
361 if (current
->il_next
>= MAX_NUMNODES
)
362 current
->il_next
= numa_node_id();
366 static void mpol_rebind_preferred(struct mempolicy
*pol
,
367 const nodemask_t
*nodes
,
368 enum mpol_rebind_step step
)
372 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
373 int node
= first_node(pol
->w
.user_nodemask
);
375 if (node_isset(node
, *nodes
)) {
376 pol
->v
.preferred_node
= node
;
377 pol
->flags
&= ~MPOL_F_LOCAL
;
379 pol
->flags
|= MPOL_F_LOCAL
;
380 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
381 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
382 pol
->v
.preferred_node
= first_node(tmp
);
383 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
384 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
385 pol
->w
.cpuset_mems_allowed
,
387 pol
->w
.cpuset_mems_allowed
= *nodes
;
392 * mpol_rebind_policy - Migrate a policy to a different set of nodes
394 * If read-side task has no lock to protect task->mempolicy, write-side
395 * task will rebind the task->mempolicy by two step. The first step is
396 * setting all the newly nodes, and the second step is cleaning all the
397 * disallowed nodes. In this way, we can avoid finding no node to alloc
399 * If we have a lock to protect task->mempolicy in read-side, we do
403 * MPOL_REBIND_ONCE - do rebind work at once
404 * MPOL_REBIND_STEP1 - set all the newly nodes
405 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
407 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
,
408 enum mpol_rebind_step step
)
412 if (!mpol_store_user_nodemask(pol
) && step
== MPOL_REBIND_ONCE
&&
413 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
416 if (step
== MPOL_REBIND_STEP1
&& (pol
->flags
& MPOL_F_REBINDING
))
419 if (step
== MPOL_REBIND_STEP2
&& !(pol
->flags
& MPOL_F_REBINDING
))
422 if (step
== MPOL_REBIND_STEP1
)
423 pol
->flags
|= MPOL_F_REBINDING
;
424 else if (step
== MPOL_REBIND_STEP2
)
425 pol
->flags
&= ~MPOL_F_REBINDING
;
426 else if (step
>= MPOL_REBIND_NSTEP
)
429 mpol_ops
[pol
->mode
].rebind(pol
, newmask
, step
);
433 * Wrapper for mpol_rebind_policy() that just requires task
434 * pointer, and updates task mempolicy.
436 * Called with task's alloc_lock held.
439 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new,
440 enum mpol_rebind_step step
)
442 mpol_rebind_policy(tsk
->mempolicy
, new, step
);
446 * Rebind each vma in mm to new nodemask.
448 * Call holding a reference to mm. Takes mm->mmap_sem during call.
451 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
453 struct vm_area_struct
*vma
;
455 down_write(&mm
->mmap_sem
);
456 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
457 mpol_rebind_policy(vma
->vm_policy
, new, MPOL_REBIND_ONCE
);
458 up_write(&mm
->mmap_sem
);
461 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
463 .rebind
= mpol_rebind_default
,
465 [MPOL_INTERLEAVE
] = {
466 .create
= mpol_new_interleave
,
467 .rebind
= mpol_rebind_nodemask
,
470 .create
= mpol_new_preferred
,
471 .rebind
= mpol_rebind_preferred
,
474 .create
= mpol_new_bind
,
475 .rebind
= mpol_rebind_nodemask
,
479 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
480 unsigned long flags
);
483 * Scan through pages checking if pages follow certain conditions,
484 * and move them to the pagelist if they do.
486 static int queue_pages_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
487 unsigned long addr
, unsigned long end
,
488 const nodemask_t
*nodes
, unsigned long flags
,
495 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
500 if (!pte_present(*pte
))
502 page
= vm_normal_page(vma
, addr
, *pte
);
506 * vm_normal_page() filters out zero pages, but there might
507 * still be PageReserved pages to skip, perhaps in a VDSO.
509 if (PageReserved(page
))
511 nid
= page_to_nid(page
);
512 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
515 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
516 migrate_page_add(page
, private, flags
);
519 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
520 pte_unmap_unlock(orig_pte
, ptl
);
524 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct
*vma
,
525 pmd_t
*pmd
, const nodemask_t
*nodes
, unsigned long flags
,
528 #ifdef CONFIG_HUGETLB_PAGE
534 ptl
= huge_pte_lock(hstate_vma(vma
), vma
->vm_mm
, (pte_t
*)pmd
);
535 entry
= huge_ptep_get((pte_t
*)pmd
);
536 if (!pte_present(entry
))
538 page
= pte_page(entry
);
539 nid
= page_to_nid(page
);
540 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
542 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
543 if (flags
& (MPOL_MF_MOVE_ALL
) ||
544 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
545 isolate_huge_page(page
, private);
553 static inline int queue_pages_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
554 unsigned long addr
, unsigned long end
,
555 const nodemask_t
*nodes
, unsigned long flags
,
561 pmd
= pmd_offset(pud
, addr
);
563 next
= pmd_addr_end(addr
, end
);
564 if (!pmd_present(*pmd
))
566 if (pmd_huge(*pmd
) && is_vm_hugetlb_page(vma
)) {
567 queue_pages_hugetlb_pmd_range(vma
, pmd
, nodes
,
571 split_huge_page_pmd(vma
, addr
, pmd
);
572 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
574 if (queue_pages_pte_range(vma
, pmd
, addr
, next
, nodes
,
577 } while (pmd
++, addr
= next
, addr
!= end
);
581 static inline int queue_pages_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
582 unsigned long addr
, unsigned long end
,
583 const nodemask_t
*nodes
, unsigned long flags
,
589 pud
= pud_offset(pgd
, addr
);
591 next
= pud_addr_end(addr
, end
);
592 if (pud_huge(*pud
) && is_vm_hugetlb_page(vma
))
594 if (pud_none_or_clear_bad(pud
))
596 if (queue_pages_pmd_range(vma
, pud
, addr
, next
, nodes
,
599 } while (pud
++, addr
= next
, addr
!= end
);
603 static inline int queue_pages_pgd_range(struct vm_area_struct
*vma
,
604 unsigned long addr
, unsigned long end
,
605 const nodemask_t
*nodes
, unsigned long flags
,
611 pgd
= pgd_offset(vma
->vm_mm
, addr
);
613 next
= pgd_addr_end(addr
, end
);
614 if (pgd_none_or_clear_bad(pgd
))
616 if (queue_pages_pud_range(vma
, pgd
, addr
, next
, nodes
,
619 } while (pgd
++, addr
= next
, addr
!= end
);
623 #ifdef CONFIG_NUMA_BALANCING
625 * This is used to mark a range of virtual addresses to be inaccessible.
626 * These are later cleared by a NUMA hinting fault. Depending on these
627 * faults, pages may be migrated for better NUMA placement.
629 * This is assuming that NUMA faults are handled using PROT_NONE. If
630 * an architecture makes a different choice, it will need further
631 * changes to the core.
633 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
634 unsigned long addr
, unsigned long end
)
638 nr_updated
= change_protection(vma
, addr
, end
, vma
->vm_page_prot
, 0, 1);
640 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
645 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
646 unsigned long addr
, unsigned long end
)
650 #endif /* CONFIG_NUMA_BALANCING */
653 * Walk through page tables and collect pages to be migrated.
655 * If pages found in a given range are on a set of nodes (determined by
656 * @nodes and @flags,) it's isolated and queued to the pagelist which is
657 * passed via @private.)
660 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
661 const nodemask_t
*nodes
, unsigned long flags
, void *private)
664 struct vm_area_struct
*vma
, *prev
;
666 vma
= find_vma(mm
, start
);
670 for (; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
671 unsigned long endvma
= vma
->vm_end
;
675 if (vma
->vm_start
> start
)
676 start
= vma
->vm_start
;
678 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
679 if (!vma
->vm_next
&& vma
->vm_end
< end
)
681 if (prev
&& prev
->vm_end
< vma
->vm_start
)
685 if (flags
& MPOL_MF_LAZY
) {
686 change_prot_numa(vma
, start
, endvma
);
690 if ((flags
& MPOL_MF_STRICT
) ||
691 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
692 vma_migratable(vma
))) {
694 err
= queue_pages_pgd_range(vma
, start
, endvma
, nodes
,
706 * Apply policy to a single VMA
707 * This must be called with the mmap_sem held for writing.
709 static int vma_replace_policy(struct vm_area_struct
*vma
,
710 struct mempolicy
*pol
)
713 struct mempolicy
*old
;
714 struct mempolicy
*new;
716 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
717 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
718 vma
->vm_ops
, vma
->vm_file
,
719 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
725 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
726 err
= vma
->vm_ops
->set_policy(vma
, new);
731 old
= vma
->vm_policy
;
732 vma
->vm_policy
= new; /* protected by mmap_sem */
741 /* Step 2: apply policy to a range and do splits. */
742 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
743 unsigned long end
, struct mempolicy
*new_pol
)
745 struct vm_area_struct
*next
;
746 struct vm_area_struct
*prev
;
747 struct vm_area_struct
*vma
;
750 unsigned long vmstart
;
753 vma
= find_vma(mm
, start
);
754 if (!vma
|| vma
->vm_start
> start
)
758 if (start
> vma
->vm_start
)
761 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
763 vmstart
= max(start
, vma
->vm_start
);
764 vmend
= min(end
, vma
->vm_end
);
766 if (mpol_equal(vma_policy(vma
), new_pol
))
769 pgoff
= vma
->vm_pgoff
+
770 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
771 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
772 vma
->anon_vma
, vma
->vm_file
, pgoff
,
777 if (mpol_equal(vma_policy(vma
), new_pol
))
779 /* vma_merge() joined vma && vma->next, case 8 */
782 if (vma
->vm_start
!= vmstart
) {
783 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
787 if (vma
->vm_end
!= vmend
) {
788 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
793 err
= vma_replace_policy(vma
, new_pol
);
802 /* Set the process memory policy */
803 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
806 struct mempolicy
*new, *old
;
807 struct mm_struct
*mm
= current
->mm
;
808 NODEMASK_SCRATCH(scratch
);
814 new = mpol_new(mode
, flags
, nodes
);
820 * prevent changing our mempolicy while show_numa_maps()
822 * Note: do_set_mempolicy() can be called at init time
826 down_write(&mm
->mmap_sem
);
828 ret
= mpol_set_nodemask(new, nodes
, scratch
);
830 task_unlock(current
);
832 up_write(&mm
->mmap_sem
);
836 old
= current
->mempolicy
;
837 current
->mempolicy
= new;
838 if (new && new->mode
== MPOL_INTERLEAVE
&&
839 nodes_weight(new->v
.nodes
))
840 current
->il_next
= first_node(new->v
.nodes
);
841 task_unlock(current
);
843 up_write(&mm
->mmap_sem
);
848 NODEMASK_SCRATCH_FREE(scratch
);
853 * Return nodemask for policy for get_mempolicy() query
855 * Called with task's alloc_lock held
857 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
860 if (p
== &default_policy
)
866 case MPOL_INTERLEAVE
:
870 if (!(p
->flags
& MPOL_F_LOCAL
))
871 node_set(p
->v
.preferred_node
, *nodes
);
872 /* else return empty node mask for local allocation */
879 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
884 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
886 err
= page_to_nid(p
);
892 /* Retrieve NUMA policy */
893 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
894 unsigned long addr
, unsigned long flags
)
897 struct mm_struct
*mm
= current
->mm
;
898 struct vm_area_struct
*vma
= NULL
;
899 struct mempolicy
*pol
= current
->mempolicy
;
902 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
905 if (flags
& MPOL_F_MEMS_ALLOWED
) {
906 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
908 *policy
= 0; /* just so it's initialized */
910 *nmask
= cpuset_current_mems_allowed
;
911 task_unlock(current
);
915 if (flags
& MPOL_F_ADDR
) {
917 * Do NOT fall back to task policy if the
918 * vma/shared policy at addr is NULL. We
919 * want to return MPOL_DEFAULT in this case.
921 down_read(&mm
->mmap_sem
);
922 vma
= find_vma_intersection(mm
, addr
, addr
+1);
924 up_read(&mm
->mmap_sem
);
927 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
928 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
930 pol
= vma
->vm_policy
;
935 pol
= &default_policy
; /* indicates default behavior */
937 if (flags
& MPOL_F_NODE
) {
938 if (flags
& MPOL_F_ADDR
) {
939 err
= lookup_node(mm
, addr
);
943 } else if (pol
== current
->mempolicy
&&
944 pol
->mode
== MPOL_INTERLEAVE
) {
945 *policy
= current
->il_next
;
951 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
954 * Internal mempolicy flags must be masked off before exposing
955 * the policy to userspace.
957 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
962 if (mpol_store_user_nodemask(pol
)) {
963 *nmask
= pol
->w
.user_nodemask
;
966 get_policy_nodemask(pol
, nmask
);
967 task_unlock(current
);
974 up_read(¤t
->mm
->mmap_sem
);
978 #ifdef CONFIG_MIGRATION
982 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
986 * Avoid migrating a page that is shared with others.
988 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
989 if (!isolate_lru_page(page
)) {
990 list_add_tail(&page
->lru
, pagelist
);
991 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
992 page_is_file_cache(page
));
997 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
1000 return alloc_huge_page_node(page_hstate(compound_head(page
)),
1003 return alloc_pages_exact_node(node
, GFP_HIGHUSER_MOVABLE
, 0);
1007 * Migrate pages from one node to a target node.
1008 * Returns error or the number of pages not migrated.
1010 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
1014 LIST_HEAD(pagelist
);
1018 node_set(source
, nmask
);
1021 * This does not "check" the range but isolates all pages that
1022 * need migration. Between passing in the full user address
1023 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1025 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1026 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1027 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1029 if (!list_empty(&pagelist
)) {
1030 err
= migrate_pages(&pagelist
, new_node_page
, NULL
, dest
,
1031 MIGRATE_SYNC
, MR_SYSCALL
);
1033 putback_movable_pages(&pagelist
);
1040 * Move pages between the two nodesets so as to preserve the physical
1041 * layout as much as possible.
1043 * Returns the number of page that could not be moved.
1045 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1046 const nodemask_t
*to
, int flags
)
1052 err
= migrate_prep();
1056 down_read(&mm
->mmap_sem
);
1058 err
= migrate_vmas(mm
, from
, to
, flags
);
1063 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1064 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1065 * bit in 'tmp', and return that <source, dest> pair for migration.
1066 * The pair of nodemasks 'to' and 'from' define the map.
1068 * If no pair of bits is found that way, fallback to picking some
1069 * pair of 'source' and 'dest' bits that are not the same. If the
1070 * 'source' and 'dest' bits are the same, this represents a node
1071 * that will be migrating to itself, so no pages need move.
1073 * If no bits are left in 'tmp', or if all remaining bits left
1074 * in 'tmp' correspond to the same bit in 'to', return false
1075 * (nothing left to migrate).
1077 * This lets us pick a pair of nodes to migrate between, such that
1078 * if possible the dest node is not already occupied by some other
1079 * source node, minimizing the risk of overloading the memory on a
1080 * node that would happen if we migrated incoming memory to a node
1081 * before migrating outgoing memory source that same node.
1083 * A single scan of tmp is sufficient. As we go, we remember the
1084 * most recent <s, d> pair that moved (s != d). If we find a pair
1085 * that not only moved, but what's better, moved to an empty slot
1086 * (d is not set in tmp), then we break out then, with that pair.
1087 * Otherwise when we finish scanning from_tmp, we at least have the
1088 * most recent <s, d> pair that moved. If we get all the way through
1089 * the scan of tmp without finding any node that moved, much less
1090 * moved to an empty node, then there is nothing left worth migrating.
1094 while (!nodes_empty(tmp
)) {
1096 int source
= NUMA_NO_NODE
;
1099 for_each_node_mask(s
, tmp
) {
1102 * do_migrate_pages() tries to maintain the relative
1103 * node relationship of the pages established between
1104 * threads and memory areas.
1106 * However if the number of source nodes is not equal to
1107 * the number of destination nodes we can not preserve
1108 * this node relative relationship. In that case, skip
1109 * copying memory from a node that is in the destination
1112 * Example: [2,3,4] -> [3,4,5] moves everything.
1113 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1116 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1117 (node_isset(s
, *to
)))
1120 d
= node_remap(s
, *from
, *to
);
1124 source
= s
; /* Node moved. Memorize */
1127 /* dest not in remaining from nodes? */
1128 if (!node_isset(dest
, tmp
))
1131 if (source
== NUMA_NO_NODE
)
1134 node_clear(source
, tmp
);
1135 err
= migrate_to_node(mm
, source
, dest
, flags
);
1142 up_read(&mm
->mmap_sem
);
1150 * Allocate a new page for page migration based on vma policy.
1151 * Start by assuming the page is mapped by the same vma as contains @start.
1152 * Search forward from there, if not. N.B., this assumes that the
1153 * list of pages handed to migrate_pages()--which is how we get here--
1154 * is in virtual address order.
1156 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1158 struct vm_area_struct
*vma
;
1159 unsigned long uninitialized_var(address
);
1161 vma
= find_vma(current
->mm
, start
);
1163 address
= page_address_in_vma(page
, vma
);
1164 if (address
!= -EFAULT
)
1169 if (PageHuge(page
)) {
1171 return alloc_huge_page_noerr(vma
, address
, 1);
1174 * if !vma, alloc_page_vma() will use task or system default policy
1176 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1180 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1181 unsigned long flags
)
1185 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1186 const nodemask_t
*to
, int flags
)
1191 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1197 static long do_mbind(unsigned long start
, unsigned long len
,
1198 unsigned short mode
, unsigned short mode_flags
,
1199 nodemask_t
*nmask
, unsigned long flags
)
1201 struct mm_struct
*mm
= current
->mm
;
1202 struct mempolicy
*new;
1205 LIST_HEAD(pagelist
);
1207 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1209 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1212 if (start
& ~PAGE_MASK
)
1215 if (mode
== MPOL_DEFAULT
)
1216 flags
&= ~MPOL_MF_STRICT
;
1218 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1226 new = mpol_new(mode
, mode_flags
, nmask
);
1228 return PTR_ERR(new);
1230 if (flags
& MPOL_MF_LAZY
)
1231 new->flags
|= MPOL_F_MOF
;
1234 * If we are using the default policy then operation
1235 * on discontinuous address spaces is okay after all
1238 flags
|= MPOL_MF_DISCONTIG_OK
;
1240 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1241 start
, start
+ len
, mode
, mode_flags
,
1242 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1244 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1246 err
= migrate_prep();
1251 NODEMASK_SCRATCH(scratch
);
1253 down_write(&mm
->mmap_sem
);
1255 err
= mpol_set_nodemask(new, nmask
, scratch
);
1256 task_unlock(current
);
1258 up_write(&mm
->mmap_sem
);
1261 NODEMASK_SCRATCH_FREE(scratch
);
1266 err
= queue_pages_range(mm
, start
, end
, nmask
,
1267 flags
| MPOL_MF_INVERT
, &pagelist
);
1269 err
= mbind_range(mm
, start
, end
, new);
1274 if (!list_empty(&pagelist
)) {
1275 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1276 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1277 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1279 putback_movable_pages(&pagelist
);
1282 if (nr_failed
&& (flags
& MPOL_MF_STRICT
))
1285 putback_movable_pages(&pagelist
);
1287 up_write(&mm
->mmap_sem
);
1294 * User space interface with variable sized bitmaps for nodelists.
1297 /* Copy a node mask from user space. */
1298 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1299 unsigned long maxnode
)
1302 unsigned long nlongs
;
1303 unsigned long endmask
;
1306 nodes_clear(*nodes
);
1307 if (maxnode
== 0 || !nmask
)
1309 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1312 nlongs
= BITS_TO_LONGS(maxnode
);
1313 if ((maxnode
% BITS_PER_LONG
) == 0)
1316 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1318 /* When the user specified more nodes than supported just check
1319 if the non supported part is all zero. */
1320 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1321 if (nlongs
> PAGE_SIZE
/sizeof(long))
1323 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1325 if (get_user(t
, nmask
+ k
))
1327 if (k
== nlongs
- 1) {
1333 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1337 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1339 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1343 /* Copy a kernel node mask to user space */
1344 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1347 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1348 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
1350 if (copy
> nbytes
) {
1351 if (copy
> PAGE_SIZE
)
1353 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1357 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1360 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1361 unsigned long, mode
, const unsigned long __user
*, nmask
,
1362 unsigned long, maxnode
, unsigned, flags
)
1366 unsigned short mode_flags
;
1368 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1369 mode
&= ~MPOL_MODE_FLAGS
;
1370 if (mode
>= MPOL_MAX
)
1372 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1373 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1375 err
= get_nodes(&nodes
, nmask
, maxnode
);
1378 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1381 /* Set the process memory policy */
1382 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1383 unsigned long, maxnode
)
1387 unsigned short flags
;
1389 flags
= mode
& MPOL_MODE_FLAGS
;
1390 mode
&= ~MPOL_MODE_FLAGS
;
1391 if ((unsigned int)mode
>= MPOL_MAX
)
1393 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1395 err
= get_nodes(&nodes
, nmask
, maxnode
);
1398 return do_set_mempolicy(mode
, flags
, &nodes
);
1401 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1402 const unsigned long __user
*, old_nodes
,
1403 const unsigned long __user
*, new_nodes
)
1405 const struct cred
*cred
= current_cred(), *tcred
;
1406 struct mm_struct
*mm
= NULL
;
1407 struct task_struct
*task
;
1408 nodemask_t task_nodes
;
1412 NODEMASK_SCRATCH(scratch
);
1417 old
= &scratch
->mask1
;
1418 new = &scratch
->mask2
;
1420 err
= get_nodes(old
, old_nodes
, maxnode
);
1424 err
= get_nodes(new, new_nodes
, maxnode
);
1428 /* Find the mm_struct */
1430 task
= pid
? find_task_by_vpid(pid
) : current
;
1436 get_task_struct(task
);
1441 * Check if this process has the right to modify the specified
1442 * process. The right exists if the process has administrative
1443 * capabilities, superuser privileges or the same
1444 * userid as the target process.
1446 tcred
= __task_cred(task
);
1447 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1448 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1449 !capable(CAP_SYS_NICE
)) {
1456 task_nodes
= cpuset_mems_allowed(task
);
1457 /* Is the user allowed to access the target nodes? */
1458 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1463 if (!nodes_subset(*new, node_states
[N_MEMORY
])) {
1468 err
= security_task_movememory(task
);
1472 mm
= get_task_mm(task
);
1473 put_task_struct(task
);
1480 err
= do_migrate_pages(mm
, old
, new,
1481 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1485 NODEMASK_SCRATCH_FREE(scratch
);
1490 put_task_struct(task
);
1496 /* Retrieve NUMA policy */
1497 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1498 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1499 unsigned long, addr
, unsigned long, flags
)
1502 int uninitialized_var(pval
);
1505 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
1508 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1513 if (policy
&& put_user(pval
, policy
))
1517 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1522 #ifdef CONFIG_COMPAT
1524 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1525 compat_ulong_t __user
*, nmask
,
1526 compat_ulong_t
, maxnode
,
1527 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1530 unsigned long __user
*nm
= NULL
;
1531 unsigned long nr_bits
, alloc_size
;
1532 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1534 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1535 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1538 nm
= compat_alloc_user_space(alloc_size
);
1540 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1542 if (!err
&& nmask
) {
1543 unsigned long copy_size
;
1544 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1545 err
= copy_from_user(bm
, nm
, copy_size
);
1546 /* ensure entire bitmap is zeroed */
1547 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1548 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1554 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1555 compat_ulong_t
, maxnode
)
1557 unsigned long __user
*nm
= NULL
;
1558 unsigned long nr_bits
, alloc_size
;
1559 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1561 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1562 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1565 if (compat_get_bitmap(bm
, nmask
, nr_bits
))
1567 nm
= compat_alloc_user_space(alloc_size
);
1568 if (copy_to_user(nm
, bm
, alloc_size
))
1572 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1575 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1576 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1577 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1579 unsigned long __user
*nm
= NULL
;
1580 unsigned long nr_bits
, alloc_size
;
1583 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1584 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1587 if (compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
))
1589 nm
= compat_alloc_user_space(alloc_size
);
1590 if (copy_to_user(nm
, nodes_addr(bm
), alloc_size
))
1594 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1600 * get_vma_policy(@task, @vma, @addr)
1601 * @task: task for fallback if vma policy == default
1602 * @vma: virtual memory area whose policy is sought
1603 * @addr: address in @vma for shared policy lookup
1605 * Returns effective policy for a VMA at specified address.
1606 * Falls back to @task or system default policy, as necessary.
1607 * Current or other task's task mempolicy and non-shared vma policies must be
1608 * protected by task_lock(task) by the caller.
1609 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1610 * count--added by the get_policy() vm_op, as appropriate--to protect against
1611 * freeing by another task. It is the caller's responsibility to free the
1612 * extra reference for shared policies.
1614 struct mempolicy
*get_vma_policy(struct task_struct
*task
,
1615 struct vm_area_struct
*vma
, unsigned long addr
)
1617 struct mempolicy
*pol
= get_task_policy(task
);
1620 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1621 struct mempolicy
*vpol
= vma
->vm_ops
->get_policy(vma
,
1625 } else if (vma
->vm_policy
) {
1626 pol
= vma
->vm_policy
;
1629 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1630 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1631 * count on these policies which will be dropped by
1632 * mpol_cond_put() later
1634 if (mpol_needs_cond_ref(pol
))
1639 pol
= &default_policy
;
1643 bool vma_policy_mof(struct task_struct
*task
, struct vm_area_struct
*vma
)
1645 struct mempolicy
*pol
= get_task_policy(task
);
1647 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1650 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1651 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1656 } else if (vma
->vm_policy
) {
1657 pol
= vma
->vm_policy
;
1662 return default_policy
.flags
& MPOL_F_MOF
;
1664 return pol
->flags
& MPOL_F_MOF
;
1667 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1669 enum zone_type dynamic_policy_zone
= policy_zone
;
1671 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1674 * if policy->v.nodes has movable memory only,
1675 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1677 * policy->v.nodes is intersect with node_states[N_MEMORY].
1678 * so if the following test faile, it implies
1679 * policy->v.nodes has movable memory only.
1681 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1682 dynamic_policy_zone
= ZONE_MOVABLE
;
1684 return zone
>= dynamic_policy_zone
;
1688 * Return a nodemask representing a mempolicy for filtering nodes for
1691 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1693 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1694 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1695 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1696 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1697 return &policy
->v
.nodes
;
1702 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1703 static struct zonelist
*policy_zonelist(gfp_t gfp
, struct mempolicy
*policy
,
1706 switch (policy
->mode
) {
1707 case MPOL_PREFERRED
:
1708 if (!(policy
->flags
& MPOL_F_LOCAL
))
1709 nd
= policy
->v
.preferred_node
;
1713 * Normally, MPOL_BIND allocations are node-local within the
1714 * allowed nodemask. However, if __GFP_THISNODE is set and the
1715 * current node isn't part of the mask, we use the zonelist for
1716 * the first node in the mask instead.
1718 if (unlikely(gfp
& __GFP_THISNODE
) &&
1719 unlikely(!node_isset(nd
, policy
->v
.nodes
)))
1720 nd
= first_node(policy
->v
.nodes
);
1725 return node_zonelist(nd
, gfp
);
1728 /* Do dynamic interleaving for a process */
1729 static unsigned interleave_nodes(struct mempolicy
*policy
)
1732 struct task_struct
*me
= current
;
1735 next
= next_node(nid
, policy
->v
.nodes
);
1736 if (next
>= MAX_NUMNODES
)
1737 next
= first_node(policy
->v
.nodes
);
1738 if (next
< MAX_NUMNODES
)
1744 * Depending on the memory policy provide a node from which to allocate the
1747 unsigned int mempolicy_slab_node(void)
1749 struct mempolicy
*policy
;
1750 int node
= numa_mem_id();
1755 policy
= current
->mempolicy
;
1756 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1759 switch (policy
->mode
) {
1760 case MPOL_PREFERRED
:
1762 * handled MPOL_F_LOCAL above
1764 return policy
->v
.preferred_node
;
1766 case MPOL_INTERLEAVE
:
1767 return interleave_nodes(policy
);
1771 * Follow bind policy behavior and start allocation at the
1774 struct zonelist
*zonelist
;
1776 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1777 zonelist
= &NODE_DATA(node
)->node_zonelists
[0];
1778 (void)first_zones_zonelist(zonelist
, highest_zoneidx
,
1781 return zone
? zone
->node
: node
;
1789 /* Do static interleaving for a VMA with known offset. */
1790 static unsigned offset_il_node(struct mempolicy
*pol
,
1791 struct vm_area_struct
*vma
, unsigned long off
)
1793 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1796 int nid
= NUMA_NO_NODE
;
1799 return numa_node_id();
1800 target
= (unsigned int)off
% nnodes
;
1803 nid
= next_node(nid
, pol
->v
.nodes
);
1805 } while (c
<= target
);
1809 /* Determine a node number for interleave */
1810 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1811 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1817 * for small pages, there is no difference between
1818 * shift and PAGE_SHIFT, so the bit-shift is safe.
1819 * for huge pages, since vm_pgoff is in units of small
1820 * pages, we need to shift off the always 0 bits to get
1823 BUG_ON(shift
< PAGE_SHIFT
);
1824 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1825 off
+= (addr
- vma
->vm_start
) >> shift
;
1826 return offset_il_node(pol
, vma
, off
);
1828 return interleave_nodes(pol
);
1832 * Return the bit number of a random bit set in the nodemask.
1833 * (returns NUMA_NO_NODE if nodemask is empty)
1835 int node_random(const nodemask_t
*maskp
)
1837 int w
, bit
= NUMA_NO_NODE
;
1839 w
= nodes_weight(*maskp
);
1841 bit
= bitmap_ord_to_pos(maskp
->bits
,
1842 get_random_int() % w
, MAX_NUMNODES
);
1846 #ifdef CONFIG_HUGETLBFS
1848 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1849 * @vma: virtual memory area whose policy is sought
1850 * @addr: address in @vma for shared policy lookup and interleave policy
1851 * @gfp_flags: for requested zone
1852 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1853 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1855 * Returns a zonelist suitable for a huge page allocation and a pointer
1856 * to the struct mempolicy for conditional unref after allocation.
1857 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1858 * @nodemask for filtering the zonelist.
1860 * Must be protected by read_mems_allowed_begin()
1862 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
,
1863 gfp_t gfp_flags
, struct mempolicy
**mpol
,
1864 nodemask_t
**nodemask
)
1866 struct zonelist
*zl
;
1868 *mpol
= get_vma_policy(current
, vma
, addr
);
1869 *nodemask
= NULL
; /* assume !MPOL_BIND */
1871 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1872 zl
= node_zonelist(interleave_nid(*mpol
, vma
, addr
,
1873 huge_page_shift(hstate_vma(vma
))), gfp_flags
);
1875 zl
= policy_zonelist(gfp_flags
, *mpol
, numa_node_id());
1876 if ((*mpol
)->mode
== MPOL_BIND
)
1877 *nodemask
= &(*mpol
)->v
.nodes
;
1883 * init_nodemask_of_mempolicy
1885 * If the current task's mempolicy is "default" [NULL], return 'false'
1886 * to indicate default policy. Otherwise, extract the policy nodemask
1887 * for 'bind' or 'interleave' policy into the argument nodemask, or
1888 * initialize the argument nodemask to contain the single node for
1889 * 'preferred' or 'local' policy and return 'true' to indicate presence
1890 * of non-default mempolicy.
1892 * We don't bother with reference counting the mempolicy [mpol_get/put]
1893 * because the current task is examining it's own mempolicy and a task's
1894 * mempolicy is only ever changed by the task itself.
1896 * N.B., it is the caller's responsibility to free a returned nodemask.
1898 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1900 struct mempolicy
*mempolicy
;
1903 if (!(mask
&& current
->mempolicy
))
1907 mempolicy
= current
->mempolicy
;
1908 switch (mempolicy
->mode
) {
1909 case MPOL_PREFERRED
:
1910 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1911 nid
= numa_node_id();
1913 nid
= mempolicy
->v
.preferred_node
;
1914 init_nodemask_of_node(mask
, nid
);
1919 case MPOL_INTERLEAVE
:
1920 *mask
= mempolicy
->v
.nodes
;
1926 task_unlock(current
);
1933 * mempolicy_nodemask_intersects
1935 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1936 * policy. Otherwise, check for intersection between mask and the policy
1937 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1938 * policy, always return true since it may allocate elsewhere on fallback.
1940 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1942 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1943 const nodemask_t
*mask
)
1945 struct mempolicy
*mempolicy
;
1951 mempolicy
= tsk
->mempolicy
;
1955 switch (mempolicy
->mode
) {
1956 case MPOL_PREFERRED
:
1958 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1959 * allocate from, they may fallback to other nodes when oom.
1960 * Thus, it's possible for tsk to have allocated memory from
1965 case MPOL_INTERLEAVE
:
1966 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1976 /* Allocate a page in interleaved policy.
1977 Own path because it needs to do special accounting. */
1978 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1981 struct zonelist
*zl
;
1984 zl
= node_zonelist(nid
, gfp
);
1985 page
= __alloc_pages(gfp
, order
, zl
);
1986 if (page
&& page_zone(page
) == zonelist_zone(&zl
->_zonerefs
[0]))
1987 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1992 * alloc_pages_vma - Allocate a page for a VMA.
1995 * %GFP_USER user allocation.
1996 * %GFP_KERNEL kernel allocations,
1997 * %GFP_HIGHMEM highmem/user allocations,
1998 * %GFP_FS allocation should not call back into a file system.
1999 * %GFP_ATOMIC don't sleep.
2001 * @order:Order of the GFP allocation.
2002 * @vma: Pointer to VMA or NULL if not available.
2003 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2005 * This function allocates a page from the kernel page pool and applies
2006 * a NUMA policy associated with the VMA or the current process.
2007 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2008 * mm_struct of the VMA to prevent it from going away. Should be used for
2009 * all allocations for pages that will be mapped into
2010 * user space. Returns NULL when no page can be allocated.
2012 * Should be called with the mm_sem of the vma hold.
2015 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
2016 unsigned long addr
, int node
)
2018 struct mempolicy
*pol
;
2020 unsigned int cpuset_mems_cookie
;
2023 pol
= get_vma_policy(current
, vma
, addr
);
2024 cpuset_mems_cookie
= read_mems_allowed_begin();
2026 if (unlikely(pol
->mode
== MPOL_INTERLEAVE
)) {
2029 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2031 page
= alloc_page_interleave(gfp
, order
, nid
);
2032 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2037 page
= __alloc_pages_nodemask(gfp
, order
,
2038 policy_zonelist(gfp
, pol
, node
),
2039 policy_nodemask(gfp
, pol
));
2040 if (unlikely(mpol_needs_cond_ref(pol
)))
2042 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2048 * alloc_pages_current - Allocate pages.
2051 * %GFP_USER user allocation,
2052 * %GFP_KERNEL kernel allocation,
2053 * %GFP_HIGHMEM highmem allocation,
2054 * %GFP_FS don't call back into a file system.
2055 * %GFP_ATOMIC don't sleep.
2056 * @order: Power of two of allocation size in pages. 0 is a single page.
2058 * Allocate a page from the kernel page pool. When not in
2059 * interrupt context and apply the current process NUMA policy.
2060 * Returns NULL when no page can be allocated.
2062 * Don't call cpuset_update_task_memory_state() unless
2063 * 1) it's ok to take cpuset_sem (can WAIT), and
2064 * 2) allocating for current task (not interrupt).
2066 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2068 struct mempolicy
*pol
= get_task_policy(current
);
2070 unsigned int cpuset_mems_cookie
;
2072 if (!pol
|| in_interrupt() || (gfp
& __GFP_THISNODE
))
2073 pol
= &default_policy
;
2076 cpuset_mems_cookie
= read_mems_allowed_begin();
2079 * No reference counting needed for current->mempolicy
2080 * nor system default_policy
2082 if (pol
->mode
== MPOL_INTERLEAVE
)
2083 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2085 page
= __alloc_pages_nodemask(gfp
, order
,
2086 policy_zonelist(gfp
, pol
, numa_node_id()),
2087 policy_nodemask(gfp
, pol
));
2089 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2094 EXPORT_SYMBOL(alloc_pages_current
);
2096 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2098 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2101 return PTR_ERR(pol
);
2102 dst
->vm_policy
= pol
;
2107 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2108 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2109 * with the mems_allowed returned by cpuset_mems_allowed(). This
2110 * keeps mempolicies cpuset relative after its cpuset moves. See
2111 * further kernel/cpuset.c update_nodemask().
2113 * current's mempolicy may be rebinded by the other task(the task that changes
2114 * cpuset's mems), so we needn't do rebind work for current task.
2117 /* Slow path of a mempolicy duplicate */
2118 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2120 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2123 return ERR_PTR(-ENOMEM
);
2125 /* task's mempolicy is protected by alloc_lock */
2126 if (old
== current
->mempolicy
) {
2129 task_unlock(current
);
2133 if (current_cpuset_is_being_rebound()) {
2134 nodemask_t mems
= cpuset_mems_allowed(current
);
2135 if (new->flags
& MPOL_F_REBINDING
)
2136 mpol_rebind_policy(new, &mems
, MPOL_REBIND_STEP2
);
2138 mpol_rebind_policy(new, &mems
, MPOL_REBIND_ONCE
);
2140 atomic_set(&new->refcnt
, 1);
2144 /* Slow path of a mempolicy comparison */
2145 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2149 if (a
->mode
!= b
->mode
)
2151 if (a
->flags
!= b
->flags
)
2153 if (mpol_store_user_nodemask(a
))
2154 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2160 case MPOL_INTERLEAVE
:
2161 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2162 case MPOL_PREFERRED
:
2163 /* a's ->flags is the same as b's */
2164 if (a
->flags
& MPOL_F_LOCAL
)
2166 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2174 * Shared memory backing store policy support.
2176 * Remember policies even when nobody has shared memory mapped.
2177 * The policies are kept in Red-Black tree linked from the inode.
2178 * They are protected by the sp->lock spinlock, which should be held
2179 * for any accesses to the tree.
2182 /* lookup first element intersecting start-end */
2183 /* Caller holds sp->lock */
2184 static struct sp_node
*
2185 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2187 struct rb_node
*n
= sp
->root
.rb_node
;
2190 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2192 if (start
>= p
->end
)
2194 else if (end
<= p
->start
)
2202 struct sp_node
*w
= NULL
;
2203 struct rb_node
*prev
= rb_prev(n
);
2206 w
= rb_entry(prev
, struct sp_node
, nd
);
2207 if (w
->end
<= start
)
2211 return rb_entry(n
, struct sp_node
, nd
);
2214 /* Insert a new shared policy into the list. */
2215 /* Caller holds sp->lock */
2216 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2218 struct rb_node
**p
= &sp
->root
.rb_node
;
2219 struct rb_node
*parent
= NULL
;
2224 nd
= rb_entry(parent
, struct sp_node
, nd
);
2225 if (new->start
< nd
->start
)
2227 else if (new->end
> nd
->end
)
2228 p
= &(*p
)->rb_right
;
2232 rb_link_node(&new->nd
, parent
, p
);
2233 rb_insert_color(&new->nd
, &sp
->root
);
2234 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2235 new->policy
? new->policy
->mode
: 0);
2238 /* Find shared policy intersecting idx */
2240 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2242 struct mempolicy
*pol
= NULL
;
2245 if (!sp
->root
.rb_node
)
2247 spin_lock(&sp
->lock
);
2248 sn
= sp_lookup(sp
, idx
, idx
+1);
2250 mpol_get(sn
->policy
);
2253 spin_unlock(&sp
->lock
);
2257 static void sp_free(struct sp_node
*n
)
2259 mpol_put(n
->policy
);
2260 kmem_cache_free(sn_cache
, n
);
2264 * mpol_misplaced - check whether current page node is valid in policy
2266 * @page: page to be checked
2267 * @vma: vm area where page mapped
2268 * @addr: virtual address where page mapped
2270 * Lookup current policy node id for vma,addr and "compare to" page's
2274 * -1 - not misplaced, page is in the right node
2275 * node - node id where the page should be
2277 * Policy determination "mimics" alloc_page_vma().
2278 * Called from fault path where we know the vma and faulting address.
2280 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2282 struct mempolicy
*pol
;
2284 int curnid
= page_to_nid(page
);
2285 unsigned long pgoff
;
2286 int thiscpu
= raw_smp_processor_id();
2287 int thisnid
= cpu_to_node(thiscpu
);
2293 pol
= get_vma_policy(current
, vma
, addr
);
2294 if (!(pol
->flags
& MPOL_F_MOF
))
2297 switch (pol
->mode
) {
2298 case MPOL_INTERLEAVE
:
2299 BUG_ON(addr
>= vma
->vm_end
);
2300 BUG_ON(addr
< vma
->vm_start
);
2302 pgoff
= vma
->vm_pgoff
;
2303 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2304 polnid
= offset_il_node(pol
, vma
, pgoff
);
2307 case MPOL_PREFERRED
:
2308 if (pol
->flags
& MPOL_F_LOCAL
)
2309 polnid
= numa_node_id();
2311 polnid
= pol
->v
.preferred_node
;
2316 * allows binding to multiple nodes.
2317 * use current page if in policy nodemask,
2318 * else select nearest allowed node, if any.
2319 * If no allowed nodes, use current [!misplaced].
2321 if (node_isset(curnid
, pol
->v
.nodes
))
2323 (void)first_zones_zonelist(
2324 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2325 gfp_zone(GFP_HIGHUSER
),
2326 &pol
->v
.nodes
, &zone
);
2327 polnid
= zone
->node
;
2334 /* Migrate the page towards the node whose CPU is referencing it */
2335 if (pol
->flags
& MPOL_F_MORON
) {
2338 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2342 if (curnid
!= polnid
)
2350 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2352 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2353 rb_erase(&n
->nd
, &sp
->root
);
2357 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2358 unsigned long end
, struct mempolicy
*pol
)
2360 node
->start
= start
;
2365 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2366 struct mempolicy
*pol
)
2369 struct mempolicy
*newpol
;
2371 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2375 newpol
= mpol_dup(pol
);
2376 if (IS_ERR(newpol
)) {
2377 kmem_cache_free(sn_cache
, n
);
2380 newpol
->flags
|= MPOL_F_SHARED
;
2381 sp_node_init(n
, start
, end
, newpol
);
2386 /* Replace a policy range. */
2387 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2388 unsigned long end
, struct sp_node
*new)
2391 struct sp_node
*n_new
= NULL
;
2392 struct mempolicy
*mpol_new
= NULL
;
2396 spin_lock(&sp
->lock
);
2397 n
= sp_lookup(sp
, start
, end
);
2398 /* Take care of old policies in the same range. */
2399 while (n
&& n
->start
< end
) {
2400 struct rb_node
*next
= rb_next(&n
->nd
);
2401 if (n
->start
>= start
) {
2407 /* Old policy spanning whole new range. */
2412 *mpol_new
= *n
->policy
;
2413 atomic_set(&mpol_new
->refcnt
, 1);
2414 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2416 sp_insert(sp
, n_new
);
2425 n
= rb_entry(next
, struct sp_node
, nd
);
2429 spin_unlock(&sp
->lock
);
2436 kmem_cache_free(sn_cache
, n_new
);
2441 spin_unlock(&sp
->lock
);
2443 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2446 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2453 * mpol_shared_policy_init - initialize shared policy for inode
2454 * @sp: pointer to inode shared policy
2455 * @mpol: struct mempolicy to install
2457 * Install non-NULL @mpol in inode's shared policy rb-tree.
2458 * On entry, the current task has a reference on a non-NULL @mpol.
2459 * This must be released on exit.
2460 * This is called at get_inode() calls and we can use GFP_KERNEL.
2462 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2466 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2467 spin_lock_init(&sp
->lock
);
2470 struct vm_area_struct pvma
;
2471 struct mempolicy
*new;
2472 NODEMASK_SCRATCH(scratch
);
2476 /* contextualize the tmpfs mount point mempolicy */
2477 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2479 goto free_scratch
; /* no valid nodemask intersection */
2482 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2483 task_unlock(current
);
2487 /* Create pseudo-vma that contains just the policy */
2488 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2489 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2490 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2493 mpol_put(new); /* drop initial ref */
2495 NODEMASK_SCRATCH_FREE(scratch
);
2497 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2501 int mpol_set_shared_policy(struct shared_policy
*info
,
2502 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2505 struct sp_node
*new = NULL
;
2506 unsigned long sz
= vma_pages(vma
);
2508 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2510 sz
, npol
? npol
->mode
: -1,
2511 npol
? npol
->flags
: -1,
2512 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2515 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2519 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2525 /* Free a backing policy store on inode delete. */
2526 void mpol_free_shared_policy(struct shared_policy
*p
)
2529 struct rb_node
*next
;
2531 if (!p
->root
.rb_node
)
2533 spin_lock(&p
->lock
);
2534 next
= rb_first(&p
->root
);
2536 n
= rb_entry(next
, struct sp_node
, nd
);
2537 next
= rb_next(&n
->nd
);
2540 spin_unlock(&p
->lock
);
2543 #ifdef CONFIG_NUMA_BALANCING
2544 static int __initdata numabalancing_override
;
2546 static void __init
check_numabalancing_enable(void)
2548 bool numabalancing_default
= false;
2550 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2551 numabalancing_default
= true;
2553 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2554 if (numabalancing_override
)
2555 set_numabalancing_state(numabalancing_override
== 1);
2557 if (num_online_nodes() > 1 && !numabalancing_override
) {
2558 pr_info("%s automatic NUMA balancing. "
2559 "Configure with numa_balancing= or the "
2560 "kernel.numa_balancing sysctl",
2561 numabalancing_default
? "Enabling" : "Disabling");
2562 set_numabalancing_state(numabalancing_default
);
2566 static int __init
setup_numabalancing(char *str
)
2572 if (!strcmp(str
, "enable")) {
2573 numabalancing_override
= 1;
2575 } else if (!strcmp(str
, "disable")) {
2576 numabalancing_override
= -1;
2581 pr_warn("Unable to parse numa_balancing=\n");
2585 __setup("numa_balancing=", setup_numabalancing
);
2587 static inline void __init
check_numabalancing_enable(void)
2590 #endif /* CONFIG_NUMA_BALANCING */
2592 /* assumes fs == KERNEL_DS */
2593 void __init
numa_policy_init(void)
2595 nodemask_t interleave_nodes
;
2596 unsigned long largest
= 0;
2597 int nid
, prefer
= 0;
2599 policy_cache
= kmem_cache_create("numa_policy",
2600 sizeof(struct mempolicy
),
2601 0, SLAB_PANIC
, NULL
);
2603 sn_cache
= kmem_cache_create("shared_policy_node",
2604 sizeof(struct sp_node
),
2605 0, SLAB_PANIC
, NULL
);
2607 for_each_node(nid
) {
2608 preferred_node_policy
[nid
] = (struct mempolicy
) {
2609 .refcnt
= ATOMIC_INIT(1),
2610 .mode
= MPOL_PREFERRED
,
2611 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2612 .v
= { .preferred_node
= nid
, },
2617 * Set interleaving policy for system init. Interleaving is only
2618 * enabled across suitably sized nodes (default is >= 16MB), or
2619 * fall back to the largest node if they're all smaller.
2621 nodes_clear(interleave_nodes
);
2622 for_each_node_state(nid
, N_MEMORY
) {
2623 unsigned long total_pages
= node_present_pages(nid
);
2625 /* Preserve the largest node */
2626 if (largest
< total_pages
) {
2627 largest
= total_pages
;
2631 /* Interleave this node? */
2632 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2633 node_set(nid
, interleave_nodes
);
2636 /* All too small, use the largest */
2637 if (unlikely(nodes_empty(interleave_nodes
)))
2638 node_set(prefer
, interleave_nodes
);
2640 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2641 pr_err("%s: interleaving failed\n", __func__
);
2643 check_numabalancing_enable();
2646 /* Reset policy of current process to default */
2647 void numa_default_policy(void)
2649 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2653 * Parse and format mempolicy from/to strings
2657 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2659 static const char * const policy_modes
[] =
2661 [MPOL_DEFAULT
] = "default",
2662 [MPOL_PREFERRED
] = "prefer",
2663 [MPOL_BIND
] = "bind",
2664 [MPOL_INTERLEAVE
] = "interleave",
2665 [MPOL_LOCAL
] = "local",
2671 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2672 * @str: string containing mempolicy to parse
2673 * @mpol: pointer to struct mempolicy pointer, returned on success.
2676 * <mode>[=<flags>][:<nodelist>]
2678 * On success, returns 0, else 1
2680 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2682 struct mempolicy
*new = NULL
;
2683 unsigned short mode
;
2684 unsigned short mode_flags
;
2686 char *nodelist
= strchr(str
, ':');
2687 char *flags
= strchr(str
, '=');
2691 /* NUL-terminate mode or flags string */
2693 if (nodelist_parse(nodelist
, nodes
))
2695 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2701 *flags
++ = '\0'; /* terminate mode string */
2703 for (mode
= 0; mode
< MPOL_MAX
; mode
++) {
2704 if (!strcmp(str
, policy_modes
[mode
])) {
2708 if (mode
>= MPOL_MAX
)
2712 case MPOL_PREFERRED
:
2714 * Insist on a nodelist of one node only
2717 char *rest
= nodelist
;
2718 while (isdigit(*rest
))
2724 case MPOL_INTERLEAVE
:
2726 * Default to online nodes with memory if no nodelist
2729 nodes
= node_states
[N_MEMORY
];
2733 * Don't allow a nodelist; mpol_new() checks flags
2737 mode
= MPOL_PREFERRED
;
2741 * Insist on a empty nodelist
2748 * Insist on a nodelist
2757 * Currently, we only support two mutually exclusive
2760 if (!strcmp(flags
, "static"))
2761 mode_flags
|= MPOL_F_STATIC_NODES
;
2762 else if (!strcmp(flags
, "relative"))
2763 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2768 new = mpol_new(mode
, mode_flags
, &nodes
);
2773 * Save nodes for mpol_to_str() to show the tmpfs mount options
2774 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2776 if (mode
!= MPOL_PREFERRED
)
2777 new->v
.nodes
= nodes
;
2779 new->v
.preferred_node
= first_node(nodes
);
2781 new->flags
|= MPOL_F_LOCAL
;
2784 * Save nodes for contextualization: this will be used to "clone"
2785 * the mempolicy in a specific context [cpuset] at a later time.
2787 new->w
.user_nodemask
= nodes
;
2792 /* Restore string for error message */
2801 #endif /* CONFIG_TMPFS */
2804 * mpol_to_str - format a mempolicy structure for printing
2805 * @buffer: to contain formatted mempolicy string
2806 * @maxlen: length of @buffer
2807 * @pol: pointer to mempolicy to be formatted
2809 * Convert @pol into a string. If @buffer is too short, truncate the string.
2810 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2811 * longest flag, "relative", and to display at least a few node ids.
2813 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2816 nodemask_t nodes
= NODE_MASK_NONE
;
2817 unsigned short mode
= MPOL_DEFAULT
;
2818 unsigned short flags
= 0;
2820 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2828 case MPOL_PREFERRED
:
2829 if (flags
& MPOL_F_LOCAL
)
2832 node_set(pol
->v
.preferred_node
, nodes
);
2835 case MPOL_INTERLEAVE
:
2836 nodes
= pol
->v
.nodes
;
2840 snprintf(p
, maxlen
, "unknown");
2844 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2846 if (flags
& MPOL_MODE_FLAGS
) {
2847 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2850 * Currently, the only defined flags are mutually exclusive
2852 if (flags
& MPOL_F_STATIC_NODES
)
2853 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2854 else if (flags
& MPOL_F_RELATIVE_NODES
)
2855 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2858 if (!nodes_empty(nodes
)) {
2859 p
+= snprintf(p
, buffer
+ maxlen
- p
, ":");
2860 p
+= nodelist_scnprintf(p
, buffer
+ maxlen
- p
, nodes
);