4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
62 /* Incremented by the number of inactive pages that were scanned */
63 unsigned long nr_scanned
;
65 /* Number of pages freed so far during a call to shrink_zones() */
66 unsigned long nr_reclaimed
;
68 /* How many pages shrink_list() should reclaim */
69 unsigned long nr_to_reclaim
;
71 unsigned long hibernation_mode
;
73 /* This context's GFP mask */
78 /* Can mapped pages be reclaimed? */
81 /* Can pages be swapped as part of reclaim? */
86 /* Scan (total_size >> priority) pages at once */
89 /* anon vs. file LRUs scanning "ratio" */
93 * The memory cgroup that hit its limit and as a result is the
94 * primary target of this reclaim invocation.
96 struct mem_cgroup
*target_mem_cgroup
;
99 * Nodemask of nodes allowed by the caller. If NULL, all nodes
102 nodemask_t
*nodemask
;
105 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107 #ifdef ARCH_HAS_PREFETCH
108 #define prefetch_prev_lru_page(_page, _base, _field) \
110 if ((_page)->lru.prev != _base) { \
113 prev = lru_to_page(&(_page->lru)); \
114 prefetch(&prev->_field); \
118 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
121 #ifdef ARCH_HAS_PREFETCHW
122 #define prefetchw_prev_lru_page(_page, _base, _field) \
124 if ((_page)->lru.prev != _base) { \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetchw(&prev->_field); \
132 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 * From 0 .. 100. Higher means more swappy.
138 int vm_swappiness
= 60;
139 unsigned long vm_total_pages
; /* The total number of pages which the VM controls */
141 static LIST_HEAD(shrinker_list
);
142 static DECLARE_RWSEM(shrinker_rwsem
);
145 static bool global_reclaim(struct scan_control
*sc
)
147 return !sc
->target_mem_cgroup
;
150 static bool global_reclaim(struct scan_control
*sc
)
156 static unsigned long zone_reclaimable_pages(struct zone
*zone
)
160 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
161 zone_page_state(zone
, NR_INACTIVE_FILE
);
163 if (get_nr_swap_pages() > 0)
164 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
165 zone_page_state(zone
, NR_INACTIVE_ANON
);
170 bool zone_reclaimable(struct zone
*zone
)
172 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
175 static unsigned long get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
177 if (!mem_cgroup_disabled())
178 return mem_cgroup_get_lru_size(lruvec
, lru
);
180 return zone_page_state(lruvec_zone(lruvec
), NR_LRU_BASE
+ lru
);
184 * Add a shrinker callback to be called from the vm.
186 int register_shrinker(struct shrinker
*shrinker
)
188 size_t size
= sizeof(*shrinker
->nr_deferred
);
191 * If we only have one possible node in the system anyway, save
192 * ourselves the trouble and disable NUMA aware behavior. This way we
193 * will save memory and some small loop time later.
195 if (nr_node_ids
== 1)
196 shrinker
->flags
&= ~SHRINKER_NUMA_AWARE
;
198 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
201 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
202 if (!shrinker
->nr_deferred
)
205 down_write(&shrinker_rwsem
);
206 list_add_tail(&shrinker
->list
, &shrinker_list
);
207 up_write(&shrinker_rwsem
);
210 EXPORT_SYMBOL(register_shrinker
);
215 void unregister_shrinker(struct shrinker
*shrinker
)
217 down_write(&shrinker_rwsem
);
218 list_del(&shrinker
->list
);
219 up_write(&shrinker_rwsem
);
220 kfree(shrinker
->nr_deferred
);
222 EXPORT_SYMBOL(unregister_shrinker
);
224 #define SHRINK_BATCH 128
227 shrink_slab_node(struct shrink_control
*shrinkctl
, struct shrinker
*shrinker
,
228 unsigned long nr_pages_scanned
, unsigned long lru_pages
)
230 unsigned long freed
= 0;
231 unsigned long long delta
;
236 int nid
= shrinkctl
->nid
;
237 long batch_size
= shrinker
->batch
? shrinker
->batch
240 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
245 * copy the current shrinker scan count into a local variable
246 * and zero it so that other concurrent shrinker invocations
247 * don't also do this scanning work.
249 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
252 delta
= (4 * nr_pages_scanned
) / shrinker
->seeks
;
254 do_div(delta
, lru_pages
+ 1);
256 if (total_scan
< 0) {
258 "shrink_slab: %pF negative objects to delete nr=%ld\n",
259 shrinker
->scan_objects
, total_scan
);
260 total_scan
= freeable
;
264 * We need to avoid excessive windup on filesystem shrinkers
265 * due to large numbers of GFP_NOFS allocations causing the
266 * shrinkers to return -1 all the time. This results in a large
267 * nr being built up so when a shrink that can do some work
268 * comes along it empties the entire cache due to nr >>>
269 * freeable. This is bad for sustaining a working set in
272 * Hence only allow the shrinker to scan the entire cache when
273 * a large delta change is calculated directly.
275 if (delta
< freeable
/ 4)
276 total_scan
= min(total_scan
, freeable
/ 2);
279 * Avoid risking looping forever due to too large nr value:
280 * never try to free more than twice the estimate number of
283 if (total_scan
> freeable
* 2)
284 total_scan
= freeable
* 2;
286 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
287 nr_pages_scanned
, lru_pages
,
288 freeable
, delta
, total_scan
);
291 * Normally, we should not scan less than batch_size objects in one
292 * pass to avoid too frequent shrinker calls, but if the slab has less
293 * than batch_size objects in total and we are really tight on memory,
294 * we will try to reclaim all available objects, otherwise we can end
295 * up failing allocations although there are plenty of reclaimable
296 * objects spread over several slabs with usage less than the
299 * We detect the "tight on memory" situations by looking at the total
300 * number of objects we want to scan (total_scan). If it is greater
301 * than the total number of objects on slab (freeable), we must be
302 * scanning at high prio and therefore should try to reclaim as much as
305 while (total_scan
>= batch_size
||
306 total_scan
>= freeable
) {
308 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
310 shrinkctl
->nr_to_scan
= nr_to_scan
;
311 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
312 if (ret
== SHRINK_STOP
)
316 count_vm_events(SLABS_SCANNED
, nr_to_scan
);
317 total_scan
-= nr_to_scan
;
323 * move the unused scan count back into the shrinker in a
324 * manner that handles concurrent updates. If we exhausted the
325 * scan, there is no need to do an update.
328 new_nr
= atomic_long_add_return(total_scan
,
329 &shrinker
->nr_deferred
[nid
]);
331 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
333 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
338 * Call the shrink functions to age shrinkable caches
340 * Here we assume it costs one seek to replace a lru page and that it also
341 * takes a seek to recreate a cache object. With this in mind we age equal
342 * percentages of the lru and ageable caches. This should balance the seeks
343 * generated by these structures.
345 * If the vm encountered mapped pages on the LRU it increase the pressure on
346 * slab to avoid swapping.
348 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
350 * `lru_pages' represents the number of on-LRU pages in all the zones which
351 * are eligible for the caller's allocation attempt. It is used for balancing
352 * slab reclaim versus page reclaim.
354 * Returns the number of slab objects which we shrunk.
356 unsigned long shrink_slab(struct shrink_control
*shrinkctl
,
357 unsigned long nr_pages_scanned
,
358 unsigned long lru_pages
)
360 struct shrinker
*shrinker
;
361 unsigned long freed
= 0;
363 if (nr_pages_scanned
== 0)
364 nr_pages_scanned
= SWAP_CLUSTER_MAX
;
366 if (!down_read_trylock(&shrinker_rwsem
)) {
368 * If we would return 0, our callers would understand that we
369 * have nothing else to shrink and give up trying. By returning
370 * 1 we keep it going and assume we'll be able to shrink next
377 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
378 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
)) {
380 freed
+= shrink_slab_node(shrinkctl
, shrinker
,
381 nr_pages_scanned
, lru_pages
);
385 for_each_node_mask(shrinkctl
->nid
, shrinkctl
->nodes_to_scan
) {
386 if (node_online(shrinkctl
->nid
))
387 freed
+= shrink_slab_node(shrinkctl
, shrinker
,
388 nr_pages_scanned
, lru_pages
);
392 up_read(&shrinker_rwsem
);
398 static inline int is_page_cache_freeable(struct page
*page
)
401 * A freeable page cache page is referenced only by the caller
402 * that isolated the page, the page cache radix tree and
403 * optional buffer heads at page->private.
405 return page_count(page
) - page_has_private(page
) == 2;
408 static int may_write_to_queue(struct backing_dev_info
*bdi
,
409 struct scan_control
*sc
)
411 if (current
->flags
& PF_SWAPWRITE
)
413 if (!bdi_write_congested(bdi
))
415 if (bdi
== current
->backing_dev_info
)
421 * We detected a synchronous write error writing a page out. Probably
422 * -ENOSPC. We need to propagate that into the address_space for a subsequent
423 * fsync(), msync() or close().
425 * The tricky part is that after writepage we cannot touch the mapping: nothing
426 * prevents it from being freed up. But we have a ref on the page and once
427 * that page is locked, the mapping is pinned.
429 * We're allowed to run sleeping lock_page() here because we know the caller has
432 static void handle_write_error(struct address_space
*mapping
,
433 struct page
*page
, int error
)
436 if (page_mapping(page
) == mapping
)
437 mapping_set_error(mapping
, error
);
441 /* possible outcome of pageout() */
443 /* failed to write page out, page is locked */
445 /* move page to the active list, page is locked */
447 /* page has been sent to the disk successfully, page is unlocked */
449 /* page is clean and locked */
454 * pageout is called by shrink_page_list() for each dirty page.
455 * Calls ->writepage().
457 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
458 struct scan_control
*sc
)
461 * If the page is dirty, only perform writeback if that write
462 * will be non-blocking. To prevent this allocation from being
463 * stalled by pagecache activity. But note that there may be
464 * stalls if we need to run get_block(). We could test
465 * PagePrivate for that.
467 * If this process is currently in __generic_file_write_iter() against
468 * this page's queue, we can perform writeback even if that
471 * If the page is swapcache, write it back even if that would
472 * block, for some throttling. This happens by accident, because
473 * swap_backing_dev_info is bust: it doesn't reflect the
474 * congestion state of the swapdevs. Easy to fix, if needed.
476 if (!is_page_cache_freeable(page
))
480 * Some data journaling orphaned pages can have
481 * page->mapping == NULL while being dirty with clean buffers.
483 if (page_has_private(page
)) {
484 if (try_to_free_buffers(page
)) {
485 ClearPageDirty(page
);
486 pr_info("%s: orphaned page\n", __func__
);
492 if (mapping
->a_ops
->writepage
== NULL
)
493 return PAGE_ACTIVATE
;
494 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
497 if (clear_page_dirty_for_io(page
)) {
499 struct writeback_control wbc
= {
500 .sync_mode
= WB_SYNC_NONE
,
501 .nr_to_write
= SWAP_CLUSTER_MAX
,
503 .range_end
= LLONG_MAX
,
507 SetPageReclaim(page
);
508 res
= mapping
->a_ops
->writepage(page
, &wbc
);
510 handle_write_error(mapping
, page
, res
);
511 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
512 ClearPageReclaim(page
);
513 return PAGE_ACTIVATE
;
516 if (!PageWriteback(page
)) {
517 /* synchronous write or broken a_ops? */
518 ClearPageReclaim(page
);
520 trace_mm_vmscan_writepage(page
, trace_reclaim_flags(page
));
521 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
529 * Same as remove_mapping, but if the page is removed from the mapping, it
530 * gets returned with a refcount of 0.
532 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
535 BUG_ON(!PageLocked(page
));
536 BUG_ON(mapping
!= page_mapping(page
));
538 spin_lock_irq(&mapping
->tree_lock
);
540 * The non racy check for a busy page.
542 * Must be careful with the order of the tests. When someone has
543 * a ref to the page, it may be possible that they dirty it then
544 * drop the reference. So if PageDirty is tested before page_count
545 * here, then the following race may occur:
547 * get_user_pages(&page);
548 * [user mapping goes away]
550 * !PageDirty(page) [good]
551 * SetPageDirty(page);
553 * !page_count(page) [good, discard it]
555 * [oops, our write_to data is lost]
557 * Reversing the order of the tests ensures such a situation cannot
558 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
559 * load is not satisfied before that of page->_count.
561 * Note that if SetPageDirty is always performed via set_page_dirty,
562 * and thus under tree_lock, then this ordering is not required.
564 if (!page_freeze_refs(page
, 2))
566 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
567 if (unlikely(PageDirty(page
))) {
568 page_unfreeze_refs(page
, 2);
572 if (PageSwapCache(page
)) {
573 swp_entry_t swap
= { .val
= page_private(page
) };
574 __delete_from_swap_cache(page
);
575 spin_unlock_irq(&mapping
->tree_lock
);
576 swapcache_free(swap
, page
);
578 void (*freepage
)(struct page
*);
581 freepage
= mapping
->a_ops
->freepage
;
583 * Remember a shadow entry for reclaimed file cache in
584 * order to detect refaults, thus thrashing, later on.
586 * But don't store shadows in an address space that is
587 * already exiting. This is not just an optizimation,
588 * inode reclaim needs to empty out the radix tree or
589 * the nodes are lost. Don't plant shadows behind its
592 if (reclaimed
&& page_is_file_cache(page
) &&
593 !mapping_exiting(mapping
))
594 shadow
= workingset_eviction(mapping
, page
);
595 __delete_from_page_cache(page
, shadow
);
596 spin_unlock_irq(&mapping
->tree_lock
);
597 mem_cgroup_uncharge_cache_page(page
);
599 if (freepage
!= NULL
)
606 spin_unlock_irq(&mapping
->tree_lock
);
611 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
612 * someone else has a ref on the page, abort and return 0. If it was
613 * successfully detached, return 1. Assumes the caller has a single ref on
616 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
618 if (__remove_mapping(mapping
, page
, false)) {
620 * Unfreezing the refcount with 1 rather than 2 effectively
621 * drops the pagecache ref for us without requiring another
624 page_unfreeze_refs(page
, 1);
631 * putback_lru_page - put previously isolated page onto appropriate LRU list
632 * @page: page to be put back to appropriate lru list
634 * Add previously isolated @page to appropriate LRU list.
635 * Page may still be unevictable for other reasons.
637 * lru_lock must not be held, interrupts must be enabled.
639 void putback_lru_page(struct page
*page
)
642 int was_unevictable
= PageUnevictable(page
);
644 VM_BUG_ON_PAGE(PageLRU(page
), page
);
647 ClearPageUnevictable(page
);
649 if (page_evictable(page
)) {
651 * For evictable pages, we can use the cache.
652 * In event of a race, worst case is we end up with an
653 * unevictable page on [in]active list.
654 * We know how to handle that.
656 is_unevictable
= false;
660 * Put unevictable pages directly on zone's unevictable
663 is_unevictable
= true;
664 add_page_to_unevictable_list(page
);
666 * When racing with an mlock or AS_UNEVICTABLE clearing
667 * (page is unlocked) make sure that if the other thread
668 * does not observe our setting of PG_lru and fails
669 * isolation/check_move_unevictable_pages,
670 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
671 * the page back to the evictable list.
673 * The other side is TestClearPageMlocked() or shmem_lock().
679 * page's status can change while we move it among lru. If an evictable
680 * page is on unevictable list, it never be freed. To avoid that,
681 * check after we added it to the list, again.
683 if (is_unevictable
&& page_evictable(page
)) {
684 if (!isolate_lru_page(page
)) {
688 /* This means someone else dropped this page from LRU
689 * So, it will be freed or putback to LRU again. There is
690 * nothing to do here.
694 if (was_unevictable
&& !is_unevictable
)
695 count_vm_event(UNEVICTABLE_PGRESCUED
);
696 else if (!was_unevictable
&& is_unevictable
)
697 count_vm_event(UNEVICTABLE_PGCULLED
);
699 put_page(page
); /* drop ref from isolate */
702 enum page_references
{
704 PAGEREF_RECLAIM_CLEAN
,
709 static enum page_references
page_check_references(struct page
*page
,
710 struct scan_control
*sc
)
712 int referenced_ptes
, referenced_page
;
713 unsigned long vm_flags
;
715 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
717 referenced_page
= TestClearPageReferenced(page
);
720 * Mlock lost the isolation race with us. Let try_to_unmap()
721 * move the page to the unevictable list.
723 if (vm_flags
& VM_LOCKED
)
724 return PAGEREF_RECLAIM
;
726 if (referenced_ptes
) {
727 if (PageSwapBacked(page
))
728 return PAGEREF_ACTIVATE
;
730 * All mapped pages start out with page table
731 * references from the instantiating fault, so we need
732 * to look twice if a mapped file page is used more
735 * Mark it and spare it for another trip around the
736 * inactive list. Another page table reference will
737 * lead to its activation.
739 * Note: the mark is set for activated pages as well
740 * so that recently deactivated but used pages are
743 SetPageReferenced(page
);
745 if (referenced_page
|| referenced_ptes
> 1)
746 return PAGEREF_ACTIVATE
;
749 * Activate file-backed executable pages after first usage.
751 if (vm_flags
& VM_EXEC
)
752 return PAGEREF_ACTIVATE
;
757 /* Reclaim if clean, defer dirty pages to writeback */
758 if (referenced_page
&& !PageSwapBacked(page
))
759 return PAGEREF_RECLAIM_CLEAN
;
761 return PAGEREF_RECLAIM
;
764 /* Check if a page is dirty or under writeback */
765 static void page_check_dirty_writeback(struct page
*page
,
766 bool *dirty
, bool *writeback
)
768 struct address_space
*mapping
;
771 * Anonymous pages are not handled by flushers and must be written
772 * from reclaim context. Do not stall reclaim based on them
774 if (!page_is_file_cache(page
)) {
780 /* By default assume that the page flags are accurate */
781 *dirty
= PageDirty(page
);
782 *writeback
= PageWriteback(page
);
784 /* Verify dirty/writeback state if the filesystem supports it */
785 if (!page_has_private(page
))
788 mapping
= page_mapping(page
);
789 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
790 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
794 * shrink_page_list() returns the number of reclaimed pages
796 static unsigned long shrink_page_list(struct list_head
*page_list
,
798 struct scan_control
*sc
,
799 enum ttu_flags ttu_flags
,
800 unsigned long *ret_nr_dirty
,
801 unsigned long *ret_nr_unqueued_dirty
,
802 unsigned long *ret_nr_congested
,
803 unsigned long *ret_nr_writeback
,
804 unsigned long *ret_nr_immediate
,
807 LIST_HEAD(ret_pages
);
808 LIST_HEAD(free_pages
);
810 unsigned long nr_unqueued_dirty
= 0;
811 unsigned long nr_dirty
= 0;
812 unsigned long nr_congested
= 0;
813 unsigned long nr_reclaimed
= 0;
814 unsigned long nr_writeback
= 0;
815 unsigned long nr_immediate
= 0;
819 mem_cgroup_uncharge_start();
820 while (!list_empty(page_list
)) {
821 struct address_space
*mapping
;
824 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
825 bool dirty
, writeback
;
829 page
= lru_to_page(page_list
);
830 list_del(&page
->lru
);
832 if (!trylock_page(page
))
835 VM_BUG_ON_PAGE(PageActive(page
), page
);
836 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
840 if (unlikely(!page_evictable(page
)))
843 if (!sc
->may_unmap
&& page_mapped(page
))
846 /* Double the slab pressure for mapped and swapcache pages */
847 if (page_mapped(page
) || PageSwapCache(page
))
850 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
851 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
854 * The number of dirty pages determines if a zone is marked
855 * reclaim_congested which affects wait_iff_congested. kswapd
856 * will stall and start writing pages if the tail of the LRU
857 * is all dirty unqueued pages.
859 page_check_dirty_writeback(page
, &dirty
, &writeback
);
860 if (dirty
|| writeback
)
863 if (dirty
&& !writeback
)
867 * Treat this page as congested if the underlying BDI is or if
868 * pages are cycling through the LRU so quickly that the
869 * pages marked for immediate reclaim are making it to the
870 * end of the LRU a second time.
872 mapping
= page_mapping(page
);
873 if ((mapping
&& bdi_write_congested(mapping
->backing_dev_info
)) ||
874 (writeback
&& PageReclaim(page
)))
878 * If a page at the tail of the LRU is under writeback, there
879 * are three cases to consider.
881 * 1) If reclaim is encountering an excessive number of pages
882 * under writeback and this page is both under writeback and
883 * PageReclaim then it indicates that pages are being queued
884 * for IO but are being recycled through the LRU before the
885 * IO can complete. Waiting on the page itself risks an
886 * indefinite stall if it is impossible to writeback the
887 * page due to IO error or disconnected storage so instead
888 * note that the LRU is being scanned too quickly and the
889 * caller can stall after page list has been processed.
891 * 2) Global reclaim encounters a page, memcg encounters a
892 * page that is not marked for immediate reclaim or
893 * the caller does not have __GFP_FS (or __GFP_IO if it's
894 * simply going to swap, not to fs). In this case mark
895 * the page for immediate reclaim and continue scanning.
897 * Require may_enter_fs because we would wait on fs, which
898 * may not have submitted IO yet. And the loop driver might
899 * enter reclaim, and deadlock if it waits on a page for
900 * which it is needed to do the write (loop masks off
901 * __GFP_IO|__GFP_FS for this reason); but more thought
902 * would probably show more reasons.
904 * 3) memcg encounters a page that is not already marked
905 * PageReclaim. memcg does not have any dirty pages
906 * throttling so we could easily OOM just because too many
907 * pages are in writeback and there is nothing else to
908 * reclaim. Wait for the writeback to complete.
910 if (PageWriteback(page
)) {
912 if (current_is_kswapd() &&
914 zone_is_reclaim_writeback(zone
)) {
919 } else if (global_reclaim(sc
) ||
920 !PageReclaim(page
) || !may_enter_fs
) {
922 * This is slightly racy - end_page_writeback()
923 * might have just cleared PageReclaim, then
924 * setting PageReclaim here end up interpreted
925 * as PageReadahead - but that does not matter
926 * enough to care. What we do want is for this
927 * page to have PageReclaim set next time memcg
928 * reclaim reaches the tests above, so it will
929 * then wait_on_page_writeback() to avoid OOM;
930 * and it's also appropriate in global reclaim.
932 SetPageReclaim(page
);
939 wait_on_page_writeback(page
);
944 references
= page_check_references(page
, sc
);
946 switch (references
) {
947 case PAGEREF_ACTIVATE
:
948 goto activate_locked
;
951 case PAGEREF_RECLAIM
:
952 case PAGEREF_RECLAIM_CLEAN
:
953 ; /* try to reclaim the page below */
957 * Anonymous process memory has backing store?
958 * Try to allocate it some swap space here.
960 if (PageAnon(page
) && !PageSwapCache(page
)) {
961 if (!(sc
->gfp_mask
& __GFP_IO
))
963 if (!add_to_swap(page
, page_list
))
964 goto activate_locked
;
967 /* Adding to swap updated mapping */
968 mapping
= page_mapping(page
);
972 * The page is mapped into the page tables of one or more
973 * processes. Try to unmap it here.
975 if (page_mapped(page
) && mapping
) {
976 switch (try_to_unmap(page
, ttu_flags
)) {
978 goto activate_locked
;
984 ; /* try to free the page below */
988 if (PageDirty(page
)) {
990 * Only kswapd can writeback filesystem pages to
991 * avoid risk of stack overflow but only writeback
992 * if many dirty pages have been encountered.
994 if (page_is_file_cache(page
) &&
995 (!current_is_kswapd() ||
996 !zone_is_reclaim_dirty(zone
))) {
998 * Immediately reclaim when written back.
999 * Similar in principal to deactivate_page()
1000 * except we already have the page isolated
1001 * and know it's dirty
1003 inc_zone_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1004 SetPageReclaim(page
);
1009 if (references
== PAGEREF_RECLAIM_CLEAN
)
1013 if (!sc
->may_writepage
)
1016 /* Page is dirty, try to write it out here */
1017 switch (pageout(page
, mapping
, sc
)) {
1021 goto activate_locked
;
1023 if (PageWriteback(page
))
1025 if (PageDirty(page
))
1029 * A synchronous write - probably a ramdisk. Go
1030 * ahead and try to reclaim the page.
1032 if (!trylock_page(page
))
1034 if (PageDirty(page
) || PageWriteback(page
))
1036 mapping
= page_mapping(page
);
1038 ; /* try to free the page below */
1043 * If the page has buffers, try to free the buffer mappings
1044 * associated with this page. If we succeed we try to free
1047 * We do this even if the page is PageDirty().
1048 * try_to_release_page() does not perform I/O, but it is
1049 * possible for a page to have PageDirty set, but it is actually
1050 * clean (all its buffers are clean). This happens if the
1051 * buffers were written out directly, with submit_bh(). ext3
1052 * will do this, as well as the blockdev mapping.
1053 * try_to_release_page() will discover that cleanness and will
1054 * drop the buffers and mark the page clean - it can be freed.
1056 * Rarely, pages can have buffers and no ->mapping. These are
1057 * the pages which were not successfully invalidated in
1058 * truncate_complete_page(). We try to drop those buffers here
1059 * and if that worked, and the page is no longer mapped into
1060 * process address space (page_count == 1) it can be freed.
1061 * Otherwise, leave the page on the LRU so it is swappable.
1063 if (page_has_private(page
)) {
1064 if (!try_to_release_page(page
, sc
->gfp_mask
))
1065 goto activate_locked
;
1066 if (!mapping
&& page_count(page
) == 1) {
1068 if (put_page_testzero(page
))
1072 * rare race with speculative reference.
1073 * the speculative reference will free
1074 * this page shortly, so we may
1075 * increment nr_reclaimed here (and
1076 * leave it off the LRU).
1084 if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1088 * At this point, we have no other references and there is
1089 * no way to pick any more up (removed from LRU, removed
1090 * from pagecache). Can use non-atomic bitops now (and
1091 * we obviously don't have to worry about waking up a process
1092 * waiting on the page lock, because there are no references.
1094 __clear_page_locked(page
);
1099 * Is there need to periodically free_page_list? It would
1100 * appear not as the counts should be low
1102 list_add(&page
->lru
, &free_pages
);
1106 if (PageSwapCache(page
))
1107 try_to_free_swap(page
);
1109 list_add(&page
->lru
, &ret_pages
);
1113 /* Not a candidate for swapping, so reclaim swap space. */
1114 if (PageSwapCache(page
) && vm_swap_full())
1115 try_to_free_swap(page
);
1116 VM_BUG_ON_PAGE(PageActive(page
), page
);
1117 SetPageActive(page
);
1122 list_add(&page
->lru
, &ret_pages
);
1123 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1126 free_hot_cold_page_list(&free_pages
, true);
1128 list_splice(&ret_pages
, page_list
);
1129 count_vm_events(PGACTIVATE
, pgactivate
);
1130 mem_cgroup_uncharge_end();
1131 *ret_nr_dirty
+= nr_dirty
;
1132 *ret_nr_congested
+= nr_congested
;
1133 *ret_nr_unqueued_dirty
+= nr_unqueued_dirty
;
1134 *ret_nr_writeback
+= nr_writeback
;
1135 *ret_nr_immediate
+= nr_immediate
;
1136 return nr_reclaimed
;
1139 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1140 struct list_head
*page_list
)
1142 struct scan_control sc
= {
1143 .gfp_mask
= GFP_KERNEL
,
1144 .priority
= DEF_PRIORITY
,
1147 unsigned long ret
, dummy1
, dummy2
, dummy3
, dummy4
, dummy5
;
1148 struct page
*page
, *next
;
1149 LIST_HEAD(clean_pages
);
1151 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1152 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1153 !isolated_balloon_page(page
)) {
1154 ClearPageActive(page
);
1155 list_move(&page
->lru
, &clean_pages
);
1159 ret
= shrink_page_list(&clean_pages
, zone
, &sc
,
1160 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
1161 &dummy1
, &dummy2
, &dummy3
, &dummy4
, &dummy5
, true);
1162 list_splice(&clean_pages
, page_list
);
1163 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -ret
);
1168 * Attempt to remove the specified page from its LRU. Only take this page
1169 * if it is of the appropriate PageActive status. Pages which are being
1170 * freed elsewhere are also ignored.
1172 * page: page to consider
1173 * mode: one of the LRU isolation modes defined above
1175 * returns 0 on success, -ve errno on failure.
1177 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1181 /* Only take pages on the LRU. */
1185 /* Compaction should not handle unevictable pages but CMA can do so */
1186 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1192 * To minimise LRU disruption, the caller can indicate that it only
1193 * wants to isolate pages it will be able to operate on without
1194 * blocking - clean pages for the most part.
1196 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1197 * is used by reclaim when it is cannot write to backing storage
1199 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1200 * that it is possible to migrate without blocking
1202 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1203 /* All the caller can do on PageWriteback is block */
1204 if (PageWriteback(page
))
1207 if (PageDirty(page
)) {
1208 struct address_space
*mapping
;
1211 /* ISOLATE_CLEAN means only clean pages */
1212 if (mode
& ISOLATE_CLEAN
)
1216 * Only pages without mappings or that have a
1217 * ->migratepage callback are possible to migrate
1218 * without blocking. However, we can be racing with
1219 * truncation so it's necessary to lock the page
1220 * to stabilise the mapping as truncation holds
1221 * the page lock until after the page is removed
1222 * from the page cache.
1224 if (!trylock_page(page
))
1227 mapping
= page_mapping(page
);
1228 migrate_dirty
= !mapping
|| mapping
->a_ops
->migratepage
;
1235 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1238 if (likely(get_page_unless_zero(page
))) {
1240 * Be careful not to clear PageLRU until after we're
1241 * sure the page is not being freed elsewhere -- the
1242 * page release code relies on it.
1252 * zone->lru_lock is heavily contended. Some of the functions that
1253 * shrink the lists perform better by taking out a batch of pages
1254 * and working on them outside the LRU lock.
1256 * For pagecache intensive workloads, this function is the hottest
1257 * spot in the kernel (apart from copy_*_user functions).
1259 * Appropriate locks must be held before calling this function.
1261 * @nr_to_scan: The number of pages to look through on the list.
1262 * @lruvec: The LRU vector to pull pages from.
1263 * @dst: The temp list to put pages on to.
1264 * @nr_scanned: The number of pages that were scanned.
1265 * @sc: The scan_control struct for this reclaim session
1266 * @mode: One of the LRU isolation modes
1267 * @lru: LRU list id for isolating
1269 * returns how many pages were moved onto *@dst.
1271 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1272 struct lruvec
*lruvec
, struct list_head
*dst
,
1273 unsigned long *nr_scanned
, struct scan_control
*sc
,
1274 isolate_mode_t mode
, enum lru_list lru
)
1276 struct list_head
*src
= &lruvec
->lists
[lru
];
1277 unsigned long nr_taken
= 0;
1280 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1284 page
= lru_to_page(src
);
1285 prefetchw_prev_lru_page(page
, src
, flags
);
1287 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1289 switch (__isolate_lru_page(page
, mode
)) {
1291 nr_pages
= hpage_nr_pages(page
);
1292 mem_cgroup_update_lru_size(lruvec
, lru
, -nr_pages
);
1293 list_move(&page
->lru
, dst
);
1294 nr_taken
+= nr_pages
;
1298 /* else it is being freed elsewhere */
1299 list_move(&page
->lru
, src
);
1308 trace_mm_vmscan_lru_isolate(sc
->order
, nr_to_scan
, scan
,
1309 nr_taken
, mode
, is_file_lru(lru
));
1314 * isolate_lru_page - tries to isolate a page from its LRU list
1315 * @page: page to isolate from its LRU list
1317 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1318 * vmstat statistic corresponding to whatever LRU list the page was on.
1320 * Returns 0 if the page was removed from an LRU list.
1321 * Returns -EBUSY if the page was not on an LRU list.
1323 * The returned page will have PageLRU() cleared. If it was found on
1324 * the active list, it will have PageActive set. If it was found on
1325 * the unevictable list, it will have the PageUnevictable bit set. That flag
1326 * may need to be cleared by the caller before letting the page go.
1328 * The vmstat statistic corresponding to the list on which the page was
1329 * found will be decremented.
1332 * (1) Must be called with an elevated refcount on the page. This is a
1333 * fundamentnal difference from isolate_lru_pages (which is called
1334 * without a stable reference).
1335 * (2) the lru_lock must not be held.
1336 * (3) interrupts must be enabled.
1338 int isolate_lru_page(struct page
*page
)
1342 VM_BUG_ON_PAGE(!page_count(page
), page
);
1344 if (PageLRU(page
)) {
1345 struct zone
*zone
= page_zone(page
);
1346 struct lruvec
*lruvec
;
1348 spin_lock_irq(&zone
->lru_lock
);
1349 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1350 if (PageLRU(page
)) {
1351 int lru
= page_lru(page
);
1354 del_page_from_lru_list(page
, lruvec
, lru
);
1357 spin_unlock_irq(&zone
->lru_lock
);
1363 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1364 * then get resheduled. When there are massive number of tasks doing page
1365 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1366 * the LRU list will go small and be scanned faster than necessary, leading to
1367 * unnecessary swapping, thrashing and OOM.
1369 static int too_many_isolated(struct zone
*zone
, int file
,
1370 struct scan_control
*sc
)
1372 unsigned long inactive
, isolated
;
1374 if (current_is_kswapd())
1377 if (!global_reclaim(sc
))
1381 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1382 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1384 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1385 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1389 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1390 * won't get blocked by normal direct-reclaimers, forming a circular
1393 if ((sc
->gfp_mask
& GFP_IOFS
) == GFP_IOFS
)
1396 return isolated
> inactive
;
1399 static noinline_for_stack
void
1400 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1402 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1403 struct zone
*zone
= lruvec_zone(lruvec
);
1404 LIST_HEAD(pages_to_free
);
1407 * Put back any unfreeable pages.
1409 while (!list_empty(page_list
)) {
1410 struct page
*page
= lru_to_page(page_list
);
1413 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1414 list_del(&page
->lru
);
1415 if (unlikely(!page_evictable(page
))) {
1416 spin_unlock_irq(&zone
->lru_lock
);
1417 putback_lru_page(page
);
1418 spin_lock_irq(&zone
->lru_lock
);
1422 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1425 lru
= page_lru(page
);
1426 add_page_to_lru_list(page
, lruvec
, lru
);
1428 if (is_active_lru(lru
)) {
1429 int file
= is_file_lru(lru
);
1430 int numpages
= hpage_nr_pages(page
);
1431 reclaim_stat
->recent_rotated
[file
] += numpages
;
1433 if (put_page_testzero(page
)) {
1434 __ClearPageLRU(page
);
1435 __ClearPageActive(page
);
1436 del_page_from_lru_list(page
, lruvec
, lru
);
1438 if (unlikely(PageCompound(page
))) {
1439 spin_unlock_irq(&zone
->lru_lock
);
1440 (*get_compound_page_dtor(page
))(page
);
1441 spin_lock_irq(&zone
->lru_lock
);
1443 list_add(&page
->lru
, &pages_to_free
);
1448 * To save our caller's stack, now use input list for pages to free.
1450 list_splice(&pages_to_free
, page_list
);
1454 * If a kernel thread (such as nfsd for loop-back mounts) services
1455 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1456 * In that case we should only throttle if the backing device it is
1457 * writing to is congested. In other cases it is safe to throttle.
1459 static int current_may_throttle(void)
1461 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1462 current
->backing_dev_info
== NULL
||
1463 bdi_write_congested(current
->backing_dev_info
);
1467 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1468 * of reclaimed pages
1470 static noinline_for_stack
unsigned long
1471 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1472 struct scan_control
*sc
, enum lru_list lru
)
1474 LIST_HEAD(page_list
);
1475 unsigned long nr_scanned
;
1476 unsigned long nr_reclaimed
= 0;
1477 unsigned long nr_taken
;
1478 unsigned long nr_dirty
= 0;
1479 unsigned long nr_congested
= 0;
1480 unsigned long nr_unqueued_dirty
= 0;
1481 unsigned long nr_writeback
= 0;
1482 unsigned long nr_immediate
= 0;
1483 isolate_mode_t isolate_mode
= 0;
1484 int file
= is_file_lru(lru
);
1485 struct zone
*zone
= lruvec_zone(lruvec
);
1486 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1488 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1489 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1491 /* We are about to die and free our memory. Return now. */
1492 if (fatal_signal_pending(current
))
1493 return SWAP_CLUSTER_MAX
;
1499 isolate_mode
|= ISOLATE_UNMAPPED
;
1500 if (!sc
->may_writepage
)
1501 isolate_mode
|= ISOLATE_CLEAN
;
1503 spin_lock_irq(&zone
->lru_lock
);
1505 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1506 &nr_scanned
, sc
, isolate_mode
, lru
);
1508 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1509 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1511 if (global_reclaim(sc
)) {
1512 zone
->pages_scanned
+= nr_scanned
;
1513 if (current_is_kswapd())
1514 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scanned
);
1516 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scanned
);
1518 spin_unlock_irq(&zone
->lru_lock
);
1523 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
, TTU_UNMAP
,
1524 &nr_dirty
, &nr_unqueued_dirty
, &nr_congested
,
1525 &nr_writeback
, &nr_immediate
,
1528 spin_lock_irq(&zone
->lru_lock
);
1530 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1532 if (global_reclaim(sc
)) {
1533 if (current_is_kswapd())
1534 __count_zone_vm_events(PGSTEAL_KSWAPD
, zone
,
1537 __count_zone_vm_events(PGSTEAL_DIRECT
, zone
,
1541 putback_inactive_pages(lruvec
, &page_list
);
1543 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1545 spin_unlock_irq(&zone
->lru_lock
);
1547 free_hot_cold_page_list(&page_list
, true);
1550 * If reclaim is isolating dirty pages under writeback, it implies
1551 * that the long-lived page allocation rate is exceeding the page
1552 * laundering rate. Either the global limits are not being effective
1553 * at throttling processes due to the page distribution throughout
1554 * zones or there is heavy usage of a slow backing device. The
1555 * only option is to throttle from reclaim context which is not ideal
1556 * as there is no guarantee the dirtying process is throttled in the
1557 * same way balance_dirty_pages() manages.
1559 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1560 * of pages under pages flagged for immediate reclaim and stall if any
1561 * are encountered in the nr_immediate check below.
1563 if (nr_writeback
&& nr_writeback
== nr_taken
)
1564 zone_set_flag(zone
, ZONE_WRITEBACK
);
1567 * memcg will stall in page writeback so only consider forcibly
1568 * stalling for global reclaim
1570 if (global_reclaim(sc
)) {
1572 * Tag a zone as congested if all the dirty pages scanned were
1573 * backed by a congested BDI and wait_iff_congested will stall.
1575 if (nr_dirty
&& nr_dirty
== nr_congested
)
1576 zone_set_flag(zone
, ZONE_CONGESTED
);
1579 * If dirty pages are scanned that are not queued for IO, it
1580 * implies that flushers are not keeping up. In this case, flag
1581 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1582 * pages from reclaim context.
1584 if (nr_unqueued_dirty
== nr_taken
)
1585 zone_set_flag(zone
, ZONE_TAIL_LRU_DIRTY
);
1588 * If kswapd scans pages marked marked for immediate
1589 * reclaim and under writeback (nr_immediate), it implies
1590 * that pages are cycling through the LRU faster than
1591 * they are written so also forcibly stall.
1593 if (nr_immediate
&& current_may_throttle())
1594 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1598 * Stall direct reclaim for IO completions if underlying BDIs or zone
1599 * is congested. Allow kswapd to continue until it starts encountering
1600 * unqueued dirty pages or cycling through the LRU too quickly.
1602 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1603 current_may_throttle())
1604 wait_iff_congested(zone
, BLK_RW_ASYNC
, HZ
/10);
1606 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1608 nr_scanned
, nr_reclaimed
,
1610 trace_shrink_flags(file
));
1611 return nr_reclaimed
;
1615 * This moves pages from the active list to the inactive list.
1617 * We move them the other way if the page is referenced by one or more
1618 * processes, from rmap.
1620 * If the pages are mostly unmapped, the processing is fast and it is
1621 * appropriate to hold zone->lru_lock across the whole operation. But if
1622 * the pages are mapped, the processing is slow (page_referenced()) so we
1623 * should drop zone->lru_lock around each page. It's impossible to balance
1624 * this, so instead we remove the pages from the LRU while processing them.
1625 * It is safe to rely on PG_active against the non-LRU pages in here because
1626 * nobody will play with that bit on a non-LRU page.
1628 * The downside is that we have to touch page->_count against each page.
1629 * But we had to alter page->flags anyway.
1632 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1633 struct list_head
*list
,
1634 struct list_head
*pages_to_free
,
1637 struct zone
*zone
= lruvec_zone(lruvec
);
1638 unsigned long pgmoved
= 0;
1642 while (!list_empty(list
)) {
1643 page
= lru_to_page(list
);
1644 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1646 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1649 nr_pages
= hpage_nr_pages(page
);
1650 mem_cgroup_update_lru_size(lruvec
, lru
, nr_pages
);
1651 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1652 pgmoved
+= nr_pages
;
1654 if (put_page_testzero(page
)) {
1655 __ClearPageLRU(page
);
1656 __ClearPageActive(page
);
1657 del_page_from_lru_list(page
, lruvec
, lru
);
1659 if (unlikely(PageCompound(page
))) {
1660 spin_unlock_irq(&zone
->lru_lock
);
1661 (*get_compound_page_dtor(page
))(page
);
1662 spin_lock_irq(&zone
->lru_lock
);
1664 list_add(&page
->lru
, pages_to_free
);
1667 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1668 if (!is_active_lru(lru
))
1669 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1672 static void shrink_active_list(unsigned long nr_to_scan
,
1673 struct lruvec
*lruvec
,
1674 struct scan_control
*sc
,
1677 unsigned long nr_taken
;
1678 unsigned long nr_scanned
;
1679 unsigned long vm_flags
;
1680 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1681 LIST_HEAD(l_active
);
1682 LIST_HEAD(l_inactive
);
1684 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1685 unsigned long nr_rotated
= 0;
1686 isolate_mode_t isolate_mode
= 0;
1687 int file
= is_file_lru(lru
);
1688 struct zone
*zone
= lruvec_zone(lruvec
);
1693 isolate_mode
|= ISOLATE_UNMAPPED
;
1694 if (!sc
->may_writepage
)
1695 isolate_mode
|= ISOLATE_CLEAN
;
1697 spin_lock_irq(&zone
->lru_lock
);
1699 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1700 &nr_scanned
, sc
, isolate_mode
, lru
);
1701 if (global_reclaim(sc
))
1702 zone
->pages_scanned
+= nr_scanned
;
1704 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1706 __count_zone_vm_events(PGREFILL
, zone
, nr_scanned
);
1707 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1708 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1709 spin_unlock_irq(&zone
->lru_lock
);
1711 while (!list_empty(&l_hold
)) {
1713 page
= lru_to_page(&l_hold
);
1714 list_del(&page
->lru
);
1716 if (unlikely(!page_evictable(page
))) {
1717 putback_lru_page(page
);
1721 if (unlikely(buffer_heads_over_limit
)) {
1722 if (page_has_private(page
) && trylock_page(page
)) {
1723 if (page_has_private(page
))
1724 try_to_release_page(page
, 0);
1729 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1731 nr_rotated
+= hpage_nr_pages(page
);
1733 * Identify referenced, file-backed active pages and
1734 * give them one more trip around the active list. So
1735 * that executable code get better chances to stay in
1736 * memory under moderate memory pressure. Anon pages
1737 * are not likely to be evicted by use-once streaming
1738 * IO, plus JVM can create lots of anon VM_EXEC pages,
1739 * so we ignore them here.
1741 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1742 list_add(&page
->lru
, &l_active
);
1747 ClearPageActive(page
); /* we are de-activating */
1748 list_add(&page
->lru
, &l_inactive
);
1752 * Move pages back to the lru list.
1754 spin_lock_irq(&zone
->lru_lock
);
1756 * Count referenced pages from currently used mappings as rotated,
1757 * even though only some of them are actually re-activated. This
1758 * helps balance scan pressure between file and anonymous pages in
1761 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1763 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
1764 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
1765 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1766 spin_unlock_irq(&zone
->lru_lock
);
1768 free_hot_cold_page_list(&l_hold
, true);
1772 static int inactive_anon_is_low_global(struct zone
*zone
)
1774 unsigned long active
, inactive
;
1776 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1777 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1779 if (inactive
* zone
->inactive_ratio
< active
)
1786 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1787 * @lruvec: LRU vector to check
1789 * Returns true if the zone does not have enough inactive anon pages,
1790 * meaning some active anon pages need to be deactivated.
1792 static int inactive_anon_is_low(struct lruvec
*lruvec
)
1795 * If we don't have swap space, anonymous page deactivation
1798 if (!total_swap_pages
)
1801 if (!mem_cgroup_disabled())
1802 return mem_cgroup_inactive_anon_is_low(lruvec
);
1804 return inactive_anon_is_low_global(lruvec_zone(lruvec
));
1807 static inline int inactive_anon_is_low(struct lruvec
*lruvec
)
1814 * inactive_file_is_low - check if file pages need to be deactivated
1815 * @lruvec: LRU vector to check
1817 * When the system is doing streaming IO, memory pressure here
1818 * ensures that active file pages get deactivated, until more
1819 * than half of the file pages are on the inactive list.
1821 * Once we get to that situation, protect the system's working
1822 * set from being evicted by disabling active file page aging.
1824 * This uses a different ratio than the anonymous pages, because
1825 * the page cache uses a use-once replacement algorithm.
1827 static int inactive_file_is_low(struct lruvec
*lruvec
)
1829 unsigned long inactive
;
1830 unsigned long active
;
1832 inactive
= get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1833 active
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
);
1835 return active
> inactive
;
1838 static int inactive_list_is_low(struct lruvec
*lruvec
, enum lru_list lru
)
1840 if (is_file_lru(lru
))
1841 return inactive_file_is_low(lruvec
);
1843 return inactive_anon_is_low(lruvec
);
1846 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1847 struct lruvec
*lruvec
, struct scan_control
*sc
)
1849 if (is_active_lru(lru
)) {
1850 if (inactive_list_is_low(lruvec
, lru
))
1851 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
1855 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
1866 * Determine how aggressively the anon and file LRU lists should be
1867 * scanned. The relative value of each set of LRU lists is determined
1868 * by looking at the fraction of the pages scanned we did rotate back
1869 * onto the active list instead of evict.
1871 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1872 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1874 static void get_scan_count(struct lruvec
*lruvec
, struct scan_control
*sc
,
1877 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1879 u64 denominator
= 0; /* gcc */
1880 struct zone
*zone
= lruvec_zone(lruvec
);
1881 unsigned long anon_prio
, file_prio
;
1882 enum scan_balance scan_balance
;
1883 unsigned long anon
, file
;
1884 bool force_scan
= false;
1885 unsigned long ap
, fp
;
1891 * If the zone or memcg is small, nr[l] can be 0. This
1892 * results in no scanning on this priority and a potential
1893 * priority drop. Global direct reclaim can go to the next
1894 * zone and tends to have no problems. Global kswapd is for
1895 * zone balancing and it needs to scan a minimum amount. When
1896 * reclaiming for a memcg, a priority drop can cause high
1897 * latencies, so it's better to scan a minimum amount there as
1900 if (current_is_kswapd() && !zone_reclaimable(zone
))
1902 if (!global_reclaim(sc
))
1905 /* If we have no swap space, do not bother scanning anon pages. */
1906 if (!sc
->may_swap
|| (get_nr_swap_pages() <= 0)) {
1907 scan_balance
= SCAN_FILE
;
1912 * Global reclaim will swap to prevent OOM even with no
1913 * swappiness, but memcg users want to use this knob to
1914 * disable swapping for individual groups completely when
1915 * using the memory controller's swap limit feature would be
1918 if (!global_reclaim(sc
) && !sc
->swappiness
) {
1919 scan_balance
= SCAN_FILE
;
1924 * Do not apply any pressure balancing cleverness when the
1925 * system is close to OOM, scan both anon and file equally
1926 * (unless the swappiness setting disagrees with swapping).
1928 if (!sc
->priority
&& sc
->swappiness
) {
1929 scan_balance
= SCAN_EQUAL
;
1933 anon
= get_lru_size(lruvec
, LRU_ACTIVE_ANON
) +
1934 get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1935 file
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
) +
1936 get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1939 * Prevent the reclaimer from falling into the cache trap: as
1940 * cache pages start out inactive, every cache fault will tip
1941 * the scan balance towards the file LRU. And as the file LRU
1942 * shrinks, so does the window for rotation from references.
1943 * This means we have a runaway feedback loop where a tiny
1944 * thrashing file LRU becomes infinitely more attractive than
1945 * anon pages. Try to detect this based on file LRU size.
1947 if (global_reclaim(sc
)) {
1948 unsigned long free
= zone_page_state(zone
, NR_FREE_PAGES
);
1950 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1951 scan_balance
= SCAN_ANON
;
1957 * There is enough inactive page cache, do not reclaim
1958 * anything from the anonymous working set right now.
1960 if (!inactive_file_is_low(lruvec
)) {
1961 scan_balance
= SCAN_FILE
;
1965 scan_balance
= SCAN_FRACT
;
1968 * With swappiness at 100, anonymous and file have the same priority.
1969 * This scanning priority is essentially the inverse of IO cost.
1971 anon_prio
= sc
->swappiness
;
1972 file_prio
= 200 - anon_prio
;
1975 * OK, so we have swap space and a fair amount of page cache
1976 * pages. We use the recently rotated / recently scanned
1977 * ratios to determine how valuable each cache is.
1979 * Because workloads change over time (and to avoid overflow)
1980 * we keep these statistics as a floating average, which ends
1981 * up weighing recent references more than old ones.
1983 * anon in [0], file in [1]
1985 spin_lock_irq(&zone
->lru_lock
);
1986 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1987 reclaim_stat
->recent_scanned
[0] /= 2;
1988 reclaim_stat
->recent_rotated
[0] /= 2;
1991 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1992 reclaim_stat
->recent_scanned
[1] /= 2;
1993 reclaim_stat
->recent_rotated
[1] /= 2;
1997 * The amount of pressure on anon vs file pages is inversely
1998 * proportional to the fraction of recently scanned pages on
1999 * each list that were recently referenced and in active use.
2001 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2002 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2004 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2005 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2006 spin_unlock_irq(&zone
->lru_lock
);
2010 denominator
= ap
+ fp
+ 1;
2012 some_scanned
= false;
2013 /* Only use force_scan on second pass. */
2014 for (pass
= 0; !some_scanned
&& pass
< 2; pass
++) {
2015 for_each_evictable_lru(lru
) {
2016 int file
= is_file_lru(lru
);
2020 size
= get_lru_size(lruvec
, lru
);
2021 scan
= size
>> sc
->priority
;
2023 if (!scan
&& pass
&& force_scan
)
2024 scan
= min(size
, SWAP_CLUSTER_MAX
);
2026 switch (scan_balance
) {
2028 /* Scan lists relative to size */
2032 * Scan types proportional to swappiness and
2033 * their relative recent reclaim efficiency.
2035 scan
= div64_u64(scan
* fraction
[file
],
2040 /* Scan one type exclusively */
2041 if ((scan_balance
== SCAN_FILE
) != file
)
2045 /* Look ma, no brain */
2050 * Skip the second pass and don't force_scan,
2051 * if we found something to scan.
2053 some_scanned
|= !!scan
;
2059 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2061 static void shrink_lruvec(struct lruvec
*lruvec
, struct scan_control
*sc
)
2063 unsigned long nr
[NR_LRU_LISTS
];
2064 unsigned long targets
[NR_LRU_LISTS
];
2065 unsigned long nr_to_scan
;
2067 unsigned long nr_reclaimed
= 0;
2068 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2069 struct blk_plug plug
;
2072 get_scan_count(lruvec
, sc
, nr
);
2074 /* Record the original scan target for proportional adjustments later */
2075 memcpy(targets
, nr
, sizeof(nr
));
2078 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2079 * event that can occur when there is little memory pressure e.g.
2080 * multiple streaming readers/writers. Hence, we do not abort scanning
2081 * when the requested number of pages are reclaimed when scanning at
2082 * DEF_PRIORITY on the assumption that the fact we are direct
2083 * reclaiming implies that kswapd is not keeping up and it is best to
2084 * do a batch of work at once. For memcg reclaim one check is made to
2085 * abort proportional reclaim if either the file or anon lru has already
2086 * dropped to zero at the first pass.
2088 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2089 sc
->priority
== DEF_PRIORITY
);
2091 blk_start_plug(&plug
);
2092 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2093 nr
[LRU_INACTIVE_FILE
]) {
2094 unsigned long nr_anon
, nr_file
, percentage
;
2095 unsigned long nr_scanned
;
2097 for_each_evictable_lru(lru
) {
2099 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2100 nr
[lru
] -= nr_to_scan
;
2102 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2107 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2111 * For kswapd and memcg, reclaim at least the number of pages
2112 * requested. Ensure that the anon and file LRUs are scanned
2113 * proportionally what was requested by get_scan_count(). We
2114 * stop reclaiming one LRU and reduce the amount scanning
2115 * proportional to the original scan target.
2117 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2118 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2121 * It's just vindictive to attack the larger once the smaller
2122 * has gone to zero. And given the way we stop scanning the
2123 * smaller below, this makes sure that we only make one nudge
2124 * towards proportionality once we've got nr_to_reclaim.
2126 if (!nr_file
|| !nr_anon
)
2129 if (nr_file
> nr_anon
) {
2130 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2131 targets
[LRU_ACTIVE_ANON
] + 1;
2133 percentage
= nr_anon
* 100 / scan_target
;
2135 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2136 targets
[LRU_ACTIVE_FILE
] + 1;
2138 percentage
= nr_file
* 100 / scan_target
;
2141 /* Stop scanning the smaller of the LRU */
2143 nr
[lru
+ LRU_ACTIVE
] = 0;
2146 * Recalculate the other LRU scan count based on its original
2147 * scan target and the percentage scanning already complete
2149 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2150 nr_scanned
= targets
[lru
] - nr
[lru
];
2151 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2152 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2155 nr_scanned
= targets
[lru
] - nr
[lru
];
2156 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2157 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2159 scan_adjusted
= true;
2161 blk_finish_plug(&plug
);
2162 sc
->nr_reclaimed
+= nr_reclaimed
;
2165 * Even if we did not try to evict anon pages at all, we want to
2166 * rebalance the anon lru active/inactive ratio.
2168 if (inactive_anon_is_low(lruvec
))
2169 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2170 sc
, LRU_ACTIVE_ANON
);
2172 throttle_vm_writeout(sc
->gfp_mask
);
2175 /* Use reclaim/compaction for costly allocs or under memory pressure */
2176 static bool in_reclaim_compaction(struct scan_control
*sc
)
2178 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2179 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2180 sc
->priority
< DEF_PRIORITY
- 2))
2187 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2188 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2189 * true if more pages should be reclaimed such that when the page allocator
2190 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2191 * It will give up earlier than that if there is difficulty reclaiming pages.
2193 static inline bool should_continue_reclaim(struct zone
*zone
,
2194 unsigned long nr_reclaimed
,
2195 unsigned long nr_scanned
,
2196 struct scan_control
*sc
)
2198 unsigned long pages_for_compaction
;
2199 unsigned long inactive_lru_pages
;
2201 /* If not in reclaim/compaction mode, stop */
2202 if (!in_reclaim_compaction(sc
))
2205 /* Consider stopping depending on scan and reclaim activity */
2206 if (sc
->gfp_mask
& __GFP_REPEAT
) {
2208 * For __GFP_REPEAT allocations, stop reclaiming if the
2209 * full LRU list has been scanned and we are still failing
2210 * to reclaim pages. This full LRU scan is potentially
2211 * expensive but a __GFP_REPEAT caller really wants to succeed
2213 if (!nr_reclaimed
&& !nr_scanned
)
2217 * For non-__GFP_REPEAT allocations which can presumably
2218 * fail without consequence, stop if we failed to reclaim
2219 * any pages from the last SWAP_CLUSTER_MAX number of
2220 * pages that were scanned. This will return to the
2221 * caller faster at the risk reclaim/compaction and
2222 * the resulting allocation attempt fails
2229 * If we have not reclaimed enough pages for compaction and the
2230 * inactive lists are large enough, continue reclaiming
2232 pages_for_compaction
= (2UL << sc
->order
);
2233 inactive_lru_pages
= zone_page_state(zone
, NR_INACTIVE_FILE
);
2234 if (get_nr_swap_pages() > 0)
2235 inactive_lru_pages
+= zone_page_state(zone
, NR_INACTIVE_ANON
);
2236 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2237 inactive_lru_pages
> pages_for_compaction
)
2240 /* If compaction would go ahead or the allocation would succeed, stop */
2241 switch (compaction_suitable(zone
, sc
->order
)) {
2242 case COMPACT_PARTIAL
:
2243 case COMPACT_CONTINUE
:
2250 static void shrink_zone(struct zone
*zone
, struct scan_control
*sc
)
2252 unsigned long nr_reclaimed
, nr_scanned
;
2255 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2256 struct mem_cgroup_reclaim_cookie reclaim
= {
2258 .priority
= sc
->priority
,
2260 struct mem_cgroup
*memcg
;
2262 nr_reclaimed
= sc
->nr_reclaimed
;
2263 nr_scanned
= sc
->nr_scanned
;
2265 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2267 struct lruvec
*lruvec
;
2269 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2271 sc
->swappiness
= mem_cgroup_swappiness(memcg
);
2272 shrink_lruvec(lruvec
, sc
);
2275 * Direct reclaim and kswapd have to scan all memory
2276 * cgroups to fulfill the overall scan target for the
2279 * Limit reclaim, on the other hand, only cares about
2280 * nr_to_reclaim pages to be reclaimed and it will
2281 * retry with decreasing priority if one round over the
2282 * whole hierarchy is not sufficient.
2284 if (!global_reclaim(sc
) &&
2285 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2286 mem_cgroup_iter_break(root
, memcg
);
2289 memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
);
2292 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2293 sc
->nr_scanned
- nr_scanned
,
2294 sc
->nr_reclaimed
- nr_reclaimed
);
2296 } while (should_continue_reclaim(zone
, sc
->nr_reclaimed
- nr_reclaimed
,
2297 sc
->nr_scanned
- nr_scanned
, sc
));
2300 /* Returns true if compaction should go ahead for a high-order request */
2301 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2303 unsigned long balance_gap
, watermark
;
2306 /* Do not consider compaction for orders reclaim is meant to satisfy */
2307 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
)
2311 * Compaction takes time to run and there are potentially other
2312 * callers using the pages just freed. Continue reclaiming until
2313 * there is a buffer of free pages available to give compaction
2314 * a reasonable chance of completing and allocating the page
2316 balance_gap
= min(low_wmark_pages(zone
), DIV_ROUND_UP(
2317 zone
->managed_pages
, KSWAPD_ZONE_BALANCE_GAP_RATIO
));
2318 watermark
= high_wmark_pages(zone
) + balance_gap
+ (2UL << sc
->order
);
2319 watermark_ok
= zone_watermark_ok_safe(zone
, 0, watermark
, 0, 0);
2322 * If compaction is deferred, reclaim up to a point where
2323 * compaction will have a chance of success when re-enabled
2325 if (compaction_deferred(zone
, sc
->order
))
2326 return watermark_ok
;
2328 /* If compaction is not ready to start, keep reclaiming */
2329 if (!compaction_suitable(zone
, sc
->order
))
2332 return watermark_ok
;
2336 * This is the direct reclaim path, for page-allocating processes. We only
2337 * try to reclaim pages from zones which will satisfy the caller's allocation
2340 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2342 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2344 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2345 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2346 * zone defense algorithm.
2348 * If a zone is deemed to be full of pinned pages then just give it a light
2349 * scan then give up on it.
2351 * This function returns true if a zone is being reclaimed for a costly
2352 * high-order allocation and compaction is ready to begin. This indicates to
2353 * the caller that it should consider retrying the allocation instead of
2356 static bool shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2360 unsigned long nr_soft_reclaimed
;
2361 unsigned long nr_soft_scanned
;
2362 unsigned long lru_pages
= 0;
2363 bool aborted_reclaim
= false;
2364 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2366 struct shrink_control shrink
= {
2367 .gfp_mask
= sc
->gfp_mask
,
2369 enum zone_type requested_highidx
= gfp_zone(sc
->gfp_mask
);
2372 * If the number of buffer_heads in the machine exceeds the maximum
2373 * allowed level, force direct reclaim to scan the highmem zone as
2374 * highmem pages could be pinning lowmem pages storing buffer_heads
2376 orig_mask
= sc
->gfp_mask
;
2377 if (buffer_heads_over_limit
)
2378 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2380 nodes_clear(shrink
.nodes_to_scan
);
2382 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2383 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2384 if (!populated_zone(zone
))
2387 * Take care memory controller reclaiming has small influence
2390 if (global_reclaim(sc
)) {
2391 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2394 lru_pages
+= zone_reclaimable_pages(zone
);
2395 node_set(zone_to_nid(zone
), shrink
.nodes_to_scan
);
2397 if (sc
->priority
!= DEF_PRIORITY
&&
2398 !zone_reclaimable(zone
))
2399 continue; /* Let kswapd poll it */
2400 if (IS_ENABLED(CONFIG_COMPACTION
)) {
2402 * If we already have plenty of memory free for
2403 * compaction in this zone, don't free any more.
2404 * Even though compaction is invoked for any
2405 * non-zero order, only frequent costly order
2406 * reclamation is disruptive enough to become a
2407 * noticeable problem, like transparent huge
2410 if ((zonelist_zone_idx(z
) <= requested_highidx
)
2411 && compaction_ready(zone
, sc
)) {
2412 aborted_reclaim
= true;
2417 * This steals pages from memory cgroups over softlimit
2418 * and returns the number of reclaimed pages and
2419 * scanned pages. This works for global memory pressure
2420 * and balancing, not for a memcg's limit.
2422 nr_soft_scanned
= 0;
2423 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2424 sc
->order
, sc
->gfp_mask
,
2426 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2427 sc
->nr_scanned
+= nr_soft_scanned
;
2428 /* need some check for avoid more shrink_zone() */
2431 shrink_zone(zone
, sc
);
2435 * Don't shrink slabs when reclaiming memory from over limit cgroups
2436 * but do shrink slab at least once when aborting reclaim for
2437 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2440 if (global_reclaim(sc
)) {
2441 shrink_slab(&shrink
, sc
->nr_scanned
, lru_pages
);
2442 if (reclaim_state
) {
2443 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2444 reclaim_state
->reclaimed_slab
= 0;
2449 * Restore to original mask to avoid the impact on the caller if we
2450 * promoted it to __GFP_HIGHMEM.
2452 sc
->gfp_mask
= orig_mask
;
2454 return aborted_reclaim
;
2457 /* All zones in zonelist are unreclaimable? */
2458 static bool all_unreclaimable(struct zonelist
*zonelist
,
2459 struct scan_control
*sc
)
2464 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2465 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2466 if (!populated_zone(zone
))
2468 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2470 if (zone_reclaimable(zone
))
2478 * This is the main entry point to direct page reclaim.
2480 * If a full scan of the inactive list fails to free enough memory then we
2481 * are "out of memory" and something needs to be killed.
2483 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2484 * high - the zone may be full of dirty or under-writeback pages, which this
2485 * caller can't do much about. We kick the writeback threads and take explicit
2486 * naps in the hope that some of these pages can be written. But if the
2487 * allocating task holds filesystem locks which prevent writeout this might not
2488 * work, and the allocation attempt will fail.
2490 * returns: 0, if no pages reclaimed
2491 * else, the number of pages reclaimed
2493 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2494 struct scan_control
*sc
)
2496 unsigned long total_scanned
= 0;
2497 unsigned long writeback_threshold
;
2498 bool aborted_reclaim
;
2500 delayacct_freepages_start();
2502 if (global_reclaim(sc
))
2503 count_vm_event(ALLOCSTALL
);
2506 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2509 aborted_reclaim
= shrink_zones(zonelist
, sc
);
2511 total_scanned
+= sc
->nr_scanned
;
2512 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2516 * If we're getting trouble reclaiming, start doing
2517 * writepage even in laptop mode.
2519 if (sc
->priority
< DEF_PRIORITY
- 2)
2520 sc
->may_writepage
= 1;
2523 * Try to write back as many pages as we just scanned. This
2524 * tends to cause slow streaming writers to write data to the
2525 * disk smoothly, at the dirtying rate, which is nice. But
2526 * that's undesirable in laptop mode, where we *want* lumpy
2527 * writeout. So in laptop mode, write out the whole world.
2529 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2530 if (total_scanned
> writeback_threshold
) {
2531 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2532 WB_REASON_TRY_TO_FREE_PAGES
);
2533 sc
->may_writepage
= 1;
2535 } while (--sc
->priority
>= 0 && !aborted_reclaim
);
2538 delayacct_freepages_end();
2540 if (sc
->nr_reclaimed
)
2541 return sc
->nr_reclaimed
;
2544 * As hibernation is going on, kswapd is freezed so that it can't mark
2545 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2548 if (oom_killer_disabled
)
2551 /* Aborted reclaim to try compaction? don't OOM, then */
2552 if (aborted_reclaim
)
2555 /* top priority shrink_zones still had more to do? don't OOM, then */
2556 if (global_reclaim(sc
) && !all_unreclaimable(zonelist
, sc
))
2562 static bool pfmemalloc_watermark_ok(pg_data_t
*pgdat
)
2565 unsigned long pfmemalloc_reserve
= 0;
2566 unsigned long free_pages
= 0;
2570 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2571 zone
= &pgdat
->node_zones
[i
];
2572 if (!populated_zone(zone
))
2575 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2576 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2579 /* If there are no reserves (unexpected config) then do not throttle */
2580 if (!pfmemalloc_reserve
)
2583 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2585 /* kswapd must be awake if processes are being throttled */
2586 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2587 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
,
2588 (enum zone_type
)ZONE_NORMAL
);
2589 wake_up_interruptible(&pgdat
->kswapd_wait
);
2596 * Throttle direct reclaimers if backing storage is backed by the network
2597 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2598 * depleted. kswapd will continue to make progress and wake the processes
2599 * when the low watermark is reached.
2601 * Returns true if a fatal signal was delivered during throttling. If this
2602 * happens, the page allocator should not consider triggering the OOM killer.
2604 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2605 nodemask_t
*nodemask
)
2609 pg_data_t
*pgdat
= NULL
;
2612 * Kernel threads should not be throttled as they may be indirectly
2613 * responsible for cleaning pages necessary for reclaim to make forward
2614 * progress. kjournald for example may enter direct reclaim while
2615 * committing a transaction where throttling it could forcing other
2616 * processes to block on log_wait_commit().
2618 if (current
->flags
& PF_KTHREAD
)
2622 * If a fatal signal is pending, this process should not throttle.
2623 * It should return quickly so it can exit and free its memory
2625 if (fatal_signal_pending(current
))
2629 * Check if the pfmemalloc reserves are ok by finding the first node
2630 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2631 * GFP_KERNEL will be required for allocating network buffers when
2632 * swapping over the network so ZONE_HIGHMEM is unusable.
2634 * Throttling is based on the first usable node and throttled processes
2635 * wait on a queue until kswapd makes progress and wakes them. There
2636 * is an affinity then between processes waking up and where reclaim
2637 * progress has been made assuming the process wakes on the same node.
2638 * More importantly, processes running on remote nodes will not compete
2639 * for remote pfmemalloc reserves and processes on different nodes
2640 * should make reasonable progress.
2642 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2643 gfp_mask
, nodemask
) {
2644 if (zone_idx(zone
) > ZONE_NORMAL
)
2647 /* Throttle based on the first usable node */
2648 pgdat
= zone
->zone_pgdat
;
2649 if (pfmemalloc_watermark_ok(pgdat
))
2654 /* If no zone was usable by the allocation flags then do not throttle */
2658 /* Account for the throttling */
2659 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2662 * If the caller cannot enter the filesystem, it's possible that it
2663 * is due to the caller holding an FS lock or performing a journal
2664 * transaction in the case of a filesystem like ext[3|4]. In this case,
2665 * it is not safe to block on pfmemalloc_wait as kswapd could be
2666 * blocked waiting on the same lock. Instead, throttle for up to a
2667 * second before continuing.
2669 if (!(gfp_mask
& __GFP_FS
)) {
2670 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2671 pfmemalloc_watermark_ok(pgdat
), HZ
);
2676 /* Throttle until kswapd wakes the process */
2677 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2678 pfmemalloc_watermark_ok(pgdat
));
2681 if (fatal_signal_pending(current
))
2688 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2689 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2691 unsigned long nr_reclaimed
;
2692 struct scan_control sc
= {
2693 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
2694 .may_writepage
= !laptop_mode
,
2695 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2699 .priority
= DEF_PRIORITY
,
2700 .target_mem_cgroup
= NULL
,
2701 .nodemask
= nodemask
,
2705 * Do not enter reclaim if fatal signal was delivered while throttled.
2706 * 1 is returned so that the page allocator does not OOM kill at this
2709 if (throttle_direct_reclaim(gfp_mask
, zonelist
, nodemask
))
2712 trace_mm_vmscan_direct_reclaim_begin(order
,
2716 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2718 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2720 return nr_reclaimed
;
2725 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*memcg
,
2726 gfp_t gfp_mask
, bool noswap
,
2728 unsigned long *nr_scanned
)
2730 struct scan_control sc
= {
2732 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2733 .may_writepage
= !laptop_mode
,
2735 .may_swap
= !noswap
,
2738 .swappiness
= mem_cgroup_swappiness(memcg
),
2739 .target_mem_cgroup
= memcg
,
2741 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2743 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2744 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2746 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
2751 * NOTE: Although we can get the priority field, using it
2752 * here is not a good idea, since it limits the pages we can scan.
2753 * if we don't reclaim here, the shrink_zone from balance_pgdat
2754 * will pick up pages from other mem cgroup's as well. We hack
2755 * the priority and make it zero.
2757 shrink_lruvec(lruvec
, &sc
);
2759 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2761 *nr_scanned
= sc
.nr_scanned
;
2762 return sc
.nr_reclaimed
;
2765 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
2769 struct zonelist
*zonelist
;
2770 unsigned long nr_reclaimed
;
2772 struct scan_control sc
= {
2773 .may_writepage
= !laptop_mode
,
2775 .may_swap
= !noswap
,
2776 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2778 .priority
= DEF_PRIORITY
,
2779 .target_mem_cgroup
= memcg
,
2780 .nodemask
= NULL
, /* we don't care the placement */
2781 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2782 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2786 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2787 * take care of from where we get pages. So the node where we start the
2788 * scan does not need to be the current node.
2790 nid
= mem_cgroup_select_victim_node(memcg
);
2792 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2794 trace_mm_vmscan_memcg_reclaim_begin(0,
2798 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2800 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2802 return nr_reclaimed
;
2806 static void age_active_anon(struct zone
*zone
, struct scan_control
*sc
)
2808 struct mem_cgroup
*memcg
;
2810 if (!total_swap_pages
)
2813 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
2815 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2817 if (inactive_anon_is_low(lruvec
))
2818 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2819 sc
, LRU_ACTIVE_ANON
);
2821 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
2825 static bool zone_balanced(struct zone
*zone
, int order
,
2826 unsigned long balance_gap
, int classzone_idx
)
2828 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
) +
2829 balance_gap
, classzone_idx
, 0))
2832 if (IS_ENABLED(CONFIG_COMPACTION
) && order
&&
2833 !compaction_suitable(zone
, order
))
2840 * pgdat_balanced() is used when checking if a node is balanced.
2842 * For order-0, all zones must be balanced!
2844 * For high-order allocations only zones that meet watermarks and are in a
2845 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2846 * total of balanced pages must be at least 25% of the zones allowed by
2847 * classzone_idx for the node to be considered balanced. Forcing all zones to
2848 * be balanced for high orders can cause excessive reclaim when there are
2850 * The choice of 25% is due to
2851 * o a 16M DMA zone that is balanced will not balance a zone on any
2852 * reasonable sized machine
2853 * o On all other machines, the top zone must be at least a reasonable
2854 * percentage of the middle zones. For example, on 32-bit x86, highmem
2855 * would need to be at least 256M for it to be balance a whole node.
2856 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2857 * to balance a node on its own. These seemed like reasonable ratios.
2859 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2861 unsigned long managed_pages
= 0;
2862 unsigned long balanced_pages
= 0;
2865 /* Check the watermark levels */
2866 for (i
= 0; i
<= classzone_idx
; i
++) {
2867 struct zone
*zone
= pgdat
->node_zones
+ i
;
2869 if (!populated_zone(zone
))
2872 managed_pages
+= zone
->managed_pages
;
2875 * A special case here:
2877 * balance_pgdat() skips over all_unreclaimable after
2878 * DEF_PRIORITY. Effectively, it considers them balanced so
2879 * they must be considered balanced here as well!
2881 if (!zone_reclaimable(zone
)) {
2882 balanced_pages
+= zone
->managed_pages
;
2886 if (zone_balanced(zone
, order
, 0, i
))
2887 balanced_pages
+= zone
->managed_pages
;
2893 return balanced_pages
>= (managed_pages
>> 2);
2899 * Prepare kswapd for sleeping. This verifies that there are no processes
2900 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2902 * Returns true if kswapd is ready to sleep
2904 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, long remaining
,
2907 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2912 * The throttled processes are normally woken up in balance_pgdat() as
2913 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2914 * race between when kswapd checks the watermarks and a process gets
2915 * throttled. There is also a potential race if processes get
2916 * throttled, kswapd wakes, a large process exits thereby balancing the
2917 * zones, which causes kswapd to exit balance_pgdat() before reaching
2918 * the wake up checks. If kswapd is going to sleep, no process should
2919 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2920 * the wake up is premature, processes will wake kswapd and get
2921 * throttled again. The difference from wake ups in balance_pgdat() is
2922 * that here we are under prepare_to_wait().
2924 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
2925 wake_up_all(&pgdat
->pfmemalloc_wait
);
2927 return pgdat_balanced(pgdat
, order
, classzone_idx
);
2931 * kswapd shrinks the zone by the number of pages required to reach
2932 * the high watermark.
2934 * Returns true if kswapd scanned at least the requested number of pages to
2935 * reclaim or if the lack of progress was due to pages under writeback.
2936 * This is used to determine if the scanning priority needs to be raised.
2938 static bool kswapd_shrink_zone(struct zone
*zone
,
2940 struct scan_control
*sc
,
2941 unsigned long lru_pages
,
2942 unsigned long *nr_attempted
)
2944 int testorder
= sc
->order
;
2945 unsigned long balance_gap
;
2946 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2947 struct shrink_control shrink
= {
2948 .gfp_mask
= sc
->gfp_mask
,
2950 bool lowmem_pressure
;
2952 /* Reclaim above the high watermark. */
2953 sc
->nr_to_reclaim
= max(SWAP_CLUSTER_MAX
, high_wmark_pages(zone
));
2956 * Kswapd reclaims only single pages with compaction enabled. Trying
2957 * too hard to reclaim until contiguous free pages have become
2958 * available can hurt performance by evicting too much useful data
2959 * from memory. Do not reclaim more than needed for compaction.
2961 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2962 compaction_suitable(zone
, sc
->order
) !=
2967 * We put equal pressure on every zone, unless one zone has way too
2968 * many pages free already. The "too many pages" is defined as the
2969 * high wmark plus a "gap" where the gap is either the low
2970 * watermark or 1% of the zone, whichever is smaller.
2972 balance_gap
= min(low_wmark_pages(zone
), DIV_ROUND_UP(
2973 zone
->managed_pages
, KSWAPD_ZONE_BALANCE_GAP_RATIO
));
2976 * If there is no low memory pressure or the zone is balanced then no
2977 * reclaim is necessary
2979 lowmem_pressure
= (buffer_heads_over_limit
&& is_highmem(zone
));
2980 if (!lowmem_pressure
&& zone_balanced(zone
, testorder
,
2981 balance_gap
, classzone_idx
))
2984 shrink_zone(zone
, sc
);
2985 nodes_clear(shrink
.nodes_to_scan
);
2986 node_set(zone_to_nid(zone
), shrink
.nodes_to_scan
);
2988 reclaim_state
->reclaimed_slab
= 0;
2989 shrink_slab(&shrink
, sc
->nr_scanned
, lru_pages
);
2990 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2992 /* Account for the number of pages attempted to reclaim */
2993 *nr_attempted
+= sc
->nr_to_reclaim
;
2995 zone_clear_flag(zone
, ZONE_WRITEBACK
);
2998 * If a zone reaches its high watermark, consider it to be no longer
2999 * congested. It's possible there are dirty pages backed by congested
3000 * BDIs but as pressure is relieved, speculatively avoid congestion
3003 if (zone_reclaimable(zone
) &&
3004 zone_balanced(zone
, testorder
, 0, classzone_idx
)) {
3005 zone_clear_flag(zone
, ZONE_CONGESTED
);
3006 zone_clear_flag(zone
, ZONE_TAIL_LRU_DIRTY
);
3009 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3013 * For kswapd, balance_pgdat() will work across all this node's zones until
3014 * they are all at high_wmark_pages(zone).
3016 * Returns the final order kswapd was reclaiming at
3018 * There is special handling here for zones which are full of pinned pages.
3019 * This can happen if the pages are all mlocked, or if they are all used by
3020 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3021 * What we do is to detect the case where all pages in the zone have been
3022 * scanned twice and there has been zero successful reclaim. Mark the zone as
3023 * dead and from now on, only perform a short scan. Basically we're polling
3024 * the zone for when the problem goes away.
3026 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3027 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3028 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3029 * lower zones regardless of the number of free pages in the lower zones. This
3030 * interoperates with the page allocator fallback scheme to ensure that aging
3031 * of pages is balanced across the zones.
3033 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
3037 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
3038 unsigned long nr_soft_reclaimed
;
3039 unsigned long nr_soft_scanned
;
3040 struct scan_control sc
= {
3041 .gfp_mask
= GFP_KERNEL
,
3042 .priority
= DEF_PRIORITY
,
3045 .may_writepage
= !laptop_mode
,
3047 .target_mem_cgroup
= NULL
,
3049 count_vm_event(PAGEOUTRUN
);
3052 unsigned long lru_pages
= 0;
3053 unsigned long nr_attempted
= 0;
3054 bool raise_priority
= true;
3055 bool pgdat_needs_compaction
= (order
> 0);
3057 sc
.nr_reclaimed
= 0;
3060 * Scan in the highmem->dma direction for the highest
3061 * zone which needs scanning
3063 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
3064 struct zone
*zone
= pgdat
->node_zones
+ i
;
3066 if (!populated_zone(zone
))
3069 if (sc
.priority
!= DEF_PRIORITY
&&
3070 !zone_reclaimable(zone
))
3074 * Do some background aging of the anon list, to give
3075 * pages a chance to be referenced before reclaiming.
3077 age_active_anon(zone
, &sc
);
3080 * If the number of buffer_heads in the machine
3081 * exceeds the maximum allowed level and this node
3082 * has a highmem zone, force kswapd to reclaim from
3083 * it to relieve lowmem pressure.
3085 if (buffer_heads_over_limit
&& is_highmem_idx(i
)) {
3090 if (!zone_balanced(zone
, order
, 0, 0)) {
3095 * If balanced, clear the dirty and congested
3098 zone_clear_flag(zone
, ZONE_CONGESTED
);
3099 zone_clear_flag(zone
, ZONE_TAIL_LRU_DIRTY
);
3106 for (i
= 0; i
<= end_zone
; i
++) {
3107 struct zone
*zone
= pgdat
->node_zones
+ i
;
3109 if (!populated_zone(zone
))
3112 lru_pages
+= zone_reclaimable_pages(zone
);
3115 * If any zone is currently balanced then kswapd will
3116 * not call compaction as it is expected that the
3117 * necessary pages are already available.
3119 if (pgdat_needs_compaction
&&
3120 zone_watermark_ok(zone
, order
,
3121 low_wmark_pages(zone
),
3123 pgdat_needs_compaction
= false;
3127 * If we're getting trouble reclaiming, start doing writepage
3128 * even in laptop mode.
3130 if (sc
.priority
< DEF_PRIORITY
- 2)
3131 sc
.may_writepage
= 1;
3134 * Now scan the zone in the dma->highmem direction, stopping
3135 * at the last zone which needs scanning.
3137 * We do this because the page allocator works in the opposite
3138 * direction. This prevents the page allocator from allocating
3139 * pages behind kswapd's direction of progress, which would
3140 * cause too much scanning of the lower zones.
3142 for (i
= 0; i
<= end_zone
; i
++) {
3143 struct zone
*zone
= pgdat
->node_zones
+ i
;
3145 if (!populated_zone(zone
))
3148 if (sc
.priority
!= DEF_PRIORITY
&&
3149 !zone_reclaimable(zone
))
3154 nr_soft_scanned
= 0;
3156 * Call soft limit reclaim before calling shrink_zone.
3158 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
3161 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3164 * There should be no need to raise the scanning
3165 * priority if enough pages are already being scanned
3166 * that that high watermark would be met at 100%
3169 if (kswapd_shrink_zone(zone
, end_zone
, &sc
,
3170 lru_pages
, &nr_attempted
))
3171 raise_priority
= false;
3175 * If the low watermark is met there is no need for processes
3176 * to be throttled on pfmemalloc_wait as they should not be
3177 * able to safely make forward progress. Wake them
3179 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3180 pfmemalloc_watermark_ok(pgdat
))
3181 wake_up(&pgdat
->pfmemalloc_wait
);
3184 * Fragmentation may mean that the system cannot be rebalanced
3185 * for high-order allocations in all zones. If twice the
3186 * allocation size has been reclaimed and the zones are still
3187 * not balanced then recheck the watermarks at order-0 to
3188 * prevent kswapd reclaiming excessively. Assume that a
3189 * process requested a high-order can direct reclaim/compact.
3191 if (order
&& sc
.nr_reclaimed
>= 2UL << order
)
3192 order
= sc
.order
= 0;
3194 /* Check if kswapd should be suspending */
3195 if (try_to_freeze() || kthread_should_stop())
3199 * Compact if necessary and kswapd is reclaiming at least the
3200 * high watermark number of pages as requsted
3202 if (pgdat_needs_compaction
&& sc
.nr_reclaimed
> nr_attempted
)
3203 compact_pgdat(pgdat
, order
);
3206 * Raise priority if scanning rate is too low or there was no
3207 * progress in reclaiming pages
3209 if (raise_priority
|| !sc
.nr_reclaimed
)
3211 } while (sc
.priority
>= 1 &&
3212 !pgdat_balanced(pgdat
, order
, *classzone_idx
));
3216 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3217 * makes a decision on the order we were last reclaiming at. However,
3218 * if another caller entered the allocator slow path while kswapd
3219 * was awake, order will remain at the higher level
3221 *classzone_idx
= end_zone
;
3225 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3230 if (freezing(current
) || kthread_should_stop())
3233 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3235 /* Try to sleep for a short interval */
3236 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3237 remaining
= schedule_timeout(HZ
/10);
3238 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3239 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3243 * After a short sleep, check if it was a premature sleep. If not, then
3244 * go fully to sleep until explicitly woken up.
3246 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3247 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3250 * vmstat counters are not perfectly accurate and the estimated
3251 * value for counters such as NR_FREE_PAGES can deviate from the
3252 * true value by nr_online_cpus * threshold. To avoid the zone
3253 * watermarks being breached while under pressure, we reduce the
3254 * per-cpu vmstat threshold while kswapd is awake and restore
3255 * them before going back to sleep.
3257 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3260 * Compaction records what page blocks it recently failed to
3261 * isolate pages from and skips them in the future scanning.
3262 * When kswapd is going to sleep, it is reasonable to assume
3263 * that pages and compaction may succeed so reset the cache.
3265 reset_isolation_suitable(pgdat
);
3267 if (!kthread_should_stop())
3270 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3273 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3275 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3277 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3281 * The background pageout daemon, started as a kernel thread
3282 * from the init process.
3284 * This basically trickles out pages so that we have _some_
3285 * free memory available even if there is no other activity
3286 * that frees anything up. This is needed for things like routing
3287 * etc, where we otherwise might have all activity going on in
3288 * asynchronous contexts that cannot page things out.
3290 * If there are applications that are active memory-allocators
3291 * (most normal use), this basically shouldn't matter.
3293 static int kswapd(void *p
)
3295 unsigned long order
, new_order
;
3296 unsigned balanced_order
;
3297 int classzone_idx
, new_classzone_idx
;
3298 int balanced_classzone_idx
;
3299 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3300 struct task_struct
*tsk
= current
;
3302 struct reclaim_state reclaim_state
= {
3303 .reclaimed_slab
= 0,
3305 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3307 lockdep_set_current_reclaim_state(GFP_KERNEL
);
3309 if (!cpumask_empty(cpumask
))
3310 set_cpus_allowed_ptr(tsk
, cpumask
);
3311 current
->reclaim_state
= &reclaim_state
;
3314 * Tell the memory management that we're a "memory allocator",
3315 * and that if we need more memory we should get access to it
3316 * regardless (see "__alloc_pages()"). "kswapd" should
3317 * never get caught in the normal page freeing logic.
3319 * (Kswapd normally doesn't need memory anyway, but sometimes
3320 * you need a small amount of memory in order to be able to
3321 * page out something else, and this flag essentially protects
3322 * us from recursively trying to free more memory as we're
3323 * trying to free the first piece of memory in the first place).
3325 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3328 order
= new_order
= 0;
3330 classzone_idx
= new_classzone_idx
= pgdat
->nr_zones
- 1;
3331 balanced_classzone_idx
= classzone_idx
;
3336 * If the last balance_pgdat was unsuccessful it's unlikely a
3337 * new request of a similar or harder type will succeed soon
3338 * so consider going to sleep on the basis we reclaimed at
3340 if (balanced_classzone_idx
>= new_classzone_idx
&&
3341 balanced_order
== new_order
) {
3342 new_order
= pgdat
->kswapd_max_order
;
3343 new_classzone_idx
= pgdat
->classzone_idx
;
3344 pgdat
->kswapd_max_order
= 0;
3345 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3348 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
3350 * Don't sleep if someone wants a larger 'order'
3351 * allocation or has tigher zone constraints
3354 classzone_idx
= new_classzone_idx
;
3356 kswapd_try_to_sleep(pgdat
, balanced_order
,
3357 balanced_classzone_idx
);
3358 order
= pgdat
->kswapd_max_order
;
3359 classzone_idx
= pgdat
->classzone_idx
;
3361 new_classzone_idx
= classzone_idx
;
3362 pgdat
->kswapd_max_order
= 0;
3363 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3366 ret
= try_to_freeze();
3367 if (kthread_should_stop())
3371 * We can speed up thawing tasks if we don't call balance_pgdat
3372 * after returning from the refrigerator
3375 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
3376 balanced_classzone_idx
= classzone_idx
;
3377 balanced_order
= balance_pgdat(pgdat
, order
,
3378 &balanced_classzone_idx
);
3382 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3383 current
->reclaim_state
= NULL
;
3384 lockdep_clear_current_reclaim_state();
3390 * A zone is low on free memory, so wake its kswapd task to service it.
3392 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3396 if (!populated_zone(zone
))
3399 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
3401 pgdat
= zone
->zone_pgdat
;
3402 if (pgdat
->kswapd_max_order
< order
) {
3403 pgdat
->kswapd_max_order
= order
;
3404 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
3406 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3408 if (zone_balanced(zone
, order
, 0, 0))
3411 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3412 wake_up_interruptible(&pgdat
->kswapd_wait
);
3415 #ifdef CONFIG_HIBERNATION
3417 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3420 * Rather than trying to age LRUs the aim is to preserve the overall
3421 * LRU order by reclaiming preferentially
3422 * inactive > active > active referenced > active mapped
3424 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3426 struct reclaim_state reclaim_state
;
3427 struct scan_control sc
= {
3428 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3432 .nr_to_reclaim
= nr_to_reclaim
,
3433 .hibernation_mode
= 1,
3435 .priority
= DEF_PRIORITY
,
3437 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3438 struct task_struct
*p
= current
;
3439 unsigned long nr_reclaimed
;
3441 p
->flags
|= PF_MEMALLOC
;
3442 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3443 reclaim_state
.reclaimed_slab
= 0;
3444 p
->reclaim_state
= &reclaim_state
;
3446 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3448 p
->reclaim_state
= NULL
;
3449 lockdep_clear_current_reclaim_state();
3450 p
->flags
&= ~PF_MEMALLOC
;
3452 return nr_reclaimed
;
3454 #endif /* CONFIG_HIBERNATION */
3456 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3457 not required for correctness. So if the last cpu in a node goes
3458 away, we get changed to run anywhere: as the first one comes back,
3459 restore their cpu bindings. */
3460 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
3465 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
3466 for_each_node_state(nid
, N_MEMORY
) {
3467 pg_data_t
*pgdat
= NODE_DATA(nid
);
3468 const struct cpumask
*mask
;
3470 mask
= cpumask_of_node(pgdat
->node_id
);
3472 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3473 /* One of our CPUs online: restore mask */
3474 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3481 * This kswapd start function will be called by init and node-hot-add.
3482 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3484 int kswapd_run(int nid
)
3486 pg_data_t
*pgdat
= NODE_DATA(nid
);
3492 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3493 if (IS_ERR(pgdat
->kswapd
)) {
3494 /* failure at boot is fatal */
3495 BUG_ON(system_state
== SYSTEM_BOOTING
);
3496 pr_err("Failed to start kswapd on node %d\n", nid
);
3497 ret
= PTR_ERR(pgdat
->kswapd
);
3498 pgdat
->kswapd
= NULL
;
3504 * Called by memory hotplug when all memory in a node is offlined. Caller must
3505 * hold mem_hotplug_begin/end().
3507 void kswapd_stop(int nid
)
3509 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3512 kthread_stop(kswapd
);
3513 NODE_DATA(nid
)->kswapd
= NULL
;
3517 static int __init
kswapd_init(void)
3522 for_each_node_state(nid
, N_MEMORY
)
3524 hotcpu_notifier(cpu_callback
, 0);
3528 module_init(kswapd_init
)
3534 * If non-zero call zone_reclaim when the number of free pages falls below
3537 int zone_reclaim_mode __read_mostly
;
3539 #define RECLAIM_OFF 0
3540 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3541 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3542 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3545 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3546 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3549 #define ZONE_RECLAIM_PRIORITY 4
3552 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3555 int sysctl_min_unmapped_ratio
= 1;
3558 * If the number of slab pages in a zone grows beyond this percentage then
3559 * slab reclaim needs to occur.
3561 int sysctl_min_slab_ratio
= 5;
3563 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3565 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3566 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
3567 zone_page_state(zone
, NR_ACTIVE_FILE
);
3570 * It's possible for there to be more file mapped pages than
3571 * accounted for by the pages on the file LRU lists because
3572 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3574 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3577 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3578 static long zone_pagecache_reclaimable(struct zone
*zone
)
3580 long nr_pagecache_reclaimable
;
3584 * If RECLAIM_SWAP is set, then all file pages are considered
3585 * potentially reclaimable. Otherwise, we have to worry about
3586 * pages like swapcache and zone_unmapped_file_pages() provides
3589 if (zone_reclaim_mode
& RECLAIM_SWAP
)
3590 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3592 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3594 /* If we can't clean pages, remove dirty pages from consideration */
3595 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3596 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3598 /* Watch for any possible underflows due to delta */
3599 if (unlikely(delta
> nr_pagecache_reclaimable
))
3600 delta
= nr_pagecache_reclaimable
;
3602 return nr_pagecache_reclaimable
- delta
;
3606 * Try to free up some pages from this zone through reclaim.
3608 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3610 /* Minimum pages needed in order to stay on node */
3611 const unsigned long nr_pages
= 1 << order
;
3612 struct task_struct
*p
= current
;
3613 struct reclaim_state reclaim_state
;
3614 struct scan_control sc
= {
3615 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3616 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
3618 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3619 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
3621 .priority
= ZONE_RECLAIM_PRIORITY
,
3623 struct shrink_control shrink
= {
3624 .gfp_mask
= sc
.gfp_mask
,
3626 unsigned long nr_slab_pages0
, nr_slab_pages1
;
3630 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3631 * and we also need to be able to write out pages for RECLAIM_WRITE
3634 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3635 lockdep_set_current_reclaim_state(gfp_mask
);
3636 reclaim_state
.reclaimed_slab
= 0;
3637 p
->reclaim_state
= &reclaim_state
;
3639 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3641 * Free memory by calling shrink zone with increasing
3642 * priorities until we have enough memory freed.
3645 shrink_zone(zone
, &sc
);
3646 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3649 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3650 if (nr_slab_pages0
> zone
->min_slab_pages
) {
3652 * shrink_slab() does not currently allow us to determine how
3653 * many pages were freed in this zone. So we take the current
3654 * number of slab pages and shake the slab until it is reduced
3655 * by the same nr_pages that we used for reclaiming unmapped
3658 nodes_clear(shrink
.nodes_to_scan
);
3659 node_set(zone_to_nid(zone
), shrink
.nodes_to_scan
);
3661 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
3663 /* No reclaimable slab or very low memory pressure */
3664 if (!shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
))
3667 /* Freed enough memory */
3668 nr_slab_pages1
= zone_page_state(zone
,
3669 NR_SLAB_RECLAIMABLE
);
3670 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
3675 * Update nr_reclaimed by the number of slab pages we
3676 * reclaimed from this zone.
3678 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3679 if (nr_slab_pages1
< nr_slab_pages0
)
3680 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
3683 p
->reclaim_state
= NULL
;
3684 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3685 lockdep_clear_current_reclaim_state();
3686 return sc
.nr_reclaimed
>= nr_pages
;
3689 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3695 * Zone reclaim reclaims unmapped file backed pages and
3696 * slab pages if we are over the defined limits.
3698 * A small portion of unmapped file backed pages is needed for
3699 * file I/O otherwise pages read by file I/O will be immediately
3700 * thrown out if the zone is overallocated. So we do not reclaim
3701 * if less than a specified percentage of the zone is used by
3702 * unmapped file backed pages.
3704 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3705 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3706 return ZONE_RECLAIM_FULL
;
3708 if (!zone_reclaimable(zone
))
3709 return ZONE_RECLAIM_FULL
;
3712 * Do not scan if the allocation should not be delayed.
3714 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
3715 return ZONE_RECLAIM_NOSCAN
;
3718 * Only run zone reclaim on the local zone or on zones that do not
3719 * have associated processors. This will favor the local processor
3720 * over remote processors and spread off node memory allocations
3721 * as wide as possible.
3723 node_id
= zone_to_nid(zone
);
3724 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3725 return ZONE_RECLAIM_NOSCAN
;
3727 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
3728 return ZONE_RECLAIM_NOSCAN
;
3730 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3731 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
3734 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3741 * page_evictable - test whether a page is evictable
3742 * @page: the page to test
3744 * Test whether page is evictable--i.e., should be placed on active/inactive
3745 * lists vs unevictable list.
3747 * Reasons page might not be evictable:
3748 * (1) page's mapping marked unevictable
3749 * (2) page is part of an mlocked VMA
3752 int page_evictable(struct page
*page
)
3754 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3759 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3760 * @pages: array of pages to check
3761 * @nr_pages: number of pages to check
3763 * Checks pages for evictability and moves them to the appropriate lru list.
3765 * This function is only used for SysV IPC SHM_UNLOCK.
3767 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3769 struct lruvec
*lruvec
;
3770 struct zone
*zone
= NULL
;
3775 for (i
= 0; i
< nr_pages
; i
++) {
3776 struct page
*page
= pages
[i
];
3777 struct zone
*pagezone
;
3780 pagezone
= page_zone(page
);
3781 if (pagezone
!= zone
) {
3783 spin_unlock_irq(&zone
->lru_lock
);
3785 spin_lock_irq(&zone
->lru_lock
);
3787 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
3789 if (!PageLRU(page
) || !PageUnevictable(page
))
3792 if (page_evictable(page
)) {
3793 enum lru_list lru
= page_lru_base_type(page
);
3795 VM_BUG_ON_PAGE(PageActive(page
), page
);
3796 ClearPageUnevictable(page
);
3797 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3798 add_page_to_lru_list(page
, lruvec
, lru
);
3804 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3805 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3806 spin_unlock_irq(&zone
->lru_lock
);
3809 #endif /* CONFIG_SHMEM */
3811 static void warn_scan_unevictable_pages(void)
3813 printk_once(KERN_WARNING
3814 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3815 "disabled for lack of a legitimate use case. If you have "
3816 "one, please send an email to linux-mm@kvack.org.\n",
3821 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3822 * all nodes' unevictable lists for evictable pages
3824 unsigned long scan_unevictable_pages
;
3826 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3827 void __user
*buffer
,
3828 size_t *length
, loff_t
*ppos
)
3830 warn_scan_unevictable_pages();
3831 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3832 scan_unevictable_pages
= 0;
3838 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3839 * a specified node's per zone unevictable lists for evictable pages.
3842 static ssize_t
read_scan_unevictable_node(struct device
*dev
,
3843 struct device_attribute
*attr
,
3846 warn_scan_unevictable_pages();
3847 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3850 static ssize_t
write_scan_unevictable_node(struct device
*dev
,
3851 struct device_attribute
*attr
,
3852 const char *buf
, size_t count
)
3854 warn_scan_unevictable_pages();
3859 static DEVICE_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3860 read_scan_unevictable_node
,
3861 write_scan_unevictable_node
);
3863 int scan_unevictable_register_node(struct node
*node
)
3865 return device_create_file(&node
->dev
, &dev_attr_scan_unevictable_pages
);
3868 void scan_unevictable_unregister_node(struct node
*node
)
3870 device_remove_file(&node
->dev
, &dev_attr_scan_unevictable_pages
);