1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
43 * Warn if that happens, once per boot.
45 static void warn_setuid_and_fcaps_mixed(const char *fname
)
49 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname
);
56 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
62 * cap_capable - Determine whether a task has a particular effective capability
63 * @cred: The credentials to use
64 * @ns: The user namespace in which we need the capability
65 * @cap: The capability to check for
66 * @audit: Whether to write an audit message or not
68 * Determine whether the nominated task has the specified capability amongst
69 * its effective set, returning 0 if it does, -ve if it does not.
71 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
72 * and has_capability() functions. That is, it has the reverse semantics:
73 * cap_has_capability() returns 0 when a task has a capability, but the
74 * kernel's capable() and has_capability() returns 1 for this case.
76 int cap_capable(const struct cred
*cred
, struct user_namespace
*targ_ns
,
79 struct user_namespace
*ns
= targ_ns
;
81 /* See if cred has the capability in the target user namespace
82 * by examining the target user namespace and all of the target
83 * user namespace's parents.
86 /* Do we have the necessary capabilities? */
87 if (ns
== cred
->user_ns
)
88 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
90 /* Have we tried all of the parent namespaces? */
91 if (ns
== &init_user_ns
)
95 * The owner of the user namespace in the parent of the
96 * user namespace has all caps.
98 if ((ns
->parent
== cred
->user_ns
) && uid_eq(ns
->owner
, cred
->euid
))
102 * If you have a capability in a parent user ns, then you have
103 * it over all children user namespaces as well.
108 /* We never get here */
112 * cap_settime - Determine whether the current process may set the system clock
113 * @ts: The time to set
114 * @tz: The timezone to set
116 * Determine whether the current process may set the system clock and timezone
117 * information, returning 0 if permission granted, -ve if denied.
119 int cap_settime(const struct timespec
*ts
, const struct timezone
*tz
)
121 if (!capable(CAP_SYS_TIME
))
127 * cap_ptrace_access_check - Determine whether the current process may access
129 * @child: The process to be accessed
130 * @mode: The mode of attachment.
132 * If we are in the same or an ancestor user_ns and have all the target
133 * task's capabilities, then ptrace access is allowed.
134 * If we have the ptrace capability to the target user_ns, then ptrace
138 * Determine whether a process may access another, returning 0 if permission
139 * granted, -ve if denied.
141 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
144 const struct cred
*cred
, *child_cred
;
145 const kernel_cap_t
*caller_caps
;
148 cred
= current_cred();
149 child_cred
= __task_cred(child
);
150 if (mode
& PTRACE_MODE_FSCREDS
)
151 caller_caps
= &cred
->cap_effective
;
153 caller_caps
= &cred
->cap_permitted
;
154 if (cred
->user_ns
== child_cred
->user_ns
&&
155 cap_issubset(child_cred
->cap_permitted
, *caller_caps
))
157 if (ns_capable(child_cred
->user_ns
, CAP_SYS_PTRACE
))
166 * cap_ptrace_traceme - Determine whether another process may trace the current
167 * @parent: The task proposed to be the tracer
169 * If parent is in the same or an ancestor user_ns and has all current's
170 * capabilities, then ptrace access is allowed.
171 * If parent has the ptrace capability to current's user_ns, then ptrace
175 * Determine whether the nominated task is permitted to trace the current
176 * process, returning 0 if permission is granted, -ve if denied.
178 int cap_ptrace_traceme(struct task_struct
*parent
)
181 const struct cred
*cred
, *child_cred
;
184 cred
= __task_cred(parent
);
185 child_cred
= current_cred();
186 if (cred
->user_ns
== child_cred
->user_ns
&&
187 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
189 if (has_ns_capability(parent
, child_cred
->user_ns
, CAP_SYS_PTRACE
))
198 * cap_capget - Retrieve a task's capability sets
199 * @target: The task from which to retrieve the capability sets
200 * @effective: The place to record the effective set
201 * @inheritable: The place to record the inheritable set
202 * @permitted: The place to record the permitted set
204 * This function retrieves the capabilities of the nominated task and returns
205 * them to the caller.
207 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
208 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
210 const struct cred
*cred
;
212 /* Derived from kernel/capability.c:sys_capget. */
214 cred
= __task_cred(target
);
215 *effective
= cred
->cap_effective
;
216 *inheritable
= cred
->cap_inheritable
;
217 *permitted
= cred
->cap_permitted
;
223 * Determine whether the inheritable capabilities are limited to the old
224 * permitted set. Returns 1 if they are limited, 0 if they are not.
226 static inline int cap_inh_is_capped(void)
229 /* they are so limited unless the current task has the CAP_SETPCAP
232 if (cap_capable(current_cred(), current_cred()->user_ns
,
233 CAP_SETPCAP
, SECURITY_CAP_AUDIT
) == 0)
239 * cap_capset - Validate and apply proposed changes to current's capabilities
240 * @new: The proposed new credentials; alterations should be made here
241 * @old: The current task's current credentials
242 * @effective: A pointer to the proposed new effective capabilities set
243 * @inheritable: A pointer to the proposed new inheritable capabilities set
244 * @permitted: A pointer to the proposed new permitted capabilities set
246 * This function validates and applies a proposed mass change to the current
247 * process's capability sets. The changes are made to the proposed new
248 * credentials, and assuming no error, will be committed by the caller of LSM.
250 int cap_capset(struct cred
*new,
251 const struct cred
*old
,
252 const kernel_cap_t
*effective
,
253 const kernel_cap_t
*inheritable
,
254 const kernel_cap_t
*permitted
)
256 if (cap_inh_is_capped() &&
257 !cap_issubset(*inheritable
,
258 cap_combine(old
->cap_inheritable
,
259 old
->cap_permitted
)))
260 /* incapable of using this inheritable set */
263 if (!cap_issubset(*inheritable
,
264 cap_combine(old
->cap_inheritable
,
266 /* no new pI capabilities outside bounding set */
269 /* verify restrictions on target's new Permitted set */
270 if (!cap_issubset(*permitted
, old
->cap_permitted
))
273 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
274 if (!cap_issubset(*effective
, *permitted
))
277 new->cap_effective
= *effective
;
278 new->cap_inheritable
= *inheritable
;
279 new->cap_permitted
= *permitted
;
284 * Clear proposed capability sets for execve().
286 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
288 cap_clear(bprm
->cred
->cap_permitted
);
289 bprm
->cap_effective
= false;
293 * cap_inode_need_killpriv - Determine if inode change affects privileges
294 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
296 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
297 * affects the security markings on that inode, and if it is, should
298 * inode_killpriv() be invoked or the change rejected?
300 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
301 * -ve to deny the change.
303 int cap_inode_need_killpriv(struct dentry
*dentry
)
305 struct inode
*inode
= dentry
->d_inode
;
308 if (!inode
->i_op
->getxattr
)
311 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
318 * cap_inode_killpriv - Erase the security markings on an inode
319 * @dentry: The inode/dentry to alter
321 * Erase the privilege-enhancing security markings on an inode.
323 * Returns 0 if successful, -ve on error.
325 int cap_inode_killpriv(struct dentry
*dentry
)
327 struct inode
*inode
= dentry
->d_inode
;
329 if (!inode
->i_op
->removexattr
)
332 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
336 * Calculate the new process capability sets from the capability sets attached
339 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
340 struct linux_binprm
*bprm
,
344 struct cred
*new = bprm
->cred
;
348 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
351 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
354 CAP_FOR_EACH_U32(i
) {
355 __u32 permitted
= caps
->permitted
.cap
[i
];
356 __u32 inheritable
= caps
->inheritable
.cap
[i
];
359 * pP' = (X & fP) | (pI & fI)
361 new->cap_permitted
.cap
[i
] =
362 (new->cap_bset
.cap
[i
] & permitted
) |
363 (new->cap_inheritable
.cap
[i
] & inheritable
);
365 if (permitted
& ~new->cap_permitted
.cap
[i
])
366 /* insufficient to execute correctly */
371 * For legacy apps, with no internal support for recognizing they
372 * do not have enough capabilities, we return an error if they are
373 * missing some "forced" (aka file-permitted) capabilities.
375 return *effective
? ret
: 0;
379 * Extract the on-exec-apply capability sets for an executable file.
381 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
383 struct inode
*inode
= dentry
->d_inode
;
387 struct vfs_cap_data caps
;
389 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
391 if (!inode
|| !inode
->i_op
->getxattr
)
394 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
396 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
397 /* no data, that's ok */
402 if (size
< sizeof(magic_etc
))
405 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
407 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
408 case VFS_CAP_REVISION_1
:
409 if (size
!= XATTR_CAPS_SZ_1
)
411 tocopy
= VFS_CAP_U32_1
;
413 case VFS_CAP_REVISION_2
:
414 if (size
!= XATTR_CAPS_SZ_2
)
416 tocopy
= VFS_CAP_U32_2
;
422 CAP_FOR_EACH_U32(i
) {
425 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
426 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
429 cpu_caps
->permitted
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
430 cpu_caps
->inheritable
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
436 * Attempt to get the on-exec apply capability sets for an executable file from
437 * its xattrs and, if present, apply them to the proposed credentials being
438 * constructed by execve().
440 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
, bool *has_cap
)
442 struct dentry
*dentry
;
444 struct cpu_vfs_cap_data vcaps
;
446 bprm_clear_caps(bprm
);
448 if (!file_caps_enabled
)
451 if (bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)
454 dentry
= dget(bprm
->file
->f_dentry
);
456 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
459 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
460 __func__
, rc
, bprm
->filename
);
461 else if (rc
== -ENODATA
)
466 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_cap
);
468 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
469 __func__
, rc
, bprm
->filename
);
474 bprm_clear_caps(bprm
);
480 * cap_bprm_set_creds - Set up the proposed credentials for execve().
481 * @bprm: The execution parameters, including the proposed creds
483 * Set up the proposed credentials for a new execution context being
484 * constructed by execve(). The proposed creds in @bprm->cred is altered,
485 * which won't take effect immediately. Returns 0 if successful, -ve on error.
487 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
489 const struct cred
*old
= current_cred();
490 struct cred
*new = bprm
->cred
;
491 bool effective
, has_cap
= false;
496 ret
= get_file_caps(bprm
, &effective
, &has_cap
);
500 root_uid
= make_kuid(new->user_ns
, 0);
502 if (!issecure(SECURE_NOROOT
)) {
504 * If the legacy file capability is set, then don't set privs
505 * for a setuid root binary run by a non-root user. Do set it
506 * for a root user just to cause least surprise to an admin.
508 if (has_cap
&& !uid_eq(new->uid
, root_uid
) && uid_eq(new->euid
, root_uid
)) {
509 warn_setuid_and_fcaps_mixed(bprm
->filename
);
513 * To support inheritance of root-permissions and suid-root
514 * executables under compatibility mode, we override the
515 * capability sets for the file.
517 * If only the real uid is 0, we do not set the effective bit.
519 if (uid_eq(new->euid
, root_uid
) || uid_eq(new->uid
, root_uid
)) {
520 /* pP' = (cap_bset & ~0) | (pI & ~0) */
521 new->cap_permitted
= cap_combine(old
->cap_bset
,
522 old
->cap_inheritable
);
524 if (uid_eq(new->euid
, root_uid
))
529 /* if we have fs caps, clear dangerous personality flags */
530 if (!cap_issubset(new->cap_permitted
, old
->cap_permitted
))
531 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
534 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
535 * credentials unless they have the appropriate permit.
537 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
539 if ((!uid_eq(new->euid
, old
->uid
) ||
540 !gid_eq(new->egid
, old
->gid
) ||
541 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
542 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
543 /* downgrade; they get no more than they had, and maybe less */
544 if (!capable(CAP_SETUID
) ||
545 (bprm
->unsafe
& LSM_UNSAFE_NO_NEW_PRIVS
)) {
546 new->euid
= new->uid
;
547 new->egid
= new->gid
;
549 new->cap_permitted
= cap_intersect(new->cap_permitted
,
553 new->suid
= new->fsuid
= new->euid
;
554 new->sgid
= new->fsgid
= new->egid
;
557 new->cap_effective
= new->cap_permitted
;
559 cap_clear(new->cap_effective
);
560 bprm
->cap_effective
= effective
;
563 * Audit candidate if current->cap_effective is set
565 * We do not bother to audit if 3 things are true:
566 * 1) cap_effective has all caps
568 * 3) root is supposed to have all caps (SECURE_NOROOT)
569 * Since this is just a normal root execing a process.
571 * Number 1 above might fail if you don't have a full bset, but I think
572 * that is interesting information to audit.
574 if (!cap_isclear(new->cap_effective
)) {
575 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
576 !uid_eq(new->euid
, root_uid
) || !uid_eq(new->uid
, root_uid
) ||
577 issecure(SECURE_NOROOT
)) {
578 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
584 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
589 * cap_bprm_secureexec - Determine whether a secure execution is required
590 * @bprm: The execution parameters
592 * Determine whether a secure execution is required, return 1 if it is, and 0
595 * The credentials have been committed by this point, and so are no longer
596 * available through @bprm->cred.
598 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
600 const struct cred
*cred
= current_cred();
601 kuid_t root_uid
= make_kuid(cred
->user_ns
, 0);
603 if (!uid_eq(cred
->uid
, root_uid
)) {
604 if (bprm
->cap_effective
)
606 if (!cap_isclear(cred
->cap_permitted
))
610 return (!uid_eq(cred
->euid
, cred
->uid
) ||
611 !gid_eq(cred
->egid
, cred
->gid
));
615 * cap_inode_setxattr - Determine whether an xattr may be altered
616 * @dentry: The inode/dentry being altered
617 * @name: The name of the xattr to be changed
618 * @value: The value that the xattr will be changed to
619 * @size: The size of value
620 * @flags: The replacement flag
622 * Determine whether an xattr may be altered or set on an inode, returning 0 if
623 * permission is granted, -ve if denied.
625 * This is used to make sure security xattrs don't get updated or set by those
626 * who aren't privileged to do so.
628 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
629 const void *value
, size_t size
, int flags
)
631 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
632 if (!capable(CAP_SETFCAP
))
637 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
638 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
639 !capable(CAP_SYS_ADMIN
))
645 * cap_inode_removexattr - Determine whether an xattr may be removed
646 * @dentry: The inode/dentry being altered
647 * @name: The name of the xattr to be changed
649 * Determine whether an xattr may be removed from an inode, returning 0 if
650 * permission is granted, -ve if denied.
652 * This is used to make sure security xattrs don't get removed by those who
653 * aren't privileged to remove them.
655 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
657 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
658 if (!capable(CAP_SETFCAP
))
663 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
664 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
665 !capable(CAP_SYS_ADMIN
))
671 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
672 * a process after a call to setuid, setreuid, or setresuid.
674 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
675 * {r,e,s}uid != 0, the permitted and effective capabilities are
678 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
679 * capabilities of the process are cleared.
681 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
682 * capabilities are set to the permitted capabilities.
684 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
689 * cevans - New behaviour, Oct '99
690 * A process may, via prctl(), elect to keep its capabilities when it
691 * calls setuid() and switches away from uid==0. Both permitted and
692 * effective sets will be retained.
693 * Without this change, it was impossible for a daemon to drop only some
694 * of its privilege. The call to setuid(!=0) would drop all privileges!
695 * Keeping uid 0 is not an option because uid 0 owns too many vital
697 * Thanks to Olaf Kirch and Peter Benie for spotting this.
699 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
701 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
703 if ((uid_eq(old
->uid
, root_uid
) ||
704 uid_eq(old
->euid
, root_uid
) ||
705 uid_eq(old
->suid
, root_uid
)) &&
706 (!uid_eq(new->uid
, root_uid
) &&
707 !uid_eq(new->euid
, root_uid
) &&
708 !uid_eq(new->suid
, root_uid
)) &&
709 !issecure(SECURE_KEEP_CAPS
)) {
710 cap_clear(new->cap_permitted
);
711 cap_clear(new->cap_effective
);
713 if (uid_eq(old
->euid
, root_uid
) && !uid_eq(new->euid
, root_uid
))
714 cap_clear(new->cap_effective
);
715 if (!uid_eq(old
->euid
, root_uid
) && uid_eq(new->euid
, root_uid
))
716 new->cap_effective
= new->cap_permitted
;
720 * cap_task_fix_setuid - Fix up the results of setuid() call
721 * @new: The proposed credentials
722 * @old: The current task's current credentials
723 * @flags: Indications of what has changed
725 * Fix up the results of setuid() call before the credential changes are
726 * actually applied, returning 0 to grant the changes, -ve to deny them.
728 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
734 /* juggle the capabilities to follow [RES]UID changes unless
735 * otherwise suppressed */
736 if (!issecure(SECURE_NO_SETUID_FIXUP
))
737 cap_emulate_setxuid(new, old
);
741 /* juggle the capabilties to follow FSUID changes, unless
742 * otherwise suppressed
744 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
745 * if not, we might be a bit too harsh here.
747 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
748 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
749 if (uid_eq(old
->fsuid
, root_uid
) && !uid_eq(new->fsuid
, root_uid
))
751 cap_drop_fs_set(new->cap_effective
);
753 if (!uid_eq(old
->fsuid
, root_uid
) && uid_eq(new->fsuid
, root_uid
))
755 cap_raise_fs_set(new->cap_effective
,
768 * Rationale: code calling task_setscheduler, task_setioprio, and
769 * task_setnice, assumes that
770 * . if capable(cap_sys_nice), then those actions should be allowed
771 * . if not capable(cap_sys_nice), but acting on your own processes,
772 * then those actions should be allowed
773 * This is insufficient now since you can call code without suid, but
774 * yet with increased caps.
775 * So we check for increased caps on the target process.
777 static int cap_safe_nice(struct task_struct
*p
)
779 int is_subset
, ret
= 0;
782 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
783 current_cred()->cap_permitted
);
784 if (!is_subset
&& !ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
))
792 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
793 * @p: The task to affect
795 * Detemine if the requested scheduler policy change is permitted for the
796 * specified task, returning 0 if permission is granted, -ve if denied.
798 int cap_task_setscheduler(struct task_struct
*p
)
800 return cap_safe_nice(p
);
804 * cap_task_ioprio - Detemine if I/O priority change is permitted
805 * @p: The task to affect
806 * @ioprio: The I/O priority to set
808 * Detemine if the requested I/O priority change is permitted for the specified
809 * task, returning 0 if permission is granted, -ve if denied.
811 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
813 return cap_safe_nice(p
);
817 * cap_task_ioprio - Detemine if task priority change is permitted
818 * @p: The task to affect
819 * @nice: The nice value to set
821 * Detemine if the requested task priority change is permitted for the
822 * specified task, returning 0 if permission is granted, -ve if denied.
824 int cap_task_setnice(struct task_struct
*p
, int nice
)
826 return cap_safe_nice(p
);
830 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
831 * the current task's bounding set. Returns 0 on success, -ve on error.
833 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
835 if (!ns_capable(current_user_ns(), CAP_SETPCAP
))
840 cap_lower(new->cap_bset
, cap
);
845 * cap_task_prctl - Implement process control functions for this security module
846 * @option: The process control function requested
847 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
849 * Allow process control functions (sys_prctl()) to alter capabilities; may
850 * also deny access to other functions not otherwise implemented here.
852 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
853 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
854 * modules will consider performing the function.
856 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
857 unsigned long arg4
, unsigned long arg5
)
862 new = prepare_creds();
867 case PR_CAPBSET_READ
:
869 if (!cap_valid(arg2
))
871 error
= !!cap_raised(new->cap_bset
, arg2
);
874 case PR_CAPBSET_DROP
:
875 error
= cap_prctl_drop(new, arg2
);
881 * The next four prctl's remain to assist with transitioning a
882 * system from legacy UID=0 based privilege (when filesystem
883 * capabilities are not in use) to a system using filesystem
884 * capabilities only - as the POSIX.1e draft intended.
888 * PR_SET_SECUREBITS =
889 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
890 * | issecure_mask(SECURE_NOROOT)
891 * | issecure_mask(SECURE_NOROOT_LOCKED)
892 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
893 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
895 * will ensure that the current process and all of its
896 * children will be locked into a pure
897 * capability-based-privilege environment.
899 case PR_SET_SECUREBITS
:
901 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
902 & (new->securebits
^ arg2
)) /*[1]*/
903 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
904 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
905 || (cap_capable(current_cred(),
906 current_cred()->user_ns
, CAP_SETPCAP
,
907 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
909 * [1] no changing of bits that are locked
910 * [2] no unlocking of locks
911 * [3] no setting of unsupported bits
912 * [4] doing anything requires privilege (go read about
913 * the "sendmail capabilities bug")
916 /* cannot change a locked bit */
918 new->securebits
= arg2
;
921 case PR_GET_SECUREBITS
:
922 error
= new->securebits
;
925 case PR_GET_KEEPCAPS
:
926 if (issecure(SECURE_KEEP_CAPS
))
930 case PR_SET_KEEPCAPS
:
932 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
935 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
938 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
940 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
944 /* No functionality available - continue with default */
949 /* Functionality provided */
951 return commit_creds(new);
960 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
961 * @mm: The VM space in which the new mapping is to be made
962 * @pages: The size of the mapping
964 * Determine whether the allocation of a new virtual mapping by the current
965 * task is permitted, returning 0 if permission is granted, -ve if not.
967 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
969 int cap_sys_admin
= 0;
971 if (cap_capable(current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
972 SECURITY_CAP_NOAUDIT
) == 0)
974 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
978 * cap_mmap_addr - check if able to map given addr
979 * @addr: address attempting to be mapped
981 * If the process is attempting to map memory below dac_mmap_min_addr they need
982 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
983 * capability security module. Returns 0 if this mapping should be allowed
986 int cap_mmap_addr(unsigned long addr
)
990 if (addr
< dac_mmap_min_addr
) {
991 ret
= cap_capable(current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
993 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
995 current
->flags
|= PF_SUPERPRIV
;
1000 int cap_mmap_file(struct file
*file
, unsigned long reqprot
,
1001 unsigned long prot
, unsigned long flags
)