iommu/amd: Fix devid mapping for ivrs_ioapic override
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
blob3e11aab9f391d9bce24c329694d62d3a48ced811
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
32 static DEFINE_SPINLOCK(leak_lock);
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
37 unsigned long flags;
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
47 unsigned long flags;
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
54 static inline
55 void btrfs_leak_debug_check(void)
57 struct extent_state *state;
58 struct extent_buffer *eb;
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
80 #define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct extent_io_tree *tree, u64 start, u64 end)
85 struct inode *inode;
86 u64 isize;
88 if (!tree->mapping)
89 return;
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
95 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96 caller, btrfs_ino(inode), isize, start, end);
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry) do {} while (0)
102 #define btrfs_leak_debug_check() do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
104 #endif
106 #define BUFFER_LRU_MAX 64
108 struct tree_entry {
109 u64 start;
110 u64 end;
111 struct rb_node rb_node;
114 struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
118 unsigned long bio_flags;
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
123 unsigned int extent_locked:1;
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
133 if (!tree->mapping)
134 return NULL;
135 return btrfs_sb(tree->mapping->host->i_sb);
138 int __init extent_io_init(void)
140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143 if (!extent_state_cache)
144 return -ENOMEM;
146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149 if (!extent_buffer_cache)
150 goto free_state_cache;
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
160 return 0;
162 free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
166 free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
170 free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
172 extent_state_cache = NULL;
173 return -ENOMEM;
176 void extent_io_exit(void)
178 btrfs_leak_debug_check();
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
184 rcu_barrier();
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
193 void extent_io_tree_init(struct extent_io_tree *tree,
194 struct address_space *mapping)
196 tree->state = RB_ROOT;
197 tree->ops = NULL;
198 tree->dirty_bytes = 0;
199 spin_lock_init(&tree->lock);
200 tree->mapping = mapping;
203 static struct extent_state *alloc_extent_state(gfp_t mask)
205 struct extent_state *state;
207 state = kmem_cache_alloc(extent_state_cache, mask);
208 if (!state)
209 return state;
210 state->state = 0;
211 state->private = 0;
212 state->tree = NULL;
213 btrfs_leak_debug_add(&state->leak_list, &states);
214 atomic_set(&state->refs, 1);
215 init_waitqueue_head(&state->wq);
216 trace_alloc_extent_state(state, mask, _RET_IP_);
217 return state;
220 void free_extent_state(struct extent_state *state)
222 if (!state)
223 return;
224 if (atomic_dec_and_test(&state->refs)) {
225 WARN_ON(state->tree);
226 btrfs_leak_debug_del(&state->leak_list);
227 trace_free_extent_state(state, _RET_IP_);
228 kmem_cache_free(extent_state_cache, state);
232 static struct rb_node *tree_insert(struct rb_root *root,
233 struct rb_node *search_start,
234 u64 offset,
235 struct rb_node *node,
236 struct rb_node ***p_in,
237 struct rb_node **parent_in)
239 struct rb_node **p;
240 struct rb_node *parent = NULL;
241 struct tree_entry *entry;
243 if (p_in && parent_in) {
244 p = *p_in;
245 parent = *parent_in;
246 goto do_insert;
249 p = search_start ? &search_start : &root->rb_node;
250 while (*p) {
251 parent = *p;
252 entry = rb_entry(parent, struct tree_entry, rb_node);
254 if (offset < entry->start)
255 p = &(*p)->rb_left;
256 else if (offset > entry->end)
257 p = &(*p)->rb_right;
258 else
259 return parent;
262 do_insert:
263 rb_link_node(node, parent, p);
264 rb_insert_color(node, root);
265 return NULL;
268 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
269 struct rb_node **prev_ret,
270 struct rb_node **next_ret,
271 struct rb_node ***p_ret,
272 struct rb_node **parent_ret)
274 struct rb_root *root = &tree->state;
275 struct rb_node **n = &root->rb_node;
276 struct rb_node *prev = NULL;
277 struct rb_node *orig_prev = NULL;
278 struct tree_entry *entry;
279 struct tree_entry *prev_entry = NULL;
281 while (*n) {
282 prev = *n;
283 entry = rb_entry(prev, struct tree_entry, rb_node);
284 prev_entry = entry;
286 if (offset < entry->start)
287 n = &(*n)->rb_left;
288 else if (offset > entry->end)
289 n = &(*n)->rb_right;
290 else
291 return *n;
294 if (p_ret)
295 *p_ret = n;
296 if (parent_ret)
297 *parent_ret = prev;
299 if (prev_ret) {
300 orig_prev = prev;
301 while (prev && offset > prev_entry->end) {
302 prev = rb_next(prev);
303 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
305 *prev_ret = prev;
306 prev = orig_prev;
309 if (next_ret) {
310 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311 while (prev && offset < prev_entry->start) {
312 prev = rb_prev(prev);
313 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
315 *next_ret = prev;
317 return NULL;
320 static inline struct rb_node *
321 tree_search_for_insert(struct extent_io_tree *tree,
322 u64 offset,
323 struct rb_node ***p_ret,
324 struct rb_node **parent_ret)
326 struct rb_node *prev = NULL;
327 struct rb_node *ret;
329 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
330 if (!ret)
331 return prev;
332 return ret;
335 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
336 u64 offset)
338 return tree_search_for_insert(tree, offset, NULL, NULL);
341 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
342 struct extent_state *other)
344 if (tree->ops && tree->ops->merge_extent_hook)
345 tree->ops->merge_extent_hook(tree->mapping->host, new,
346 other);
350 * utility function to look for merge candidates inside a given range.
351 * Any extents with matching state are merged together into a single
352 * extent in the tree. Extents with EXTENT_IO in their state field
353 * are not merged because the end_io handlers need to be able to do
354 * operations on them without sleeping (or doing allocations/splits).
356 * This should be called with the tree lock held.
358 static void merge_state(struct extent_io_tree *tree,
359 struct extent_state *state)
361 struct extent_state *other;
362 struct rb_node *other_node;
364 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
365 return;
367 other_node = rb_prev(&state->rb_node);
368 if (other_node) {
369 other = rb_entry(other_node, struct extent_state, rb_node);
370 if (other->end == state->start - 1 &&
371 other->state == state->state) {
372 merge_cb(tree, state, other);
373 state->start = other->start;
374 other->tree = NULL;
375 rb_erase(&other->rb_node, &tree->state);
376 free_extent_state(other);
379 other_node = rb_next(&state->rb_node);
380 if (other_node) {
381 other = rb_entry(other_node, struct extent_state, rb_node);
382 if (other->start == state->end + 1 &&
383 other->state == state->state) {
384 merge_cb(tree, state, other);
385 state->end = other->end;
386 other->tree = NULL;
387 rb_erase(&other->rb_node, &tree->state);
388 free_extent_state(other);
393 static void set_state_cb(struct extent_io_tree *tree,
394 struct extent_state *state, unsigned long *bits)
396 if (tree->ops && tree->ops->set_bit_hook)
397 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
400 static void clear_state_cb(struct extent_io_tree *tree,
401 struct extent_state *state, unsigned long *bits)
403 if (tree->ops && tree->ops->clear_bit_hook)
404 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
407 static void set_state_bits(struct extent_io_tree *tree,
408 struct extent_state *state, unsigned long *bits);
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
420 static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
422 struct rb_node ***p,
423 struct rb_node **parent,
424 unsigned long *bits)
426 struct rb_node *node;
428 if (end < start)
429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430 end, start);
431 state->start = start;
432 state->end = end;
434 set_state_bits(tree, state, bits);
436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
440 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
441 "%llu %llu\n",
442 found->start, found->end, start, end);
443 return -EEXIST;
445 state->tree = tree;
446 merge_state(tree, state);
447 return 0;
450 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
451 u64 split)
453 if (tree->ops && tree->ops->split_extent_hook)
454 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
458 * split a given extent state struct in two, inserting the preallocated
459 * struct 'prealloc' as the newly created second half. 'split' indicates an
460 * offset inside 'orig' where it should be split.
462 * Before calling,
463 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
464 * are two extent state structs in the tree:
465 * prealloc: [orig->start, split - 1]
466 * orig: [ split, orig->end ]
468 * The tree locks are not taken by this function. They need to be held
469 * by the caller.
471 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
472 struct extent_state *prealloc, u64 split)
474 struct rb_node *node;
476 split_cb(tree, orig, split);
478 prealloc->start = orig->start;
479 prealloc->end = split - 1;
480 prealloc->state = orig->state;
481 orig->start = split;
483 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
484 &prealloc->rb_node, NULL, NULL);
485 if (node) {
486 free_extent_state(prealloc);
487 return -EEXIST;
489 prealloc->tree = tree;
490 return 0;
493 static struct extent_state *next_state(struct extent_state *state)
495 struct rb_node *next = rb_next(&state->rb_node);
496 if (next)
497 return rb_entry(next, struct extent_state, rb_node);
498 else
499 return NULL;
503 * utility function to clear some bits in an extent state struct.
504 * it will optionally wake up any one waiting on this state (wake == 1).
506 * If no bits are set on the state struct after clearing things, the
507 * struct is freed and removed from the tree
509 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
510 struct extent_state *state,
511 unsigned long *bits, int wake)
513 struct extent_state *next;
514 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
516 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
517 u64 range = state->end - state->start + 1;
518 WARN_ON(range > tree->dirty_bytes);
519 tree->dirty_bytes -= range;
521 clear_state_cb(tree, state, bits);
522 state->state &= ~bits_to_clear;
523 if (wake)
524 wake_up(&state->wq);
525 if (state->state == 0) {
526 next = next_state(state);
527 if (state->tree) {
528 rb_erase(&state->rb_node, &tree->state);
529 state->tree = NULL;
530 free_extent_state(state);
531 } else {
532 WARN_ON(1);
534 } else {
535 merge_state(tree, state);
536 next = next_state(state);
538 return next;
541 static struct extent_state *
542 alloc_extent_state_atomic(struct extent_state *prealloc)
544 if (!prealloc)
545 prealloc = alloc_extent_state(GFP_ATOMIC);
547 return prealloc;
550 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
552 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
553 "Extent tree was modified by another "
554 "thread while locked.");
558 * clear some bits on a range in the tree. This may require splitting
559 * or inserting elements in the tree, so the gfp mask is used to
560 * indicate which allocations or sleeping are allowed.
562 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
563 * the given range from the tree regardless of state (ie for truncate).
565 * the range [start, end] is inclusive.
567 * This takes the tree lock, and returns 0 on success and < 0 on error.
569 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
570 unsigned long bits, int wake, int delete,
571 struct extent_state **cached_state,
572 gfp_t mask)
574 struct extent_state *state;
575 struct extent_state *cached;
576 struct extent_state *prealloc = NULL;
577 struct rb_node *node;
578 u64 last_end;
579 int err;
580 int clear = 0;
582 btrfs_debug_check_extent_io_range(tree, start, end);
584 if (bits & EXTENT_DELALLOC)
585 bits |= EXTENT_NORESERVE;
587 if (delete)
588 bits |= ~EXTENT_CTLBITS;
589 bits |= EXTENT_FIRST_DELALLOC;
591 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
592 clear = 1;
593 again:
594 if (!prealloc && (mask & __GFP_WAIT)) {
595 prealloc = alloc_extent_state(mask);
596 if (!prealloc)
597 return -ENOMEM;
600 spin_lock(&tree->lock);
601 if (cached_state) {
602 cached = *cached_state;
604 if (clear) {
605 *cached_state = NULL;
606 cached_state = NULL;
609 if (cached && cached->tree && cached->start <= start &&
610 cached->end > start) {
611 if (clear)
612 atomic_dec(&cached->refs);
613 state = cached;
614 goto hit_next;
616 if (clear)
617 free_extent_state(cached);
620 * this search will find the extents that end after
621 * our range starts
623 node = tree_search(tree, start);
624 if (!node)
625 goto out;
626 state = rb_entry(node, struct extent_state, rb_node);
627 hit_next:
628 if (state->start > end)
629 goto out;
630 WARN_ON(state->end < start);
631 last_end = state->end;
633 /* the state doesn't have the wanted bits, go ahead */
634 if (!(state->state & bits)) {
635 state = next_state(state);
636 goto next;
640 * | ---- desired range ---- |
641 * | state | or
642 * | ------------- state -------------- |
644 * We need to split the extent we found, and may flip
645 * bits on second half.
647 * If the extent we found extends past our range, we
648 * just split and search again. It'll get split again
649 * the next time though.
651 * If the extent we found is inside our range, we clear
652 * the desired bit on it.
655 if (state->start < start) {
656 prealloc = alloc_extent_state_atomic(prealloc);
657 BUG_ON(!prealloc);
658 err = split_state(tree, state, prealloc, start);
659 if (err)
660 extent_io_tree_panic(tree, err);
662 prealloc = NULL;
663 if (err)
664 goto out;
665 if (state->end <= end) {
666 state = clear_state_bit(tree, state, &bits, wake);
667 goto next;
669 goto search_again;
672 * | ---- desired range ---- |
673 * | state |
674 * We need to split the extent, and clear the bit
675 * on the first half
677 if (state->start <= end && state->end > end) {
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
680 err = split_state(tree, state, prealloc, end + 1);
681 if (err)
682 extent_io_tree_panic(tree, err);
684 if (wake)
685 wake_up(&state->wq);
687 clear_state_bit(tree, prealloc, &bits, wake);
689 prealloc = NULL;
690 goto out;
693 state = clear_state_bit(tree, state, &bits, wake);
694 next:
695 if (last_end == (u64)-1)
696 goto out;
697 start = last_end + 1;
698 if (start <= end && state && !need_resched())
699 goto hit_next;
700 goto search_again;
702 out:
703 spin_unlock(&tree->lock);
704 if (prealloc)
705 free_extent_state(prealloc);
707 return 0;
709 search_again:
710 if (start > end)
711 goto out;
712 spin_unlock(&tree->lock);
713 if (mask & __GFP_WAIT)
714 cond_resched();
715 goto again;
718 static void wait_on_state(struct extent_io_tree *tree,
719 struct extent_state *state)
720 __releases(tree->lock)
721 __acquires(tree->lock)
723 DEFINE_WAIT(wait);
724 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
725 spin_unlock(&tree->lock);
726 schedule();
727 spin_lock(&tree->lock);
728 finish_wait(&state->wq, &wait);
732 * waits for one or more bits to clear on a range in the state tree.
733 * The range [start, end] is inclusive.
734 * The tree lock is taken by this function
736 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737 unsigned long bits)
739 struct extent_state *state;
740 struct rb_node *node;
742 btrfs_debug_check_extent_io_range(tree, start, end);
744 spin_lock(&tree->lock);
745 again:
746 while (1) {
748 * this search will find all the extents that end after
749 * our range starts
751 node = tree_search(tree, start);
752 process_node:
753 if (!node)
754 break;
756 state = rb_entry(node, struct extent_state, rb_node);
758 if (state->start > end)
759 goto out;
761 if (state->state & bits) {
762 start = state->start;
763 atomic_inc(&state->refs);
764 wait_on_state(tree, state);
765 free_extent_state(state);
766 goto again;
768 start = state->end + 1;
770 if (start > end)
771 break;
773 if (!cond_resched_lock(&tree->lock)) {
774 node = rb_next(node);
775 goto process_node;
778 out:
779 spin_unlock(&tree->lock);
782 static void set_state_bits(struct extent_io_tree *tree,
783 struct extent_state *state,
784 unsigned long *bits)
786 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
788 set_state_cb(tree, state, bits);
789 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
790 u64 range = state->end - state->start + 1;
791 tree->dirty_bytes += range;
793 state->state |= bits_to_set;
796 static void cache_state(struct extent_state *state,
797 struct extent_state **cached_ptr)
799 if (cached_ptr && !(*cached_ptr)) {
800 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
801 *cached_ptr = state;
802 atomic_inc(&state->refs);
808 * set some bits on a range in the tree. This may require allocations or
809 * sleeping, so the gfp mask is used to indicate what is allowed.
811 * If any of the exclusive bits are set, this will fail with -EEXIST if some
812 * part of the range already has the desired bits set. The start of the
813 * existing range is returned in failed_start in this case.
815 * [start, end] is inclusive This takes the tree lock.
818 static int __must_check
819 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
820 unsigned long bits, unsigned long exclusive_bits,
821 u64 *failed_start, struct extent_state **cached_state,
822 gfp_t mask)
824 struct extent_state *state;
825 struct extent_state *prealloc = NULL;
826 struct rb_node *node;
827 struct rb_node **p;
828 struct rb_node *parent;
829 int err = 0;
830 u64 last_start;
831 u64 last_end;
833 btrfs_debug_check_extent_io_range(tree, start, end);
835 bits |= EXTENT_FIRST_DELALLOC;
836 again:
837 if (!prealloc && (mask & __GFP_WAIT)) {
838 prealloc = alloc_extent_state(mask);
839 BUG_ON(!prealloc);
842 spin_lock(&tree->lock);
843 if (cached_state && *cached_state) {
844 state = *cached_state;
845 if (state->start <= start && state->end > start &&
846 state->tree) {
847 node = &state->rb_node;
848 goto hit_next;
852 * this search will find all the extents that end after
853 * our range starts.
855 node = tree_search_for_insert(tree, start, &p, &parent);
856 if (!node) {
857 prealloc = alloc_extent_state_atomic(prealloc);
858 BUG_ON(!prealloc);
859 err = insert_state(tree, prealloc, start, end,
860 &p, &parent, &bits);
861 if (err)
862 extent_io_tree_panic(tree, err);
864 cache_state(prealloc, cached_state);
865 prealloc = NULL;
866 goto out;
868 state = rb_entry(node, struct extent_state, rb_node);
869 hit_next:
870 last_start = state->start;
871 last_end = state->end;
874 * | ---- desired range ---- |
875 * | state |
877 * Just lock what we found and keep going
879 if (state->start == start && state->end <= end) {
880 if (state->state & exclusive_bits) {
881 *failed_start = state->start;
882 err = -EEXIST;
883 goto out;
886 set_state_bits(tree, state, &bits);
887 cache_state(state, cached_state);
888 merge_state(tree, state);
889 if (last_end == (u64)-1)
890 goto out;
891 start = last_end + 1;
892 state = next_state(state);
893 if (start < end && state && state->start == start &&
894 !need_resched())
895 goto hit_next;
896 goto search_again;
900 * | ---- desired range ---- |
901 * | state |
902 * or
903 * | ------------- state -------------- |
905 * We need to split the extent we found, and may flip bits on
906 * second half.
908 * If the extent we found extends past our
909 * range, we just split and search again. It'll get split
910 * again the next time though.
912 * If the extent we found is inside our range, we set the
913 * desired bit on it.
915 if (state->start < start) {
916 if (state->state & exclusive_bits) {
917 *failed_start = start;
918 err = -EEXIST;
919 goto out;
922 prealloc = alloc_extent_state_atomic(prealloc);
923 BUG_ON(!prealloc);
924 err = split_state(tree, state, prealloc, start);
925 if (err)
926 extent_io_tree_panic(tree, err);
928 prealloc = NULL;
929 if (err)
930 goto out;
931 if (state->end <= end) {
932 set_state_bits(tree, state, &bits);
933 cache_state(state, cached_state);
934 merge_state(tree, state);
935 if (last_end == (u64)-1)
936 goto out;
937 start = last_end + 1;
938 state = next_state(state);
939 if (start < end && state && state->start == start &&
940 !need_resched())
941 goto hit_next;
943 goto search_again;
946 * | ---- desired range ---- |
947 * | state | or | state |
949 * There's a hole, we need to insert something in it and
950 * ignore the extent we found.
952 if (state->start > start) {
953 u64 this_end;
954 if (end < last_start)
955 this_end = end;
956 else
957 this_end = last_start - 1;
959 prealloc = alloc_extent_state_atomic(prealloc);
960 BUG_ON(!prealloc);
963 * Avoid to free 'prealloc' if it can be merged with
964 * the later extent.
966 err = insert_state(tree, prealloc, start, this_end,
967 NULL, NULL, &bits);
968 if (err)
969 extent_io_tree_panic(tree, err);
971 cache_state(prealloc, cached_state);
972 prealloc = NULL;
973 start = this_end + 1;
974 goto search_again;
977 * | ---- desired range ---- |
978 * | state |
979 * We need to split the extent, and set the bit
980 * on the first half
982 if (state->start <= end && state->end > end) {
983 if (state->state & exclusive_bits) {
984 *failed_start = start;
985 err = -EEXIST;
986 goto out;
989 prealloc = alloc_extent_state_atomic(prealloc);
990 BUG_ON(!prealloc);
991 err = split_state(tree, state, prealloc, end + 1);
992 if (err)
993 extent_io_tree_panic(tree, err);
995 set_state_bits(tree, prealloc, &bits);
996 cache_state(prealloc, cached_state);
997 merge_state(tree, prealloc);
998 prealloc = NULL;
999 goto out;
1002 goto search_again;
1004 out:
1005 spin_unlock(&tree->lock);
1006 if (prealloc)
1007 free_extent_state(prealloc);
1009 return err;
1011 search_again:
1012 if (start > end)
1013 goto out;
1014 spin_unlock(&tree->lock);
1015 if (mask & __GFP_WAIT)
1016 cond_resched();
1017 goto again;
1020 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1021 unsigned long bits, u64 * failed_start,
1022 struct extent_state **cached_state, gfp_t mask)
1024 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1025 cached_state, mask);
1030 * convert_extent_bit - convert all bits in a given range from one bit to
1031 * another
1032 * @tree: the io tree to search
1033 * @start: the start offset in bytes
1034 * @end: the end offset in bytes (inclusive)
1035 * @bits: the bits to set in this range
1036 * @clear_bits: the bits to clear in this range
1037 * @cached_state: state that we're going to cache
1038 * @mask: the allocation mask
1040 * This will go through and set bits for the given range. If any states exist
1041 * already in this range they are set with the given bit and cleared of the
1042 * clear_bits. This is only meant to be used by things that are mergeable, ie
1043 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1044 * boundary bits like LOCK.
1046 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1047 unsigned long bits, unsigned long clear_bits,
1048 struct extent_state **cached_state, gfp_t mask)
1050 struct extent_state *state;
1051 struct extent_state *prealloc = NULL;
1052 struct rb_node *node;
1053 struct rb_node **p;
1054 struct rb_node *parent;
1055 int err = 0;
1056 u64 last_start;
1057 u64 last_end;
1059 btrfs_debug_check_extent_io_range(tree, start, end);
1061 again:
1062 if (!prealloc && (mask & __GFP_WAIT)) {
1063 prealloc = alloc_extent_state(mask);
1064 if (!prealloc)
1065 return -ENOMEM;
1068 spin_lock(&tree->lock);
1069 if (cached_state && *cached_state) {
1070 state = *cached_state;
1071 if (state->start <= start && state->end > start &&
1072 state->tree) {
1073 node = &state->rb_node;
1074 goto hit_next;
1079 * this search will find all the extents that end after
1080 * our range starts.
1082 node = tree_search_for_insert(tree, start, &p, &parent);
1083 if (!node) {
1084 prealloc = alloc_extent_state_atomic(prealloc);
1085 if (!prealloc) {
1086 err = -ENOMEM;
1087 goto out;
1089 err = insert_state(tree, prealloc, start, end,
1090 &p, &parent, &bits);
1091 if (err)
1092 extent_io_tree_panic(tree, err);
1093 cache_state(prealloc, cached_state);
1094 prealloc = NULL;
1095 goto out;
1097 state = rb_entry(node, struct extent_state, rb_node);
1098 hit_next:
1099 last_start = state->start;
1100 last_end = state->end;
1103 * | ---- desired range ---- |
1104 * | state |
1106 * Just lock what we found and keep going
1108 if (state->start == start && state->end <= end) {
1109 set_state_bits(tree, state, &bits);
1110 cache_state(state, cached_state);
1111 state = clear_state_bit(tree, state, &clear_bits, 0);
1112 if (last_end == (u64)-1)
1113 goto out;
1114 start = last_end + 1;
1115 if (start < end && state && state->start == start &&
1116 !need_resched())
1117 goto hit_next;
1118 goto search_again;
1122 * | ---- desired range ---- |
1123 * | state |
1124 * or
1125 * | ------------- state -------------- |
1127 * We need to split the extent we found, and may flip bits on
1128 * second half.
1130 * If the extent we found extends past our
1131 * range, we just split and search again. It'll get split
1132 * again the next time though.
1134 * If the extent we found is inside our range, we set the
1135 * desired bit on it.
1137 if (state->start < start) {
1138 prealloc = alloc_extent_state_atomic(prealloc);
1139 if (!prealloc) {
1140 err = -ENOMEM;
1141 goto out;
1143 err = split_state(tree, state, prealloc, start);
1144 if (err)
1145 extent_io_tree_panic(tree, err);
1146 prealloc = NULL;
1147 if (err)
1148 goto out;
1149 if (state->end <= end) {
1150 set_state_bits(tree, state, &bits);
1151 cache_state(state, cached_state);
1152 state = clear_state_bit(tree, state, &clear_bits, 0);
1153 if (last_end == (u64)-1)
1154 goto out;
1155 start = last_end + 1;
1156 if (start < end && state && state->start == start &&
1157 !need_resched())
1158 goto hit_next;
1160 goto search_again;
1163 * | ---- desired range ---- |
1164 * | state | or | state |
1166 * There's a hole, we need to insert something in it and
1167 * ignore the extent we found.
1169 if (state->start > start) {
1170 u64 this_end;
1171 if (end < last_start)
1172 this_end = end;
1173 else
1174 this_end = last_start - 1;
1176 prealloc = alloc_extent_state_atomic(prealloc);
1177 if (!prealloc) {
1178 err = -ENOMEM;
1179 goto out;
1183 * Avoid to free 'prealloc' if it can be merged with
1184 * the later extent.
1186 err = insert_state(tree, prealloc, start, this_end,
1187 NULL, NULL, &bits);
1188 if (err)
1189 extent_io_tree_panic(tree, err);
1190 cache_state(prealloc, cached_state);
1191 prealloc = NULL;
1192 start = this_end + 1;
1193 goto search_again;
1196 * | ---- desired range ---- |
1197 * | state |
1198 * We need to split the extent, and set the bit
1199 * on the first half
1201 if (state->start <= end && state->end > end) {
1202 prealloc = alloc_extent_state_atomic(prealloc);
1203 if (!prealloc) {
1204 err = -ENOMEM;
1205 goto out;
1208 err = split_state(tree, state, prealloc, end + 1);
1209 if (err)
1210 extent_io_tree_panic(tree, err);
1212 set_state_bits(tree, prealloc, &bits);
1213 cache_state(prealloc, cached_state);
1214 clear_state_bit(tree, prealloc, &clear_bits, 0);
1215 prealloc = NULL;
1216 goto out;
1219 goto search_again;
1221 out:
1222 spin_unlock(&tree->lock);
1223 if (prealloc)
1224 free_extent_state(prealloc);
1226 return err;
1228 search_again:
1229 if (start > end)
1230 goto out;
1231 spin_unlock(&tree->lock);
1232 if (mask & __GFP_WAIT)
1233 cond_resched();
1234 goto again;
1237 /* wrappers around set/clear extent bit */
1238 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1239 gfp_t mask)
1241 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1242 NULL, mask);
1245 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246 unsigned long bits, gfp_t mask)
1248 return set_extent_bit(tree, start, end, bits, NULL,
1249 NULL, mask);
1252 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1253 unsigned long bits, gfp_t mask)
1255 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1258 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1259 struct extent_state **cached_state, gfp_t mask)
1261 return set_extent_bit(tree, start, end,
1262 EXTENT_DELALLOC | EXTENT_UPTODATE,
1263 NULL, cached_state, mask);
1266 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1267 struct extent_state **cached_state, gfp_t mask)
1269 return set_extent_bit(tree, start, end,
1270 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1271 NULL, cached_state, mask);
1274 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1275 gfp_t mask)
1277 return clear_extent_bit(tree, start, end,
1278 EXTENT_DIRTY | EXTENT_DELALLOC |
1279 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1282 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1283 gfp_t mask)
1285 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1286 NULL, mask);
1289 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290 struct extent_state **cached_state, gfp_t mask)
1292 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1293 cached_state, mask);
1296 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1297 struct extent_state **cached_state, gfp_t mask)
1299 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1300 cached_state, mask);
1304 * either insert or lock state struct between start and end use mask to tell
1305 * us if waiting is desired.
1307 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1308 unsigned long bits, struct extent_state **cached_state)
1310 int err;
1311 u64 failed_start;
1312 while (1) {
1313 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1314 EXTENT_LOCKED, &failed_start,
1315 cached_state, GFP_NOFS);
1316 if (err == -EEXIST) {
1317 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1318 start = failed_start;
1319 } else
1320 break;
1321 WARN_ON(start > end);
1323 return err;
1326 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1328 return lock_extent_bits(tree, start, end, 0, NULL);
1331 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1333 int err;
1334 u64 failed_start;
1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1337 &failed_start, NULL, GFP_NOFS);
1338 if (err == -EEXIST) {
1339 if (failed_start > start)
1340 clear_extent_bit(tree, start, failed_start - 1,
1341 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1342 return 0;
1344 return 1;
1347 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1348 struct extent_state **cached, gfp_t mask)
1350 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1351 mask);
1354 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1356 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1357 GFP_NOFS);
1360 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1362 unsigned long index = start >> PAGE_CACHE_SHIFT;
1363 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1364 struct page *page;
1366 while (index <= end_index) {
1367 page = find_get_page(inode->i_mapping, index);
1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369 clear_page_dirty_for_io(page);
1370 page_cache_release(page);
1371 index++;
1373 return 0;
1376 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1378 unsigned long index = start >> PAGE_CACHE_SHIFT;
1379 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1380 struct page *page;
1382 while (index <= end_index) {
1383 page = find_get_page(inode->i_mapping, index);
1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385 account_page_redirty(page);
1386 __set_page_dirty_nobuffers(page);
1387 page_cache_release(page);
1388 index++;
1390 return 0;
1394 * helper function to set both pages and extents in the tree writeback
1396 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1398 unsigned long index = start >> PAGE_CACHE_SHIFT;
1399 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1400 struct page *page;
1402 while (index <= end_index) {
1403 page = find_get_page(tree->mapping, index);
1404 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1405 set_page_writeback(page);
1406 page_cache_release(page);
1407 index++;
1409 return 0;
1412 /* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1416 static struct extent_state *
1417 find_first_extent_bit_state(struct extent_io_tree *tree,
1418 u64 start, unsigned long bits)
1420 struct rb_node *node;
1421 struct extent_state *state;
1424 * this search will find all the extents that end after
1425 * our range starts.
1427 node = tree_search(tree, start);
1428 if (!node)
1429 goto out;
1431 while (1) {
1432 state = rb_entry(node, struct extent_state, rb_node);
1433 if (state->end >= start && (state->state & bits))
1434 return state;
1436 node = rb_next(node);
1437 if (!node)
1438 break;
1440 out:
1441 return NULL;
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1449 * If nothing was found, 1 is returned. If found something, return 0.
1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452 u64 *start_ret, u64 *end_ret, unsigned long bits,
1453 struct extent_state **cached_state)
1455 struct extent_state *state;
1456 struct rb_node *n;
1457 int ret = 1;
1459 spin_lock(&tree->lock);
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
1462 if (state->end == start - 1 && state->tree) {
1463 n = rb_next(&state->rb_node);
1464 while (n) {
1465 state = rb_entry(n, struct extent_state,
1466 rb_node);
1467 if (state->state & bits)
1468 goto got_it;
1469 n = rb_next(n);
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 goto out;
1475 free_extent_state(*cached_state);
1476 *cached_state = NULL;
1479 state = find_first_extent_bit_state(tree, start, bits);
1480 got_it:
1481 if (state) {
1482 cache_state(state, cached_state);
1483 *start_ret = state->start;
1484 *end_ret = state->end;
1485 ret = 0;
1487 out:
1488 spin_unlock(&tree->lock);
1489 return ret;
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499 u64 *start, u64 *end, u64 max_bytes,
1500 struct extent_state **cached_state)
1502 struct rb_node *node;
1503 struct extent_state *state;
1504 u64 cur_start = *start;
1505 u64 found = 0;
1506 u64 total_bytes = 0;
1508 spin_lock(&tree->lock);
1511 * this search will find all the extents that end after
1512 * our range starts.
1514 node = tree_search(tree, cur_start);
1515 if (!node) {
1516 if (!found)
1517 *end = (u64)-1;
1518 goto out;
1521 while (1) {
1522 state = rb_entry(node, struct extent_state, rb_node);
1523 if (found && (state->start != cur_start ||
1524 (state->state & EXTENT_BOUNDARY))) {
1525 goto out;
1527 if (!(state->state & EXTENT_DELALLOC)) {
1528 if (!found)
1529 *end = state->end;
1530 goto out;
1532 if (!found) {
1533 *start = state->start;
1534 *cached_state = state;
1535 atomic_inc(&state->refs);
1537 found++;
1538 *end = state->end;
1539 cur_start = state->end + 1;
1540 node = rb_next(node);
1541 total_bytes += state->end - state->start + 1;
1542 if (total_bytes >= max_bytes)
1543 break;
1544 if (!node)
1545 break;
1547 out:
1548 spin_unlock(&tree->lock);
1549 return found;
1552 static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
1556 int ret;
1557 struct page *pages[16];
1558 unsigned long index = start >> PAGE_CACHE_SHIFT;
1559 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1560 unsigned long nr_pages = end_index - index + 1;
1561 int i;
1563 if (index == locked_page->index && end_index == index)
1564 return;
1566 while (nr_pages > 0) {
1567 ret = find_get_pages_contig(inode->i_mapping, index,
1568 min_t(unsigned long, nr_pages,
1569 ARRAY_SIZE(pages)), pages);
1570 for (i = 0; i < ret; i++) {
1571 if (pages[i] != locked_page)
1572 unlock_page(pages[i]);
1573 page_cache_release(pages[i]);
1575 nr_pages -= ret;
1576 index += ret;
1577 cond_resched();
1581 static noinline int lock_delalloc_pages(struct inode *inode,
1582 struct page *locked_page,
1583 u64 delalloc_start,
1584 u64 delalloc_end)
1586 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1587 unsigned long start_index = index;
1588 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1589 unsigned long pages_locked = 0;
1590 struct page *pages[16];
1591 unsigned long nrpages;
1592 int ret;
1593 int i;
1595 /* the caller is responsible for locking the start index */
1596 if (index == locked_page->index && index == end_index)
1597 return 0;
1599 /* skip the page at the start index */
1600 nrpages = end_index - index + 1;
1601 while (nrpages > 0) {
1602 ret = find_get_pages_contig(inode->i_mapping, index,
1603 min_t(unsigned long,
1604 nrpages, ARRAY_SIZE(pages)), pages);
1605 if (ret == 0) {
1606 ret = -EAGAIN;
1607 goto done;
1609 /* now we have an array of pages, lock them all */
1610 for (i = 0; i < ret; i++) {
1612 * the caller is taking responsibility for
1613 * locked_page
1615 if (pages[i] != locked_page) {
1616 lock_page(pages[i]);
1617 if (!PageDirty(pages[i]) ||
1618 pages[i]->mapping != inode->i_mapping) {
1619 ret = -EAGAIN;
1620 unlock_page(pages[i]);
1621 page_cache_release(pages[i]);
1622 goto done;
1625 page_cache_release(pages[i]);
1626 pages_locked++;
1628 nrpages -= ret;
1629 index += ret;
1630 cond_resched();
1632 ret = 0;
1633 done:
1634 if (ret && pages_locked) {
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start,
1637 ((u64)(start_index + pages_locked - 1)) <<
1638 PAGE_CACHE_SHIFT);
1640 return ret;
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1649 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 struct extent_io_tree *tree,
1651 struct page *locked_page, u64 *start,
1652 u64 *end, u64 max_bytes)
1654 u64 delalloc_start;
1655 u64 delalloc_end;
1656 u64 found;
1657 struct extent_state *cached_state = NULL;
1658 int ret;
1659 int loops = 0;
1661 again:
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start = *start;
1664 delalloc_end = 0;
1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666 max_bytes, &cached_state);
1667 if (!found || delalloc_end <= *start) {
1668 *start = delalloc_start;
1669 *end = delalloc_end;
1670 free_extent_state(cached_state);
1671 return 0;
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1677 * locked_page
1679 if (delalloc_start < *start)
1680 delalloc_start = *start;
1683 * make sure to limit the number of pages we try to lock down
1685 if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 delalloc_end = delalloc_start + max_bytes - 1;
1688 /* step two, lock all the pages after the page that has start */
1689 ret = lock_delalloc_pages(inode, locked_page,
1690 delalloc_start, delalloc_end);
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1695 free_extent_state(cached_state);
1696 cached_state = NULL;
1697 if (!loops) {
1698 max_bytes = PAGE_CACHE_SIZE;
1699 loops = 1;
1700 goto again;
1701 } else {
1702 found = 0;
1703 goto out_failed;
1706 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1708 /* step three, lock the state bits for the whole range */
1709 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1711 /* then test to make sure it is all still delalloc */
1712 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713 EXTENT_DELALLOC, 1, cached_state);
1714 if (!ret) {
1715 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716 &cached_state, GFP_NOFS);
1717 __unlock_for_delalloc(inode, locked_page,
1718 delalloc_start, delalloc_end);
1719 cond_resched();
1720 goto again;
1722 free_extent_state(cached_state);
1723 *start = delalloc_start;
1724 *end = delalloc_end;
1725 out_failed:
1726 return found;
1729 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730 struct page *locked_page,
1731 unsigned long clear_bits,
1732 unsigned long page_ops)
1734 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735 int ret;
1736 struct page *pages[16];
1737 unsigned long index = start >> PAGE_CACHE_SHIFT;
1738 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1739 unsigned long nr_pages = end_index - index + 1;
1740 int i;
1742 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743 if (page_ops == 0)
1744 return 0;
1746 while (nr_pages > 0) {
1747 ret = find_get_pages_contig(inode->i_mapping, index,
1748 min_t(unsigned long,
1749 nr_pages, ARRAY_SIZE(pages)), pages);
1750 for (i = 0; i < ret; i++) {
1752 if (page_ops & PAGE_SET_PRIVATE2)
1753 SetPagePrivate2(pages[i]);
1755 if (pages[i] == locked_page) {
1756 page_cache_release(pages[i]);
1757 continue;
1759 if (page_ops & PAGE_CLEAR_DIRTY)
1760 clear_page_dirty_for_io(pages[i]);
1761 if (page_ops & PAGE_SET_WRITEBACK)
1762 set_page_writeback(pages[i]);
1763 if (page_ops & PAGE_END_WRITEBACK)
1764 end_page_writeback(pages[i]);
1765 if (page_ops & PAGE_UNLOCK)
1766 unlock_page(pages[i]);
1767 page_cache_release(pages[i]);
1769 nr_pages -= ret;
1770 index += ret;
1771 cond_resched();
1773 return 0;
1777 * count the number of bytes in the tree that have a given bit(s)
1778 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1779 * cached. The total number found is returned.
1781 u64 count_range_bits(struct extent_io_tree *tree,
1782 u64 *start, u64 search_end, u64 max_bytes,
1783 unsigned long bits, int contig)
1785 struct rb_node *node;
1786 struct extent_state *state;
1787 u64 cur_start = *start;
1788 u64 total_bytes = 0;
1789 u64 last = 0;
1790 int found = 0;
1792 if (WARN_ON(search_end <= cur_start))
1793 return 0;
1795 spin_lock(&tree->lock);
1796 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1797 total_bytes = tree->dirty_bytes;
1798 goto out;
1801 * this search will find all the extents that end after
1802 * our range starts.
1804 node = tree_search(tree, cur_start);
1805 if (!node)
1806 goto out;
1808 while (1) {
1809 state = rb_entry(node, struct extent_state, rb_node);
1810 if (state->start > search_end)
1811 break;
1812 if (contig && found && state->start > last + 1)
1813 break;
1814 if (state->end >= cur_start && (state->state & bits) == bits) {
1815 total_bytes += min(search_end, state->end) + 1 -
1816 max(cur_start, state->start);
1817 if (total_bytes >= max_bytes)
1818 break;
1819 if (!found) {
1820 *start = max(cur_start, state->start);
1821 found = 1;
1823 last = state->end;
1824 } else if (contig && found) {
1825 break;
1827 node = rb_next(node);
1828 if (!node)
1829 break;
1831 out:
1832 spin_unlock(&tree->lock);
1833 return total_bytes;
1837 * set the private field for a given byte offset in the tree. If there isn't
1838 * an extent_state there already, this does nothing.
1840 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1842 struct rb_node *node;
1843 struct extent_state *state;
1844 int ret = 0;
1846 spin_lock(&tree->lock);
1848 * this search will find all the extents that end after
1849 * our range starts.
1851 node = tree_search(tree, start);
1852 if (!node) {
1853 ret = -ENOENT;
1854 goto out;
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 if (state->start != start) {
1858 ret = -ENOENT;
1859 goto out;
1861 state->private = private;
1862 out:
1863 spin_unlock(&tree->lock);
1864 return ret;
1867 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1869 struct rb_node *node;
1870 struct extent_state *state;
1871 int ret = 0;
1873 spin_lock(&tree->lock);
1875 * this search will find all the extents that end after
1876 * our range starts.
1878 node = tree_search(tree, start);
1879 if (!node) {
1880 ret = -ENOENT;
1881 goto out;
1883 state = rb_entry(node, struct extent_state, rb_node);
1884 if (state->start != start) {
1885 ret = -ENOENT;
1886 goto out;
1888 *private = state->private;
1889 out:
1890 spin_unlock(&tree->lock);
1891 return ret;
1895 * searches a range in the state tree for a given mask.
1896 * If 'filled' == 1, this returns 1 only if every extent in the tree
1897 * has the bits set. Otherwise, 1 is returned if any bit in the
1898 * range is found set.
1900 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1901 unsigned long bits, int filled, struct extent_state *cached)
1903 struct extent_state *state = NULL;
1904 struct rb_node *node;
1905 int bitset = 0;
1907 spin_lock(&tree->lock);
1908 if (cached && cached->tree && cached->start <= start &&
1909 cached->end > start)
1910 node = &cached->rb_node;
1911 else
1912 node = tree_search(tree, start);
1913 while (node && start <= end) {
1914 state = rb_entry(node, struct extent_state, rb_node);
1916 if (filled && state->start > start) {
1917 bitset = 0;
1918 break;
1921 if (state->start > end)
1922 break;
1924 if (state->state & bits) {
1925 bitset = 1;
1926 if (!filled)
1927 break;
1928 } else if (filled) {
1929 bitset = 0;
1930 break;
1933 if (state->end == (u64)-1)
1934 break;
1936 start = state->end + 1;
1937 if (start > end)
1938 break;
1939 node = rb_next(node);
1940 if (!node) {
1941 if (filled)
1942 bitset = 0;
1943 break;
1946 spin_unlock(&tree->lock);
1947 return bitset;
1951 * helper function to set a given page up to date if all the
1952 * extents in the tree for that page are up to date
1954 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1956 u64 start = page_offset(page);
1957 u64 end = start + PAGE_CACHE_SIZE - 1;
1958 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1959 SetPageUptodate(page);
1963 * When IO fails, either with EIO or csum verification fails, we
1964 * try other mirrors that might have a good copy of the data. This
1965 * io_failure_record is used to record state as we go through all the
1966 * mirrors. If another mirror has good data, the page is set up to date
1967 * and things continue. If a good mirror can't be found, the original
1968 * bio end_io callback is called to indicate things have failed.
1970 struct io_failure_record {
1971 struct page *page;
1972 u64 start;
1973 u64 len;
1974 u64 logical;
1975 unsigned long bio_flags;
1976 int this_mirror;
1977 int failed_mirror;
1978 int in_validation;
1981 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1982 int did_repair)
1984 int ret;
1985 int err = 0;
1986 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1988 set_state_private(failure_tree, rec->start, 0);
1989 ret = clear_extent_bits(failure_tree, rec->start,
1990 rec->start + rec->len - 1,
1991 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1992 if (ret)
1993 err = ret;
1995 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1996 rec->start + rec->len - 1,
1997 EXTENT_DAMAGED, GFP_NOFS);
1998 if (ret && !err)
1999 err = ret;
2001 kfree(rec);
2002 return err;
2006 * this bypasses the standard btrfs submit functions deliberately, as
2007 * the standard behavior is to write all copies in a raid setup. here we only
2008 * want to write the one bad copy. so we do the mapping for ourselves and issue
2009 * submit_bio directly.
2010 * to avoid any synchronization issues, wait for the data after writing, which
2011 * actually prevents the read that triggered the error from finishing.
2012 * currently, there can be no more than two copies of every data bit. thus,
2013 * exactly one rewrite is required.
2015 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2016 u64 length, u64 logical, struct page *page,
2017 int mirror_num)
2019 struct bio *bio;
2020 struct btrfs_device *dev;
2021 u64 map_length = 0;
2022 u64 sector;
2023 struct btrfs_bio *bbio = NULL;
2024 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2025 int ret;
2027 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2028 BUG_ON(!mirror_num);
2030 /* we can't repair anything in raid56 yet */
2031 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2032 return 0;
2034 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2035 if (!bio)
2036 return -EIO;
2037 bio->bi_iter.bi_size = 0;
2038 map_length = length;
2040 ret = btrfs_map_block(fs_info, WRITE, logical,
2041 &map_length, &bbio, mirror_num);
2042 if (ret) {
2043 bio_put(bio);
2044 return -EIO;
2046 BUG_ON(mirror_num != bbio->mirror_num);
2047 sector = bbio->stripes[mirror_num-1].physical >> 9;
2048 bio->bi_iter.bi_sector = sector;
2049 dev = bbio->stripes[mirror_num-1].dev;
2050 kfree(bbio);
2051 if (!dev || !dev->bdev || !dev->writeable) {
2052 bio_put(bio);
2053 return -EIO;
2055 bio->bi_bdev = dev->bdev;
2056 bio_add_page(bio, page, length, start - page_offset(page));
2058 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2059 /* try to remap that extent elsewhere? */
2060 bio_put(bio);
2061 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2062 return -EIO;
2065 printk_ratelimited_in_rcu(KERN_INFO
2066 "BTRFS: read error corrected: ino %lu off %llu "
2067 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2068 start, rcu_str_deref(dev->name), sector);
2070 bio_put(bio);
2071 return 0;
2074 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2075 int mirror_num)
2077 u64 start = eb->start;
2078 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2079 int ret = 0;
2081 if (root->fs_info->sb->s_flags & MS_RDONLY)
2082 return -EROFS;
2084 for (i = 0; i < num_pages; i++) {
2085 struct page *p = extent_buffer_page(eb, i);
2086 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2087 start, p, mirror_num);
2088 if (ret)
2089 break;
2090 start += PAGE_CACHE_SIZE;
2093 return ret;
2097 * each time an IO finishes, we do a fast check in the IO failure tree
2098 * to see if we need to process or clean up an io_failure_record
2100 static int clean_io_failure(u64 start, struct page *page)
2102 u64 private;
2103 u64 private_failure;
2104 struct io_failure_record *failrec;
2105 struct inode *inode = page->mapping->host;
2106 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2107 struct extent_state *state;
2108 int num_copies;
2109 int did_repair = 0;
2110 int ret;
2112 private = 0;
2113 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2114 (u64)-1, 1, EXTENT_DIRTY, 0);
2115 if (!ret)
2116 return 0;
2118 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2119 &private_failure);
2120 if (ret)
2121 return 0;
2123 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2124 BUG_ON(!failrec->this_mirror);
2126 if (failrec->in_validation) {
2127 /* there was no real error, just free the record */
2128 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2129 failrec->start);
2130 did_repair = 1;
2131 goto out;
2133 if (fs_info->sb->s_flags & MS_RDONLY)
2134 goto out;
2136 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2137 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2138 failrec->start,
2139 EXTENT_LOCKED);
2140 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2142 if (state && state->start <= failrec->start &&
2143 state->end >= failrec->start + failrec->len - 1) {
2144 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2145 failrec->len);
2146 if (num_copies > 1) {
2147 ret = repair_io_failure(fs_info, start, failrec->len,
2148 failrec->logical, page,
2149 failrec->failed_mirror);
2150 did_repair = !ret;
2152 ret = 0;
2155 out:
2156 if (!ret)
2157 ret = free_io_failure(inode, failrec, did_repair);
2159 return ret;
2163 * this is a generic handler for readpage errors (default
2164 * readpage_io_failed_hook). if other copies exist, read those and write back
2165 * good data to the failed position. does not investigate in remapping the
2166 * failed extent elsewhere, hoping the device will be smart enough to do this as
2167 * needed
2170 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2171 struct page *page, u64 start, u64 end,
2172 int failed_mirror)
2174 struct io_failure_record *failrec = NULL;
2175 u64 private;
2176 struct extent_map *em;
2177 struct inode *inode = page->mapping->host;
2178 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2179 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2180 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2181 struct bio *bio;
2182 struct btrfs_io_bio *btrfs_failed_bio;
2183 struct btrfs_io_bio *btrfs_bio;
2184 int num_copies;
2185 int ret;
2186 int read_mode;
2187 u64 logical;
2189 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2191 ret = get_state_private(failure_tree, start, &private);
2192 if (ret) {
2193 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2194 if (!failrec)
2195 return -ENOMEM;
2196 failrec->start = start;
2197 failrec->len = end - start + 1;
2198 failrec->this_mirror = 0;
2199 failrec->bio_flags = 0;
2200 failrec->in_validation = 0;
2202 read_lock(&em_tree->lock);
2203 em = lookup_extent_mapping(em_tree, start, failrec->len);
2204 if (!em) {
2205 read_unlock(&em_tree->lock);
2206 kfree(failrec);
2207 return -EIO;
2210 if (em->start > start || em->start + em->len <= start) {
2211 free_extent_map(em);
2212 em = NULL;
2214 read_unlock(&em_tree->lock);
2216 if (!em) {
2217 kfree(failrec);
2218 return -EIO;
2220 logical = start - em->start;
2221 logical = em->block_start + logical;
2222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223 logical = em->block_start;
2224 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225 extent_set_compress_type(&failrec->bio_flags,
2226 em->compress_type);
2228 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2229 "len=%llu\n", logical, start, failrec->len);
2230 failrec->logical = logical;
2231 free_extent_map(em);
2233 /* set the bits in the private failure tree */
2234 ret = set_extent_bits(failure_tree, start, end,
2235 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236 if (ret >= 0)
2237 ret = set_state_private(failure_tree, start,
2238 (u64)(unsigned long)failrec);
2239 /* set the bits in the inode's tree */
2240 if (ret >= 0)
2241 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2242 GFP_NOFS);
2243 if (ret < 0) {
2244 kfree(failrec);
2245 return ret;
2247 } else {
2248 failrec = (struct io_failure_record *)(unsigned long)private;
2249 pr_debug("bio_readpage_error: (found) logical=%llu, "
2250 "start=%llu, len=%llu, validation=%d\n",
2251 failrec->logical, failrec->start, failrec->len,
2252 failrec->in_validation);
2254 * when data can be on disk more than twice, add to failrec here
2255 * (e.g. with a list for failed_mirror) to make
2256 * clean_io_failure() clean all those errors at once.
2259 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2260 failrec->logical, failrec->len);
2261 if (num_copies == 1) {
2263 * we only have a single copy of the data, so don't bother with
2264 * all the retry and error correction code that follows. no
2265 * matter what the error is, it is very likely to persist.
2267 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2268 num_copies, failrec->this_mirror, failed_mirror);
2269 free_io_failure(inode, failrec, 0);
2270 return -EIO;
2274 * there are two premises:
2275 * a) deliver good data to the caller
2276 * b) correct the bad sectors on disk
2278 if (failed_bio->bi_vcnt > 1) {
2280 * to fulfill b), we need to know the exact failing sectors, as
2281 * we don't want to rewrite any more than the failed ones. thus,
2282 * we need separate read requests for the failed bio
2284 * if the following BUG_ON triggers, our validation request got
2285 * merged. we need separate requests for our algorithm to work.
2287 BUG_ON(failrec->in_validation);
2288 failrec->in_validation = 1;
2289 failrec->this_mirror = failed_mirror;
2290 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2291 } else {
2293 * we're ready to fulfill a) and b) alongside. get a good copy
2294 * of the failed sector and if we succeed, we have setup
2295 * everything for repair_io_failure to do the rest for us.
2297 if (failrec->in_validation) {
2298 BUG_ON(failrec->this_mirror != failed_mirror);
2299 failrec->in_validation = 0;
2300 failrec->this_mirror = 0;
2302 failrec->failed_mirror = failed_mirror;
2303 failrec->this_mirror++;
2304 if (failrec->this_mirror == failed_mirror)
2305 failrec->this_mirror++;
2306 read_mode = READ_SYNC;
2309 if (failrec->this_mirror > num_copies) {
2310 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2311 num_copies, failrec->this_mirror, failed_mirror);
2312 free_io_failure(inode, failrec, 0);
2313 return -EIO;
2316 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2317 if (!bio) {
2318 free_io_failure(inode, failrec, 0);
2319 return -EIO;
2321 bio->bi_end_io = failed_bio->bi_end_io;
2322 bio->bi_iter.bi_sector = failrec->logical >> 9;
2323 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2324 bio->bi_iter.bi_size = 0;
2326 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2327 if (btrfs_failed_bio->csum) {
2328 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2329 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2331 btrfs_bio = btrfs_io_bio(bio);
2332 btrfs_bio->csum = btrfs_bio->csum_inline;
2333 phy_offset >>= inode->i_sb->s_blocksize_bits;
2334 phy_offset *= csum_size;
2335 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2336 csum_size);
2339 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2341 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2342 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2343 failrec->this_mirror, num_copies, failrec->in_validation);
2345 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2346 failrec->this_mirror,
2347 failrec->bio_flags, 0);
2348 return ret;
2351 /* lots and lots of room for performance fixes in the end_bio funcs */
2353 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2355 int uptodate = (err == 0);
2356 struct extent_io_tree *tree;
2357 int ret = 0;
2359 tree = &BTRFS_I(page->mapping->host)->io_tree;
2361 if (tree->ops && tree->ops->writepage_end_io_hook) {
2362 ret = tree->ops->writepage_end_io_hook(page, start,
2363 end, NULL, uptodate);
2364 if (ret)
2365 uptodate = 0;
2368 if (!uptodate) {
2369 ClearPageUptodate(page);
2370 SetPageError(page);
2371 ret = ret < 0 ? ret : -EIO;
2372 mapping_set_error(page->mapping, ret);
2374 return 0;
2378 * after a writepage IO is done, we need to:
2379 * clear the uptodate bits on error
2380 * clear the writeback bits in the extent tree for this IO
2381 * end_page_writeback if the page has no more pending IO
2383 * Scheduling is not allowed, so the extent state tree is expected
2384 * to have one and only one object corresponding to this IO.
2386 static void end_bio_extent_writepage(struct bio *bio, int err)
2388 struct bio_vec *bvec;
2389 u64 start;
2390 u64 end;
2391 int i;
2393 bio_for_each_segment_all(bvec, bio, i) {
2394 struct page *page = bvec->bv_page;
2396 /* We always issue full-page reads, but if some block
2397 * in a page fails to read, blk_update_request() will
2398 * advance bv_offset and adjust bv_len to compensate.
2399 * Print a warning for nonzero offsets, and an error
2400 * if they don't add up to a full page. */
2401 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2402 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2403 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2404 "partial page write in btrfs with offset %u and length %u",
2405 bvec->bv_offset, bvec->bv_len);
2406 else
2407 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2408 "incomplete page write in btrfs with offset %u and "
2409 "length %u",
2410 bvec->bv_offset, bvec->bv_len);
2413 start = page_offset(page);
2414 end = start + bvec->bv_offset + bvec->bv_len - 1;
2416 if (end_extent_writepage(page, err, start, end))
2417 continue;
2419 end_page_writeback(page);
2422 bio_put(bio);
2425 static void
2426 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2427 int uptodate)
2429 struct extent_state *cached = NULL;
2430 u64 end = start + len - 1;
2432 if (uptodate && tree->track_uptodate)
2433 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2434 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2438 * after a readpage IO is done, we need to:
2439 * clear the uptodate bits on error
2440 * set the uptodate bits if things worked
2441 * set the page up to date if all extents in the tree are uptodate
2442 * clear the lock bit in the extent tree
2443 * unlock the page if there are no other extents locked for it
2445 * Scheduling is not allowed, so the extent state tree is expected
2446 * to have one and only one object corresponding to this IO.
2448 static void end_bio_extent_readpage(struct bio *bio, int err)
2450 struct bio_vec *bvec;
2451 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2452 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2453 struct extent_io_tree *tree;
2454 u64 offset = 0;
2455 u64 start;
2456 u64 end;
2457 u64 len;
2458 u64 extent_start = 0;
2459 u64 extent_len = 0;
2460 int mirror;
2461 int ret;
2462 int i;
2464 if (err)
2465 uptodate = 0;
2467 bio_for_each_segment_all(bvec, bio, i) {
2468 struct page *page = bvec->bv_page;
2469 struct inode *inode = page->mapping->host;
2471 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2472 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2473 io_bio->mirror_num);
2474 tree = &BTRFS_I(inode)->io_tree;
2476 /* We always issue full-page reads, but if some block
2477 * in a page fails to read, blk_update_request() will
2478 * advance bv_offset and adjust bv_len to compensate.
2479 * Print a warning for nonzero offsets, and an error
2480 * if they don't add up to a full page. */
2481 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2482 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2483 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2484 "partial page read in btrfs with offset %u and length %u",
2485 bvec->bv_offset, bvec->bv_len);
2486 else
2487 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2488 "incomplete page read in btrfs with offset %u and "
2489 "length %u",
2490 bvec->bv_offset, bvec->bv_len);
2493 start = page_offset(page);
2494 end = start + bvec->bv_offset + bvec->bv_len - 1;
2495 len = bvec->bv_len;
2497 mirror = io_bio->mirror_num;
2498 if (likely(uptodate && tree->ops &&
2499 tree->ops->readpage_end_io_hook)) {
2500 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2501 page, start, end,
2502 mirror);
2503 if (ret)
2504 uptodate = 0;
2505 else
2506 clean_io_failure(start, page);
2509 if (likely(uptodate))
2510 goto readpage_ok;
2512 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2513 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2514 if (!ret && !err &&
2515 test_bit(BIO_UPTODATE, &bio->bi_flags))
2516 uptodate = 1;
2517 } else {
2519 * The generic bio_readpage_error handles errors the
2520 * following way: If possible, new read requests are
2521 * created and submitted and will end up in
2522 * end_bio_extent_readpage as well (if we're lucky, not
2523 * in the !uptodate case). In that case it returns 0 and
2524 * we just go on with the next page in our bio. If it
2525 * can't handle the error it will return -EIO and we
2526 * remain responsible for that page.
2528 ret = bio_readpage_error(bio, offset, page, start, end,
2529 mirror);
2530 if (ret == 0) {
2531 uptodate =
2532 test_bit(BIO_UPTODATE, &bio->bi_flags);
2533 if (err)
2534 uptodate = 0;
2535 continue;
2538 readpage_ok:
2539 if (likely(uptodate)) {
2540 loff_t i_size = i_size_read(inode);
2541 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2542 unsigned offset;
2544 /* Zero out the end if this page straddles i_size */
2545 offset = i_size & (PAGE_CACHE_SIZE-1);
2546 if (page->index == end_index && offset)
2547 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2548 SetPageUptodate(page);
2549 } else {
2550 ClearPageUptodate(page);
2551 SetPageError(page);
2553 unlock_page(page);
2554 offset += len;
2556 if (unlikely(!uptodate)) {
2557 if (extent_len) {
2558 endio_readpage_release_extent(tree,
2559 extent_start,
2560 extent_len, 1);
2561 extent_start = 0;
2562 extent_len = 0;
2564 endio_readpage_release_extent(tree, start,
2565 end - start + 1, 0);
2566 } else if (!extent_len) {
2567 extent_start = start;
2568 extent_len = end + 1 - start;
2569 } else if (extent_start + extent_len == start) {
2570 extent_len += end + 1 - start;
2571 } else {
2572 endio_readpage_release_extent(tree, extent_start,
2573 extent_len, uptodate);
2574 extent_start = start;
2575 extent_len = end + 1 - start;
2579 if (extent_len)
2580 endio_readpage_release_extent(tree, extent_start, extent_len,
2581 uptodate);
2582 if (io_bio->end_io)
2583 io_bio->end_io(io_bio, err);
2584 bio_put(bio);
2588 * this allocates from the btrfs_bioset. We're returning a bio right now
2589 * but you can call btrfs_io_bio for the appropriate container_of magic
2591 struct bio *
2592 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2593 gfp_t gfp_flags)
2595 struct btrfs_io_bio *btrfs_bio;
2596 struct bio *bio;
2598 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2600 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2601 while (!bio && (nr_vecs /= 2)) {
2602 bio = bio_alloc_bioset(gfp_flags,
2603 nr_vecs, btrfs_bioset);
2607 if (bio) {
2608 bio->bi_bdev = bdev;
2609 bio->bi_iter.bi_sector = first_sector;
2610 btrfs_bio = btrfs_io_bio(bio);
2611 btrfs_bio->csum = NULL;
2612 btrfs_bio->csum_allocated = NULL;
2613 btrfs_bio->end_io = NULL;
2615 return bio;
2618 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2620 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2624 /* this also allocates from the btrfs_bioset */
2625 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2627 struct btrfs_io_bio *btrfs_bio;
2628 struct bio *bio;
2630 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2631 if (bio) {
2632 btrfs_bio = btrfs_io_bio(bio);
2633 btrfs_bio->csum = NULL;
2634 btrfs_bio->csum_allocated = NULL;
2635 btrfs_bio->end_io = NULL;
2637 return bio;
2641 static int __must_check submit_one_bio(int rw, struct bio *bio,
2642 int mirror_num, unsigned long bio_flags)
2644 int ret = 0;
2645 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2646 struct page *page = bvec->bv_page;
2647 struct extent_io_tree *tree = bio->bi_private;
2648 u64 start;
2650 start = page_offset(page) + bvec->bv_offset;
2652 bio->bi_private = NULL;
2654 bio_get(bio);
2656 if (tree->ops && tree->ops->submit_bio_hook)
2657 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2658 mirror_num, bio_flags, start);
2659 else
2660 btrfsic_submit_bio(rw, bio);
2662 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2663 ret = -EOPNOTSUPP;
2664 bio_put(bio);
2665 return ret;
2668 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2669 unsigned long offset, size_t size, struct bio *bio,
2670 unsigned long bio_flags)
2672 int ret = 0;
2673 if (tree->ops && tree->ops->merge_bio_hook)
2674 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2675 bio_flags);
2676 BUG_ON(ret < 0);
2677 return ret;
2681 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2682 struct page *page, sector_t sector,
2683 size_t size, unsigned long offset,
2684 struct block_device *bdev,
2685 struct bio **bio_ret,
2686 unsigned long max_pages,
2687 bio_end_io_t end_io_func,
2688 int mirror_num,
2689 unsigned long prev_bio_flags,
2690 unsigned long bio_flags)
2692 int ret = 0;
2693 struct bio *bio;
2694 int nr;
2695 int contig = 0;
2696 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2697 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2698 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2700 if (bio_ret && *bio_ret) {
2701 bio = *bio_ret;
2702 if (old_compressed)
2703 contig = bio->bi_iter.bi_sector == sector;
2704 else
2705 contig = bio_end_sector(bio) == sector;
2707 if (prev_bio_flags != bio_flags || !contig ||
2708 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2709 bio_add_page(bio, page, page_size, offset) < page_size) {
2710 ret = submit_one_bio(rw, bio, mirror_num,
2711 prev_bio_flags);
2712 if (ret < 0)
2713 return ret;
2714 bio = NULL;
2715 } else {
2716 return 0;
2719 if (this_compressed)
2720 nr = BIO_MAX_PAGES;
2721 else
2722 nr = bio_get_nr_vecs(bdev);
2724 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2725 if (!bio)
2726 return -ENOMEM;
2728 bio_add_page(bio, page, page_size, offset);
2729 bio->bi_end_io = end_io_func;
2730 bio->bi_private = tree;
2732 if (bio_ret)
2733 *bio_ret = bio;
2734 else
2735 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2737 return ret;
2740 static void attach_extent_buffer_page(struct extent_buffer *eb,
2741 struct page *page)
2743 if (!PagePrivate(page)) {
2744 SetPagePrivate(page);
2745 page_cache_get(page);
2746 set_page_private(page, (unsigned long)eb);
2747 } else {
2748 WARN_ON(page->private != (unsigned long)eb);
2752 void set_page_extent_mapped(struct page *page)
2754 if (!PagePrivate(page)) {
2755 SetPagePrivate(page);
2756 page_cache_get(page);
2757 set_page_private(page, EXTENT_PAGE_PRIVATE);
2761 static struct extent_map *
2762 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2763 u64 start, u64 len, get_extent_t *get_extent,
2764 struct extent_map **em_cached)
2766 struct extent_map *em;
2768 if (em_cached && *em_cached) {
2769 em = *em_cached;
2770 if (extent_map_in_tree(em) && start >= em->start &&
2771 start < extent_map_end(em)) {
2772 atomic_inc(&em->refs);
2773 return em;
2776 free_extent_map(em);
2777 *em_cached = NULL;
2780 em = get_extent(inode, page, pg_offset, start, len, 0);
2781 if (em_cached && !IS_ERR_OR_NULL(em)) {
2782 BUG_ON(*em_cached);
2783 atomic_inc(&em->refs);
2784 *em_cached = em;
2786 return em;
2789 * basic readpage implementation. Locked extent state structs are inserted
2790 * into the tree that are removed when the IO is done (by the end_io
2791 * handlers)
2792 * XXX JDM: This needs looking at to ensure proper page locking
2794 static int __do_readpage(struct extent_io_tree *tree,
2795 struct page *page,
2796 get_extent_t *get_extent,
2797 struct extent_map **em_cached,
2798 struct bio **bio, int mirror_num,
2799 unsigned long *bio_flags, int rw)
2801 struct inode *inode = page->mapping->host;
2802 u64 start = page_offset(page);
2803 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2804 u64 end;
2805 u64 cur = start;
2806 u64 extent_offset;
2807 u64 last_byte = i_size_read(inode);
2808 u64 block_start;
2809 u64 cur_end;
2810 sector_t sector;
2811 struct extent_map *em;
2812 struct block_device *bdev;
2813 int ret;
2814 int nr = 0;
2815 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2816 size_t pg_offset = 0;
2817 size_t iosize;
2818 size_t disk_io_size;
2819 size_t blocksize = inode->i_sb->s_blocksize;
2820 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2822 set_page_extent_mapped(page);
2824 end = page_end;
2825 if (!PageUptodate(page)) {
2826 if (cleancache_get_page(page) == 0) {
2827 BUG_ON(blocksize != PAGE_SIZE);
2828 unlock_extent(tree, start, end);
2829 goto out;
2833 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2834 char *userpage;
2835 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2837 if (zero_offset) {
2838 iosize = PAGE_CACHE_SIZE - zero_offset;
2839 userpage = kmap_atomic(page);
2840 memset(userpage + zero_offset, 0, iosize);
2841 flush_dcache_page(page);
2842 kunmap_atomic(userpage);
2845 while (cur <= end) {
2846 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2848 if (cur >= last_byte) {
2849 char *userpage;
2850 struct extent_state *cached = NULL;
2852 iosize = PAGE_CACHE_SIZE - pg_offset;
2853 userpage = kmap_atomic(page);
2854 memset(userpage + pg_offset, 0, iosize);
2855 flush_dcache_page(page);
2856 kunmap_atomic(userpage);
2857 set_extent_uptodate(tree, cur, cur + iosize - 1,
2858 &cached, GFP_NOFS);
2859 if (!parent_locked)
2860 unlock_extent_cached(tree, cur,
2861 cur + iosize - 1,
2862 &cached, GFP_NOFS);
2863 break;
2865 em = __get_extent_map(inode, page, pg_offset, cur,
2866 end - cur + 1, get_extent, em_cached);
2867 if (IS_ERR_OR_NULL(em)) {
2868 SetPageError(page);
2869 if (!parent_locked)
2870 unlock_extent(tree, cur, end);
2871 break;
2873 extent_offset = cur - em->start;
2874 BUG_ON(extent_map_end(em) <= cur);
2875 BUG_ON(end < cur);
2877 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2878 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2879 extent_set_compress_type(&this_bio_flag,
2880 em->compress_type);
2883 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2884 cur_end = min(extent_map_end(em) - 1, end);
2885 iosize = ALIGN(iosize, blocksize);
2886 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2887 disk_io_size = em->block_len;
2888 sector = em->block_start >> 9;
2889 } else {
2890 sector = (em->block_start + extent_offset) >> 9;
2891 disk_io_size = iosize;
2893 bdev = em->bdev;
2894 block_start = em->block_start;
2895 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2896 block_start = EXTENT_MAP_HOLE;
2897 free_extent_map(em);
2898 em = NULL;
2900 /* we've found a hole, just zero and go on */
2901 if (block_start == EXTENT_MAP_HOLE) {
2902 char *userpage;
2903 struct extent_state *cached = NULL;
2905 userpage = kmap_atomic(page);
2906 memset(userpage + pg_offset, 0, iosize);
2907 flush_dcache_page(page);
2908 kunmap_atomic(userpage);
2910 set_extent_uptodate(tree, cur, cur + iosize - 1,
2911 &cached, GFP_NOFS);
2912 unlock_extent_cached(tree, cur, cur + iosize - 1,
2913 &cached, GFP_NOFS);
2914 cur = cur + iosize;
2915 pg_offset += iosize;
2916 continue;
2918 /* the get_extent function already copied into the page */
2919 if (test_range_bit(tree, cur, cur_end,
2920 EXTENT_UPTODATE, 1, NULL)) {
2921 check_page_uptodate(tree, page);
2922 if (!parent_locked)
2923 unlock_extent(tree, cur, cur + iosize - 1);
2924 cur = cur + iosize;
2925 pg_offset += iosize;
2926 continue;
2928 /* we have an inline extent but it didn't get marked up
2929 * to date. Error out
2931 if (block_start == EXTENT_MAP_INLINE) {
2932 SetPageError(page);
2933 if (!parent_locked)
2934 unlock_extent(tree, cur, cur + iosize - 1);
2935 cur = cur + iosize;
2936 pg_offset += iosize;
2937 continue;
2940 pnr -= page->index;
2941 ret = submit_extent_page(rw, tree, page,
2942 sector, disk_io_size, pg_offset,
2943 bdev, bio, pnr,
2944 end_bio_extent_readpage, mirror_num,
2945 *bio_flags,
2946 this_bio_flag);
2947 if (!ret) {
2948 nr++;
2949 *bio_flags = this_bio_flag;
2950 } else {
2951 SetPageError(page);
2952 if (!parent_locked)
2953 unlock_extent(tree, cur, cur + iosize - 1);
2955 cur = cur + iosize;
2956 pg_offset += iosize;
2958 out:
2959 if (!nr) {
2960 if (!PageError(page))
2961 SetPageUptodate(page);
2962 unlock_page(page);
2964 return 0;
2967 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2968 struct page *pages[], int nr_pages,
2969 u64 start, u64 end,
2970 get_extent_t *get_extent,
2971 struct extent_map **em_cached,
2972 struct bio **bio, int mirror_num,
2973 unsigned long *bio_flags, int rw)
2975 struct inode *inode;
2976 struct btrfs_ordered_extent *ordered;
2977 int index;
2979 inode = pages[0]->mapping->host;
2980 while (1) {
2981 lock_extent(tree, start, end);
2982 ordered = btrfs_lookup_ordered_range(inode, start,
2983 end - start + 1);
2984 if (!ordered)
2985 break;
2986 unlock_extent(tree, start, end);
2987 btrfs_start_ordered_extent(inode, ordered, 1);
2988 btrfs_put_ordered_extent(ordered);
2991 for (index = 0; index < nr_pages; index++) {
2992 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2993 mirror_num, bio_flags, rw);
2994 page_cache_release(pages[index]);
2998 static void __extent_readpages(struct extent_io_tree *tree,
2999 struct page *pages[],
3000 int nr_pages, get_extent_t *get_extent,
3001 struct extent_map **em_cached,
3002 struct bio **bio, int mirror_num,
3003 unsigned long *bio_flags, int rw)
3005 u64 start = 0;
3006 u64 end = 0;
3007 u64 page_start;
3008 int index;
3009 int first_index = 0;
3011 for (index = 0; index < nr_pages; index++) {
3012 page_start = page_offset(pages[index]);
3013 if (!end) {
3014 start = page_start;
3015 end = start + PAGE_CACHE_SIZE - 1;
3016 first_index = index;
3017 } else if (end + 1 == page_start) {
3018 end += PAGE_CACHE_SIZE;
3019 } else {
3020 __do_contiguous_readpages(tree, &pages[first_index],
3021 index - first_index, start,
3022 end, get_extent, em_cached,
3023 bio, mirror_num, bio_flags,
3024 rw);
3025 start = page_start;
3026 end = start + PAGE_CACHE_SIZE - 1;
3027 first_index = index;
3031 if (end)
3032 __do_contiguous_readpages(tree, &pages[first_index],
3033 index - first_index, start,
3034 end, get_extent, em_cached, bio,
3035 mirror_num, bio_flags, rw);
3038 static int __extent_read_full_page(struct extent_io_tree *tree,
3039 struct page *page,
3040 get_extent_t *get_extent,
3041 struct bio **bio, int mirror_num,
3042 unsigned long *bio_flags, int rw)
3044 struct inode *inode = page->mapping->host;
3045 struct btrfs_ordered_extent *ordered;
3046 u64 start = page_offset(page);
3047 u64 end = start + PAGE_CACHE_SIZE - 1;
3048 int ret;
3050 while (1) {
3051 lock_extent(tree, start, end);
3052 ordered = btrfs_lookup_ordered_extent(inode, start);
3053 if (!ordered)
3054 break;
3055 unlock_extent(tree, start, end);
3056 btrfs_start_ordered_extent(inode, ordered, 1);
3057 btrfs_put_ordered_extent(ordered);
3060 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3061 bio_flags, rw);
3062 return ret;
3065 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3066 get_extent_t *get_extent, int mirror_num)
3068 struct bio *bio = NULL;
3069 unsigned long bio_flags = 0;
3070 int ret;
3072 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3073 &bio_flags, READ);
3074 if (bio)
3075 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3076 return ret;
3079 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3080 get_extent_t *get_extent, int mirror_num)
3082 struct bio *bio = NULL;
3083 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3084 int ret;
3086 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3087 &bio_flags, READ);
3088 if (bio)
3089 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3090 return ret;
3093 static noinline void update_nr_written(struct page *page,
3094 struct writeback_control *wbc,
3095 unsigned long nr_written)
3097 wbc->nr_to_write -= nr_written;
3098 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3099 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3100 page->mapping->writeback_index = page->index + nr_written;
3104 * helper for __extent_writepage, doing all of the delayed allocation setup.
3106 * This returns 1 if our fill_delalloc function did all the work required
3107 * to write the page (copy into inline extent). In this case the IO has
3108 * been started and the page is already unlocked.
3110 * This returns 0 if all went well (page still locked)
3111 * This returns < 0 if there were errors (page still locked)
3113 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3114 struct page *page, struct writeback_control *wbc,
3115 struct extent_page_data *epd,
3116 u64 delalloc_start,
3117 unsigned long *nr_written)
3119 struct extent_io_tree *tree = epd->tree;
3120 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3121 u64 nr_delalloc;
3122 u64 delalloc_to_write = 0;
3123 u64 delalloc_end = 0;
3124 int ret;
3125 int page_started = 0;
3127 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3128 return 0;
3130 while (delalloc_end < page_end) {
3131 nr_delalloc = find_lock_delalloc_range(inode, tree,
3132 page,
3133 &delalloc_start,
3134 &delalloc_end,
3135 128 * 1024 * 1024);
3136 if (nr_delalloc == 0) {
3137 delalloc_start = delalloc_end + 1;
3138 continue;
3140 ret = tree->ops->fill_delalloc(inode, page,
3141 delalloc_start,
3142 delalloc_end,
3143 &page_started,
3144 nr_written);
3145 /* File system has been set read-only */
3146 if (ret) {
3147 SetPageError(page);
3148 /* fill_delalloc should be return < 0 for error
3149 * but just in case, we use > 0 here meaning the
3150 * IO is started, so we don't want to return > 0
3151 * unless things are going well.
3153 ret = ret < 0 ? ret : -EIO;
3154 goto done;
3157 * delalloc_end is already one less than the total
3158 * length, so we don't subtract one from
3159 * PAGE_CACHE_SIZE
3161 delalloc_to_write += (delalloc_end - delalloc_start +
3162 PAGE_CACHE_SIZE) >>
3163 PAGE_CACHE_SHIFT;
3164 delalloc_start = delalloc_end + 1;
3166 if (wbc->nr_to_write < delalloc_to_write) {
3167 int thresh = 8192;
3169 if (delalloc_to_write < thresh * 2)
3170 thresh = delalloc_to_write;
3171 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3172 thresh);
3175 /* did the fill delalloc function already unlock and start
3176 * the IO?
3178 if (page_started) {
3180 * we've unlocked the page, so we can't update
3181 * the mapping's writeback index, just update
3182 * nr_to_write.
3184 wbc->nr_to_write -= *nr_written;
3185 return 1;
3188 ret = 0;
3190 done:
3191 return ret;
3195 * helper for __extent_writepage. This calls the writepage start hooks,
3196 * and does the loop to map the page into extents and bios.
3198 * We return 1 if the IO is started and the page is unlocked,
3199 * 0 if all went well (page still locked)
3200 * < 0 if there were errors (page still locked)
3202 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3203 struct page *page,
3204 struct writeback_control *wbc,
3205 struct extent_page_data *epd,
3206 loff_t i_size,
3207 unsigned long nr_written,
3208 int write_flags, int *nr_ret)
3210 struct extent_io_tree *tree = epd->tree;
3211 u64 start = page_offset(page);
3212 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3213 u64 end;
3214 u64 cur = start;
3215 u64 extent_offset;
3216 u64 block_start;
3217 u64 iosize;
3218 sector_t sector;
3219 struct extent_state *cached_state = NULL;
3220 struct extent_map *em;
3221 struct block_device *bdev;
3222 size_t pg_offset = 0;
3223 size_t blocksize;
3224 int ret = 0;
3225 int nr = 0;
3226 bool compressed;
3228 if (tree->ops && tree->ops->writepage_start_hook) {
3229 ret = tree->ops->writepage_start_hook(page, start,
3230 page_end);
3231 if (ret) {
3232 /* Fixup worker will requeue */
3233 if (ret == -EBUSY)
3234 wbc->pages_skipped++;
3235 else
3236 redirty_page_for_writepage(wbc, page);
3238 update_nr_written(page, wbc, nr_written);
3239 unlock_page(page);
3240 ret = 1;
3241 goto done_unlocked;
3246 * we don't want to touch the inode after unlocking the page,
3247 * so we update the mapping writeback index now
3249 update_nr_written(page, wbc, nr_written + 1);
3251 end = page_end;
3252 if (i_size <= start) {
3253 if (tree->ops && tree->ops->writepage_end_io_hook)
3254 tree->ops->writepage_end_io_hook(page, start,
3255 page_end, NULL, 1);
3256 goto done;
3259 blocksize = inode->i_sb->s_blocksize;
3261 while (cur <= end) {
3262 u64 em_end;
3263 if (cur >= i_size) {
3264 if (tree->ops && tree->ops->writepage_end_io_hook)
3265 tree->ops->writepage_end_io_hook(page, cur,
3266 page_end, NULL, 1);
3267 break;
3269 em = epd->get_extent(inode, page, pg_offset, cur,
3270 end - cur + 1, 1);
3271 if (IS_ERR_OR_NULL(em)) {
3272 SetPageError(page);
3273 ret = PTR_ERR_OR_ZERO(em);
3274 break;
3277 extent_offset = cur - em->start;
3278 em_end = extent_map_end(em);
3279 BUG_ON(em_end <= cur);
3280 BUG_ON(end < cur);
3281 iosize = min(em_end - cur, end - cur + 1);
3282 iosize = ALIGN(iosize, blocksize);
3283 sector = (em->block_start + extent_offset) >> 9;
3284 bdev = em->bdev;
3285 block_start = em->block_start;
3286 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3287 free_extent_map(em);
3288 em = NULL;
3291 * compressed and inline extents are written through other
3292 * paths in the FS
3294 if (compressed || block_start == EXTENT_MAP_HOLE ||
3295 block_start == EXTENT_MAP_INLINE) {
3297 * end_io notification does not happen here for
3298 * compressed extents
3300 if (!compressed && tree->ops &&
3301 tree->ops->writepage_end_io_hook)
3302 tree->ops->writepage_end_io_hook(page, cur,
3303 cur + iosize - 1,
3304 NULL, 1);
3305 else if (compressed) {
3306 /* we don't want to end_page_writeback on
3307 * a compressed extent. this happens
3308 * elsewhere
3310 nr++;
3313 cur += iosize;
3314 pg_offset += iosize;
3315 continue;
3318 if (tree->ops && tree->ops->writepage_io_hook) {
3319 ret = tree->ops->writepage_io_hook(page, cur,
3320 cur + iosize - 1);
3321 } else {
3322 ret = 0;
3324 if (ret) {
3325 SetPageError(page);
3326 } else {
3327 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3329 set_range_writeback(tree, cur, cur + iosize - 1);
3330 if (!PageWriteback(page)) {
3331 btrfs_err(BTRFS_I(inode)->root->fs_info,
3332 "page %lu not writeback, cur %llu end %llu",
3333 page->index, cur, end);
3336 ret = submit_extent_page(write_flags, tree, page,
3337 sector, iosize, pg_offset,
3338 bdev, &epd->bio, max_nr,
3339 end_bio_extent_writepage,
3340 0, 0, 0);
3341 if (ret)
3342 SetPageError(page);
3344 cur = cur + iosize;
3345 pg_offset += iosize;
3346 nr++;
3348 done:
3349 *nr_ret = nr;
3351 done_unlocked:
3353 /* drop our reference on any cached states */
3354 free_extent_state(cached_state);
3355 return ret;
3359 * the writepage semantics are similar to regular writepage. extent
3360 * records are inserted to lock ranges in the tree, and as dirty areas
3361 * are found, they are marked writeback. Then the lock bits are removed
3362 * and the end_io handler clears the writeback ranges
3364 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3365 void *data)
3367 struct inode *inode = page->mapping->host;
3368 struct extent_page_data *epd = data;
3369 u64 start = page_offset(page);
3370 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3371 int ret;
3372 int nr = 0;
3373 size_t pg_offset = 0;
3374 loff_t i_size = i_size_read(inode);
3375 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3376 int write_flags;
3377 unsigned long nr_written = 0;
3379 if (wbc->sync_mode == WB_SYNC_ALL)
3380 write_flags = WRITE_SYNC;
3381 else
3382 write_flags = WRITE;
3384 trace___extent_writepage(page, inode, wbc);
3386 WARN_ON(!PageLocked(page));
3388 ClearPageError(page);
3390 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3391 if (page->index > end_index ||
3392 (page->index == end_index && !pg_offset)) {
3393 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3394 unlock_page(page);
3395 return 0;
3398 if (page->index == end_index) {
3399 char *userpage;
3401 userpage = kmap_atomic(page);
3402 memset(userpage + pg_offset, 0,
3403 PAGE_CACHE_SIZE - pg_offset);
3404 kunmap_atomic(userpage);
3405 flush_dcache_page(page);
3408 pg_offset = 0;
3410 set_page_extent_mapped(page);
3412 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3413 if (ret == 1)
3414 goto done_unlocked;
3415 if (ret)
3416 goto done;
3418 ret = __extent_writepage_io(inode, page, wbc, epd,
3419 i_size, nr_written, write_flags, &nr);
3420 if (ret == 1)
3421 goto done_unlocked;
3423 done:
3424 if (nr == 0) {
3425 /* make sure the mapping tag for page dirty gets cleared */
3426 set_page_writeback(page);
3427 end_page_writeback(page);
3429 if (PageError(page)) {
3430 ret = ret < 0 ? ret : -EIO;
3431 end_extent_writepage(page, ret, start, page_end);
3433 unlock_page(page);
3434 return ret;
3436 done_unlocked:
3437 return 0;
3440 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3442 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3443 TASK_UNINTERRUPTIBLE);
3446 static noinline_for_stack int
3447 lock_extent_buffer_for_io(struct extent_buffer *eb,
3448 struct btrfs_fs_info *fs_info,
3449 struct extent_page_data *epd)
3451 unsigned long i, num_pages;
3452 int flush = 0;
3453 int ret = 0;
3455 if (!btrfs_try_tree_write_lock(eb)) {
3456 flush = 1;
3457 flush_write_bio(epd);
3458 btrfs_tree_lock(eb);
3461 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3462 btrfs_tree_unlock(eb);
3463 if (!epd->sync_io)
3464 return 0;
3465 if (!flush) {
3466 flush_write_bio(epd);
3467 flush = 1;
3469 while (1) {
3470 wait_on_extent_buffer_writeback(eb);
3471 btrfs_tree_lock(eb);
3472 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3473 break;
3474 btrfs_tree_unlock(eb);
3479 * We need to do this to prevent races in people who check if the eb is
3480 * under IO since we can end up having no IO bits set for a short period
3481 * of time.
3483 spin_lock(&eb->refs_lock);
3484 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3485 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3486 spin_unlock(&eb->refs_lock);
3487 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3488 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3489 -eb->len,
3490 fs_info->dirty_metadata_batch);
3491 ret = 1;
3492 } else {
3493 spin_unlock(&eb->refs_lock);
3496 btrfs_tree_unlock(eb);
3498 if (!ret)
3499 return ret;
3501 num_pages = num_extent_pages(eb->start, eb->len);
3502 for (i = 0; i < num_pages; i++) {
3503 struct page *p = extent_buffer_page(eb, i);
3505 if (!trylock_page(p)) {
3506 if (!flush) {
3507 flush_write_bio(epd);
3508 flush = 1;
3510 lock_page(p);
3514 return ret;
3517 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3519 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3520 smp_mb__after_atomic();
3521 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3524 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3526 struct bio_vec *bvec;
3527 struct extent_buffer *eb;
3528 int i, done;
3530 bio_for_each_segment_all(bvec, bio, i) {
3531 struct page *page = bvec->bv_page;
3533 eb = (struct extent_buffer *)page->private;
3534 BUG_ON(!eb);
3535 done = atomic_dec_and_test(&eb->io_pages);
3537 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3538 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3539 ClearPageUptodate(page);
3540 SetPageError(page);
3543 end_page_writeback(page);
3545 if (!done)
3546 continue;
3548 end_extent_buffer_writeback(eb);
3551 bio_put(bio);
3554 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3555 struct btrfs_fs_info *fs_info,
3556 struct writeback_control *wbc,
3557 struct extent_page_data *epd)
3559 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3560 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3561 u64 offset = eb->start;
3562 unsigned long i, num_pages;
3563 unsigned long bio_flags = 0;
3564 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3565 int ret = 0;
3567 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3568 num_pages = num_extent_pages(eb->start, eb->len);
3569 atomic_set(&eb->io_pages, num_pages);
3570 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3571 bio_flags = EXTENT_BIO_TREE_LOG;
3573 for (i = 0; i < num_pages; i++) {
3574 struct page *p = extent_buffer_page(eb, i);
3576 clear_page_dirty_for_io(p);
3577 set_page_writeback(p);
3578 ret = submit_extent_page(rw, tree, p, offset >> 9,
3579 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3580 -1, end_bio_extent_buffer_writepage,
3581 0, epd->bio_flags, bio_flags);
3582 epd->bio_flags = bio_flags;
3583 if (ret) {
3584 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3585 SetPageError(p);
3586 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3587 end_extent_buffer_writeback(eb);
3588 ret = -EIO;
3589 break;
3591 offset += PAGE_CACHE_SIZE;
3592 update_nr_written(p, wbc, 1);
3593 unlock_page(p);
3596 if (unlikely(ret)) {
3597 for (; i < num_pages; i++) {
3598 struct page *p = extent_buffer_page(eb, i);
3599 unlock_page(p);
3603 return ret;
3606 int btree_write_cache_pages(struct address_space *mapping,
3607 struct writeback_control *wbc)
3609 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3610 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3611 struct extent_buffer *eb, *prev_eb = NULL;
3612 struct extent_page_data epd = {
3613 .bio = NULL,
3614 .tree = tree,
3615 .extent_locked = 0,
3616 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3617 .bio_flags = 0,
3619 int ret = 0;
3620 int done = 0;
3621 int nr_to_write_done = 0;
3622 struct pagevec pvec;
3623 int nr_pages;
3624 pgoff_t index;
3625 pgoff_t end; /* Inclusive */
3626 int scanned = 0;
3627 int tag;
3629 pagevec_init(&pvec, 0);
3630 if (wbc->range_cyclic) {
3631 index = mapping->writeback_index; /* Start from prev offset */
3632 end = -1;
3633 } else {
3634 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3635 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3636 scanned = 1;
3638 if (wbc->sync_mode == WB_SYNC_ALL)
3639 tag = PAGECACHE_TAG_TOWRITE;
3640 else
3641 tag = PAGECACHE_TAG_DIRTY;
3642 retry:
3643 if (wbc->sync_mode == WB_SYNC_ALL)
3644 tag_pages_for_writeback(mapping, index, end);
3645 while (!done && !nr_to_write_done && (index <= end) &&
3646 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3647 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3648 unsigned i;
3650 scanned = 1;
3651 for (i = 0; i < nr_pages; i++) {
3652 struct page *page = pvec.pages[i];
3654 if (!PagePrivate(page))
3655 continue;
3657 if (!wbc->range_cyclic && page->index > end) {
3658 done = 1;
3659 break;
3662 spin_lock(&mapping->private_lock);
3663 if (!PagePrivate(page)) {
3664 spin_unlock(&mapping->private_lock);
3665 continue;
3668 eb = (struct extent_buffer *)page->private;
3671 * Shouldn't happen and normally this would be a BUG_ON
3672 * but no sense in crashing the users box for something
3673 * we can survive anyway.
3675 if (WARN_ON(!eb)) {
3676 spin_unlock(&mapping->private_lock);
3677 continue;
3680 if (eb == prev_eb) {
3681 spin_unlock(&mapping->private_lock);
3682 continue;
3685 ret = atomic_inc_not_zero(&eb->refs);
3686 spin_unlock(&mapping->private_lock);
3687 if (!ret)
3688 continue;
3690 prev_eb = eb;
3691 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3692 if (!ret) {
3693 free_extent_buffer(eb);
3694 continue;
3697 ret = write_one_eb(eb, fs_info, wbc, &epd);
3698 if (ret) {
3699 done = 1;
3700 free_extent_buffer(eb);
3701 break;
3703 free_extent_buffer(eb);
3706 * the filesystem may choose to bump up nr_to_write.
3707 * We have to make sure to honor the new nr_to_write
3708 * at any time
3710 nr_to_write_done = wbc->nr_to_write <= 0;
3712 pagevec_release(&pvec);
3713 cond_resched();
3715 if (!scanned && !done) {
3717 * We hit the last page and there is more work to be done: wrap
3718 * back to the start of the file
3720 scanned = 1;
3721 index = 0;
3722 goto retry;
3724 flush_write_bio(&epd);
3725 return ret;
3729 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3730 * @mapping: address space structure to write
3731 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3732 * @writepage: function called for each page
3733 * @data: data passed to writepage function
3735 * If a page is already under I/O, write_cache_pages() skips it, even
3736 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3737 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3738 * and msync() need to guarantee that all the data which was dirty at the time
3739 * the call was made get new I/O started against them. If wbc->sync_mode is
3740 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3741 * existing IO to complete.
3743 static int extent_write_cache_pages(struct extent_io_tree *tree,
3744 struct address_space *mapping,
3745 struct writeback_control *wbc,
3746 writepage_t writepage, void *data,
3747 void (*flush_fn)(void *))
3749 struct inode *inode = mapping->host;
3750 int ret = 0;
3751 int done = 0;
3752 int err = 0;
3753 int nr_to_write_done = 0;
3754 struct pagevec pvec;
3755 int nr_pages;
3756 pgoff_t index;
3757 pgoff_t end; /* Inclusive */
3758 int scanned = 0;
3759 int tag;
3762 * We have to hold onto the inode so that ordered extents can do their
3763 * work when the IO finishes. The alternative to this is failing to add
3764 * an ordered extent if the igrab() fails there and that is a huge pain
3765 * to deal with, so instead just hold onto the inode throughout the
3766 * writepages operation. If it fails here we are freeing up the inode
3767 * anyway and we'd rather not waste our time writing out stuff that is
3768 * going to be truncated anyway.
3770 if (!igrab(inode))
3771 return 0;
3773 pagevec_init(&pvec, 0);
3774 if (wbc->range_cyclic) {
3775 index = mapping->writeback_index; /* Start from prev offset */
3776 end = -1;
3777 } else {
3778 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3779 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3780 scanned = 1;
3782 if (wbc->sync_mode == WB_SYNC_ALL)
3783 tag = PAGECACHE_TAG_TOWRITE;
3784 else
3785 tag = PAGECACHE_TAG_DIRTY;
3786 retry:
3787 if (wbc->sync_mode == WB_SYNC_ALL)
3788 tag_pages_for_writeback(mapping, index, end);
3789 while (!done && !nr_to_write_done && (index <= end) &&
3790 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3791 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3792 unsigned i;
3794 scanned = 1;
3795 for (i = 0; i < nr_pages; i++) {
3796 struct page *page = pvec.pages[i];
3799 * At this point we hold neither mapping->tree_lock nor
3800 * lock on the page itself: the page may be truncated or
3801 * invalidated (changing page->mapping to NULL), or even
3802 * swizzled back from swapper_space to tmpfs file
3803 * mapping
3805 if (!trylock_page(page)) {
3806 flush_fn(data);
3807 lock_page(page);
3810 if (unlikely(page->mapping != mapping)) {
3811 unlock_page(page);
3812 continue;
3815 if (!wbc->range_cyclic && page->index > end) {
3816 done = 1;
3817 unlock_page(page);
3818 continue;
3821 if (wbc->sync_mode != WB_SYNC_NONE) {
3822 if (PageWriteback(page))
3823 flush_fn(data);
3824 wait_on_page_writeback(page);
3827 if (PageWriteback(page) ||
3828 !clear_page_dirty_for_io(page)) {
3829 unlock_page(page);
3830 continue;
3833 ret = (*writepage)(page, wbc, data);
3835 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3836 unlock_page(page);
3837 ret = 0;
3839 if (!err && ret < 0)
3840 err = ret;
3843 * the filesystem may choose to bump up nr_to_write.
3844 * We have to make sure to honor the new nr_to_write
3845 * at any time
3847 nr_to_write_done = wbc->nr_to_write <= 0;
3849 pagevec_release(&pvec);
3850 cond_resched();
3852 if (!scanned && !done && !err) {
3854 * We hit the last page and there is more work to be done: wrap
3855 * back to the start of the file
3857 scanned = 1;
3858 index = 0;
3859 goto retry;
3861 btrfs_add_delayed_iput(inode);
3862 return err;
3865 static void flush_epd_write_bio(struct extent_page_data *epd)
3867 if (epd->bio) {
3868 int rw = WRITE;
3869 int ret;
3871 if (epd->sync_io)
3872 rw = WRITE_SYNC;
3874 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3875 BUG_ON(ret < 0); /* -ENOMEM */
3876 epd->bio = NULL;
3880 static noinline void flush_write_bio(void *data)
3882 struct extent_page_data *epd = data;
3883 flush_epd_write_bio(epd);
3886 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3887 get_extent_t *get_extent,
3888 struct writeback_control *wbc)
3890 int ret;
3891 struct extent_page_data epd = {
3892 .bio = NULL,
3893 .tree = tree,
3894 .get_extent = get_extent,
3895 .extent_locked = 0,
3896 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3897 .bio_flags = 0,
3900 ret = __extent_writepage(page, wbc, &epd);
3902 flush_epd_write_bio(&epd);
3903 return ret;
3906 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3907 u64 start, u64 end, get_extent_t *get_extent,
3908 int mode)
3910 int ret = 0;
3911 struct address_space *mapping = inode->i_mapping;
3912 struct page *page;
3913 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3914 PAGE_CACHE_SHIFT;
3916 struct extent_page_data epd = {
3917 .bio = NULL,
3918 .tree = tree,
3919 .get_extent = get_extent,
3920 .extent_locked = 1,
3921 .sync_io = mode == WB_SYNC_ALL,
3922 .bio_flags = 0,
3924 struct writeback_control wbc_writepages = {
3925 .sync_mode = mode,
3926 .nr_to_write = nr_pages * 2,
3927 .range_start = start,
3928 .range_end = end + 1,
3931 while (start <= end) {
3932 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3933 if (clear_page_dirty_for_io(page))
3934 ret = __extent_writepage(page, &wbc_writepages, &epd);
3935 else {
3936 if (tree->ops && tree->ops->writepage_end_io_hook)
3937 tree->ops->writepage_end_io_hook(page, start,
3938 start + PAGE_CACHE_SIZE - 1,
3939 NULL, 1);
3940 unlock_page(page);
3942 page_cache_release(page);
3943 start += PAGE_CACHE_SIZE;
3946 flush_epd_write_bio(&epd);
3947 return ret;
3950 int extent_writepages(struct extent_io_tree *tree,
3951 struct address_space *mapping,
3952 get_extent_t *get_extent,
3953 struct writeback_control *wbc)
3955 int ret = 0;
3956 struct extent_page_data epd = {
3957 .bio = NULL,
3958 .tree = tree,
3959 .get_extent = get_extent,
3960 .extent_locked = 0,
3961 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3962 .bio_flags = 0,
3965 ret = extent_write_cache_pages(tree, mapping, wbc,
3966 __extent_writepage, &epd,
3967 flush_write_bio);
3968 flush_epd_write_bio(&epd);
3969 return ret;
3972 int extent_readpages(struct extent_io_tree *tree,
3973 struct address_space *mapping,
3974 struct list_head *pages, unsigned nr_pages,
3975 get_extent_t get_extent)
3977 struct bio *bio = NULL;
3978 unsigned page_idx;
3979 unsigned long bio_flags = 0;
3980 struct page *pagepool[16];
3981 struct page *page;
3982 struct extent_map *em_cached = NULL;
3983 int nr = 0;
3985 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3986 page = list_entry(pages->prev, struct page, lru);
3988 prefetchw(&page->flags);
3989 list_del(&page->lru);
3990 if (add_to_page_cache_lru(page, mapping,
3991 page->index, GFP_NOFS)) {
3992 page_cache_release(page);
3993 continue;
3996 pagepool[nr++] = page;
3997 if (nr < ARRAY_SIZE(pagepool))
3998 continue;
3999 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4000 &bio, 0, &bio_flags, READ);
4001 nr = 0;
4003 if (nr)
4004 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4005 &bio, 0, &bio_flags, READ);
4007 if (em_cached)
4008 free_extent_map(em_cached);
4010 BUG_ON(!list_empty(pages));
4011 if (bio)
4012 return submit_one_bio(READ, bio, 0, bio_flags);
4013 return 0;
4017 * basic invalidatepage code, this waits on any locked or writeback
4018 * ranges corresponding to the page, and then deletes any extent state
4019 * records from the tree
4021 int extent_invalidatepage(struct extent_io_tree *tree,
4022 struct page *page, unsigned long offset)
4024 struct extent_state *cached_state = NULL;
4025 u64 start = page_offset(page);
4026 u64 end = start + PAGE_CACHE_SIZE - 1;
4027 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4029 start += ALIGN(offset, blocksize);
4030 if (start > end)
4031 return 0;
4033 lock_extent_bits(tree, start, end, 0, &cached_state);
4034 wait_on_page_writeback(page);
4035 clear_extent_bit(tree, start, end,
4036 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4037 EXTENT_DO_ACCOUNTING,
4038 1, 1, &cached_state, GFP_NOFS);
4039 return 0;
4043 * a helper for releasepage, this tests for areas of the page that
4044 * are locked or under IO and drops the related state bits if it is safe
4045 * to drop the page.
4047 static int try_release_extent_state(struct extent_map_tree *map,
4048 struct extent_io_tree *tree,
4049 struct page *page, gfp_t mask)
4051 u64 start = page_offset(page);
4052 u64 end = start + PAGE_CACHE_SIZE - 1;
4053 int ret = 1;
4055 if (test_range_bit(tree, start, end,
4056 EXTENT_IOBITS, 0, NULL))
4057 ret = 0;
4058 else {
4059 if ((mask & GFP_NOFS) == GFP_NOFS)
4060 mask = GFP_NOFS;
4062 * at this point we can safely clear everything except the
4063 * locked bit and the nodatasum bit
4065 ret = clear_extent_bit(tree, start, end,
4066 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4067 0, 0, NULL, mask);
4069 /* if clear_extent_bit failed for enomem reasons,
4070 * we can't allow the release to continue.
4072 if (ret < 0)
4073 ret = 0;
4074 else
4075 ret = 1;
4077 return ret;
4081 * a helper for releasepage. As long as there are no locked extents
4082 * in the range corresponding to the page, both state records and extent
4083 * map records are removed
4085 int try_release_extent_mapping(struct extent_map_tree *map,
4086 struct extent_io_tree *tree, struct page *page,
4087 gfp_t mask)
4089 struct extent_map *em;
4090 u64 start = page_offset(page);
4091 u64 end = start + PAGE_CACHE_SIZE - 1;
4093 if ((mask & __GFP_WAIT) &&
4094 page->mapping->host->i_size > 16 * 1024 * 1024) {
4095 u64 len;
4096 while (start <= end) {
4097 len = end - start + 1;
4098 write_lock(&map->lock);
4099 em = lookup_extent_mapping(map, start, len);
4100 if (!em) {
4101 write_unlock(&map->lock);
4102 break;
4104 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4105 em->start != start) {
4106 write_unlock(&map->lock);
4107 free_extent_map(em);
4108 break;
4110 if (!test_range_bit(tree, em->start,
4111 extent_map_end(em) - 1,
4112 EXTENT_LOCKED | EXTENT_WRITEBACK,
4113 0, NULL)) {
4114 remove_extent_mapping(map, em);
4115 /* once for the rb tree */
4116 free_extent_map(em);
4118 start = extent_map_end(em);
4119 write_unlock(&map->lock);
4121 /* once for us */
4122 free_extent_map(em);
4125 return try_release_extent_state(map, tree, page, mask);
4129 * helper function for fiemap, which doesn't want to see any holes.
4130 * This maps until we find something past 'last'
4132 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4133 u64 offset,
4134 u64 last,
4135 get_extent_t *get_extent)
4137 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4138 struct extent_map *em;
4139 u64 len;
4141 if (offset >= last)
4142 return NULL;
4144 while (1) {
4145 len = last - offset;
4146 if (len == 0)
4147 break;
4148 len = ALIGN(len, sectorsize);
4149 em = get_extent(inode, NULL, 0, offset, len, 0);
4150 if (IS_ERR_OR_NULL(em))
4151 return em;
4153 /* if this isn't a hole return it */
4154 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4155 em->block_start != EXTENT_MAP_HOLE) {
4156 return em;
4159 /* this is a hole, advance to the next extent */
4160 offset = extent_map_end(em);
4161 free_extent_map(em);
4162 if (offset >= last)
4163 break;
4165 return NULL;
4168 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4170 unsigned long cnt = *((unsigned long *)ctx);
4172 cnt++;
4173 *((unsigned long *)ctx) = cnt;
4175 /* Now we're sure that the extent is shared. */
4176 if (cnt > 1)
4177 return 1;
4178 return 0;
4181 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4182 __u64 start, __u64 len, get_extent_t *get_extent)
4184 int ret = 0;
4185 u64 off = start;
4186 u64 max = start + len;
4187 u32 flags = 0;
4188 u32 found_type;
4189 u64 last;
4190 u64 last_for_get_extent = 0;
4191 u64 disko = 0;
4192 u64 isize = i_size_read(inode);
4193 struct btrfs_key found_key;
4194 struct extent_map *em = NULL;
4195 struct extent_state *cached_state = NULL;
4196 struct btrfs_path *path;
4197 int end = 0;
4198 u64 em_start = 0;
4199 u64 em_len = 0;
4200 u64 em_end = 0;
4202 if (len == 0)
4203 return -EINVAL;
4205 path = btrfs_alloc_path();
4206 if (!path)
4207 return -ENOMEM;
4208 path->leave_spinning = 1;
4210 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4211 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4214 * lookup the last file extent. We're not using i_size here
4215 * because there might be preallocation past i_size
4217 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4218 path, btrfs_ino(inode), -1, 0);
4219 if (ret < 0) {
4220 btrfs_free_path(path);
4221 return ret;
4223 WARN_ON(!ret);
4224 path->slots[0]--;
4225 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4226 found_type = btrfs_key_type(&found_key);
4228 /* No extents, but there might be delalloc bits */
4229 if (found_key.objectid != btrfs_ino(inode) ||
4230 found_type != BTRFS_EXTENT_DATA_KEY) {
4231 /* have to trust i_size as the end */
4232 last = (u64)-1;
4233 last_for_get_extent = isize;
4234 } else {
4236 * remember the start of the last extent. There are a
4237 * bunch of different factors that go into the length of the
4238 * extent, so its much less complex to remember where it started
4240 last = found_key.offset;
4241 last_for_get_extent = last + 1;
4243 btrfs_release_path(path);
4246 * we might have some extents allocated but more delalloc past those
4247 * extents. so, we trust isize unless the start of the last extent is
4248 * beyond isize
4250 if (last < isize) {
4251 last = (u64)-1;
4252 last_for_get_extent = isize;
4255 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4256 &cached_state);
4258 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4259 get_extent);
4260 if (!em)
4261 goto out;
4262 if (IS_ERR(em)) {
4263 ret = PTR_ERR(em);
4264 goto out;
4267 while (!end) {
4268 u64 offset_in_extent = 0;
4270 /* break if the extent we found is outside the range */
4271 if (em->start >= max || extent_map_end(em) < off)
4272 break;
4275 * get_extent may return an extent that starts before our
4276 * requested range. We have to make sure the ranges
4277 * we return to fiemap always move forward and don't
4278 * overlap, so adjust the offsets here
4280 em_start = max(em->start, off);
4283 * record the offset from the start of the extent
4284 * for adjusting the disk offset below. Only do this if the
4285 * extent isn't compressed since our in ram offset may be past
4286 * what we have actually allocated on disk.
4288 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4289 offset_in_extent = em_start - em->start;
4290 em_end = extent_map_end(em);
4291 em_len = em_end - em_start;
4292 disko = 0;
4293 flags = 0;
4296 * bump off for our next call to get_extent
4298 off = extent_map_end(em);
4299 if (off >= max)
4300 end = 1;
4302 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4303 end = 1;
4304 flags |= FIEMAP_EXTENT_LAST;
4305 } else if (em->block_start == EXTENT_MAP_INLINE) {
4306 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4307 FIEMAP_EXTENT_NOT_ALIGNED);
4308 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4309 flags |= (FIEMAP_EXTENT_DELALLOC |
4310 FIEMAP_EXTENT_UNKNOWN);
4311 } else {
4312 unsigned long ref_cnt = 0;
4314 disko = em->block_start + offset_in_extent;
4317 * As btrfs supports shared space, this information
4318 * can be exported to userspace tools via
4319 * flag FIEMAP_EXTENT_SHARED.
4321 ret = iterate_inodes_from_logical(
4322 em->block_start,
4323 BTRFS_I(inode)->root->fs_info,
4324 path, count_ext_ref, &ref_cnt);
4325 if (ret < 0 && ret != -ENOENT)
4326 goto out_free;
4328 if (ref_cnt > 1)
4329 flags |= FIEMAP_EXTENT_SHARED;
4331 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4332 flags |= FIEMAP_EXTENT_ENCODED;
4334 free_extent_map(em);
4335 em = NULL;
4336 if ((em_start >= last) || em_len == (u64)-1 ||
4337 (last == (u64)-1 && isize <= em_end)) {
4338 flags |= FIEMAP_EXTENT_LAST;
4339 end = 1;
4342 /* now scan forward to see if this is really the last extent. */
4343 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4344 get_extent);
4345 if (IS_ERR(em)) {
4346 ret = PTR_ERR(em);
4347 goto out;
4349 if (!em) {
4350 flags |= FIEMAP_EXTENT_LAST;
4351 end = 1;
4353 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4354 em_len, flags);
4355 if (ret)
4356 goto out_free;
4358 out_free:
4359 free_extent_map(em);
4360 out:
4361 btrfs_free_path(path);
4362 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4363 &cached_state, GFP_NOFS);
4364 return ret;
4367 static void __free_extent_buffer(struct extent_buffer *eb)
4369 btrfs_leak_debug_del(&eb->leak_list);
4370 kmem_cache_free(extent_buffer_cache, eb);
4373 int extent_buffer_under_io(struct extent_buffer *eb)
4375 return (atomic_read(&eb->io_pages) ||
4376 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4377 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4381 * Helper for releasing extent buffer page.
4383 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4384 unsigned long start_idx)
4386 unsigned long index;
4387 unsigned long num_pages;
4388 struct page *page;
4389 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4391 BUG_ON(extent_buffer_under_io(eb));
4393 num_pages = num_extent_pages(eb->start, eb->len);
4394 index = start_idx + num_pages;
4395 if (start_idx >= index)
4396 return;
4398 do {
4399 index--;
4400 page = extent_buffer_page(eb, index);
4401 if (page && mapped) {
4402 spin_lock(&page->mapping->private_lock);
4404 * We do this since we'll remove the pages after we've
4405 * removed the eb from the radix tree, so we could race
4406 * and have this page now attached to the new eb. So
4407 * only clear page_private if it's still connected to
4408 * this eb.
4410 if (PagePrivate(page) &&
4411 page->private == (unsigned long)eb) {
4412 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4413 BUG_ON(PageDirty(page));
4414 BUG_ON(PageWriteback(page));
4416 * We need to make sure we haven't be attached
4417 * to a new eb.
4419 ClearPagePrivate(page);
4420 set_page_private(page, 0);
4421 /* One for the page private */
4422 page_cache_release(page);
4424 spin_unlock(&page->mapping->private_lock);
4427 if (page) {
4428 /* One for when we alloced the page */
4429 page_cache_release(page);
4431 } while (index != start_idx);
4435 * Helper for releasing the extent buffer.
4437 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4439 btrfs_release_extent_buffer_page(eb, 0);
4440 __free_extent_buffer(eb);
4443 static struct extent_buffer *
4444 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4445 unsigned long len, gfp_t mask)
4447 struct extent_buffer *eb = NULL;
4449 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4450 if (eb == NULL)
4451 return NULL;
4452 eb->start = start;
4453 eb->len = len;
4454 eb->fs_info = fs_info;
4455 eb->bflags = 0;
4456 rwlock_init(&eb->lock);
4457 atomic_set(&eb->write_locks, 0);
4458 atomic_set(&eb->read_locks, 0);
4459 atomic_set(&eb->blocking_readers, 0);
4460 atomic_set(&eb->blocking_writers, 0);
4461 atomic_set(&eb->spinning_readers, 0);
4462 atomic_set(&eb->spinning_writers, 0);
4463 eb->lock_nested = 0;
4464 init_waitqueue_head(&eb->write_lock_wq);
4465 init_waitqueue_head(&eb->read_lock_wq);
4467 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4469 spin_lock_init(&eb->refs_lock);
4470 atomic_set(&eb->refs, 1);
4471 atomic_set(&eb->io_pages, 0);
4474 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4476 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4477 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4478 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4480 return eb;
4483 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4485 unsigned long i;
4486 struct page *p;
4487 struct extent_buffer *new;
4488 unsigned long num_pages = num_extent_pages(src->start, src->len);
4490 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4491 if (new == NULL)
4492 return NULL;
4494 for (i = 0; i < num_pages; i++) {
4495 p = alloc_page(GFP_NOFS);
4496 if (!p) {
4497 btrfs_release_extent_buffer(new);
4498 return NULL;
4500 attach_extent_buffer_page(new, p);
4501 WARN_ON(PageDirty(p));
4502 SetPageUptodate(p);
4503 new->pages[i] = p;
4506 copy_extent_buffer(new, src, 0, 0, src->len);
4507 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4508 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4510 return new;
4513 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4515 struct extent_buffer *eb;
4516 unsigned long num_pages = num_extent_pages(0, len);
4517 unsigned long i;
4519 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4520 if (!eb)
4521 return NULL;
4523 for (i = 0; i < num_pages; i++) {
4524 eb->pages[i] = alloc_page(GFP_NOFS);
4525 if (!eb->pages[i])
4526 goto err;
4528 set_extent_buffer_uptodate(eb);
4529 btrfs_set_header_nritems(eb, 0);
4530 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4532 return eb;
4533 err:
4534 for (; i > 0; i--)
4535 __free_page(eb->pages[i - 1]);
4536 __free_extent_buffer(eb);
4537 return NULL;
4540 static void check_buffer_tree_ref(struct extent_buffer *eb)
4542 int refs;
4543 /* the ref bit is tricky. We have to make sure it is set
4544 * if we have the buffer dirty. Otherwise the
4545 * code to free a buffer can end up dropping a dirty
4546 * page
4548 * Once the ref bit is set, it won't go away while the
4549 * buffer is dirty or in writeback, and it also won't
4550 * go away while we have the reference count on the
4551 * eb bumped.
4553 * We can't just set the ref bit without bumping the
4554 * ref on the eb because free_extent_buffer might
4555 * see the ref bit and try to clear it. If this happens
4556 * free_extent_buffer might end up dropping our original
4557 * ref by mistake and freeing the page before we are able
4558 * to add one more ref.
4560 * So bump the ref count first, then set the bit. If someone
4561 * beat us to it, drop the ref we added.
4563 refs = atomic_read(&eb->refs);
4564 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4565 return;
4567 spin_lock(&eb->refs_lock);
4568 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4569 atomic_inc(&eb->refs);
4570 spin_unlock(&eb->refs_lock);
4573 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4574 struct page *accessed)
4576 unsigned long num_pages, i;
4578 check_buffer_tree_ref(eb);
4580 num_pages = num_extent_pages(eb->start, eb->len);
4581 for (i = 0; i < num_pages; i++) {
4582 struct page *p = extent_buffer_page(eb, i);
4583 if (p != accessed)
4584 mark_page_accessed(p);
4588 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4589 u64 start)
4591 struct extent_buffer *eb;
4593 rcu_read_lock();
4594 eb = radix_tree_lookup(&fs_info->buffer_radix,
4595 start >> PAGE_CACHE_SHIFT);
4596 if (eb && atomic_inc_not_zero(&eb->refs)) {
4597 rcu_read_unlock();
4598 mark_extent_buffer_accessed(eb, NULL);
4599 return eb;
4601 rcu_read_unlock();
4603 return NULL;
4606 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4607 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4608 u64 start, unsigned long len)
4610 struct extent_buffer *eb, *exists = NULL;
4611 int ret;
4613 eb = find_extent_buffer(fs_info, start);
4614 if (eb)
4615 return eb;
4616 eb = alloc_dummy_extent_buffer(start, len);
4617 if (!eb)
4618 return NULL;
4619 eb->fs_info = fs_info;
4620 again:
4621 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4622 if (ret)
4623 goto free_eb;
4624 spin_lock(&fs_info->buffer_lock);
4625 ret = radix_tree_insert(&fs_info->buffer_radix,
4626 start >> PAGE_CACHE_SHIFT, eb);
4627 spin_unlock(&fs_info->buffer_lock);
4628 radix_tree_preload_end();
4629 if (ret == -EEXIST) {
4630 exists = find_extent_buffer(fs_info, start);
4631 if (exists)
4632 goto free_eb;
4633 else
4634 goto again;
4636 check_buffer_tree_ref(eb);
4637 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4640 * We will free dummy extent buffer's if they come into
4641 * free_extent_buffer with a ref count of 2, but if we are using this we
4642 * want the buffers to stay in memory until we're done with them, so
4643 * bump the ref count again.
4645 atomic_inc(&eb->refs);
4646 return eb;
4647 free_eb:
4648 btrfs_release_extent_buffer(eb);
4649 return exists;
4651 #endif
4653 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4654 u64 start, unsigned long len)
4656 unsigned long num_pages = num_extent_pages(start, len);
4657 unsigned long i;
4658 unsigned long index = start >> PAGE_CACHE_SHIFT;
4659 struct extent_buffer *eb;
4660 struct extent_buffer *exists = NULL;
4661 struct page *p;
4662 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4663 int uptodate = 1;
4664 int ret;
4666 eb = find_extent_buffer(fs_info, start);
4667 if (eb)
4668 return eb;
4670 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4671 if (!eb)
4672 return NULL;
4674 for (i = 0; i < num_pages; i++, index++) {
4675 p = find_or_create_page(mapping, index, GFP_NOFS);
4676 if (!p)
4677 goto free_eb;
4679 spin_lock(&mapping->private_lock);
4680 if (PagePrivate(p)) {
4682 * We could have already allocated an eb for this page
4683 * and attached one so lets see if we can get a ref on
4684 * the existing eb, and if we can we know it's good and
4685 * we can just return that one, else we know we can just
4686 * overwrite page->private.
4688 exists = (struct extent_buffer *)p->private;
4689 if (atomic_inc_not_zero(&exists->refs)) {
4690 spin_unlock(&mapping->private_lock);
4691 unlock_page(p);
4692 page_cache_release(p);
4693 mark_extent_buffer_accessed(exists, p);
4694 goto free_eb;
4698 * Do this so attach doesn't complain and we need to
4699 * drop the ref the old guy had.
4701 ClearPagePrivate(p);
4702 WARN_ON(PageDirty(p));
4703 page_cache_release(p);
4705 attach_extent_buffer_page(eb, p);
4706 spin_unlock(&mapping->private_lock);
4707 WARN_ON(PageDirty(p));
4708 eb->pages[i] = p;
4709 if (!PageUptodate(p))
4710 uptodate = 0;
4713 * see below about how we avoid a nasty race with release page
4714 * and why we unlock later
4717 if (uptodate)
4718 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4719 again:
4720 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4721 if (ret)
4722 goto free_eb;
4724 spin_lock(&fs_info->buffer_lock);
4725 ret = radix_tree_insert(&fs_info->buffer_radix,
4726 start >> PAGE_CACHE_SHIFT, eb);
4727 spin_unlock(&fs_info->buffer_lock);
4728 radix_tree_preload_end();
4729 if (ret == -EEXIST) {
4730 exists = find_extent_buffer(fs_info, start);
4731 if (exists)
4732 goto free_eb;
4733 else
4734 goto again;
4736 /* add one reference for the tree */
4737 check_buffer_tree_ref(eb);
4738 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4741 * there is a race where release page may have
4742 * tried to find this extent buffer in the radix
4743 * but failed. It will tell the VM it is safe to
4744 * reclaim the, and it will clear the page private bit.
4745 * We must make sure to set the page private bit properly
4746 * after the extent buffer is in the radix tree so
4747 * it doesn't get lost
4749 SetPageChecked(eb->pages[0]);
4750 for (i = 1; i < num_pages; i++) {
4751 p = extent_buffer_page(eb, i);
4752 ClearPageChecked(p);
4753 unlock_page(p);
4755 unlock_page(eb->pages[0]);
4756 return eb;
4758 free_eb:
4759 for (i = 0; i < num_pages; i++) {
4760 if (eb->pages[i])
4761 unlock_page(eb->pages[i]);
4764 WARN_ON(!atomic_dec_and_test(&eb->refs));
4765 btrfs_release_extent_buffer(eb);
4766 return exists;
4769 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4771 struct extent_buffer *eb =
4772 container_of(head, struct extent_buffer, rcu_head);
4774 __free_extent_buffer(eb);
4777 /* Expects to have eb->eb_lock already held */
4778 static int release_extent_buffer(struct extent_buffer *eb)
4780 WARN_ON(atomic_read(&eb->refs) == 0);
4781 if (atomic_dec_and_test(&eb->refs)) {
4782 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4783 struct btrfs_fs_info *fs_info = eb->fs_info;
4785 spin_unlock(&eb->refs_lock);
4787 spin_lock(&fs_info->buffer_lock);
4788 radix_tree_delete(&fs_info->buffer_radix,
4789 eb->start >> PAGE_CACHE_SHIFT);
4790 spin_unlock(&fs_info->buffer_lock);
4791 } else {
4792 spin_unlock(&eb->refs_lock);
4795 /* Should be safe to release our pages at this point */
4796 btrfs_release_extent_buffer_page(eb, 0);
4797 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4798 return 1;
4800 spin_unlock(&eb->refs_lock);
4802 return 0;
4805 void free_extent_buffer(struct extent_buffer *eb)
4807 int refs;
4808 int old;
4809 if (!eb)
4810 return;
4812 while (1) {
4813 refs = atomic_read(&eb->refs);
4814 if (refs <= 3)
4815 break;
4816 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4817 if (old == refs)
4818 return;
4821 spin_lock(&eb->refs_lock);
4822 if (atomic_read(&eb->refs) == 2 &&
4823 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4824 atomic_dec(&eb->refs);
4826 if (atomic_read(&eb->refs) == 2 &&
4827 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4828 !extent_buffer_under_io(eb) &&
4829 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4830 atomic_dec(&eb->refs);
4833 * I know this is terrible, but it's temporary until we stop tracking
4834 * the uptodate bits and such for the extent buffers.
4836 release_extent_buffer(eb);
4839 void free_extent_buffer_stale(struct extent_buffer *eb)
4841 if (!eb)
4842 return;
4844 spin_lock(&eb->refs_lock);
4845 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4847 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4848 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4849 atomic_dec(&eb->refs);
4850 release_extent_buffer(eb);
4853 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4855 unsigned long i;
4856 unsigned long num_pages;
4857 struct page *page;
4859 num_pages = num_extent_pages(eb->start, eb->len);
4861 for (i = 0; i < num_pages; i++) {
4862 page = extent_buffer_page(eb, i);
4863 if (!PageDirty(page))
4864 continue;
4866 lock_page(page);
4867 WARN_ON(!PagePrivate(page));
4869 clear_page_dirty_for_io(page);
4870 spin_lock_irq(&page->mapping->tree_lock);
4871 if (!PageDirty(page)) {
4872 radix_tree_tag_clear(&page->mapping->page_tree,
4873 page_index(page),
4874 PAGECACHE_TAG_DIRTY);
4876 spin_unlock_irq(&page->mapping->tree_lock);
4877 ClearPageError(page);
4878 unlock_page(page);
4880 WARN_ON(atomic_read(&eb->refs) == 0);
4883 int set_extent_buffer_dirty(struct extent_buffer *eb)
4885 unsigned long i;
4886 unsigned long num_pages;
4887 int was_dirty = 0;
4889 check_buffer_tree_ref(eb);
4891 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4893 num_pages = num_extent_pages(eb->start, eb->len);
4894 WARN_ON(atomic_read(&eb->refs) == 0);
4895 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4897 for (i = 0; i < num_pages; i++)
4898 set_page_dirty(extent_buffer_page(eb, i));
4899 return was_dirty;
4902 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4904 unsigned long i;
4905 struct page *page;
4906 unsigned long num_pages;
4908 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4909 num_pages = num_extent_pages(eb->start, eb->len);
4910 for (i = 0; i < num_pages; i++) {
4911 page = extent_buffer_page(eb, i);
4912 if (page)
4913 ClearPageUptodate(page);
4915 return 0;
4918 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4920 unsigned long i;
4921 struct page *page;
4922 unsigned long num_pages;
4924 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4925 num_pages = num_extent_pages(eb->start, eb->len);
4926 for (i = 0; i < num_pages; i++) {
4927 page = extent_buffer_page(eb, i);
4928 SetPageUptodate(page);
4930 return 0;
4933 int extent_buffer_uptodate(struct extent_buffer *eb)
4935 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4938 int read_extent_buffer_pages(struct extent_io_tree *tree,
4939 struct extent_buffer *eb, u64 start, int wait,
4940 get_extent_t *get_extent, int mirror_num)
4942 unsigned long i;
4943 unsigned long start_i;
4944 struct page *page;
4945 int err;
4946 int ret = 0;
4947 int locked_pages = 0;
4948 int all_uptodate = 1;
4949 unsigned long num_pages;
4950 unsigned long num_reads = 0;
4951 struct bio *bio = NULL;
4952 unsigned long bio_flags = 0;
4954 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4955 return 0;
4957 if (start) {
4958 WARN_ON(start < eb->start);
4959 start_i = (start >> PAGE_CACHE_SHIFT) -
4960 (eb->start >> PAGE_CACHE_SHIFT);
4961 } else {
4962 start_i = 0;
4965 num_pages = num_extent_pages(eb->start, eb->len);
4966 for (i = start_i; i < num_pages; i++) {
4967 page = extent_buffer_page(eb, i);
4968 if (wait == WAIT_NONE) {
4969 if (!trylock_page(page))
4970 goto unlock_exit;
4971 } else {
4972 lock_page(page);
4974 locked_pages++;
4975 if (!PageUptodate(page)) {
4976 num_reads++;
4977 all_uptodate = 0;
4980 if (all_uptodate) {
4981 if (start_i == 0)
4982 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4983 goto unlock_exit;
4986 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4987 eb->read_mirror = 0;
4988 atomic_set(&eb->io_pages, num_reads);
4989 for (i = start_i; i < num_pages; i++) {
4990 page = extent_buffer_page(eb, i);
4991 if (!PageUptodate(page)) {
4992 ClearPageError(page);
4993 err = __extent_read_full_page(tree, page,
4994 get_extent, &bio,
4995 mirror_num, &bio_flags,
4996 READ | REQ_META);
4997 if (err)
4998 ret = err;
4999 } else {
5000 unlock_page(page);
5004 if (bio) {
5005 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5006 bio_flags);
5007 if (err)
5008 return err;
5011 if (ret || wait != WAIT_COMPLETE)
5012 return ret;
5014 for (i = start_i; i < num_pages; i++) {
5015 page = extent_buffer_page(eb, i);
5016 wait_on_page_locked(page);
5017 if (!PageUptodate(page))
5018 ret = -EIO;
5021 return ret;
5023 unlock_exit:
5024 i = start_i;
5025 while (locked_pages > 0) {
5026 page = extent_buffer_page(eb, i);
5027 i++;
5028 unlock_page(page);
5029 locked_pages--;
5031 return ret;
5034 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5035 unsigned long start,
5036 unsigned long len)
5038 size_t cur;
5039 size_t offset;
5040 struct page *page;
5041 char *kaddr;
5042 char *dst = (char *)dstv;
5043 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5044 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5046 WARN_ON(start > eb->len);
5047 WARN_ON(start + len > eb->start + eb->len);
5049 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5051 while (len > 0) {
5052 page = extent_buffer_page(eb, i);
5054 cur = min(len, (PAGE_CACHE_SIZE - offset));
5055 kaddr = page_address(page);
5056 memcpy(dst, kaddr + offset, cur);
5058 dst += cur;
5059 len -= cur;
5060 offset = 0;
5061 i++;
5065 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5066 unsigned long start,
5067 unsigned long len)
5069 size_t cur;
5070 size_t offset;
5071 struct page *page;
5072 char *kaddr;
5073 char __user *dst = (char __user *)dstv;
5074 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5075 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5076 int ret = 0;
5078 WARN_ON(start > eb->len);
5079 WARN_ON(start + len > eb->start + eb->len);
5081 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5083 while (len > 0) {
5084 page = extent_buffer_page(eb, i);
5086 cur = min(len, (PAGE_CACHE_SIZE - offset));
5087 kaddr = page_address(page);
5088 if (copy_to_user(dst, kaddr + offset, cur)) {
5089 ret = -EFAULT;
5090 break;
5093 dst += cur;
5094 len -= cur;
5095 offset = 0;
5096 i++;
5099 return ret;
5102 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5103 unsigned long min_len, char **map,
5104 unsigned long *map_start,
5105 unsigned long *map_len)
5107 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5108 char *kaddr;
5109 struct page *p;
5110 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5111 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5112 unsigned long end_i = (start_offset + start + min_len - 1) >>
5113 PAGE_CACHE_SHIFT;
5115 if (i != end_i)
5116 return -EINVAL;
5118 if (i == 0) {
5119 offset = start_offset;
5120 *map_start = 0;
5121 } else {
5122 offset = 0;
5123 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5126 if (start + min_len > eb->len) {
5127 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5128 "wanted %lu %lu\n",
5129 eb->start, eb->len, start, min_len);
5130 return -EINVAL;
5133 p = extent_buffer_page(eb, i);
5134 kaddr = page_address(p);
5135 *map = kaddr + offset;
5136 *map_len = PAGE_CACHE_SIZE - offset;
5137 return 0;
5140 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5141 unsigned long start,
5142 unsigned long len)
5144 size_t cur;
5145 size_t offset;
5146 struct page *page;
5147 char *kaddr;
5148 char *ptr = (char *)ptrv;
5149 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5150 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5151 int ret = 0;
5153 WARN_ON(start > eb->len);
5154 WARN_ON(start + len > eb->start + eb->len);
5156 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5158 while (len > 0) {
5159 page = extent_buffer_page(eb, i);
5161 cur = min(len, (PAGE_CACHE_SIZE - offset));
5163 kaddr = page_address(page);
5164 ret = memcmp(ptr, kaddr + offset, cur);
5165 if (ret)
5166 break;
5168 ptr += cur;
5169 len -= cur;
5170 offset = 0;
5171 i++;
5173 return ret;
5176 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5177 unsigned long start, unsigned long len)
5179 size_t cur;
5180 size_t offset;
5181 struct page *page;
5182 char *kaddr;
5183 char *src = (char *)srcv;
5184 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5185 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5187 WARN_ON(start > eb->len);
5188 WARN_ON(start + len > eb->start + eb->len);
5190 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5192 while (len > 0) {
5193 page = extent_buffer_page(eb, i);
5194 WARN_ON(!PageUptodate(page));
5196 cur = min(len, PAGE_CACHE_SIZE - offset);
5197 kaddr = page_address(page);
5198 memcpy(kaddr + offset, src, cur);
5200 src += cur;
5201 len -= cur;
5202 offset = 0;
5203 i++;
5207 void memset_extent_buffer(struct extent_buffer *eb, char c,
5208 unsigned long start, unsigned long len)
5210 size_t cur;
5211 size_t offset;
5212 struct page *page;
5213 char *kaddr;
5214 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5215 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5217 WARN_ON(start > eb->len);
5218 WARN_ON(start + len > eb->start + eb->len);
5220 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5222 while (len > 0) {
5223 page = extent_buffer_page(eb, i);
5224 WARN_ON(!PageUptodate(page));
5226 cur = min(len, PAGE_CACHE_SIZE - offset);
5227 kaddr = page_address(page);
5228 memset(kaddr + offset, c, cur);
5230 len -= cur;
5231 offset = 0;
5232 i++;
5236 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5237 unsigned long dst_offset, unsigned long src_offset,
5238 unsigned long len)
5240 u64 dst_len = dst->len;
5241 size_t cur;
5242 size_t offset;
5243 struct page *page;
5244 char *kaddr;
5245 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5246 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5248 WARN_ON(src->len != dst_len);
5250 offset = (start_offset + dst_offset) &
5251 (PAGE_CACHE_SIZE - 1);
5253 while (len > 0) {
5254 page = extent_buffer_page(dst, i);
5255 WARN_ON(!PageUptodate(page));
5257 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5259 kaddr = page_address(page);
5260 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5262 src_offset += cur;
5263 len -= cur;
5264 offset = 0;
5265 i++;
5269 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5271 unsigned long distance = (src > dst) ? src - dst : dst - src;
5272 return distance < len;
5275 static void copy_pages(struct page *dst_page, struct page *src_page,
5276 unsigned long dst_off, unsigned long src_off,
5277 unsigned long len)
5279 char *dst_kaddr = page_address(dst_page);
5280 char *src_kaddr;
5281 int must_memmove = 0;
5283 if (dst_page != src_page) {
5284 src_kaddr = page_address(src_page);
5285 } else {
5286 src_kaddr = dst_kaddr;
5287 if (areas_overlap(src_off, dst_off, len))
5288 must_memmove = 1;
5291 if (must_memmove)
5292 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5293 else
5294 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5297 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5298 unsigned long src_offset, unsigned long len)
5300 size_t cur;
5301 size_t dst_off_in_page;
5302 size_t src_off_in_page;
5303 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5304 unsigned long dst_i;
5305 unsigned long src_i;
5307 if (src_offset + len > dst->len) {
5308 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5309 "len %lu dst len %lu\n", src_offset, len, dst->len);
5310 BUG_ON(1);
5312 if (dst_offset + len > dst->len) {
5313 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5314 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5315 BUG_ON(1);
5318 while (len > 0) {
5319 dst_off_in_page = (start_offset + dst_offset) &
5320 (PAGE_CACHE_SIZE - 1);
5321 src_off_in_page = (start_offset + src_offset) &
5322 (PAGE_CACHE_SIZE - 1);
5324 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5325 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5327 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5328 src_off_in_page));
5329 cur = min_t(unsigned long, cur,
5330 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5332 copy_pages(extent_buffer_page(dst, dst_i),
5333 extent_buffer_page(dst, src_i),
5334 dst_off_in_page, src_off_in_page, cur);
5336 src_offset += cur;
5337 dst_offset += cur;
5338 len -= cur;
5342 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5343 unsigned long src_offset, unsigned long len)
5345 size_t cur;
5346 size_t dst_off_in_page;
5347 size_t src_off_in_page;
5348 unsigned long dst_end = dst_offset + len - 1;
5349 unsigned long src_end = src_offset + len - 1;
5350 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5351 unsigned long dst_i;
5352 unsigned long src_i;
5354 if (src_offset + len > dst->len) {
5355 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5356 "len %lu len %lu\n", src_offset, len, dst->len);
5357 BUG_ON(1);
5359 if (dst_offset + len > dst->len) {
5360 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5361 "len %lu len %lu\n", dst_offset, len, dst->len);
5362 BUG_ON(1);
5364 if (dst_offset < src_offset) {
5365 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5366 return;
5368 while (len > 0) {
5369 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5370 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5372 dst_off_in_page = (start_offset + dst_end) &
5373 (PAGE_CACHE_SIZE - 1);
5374 src_off_in_page = (start_offset + src_end) &
5375 (PAGE_CACHE_SIZE - 1);
5377 cur = min_t(unsigned long, len, src_off_in_page + 1);
5378 cur = min(cur, dst_off_in_page + 1);
5379 copy_pages(extent_buffer_page(dst, dst_i),
5380 extent_buffer_page(dst, src_i),
5381 dst_off_in_page - cur + 1,
5382 src_off_in_page - cur + 1, cur);
5384 dst_end -= cur;
5385 src_end -= cur;
5386 len -= cur;
5390 int try_release_extent_buffer(struct page *page)
5392 struct extent_buffer *eb;
5395 * We need to make sure noboody is attaching this page to an eb right
5396 * now.
5398 spin_lock(&page->mapping->private_lock);
5399 if (!PagePrivate(page)) {
5400 spin_unlock(&page->mapping->private_lock);
5401 return 1;
5404 eb = (struct extent_buffer *)page->private;
5405 BUG_ON(!eb);
5408 * This is a little awful but should be ok, we need to make sure that
5409 * the eb doesn't disappear out from under us while we're looking at
5410 * this page.
5412 spin_lock(&eb->refs_lock);
5413 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5414 spin_unlock(&eb->refs_lock);
5415 spin_unlock(&page->mapping->private_lock);
5416 return 0;
5418 spin_unlock(&page->mapping->private_lock);
5421 * If tree ref isn't set then we know the ref on this eb is a real ref,
5422 * so just return, this page will likely be freed soon anyway.
5424 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5425 spin_unlock(&eb->refs_lock);
5426 return 0;
5429 return release_extent_buffer(eb);