2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
48 * There are three level of locking required by epoll :
52 * 3) ep->lock (spinlock)
54 * The acquire order is the one listed above, from 1 to 3.
55 * We need a spinlock (ep->lock) because we manipulate objects
56 * from inside the poll callback, that might be triggered from
57 * a wake_up() that in turn might be called from IRQ context.
58 * So we can't sleep inside the poll callback and hence we need
59 * a spinlock. During the event transfer loop (from kernel to
60 * user space) we could end up sleeping due a copy_to_user(), so
61 * we need a lock that will allow us to sleep. This lock is a
62 * mutex (ep->mtx). It is acquired during the event transfer loop,
63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * This mutex is acquired by ep_free() during the epoll file
67 * cleanup path and it is also acquired by eventpoll_release_file()
68 * if a file has been pushed inside an epoll set and it is then
69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70 * It is also acquired when inserting an epoll fd onto another epoll
71 * fd. We do this so that we walk the epoll tree and ensure that this
72 * insertion does not create a cycle of epoll file descriptors, which
73 * could lead to deadlock. We need a global mutex to prevent two
74 * simultaneous inserts (A into B and B into A) from racing and
75 * constructing a cycle without either insert observing that it is
77 * It is necessary to acquire multiple "ep->mtx"es at once in the
78 * case when one epoll fd is added to another. In this case, we
79 * always acquire the locks in the order of nesting (i.e. after
80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81 * before e2->mtx). Since we disallow cycles of epoll file
82 * descriptors, this ensures that the mutexes are well-ordered. In
83 * order to communicate this nesting to lockdep, when walking a tree
84 * of epoll file descriptors, we use the current recursion depth as
86 * It is possible to drop the "ep->mtx" and to use the global
87 * mutex "epmutex" (together with "ep->lock") to have it working,
88 * but having "ep->mtx" will make the interface more scalable.
89 * Events that require holding "epmutex" are very rare, while for
90 * normal operations the epoll private "ep->mtx" will guarantee
91 * a better scalability.
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
97 /* Maximum number of nesting allowed inside epoll sets */
98 #define EP_MAX_NESTS 4
100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 #define EP_UNACTIVE_PTR ((void *) -1L)
104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 struct epoll_filefd
{
112 * Structure used to track possible nested calls, for too deep recursions
115 struct nested_call_node
{
116 struct list_head llink
;
122 * This structure is used as collector for nested calls, to check for
123 * maximum recursion dept and loop cycles.
125 struct nested_calls
{
126 struct list_head tasks_call_list
;
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
138 /* RB tree node links this structure to the eventpoll RB tree */
140 /* Used to free the struct epitem */
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink
;
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd
;
156 /* Number of active wait queue attached to poll operations */
159 /* List containing poll wait queues */
160 struct list_head pwqlist
;
162 /* The "container" of this item */
163 struct eventpoll
*ep
;
165 /* List header used to link this item to the "struct file" items list */
166 struct list_head fllink
;
168 /* wakeup_source used when EPOLLWAKEUP is set */
169 struct wakeup_source __rcu
*ws
;
171 /* The structure that describe the interested events and the source fd */
172 struct epoll_event event
;
176 * This structure is stored inside the "private_data" member of the file
177 * structure and represents the main data structure for the eventpoll
181 /* Protect the access to this structure */
185 * This mutex is used to ensure that files are not removed
186 * while epoll is using them. This is held during the event
187 * collection loop, the file cleanup path, the epoll file exit
188 * code and the ctl operations.
192 /* Wait queue used by sys_epoll_wait() */
193 wait_queue_head_t wq
;
195 /* Wait queue used by file->poll() */
196 wait_queue_head_t poll_wait
;
198 /* List of ready file descriptors */
199 struct list_head rdllist
;
201 /* RB tree root used to store monitored fd structs */
205 * This is a single linked list that chains all the "struct epitem" that
206 * happened while transferring ready events to userspace w/out
209 struct epitem
*ovflist
;
211 /* wakeup_source used when ep_scan_ready_list is running */
212 struct wakeup_source
*ws
;
214 /* The user that created the eventpoll descriptor */
215 struct user_struct
*user
;
219 /* used to optimize loop detection check */
221 struct list_head visited_list_link
;
224 /* Wait structure used by the poll hooks */
225 struct eppoll_entry
{
226 /* List header used to link this structure to the "struct epitem" */
227 struct list_head llink
;
229 /* The "base" pointer is set to the container "struct epitem" */
233 * Wait queue item that will be linked to the target file wait
238 /* The wait queue head that linked the "wait" wait queue item */
239 wait_queue_head_t
*whead
;
242 /* Wrapper struct used by poll queueing */
248 /* Used by the ep_send_events() function as callback private data */
249 struct ep_send_events_data
{
251 struct epoll_event __user
*events
;
255 * Configuration options available inside /proc/sys/fs/epoll/
257 /* Maximum number of epoll watched descriptors, per user */
258 static long max_user_watches __read_mostly
;
261 * This mutex is used to serialize ep_free() and eventpoll_release_file().
263 static DEFINE_MUTEX(epmutex
);
265 /* Used to check for epoll file descriptor inclusion loops */
266 static struct nested_calls poll_loop_ncalls
;
268 /* Used for safe wake up implementation */
269 static struct nested_calls poll_safewake_ncalls
;
271 /* Used to call file's f_op->poll() under the nested calls boundaries */
272 static struct nested_calls poll_readywalk_ncalls
;
274 /* Slab cache used to allocate "struct epitem" */
275 static struct kmem_cache
*epi_cache __read_mostly
;
277 /* Slab cache used to allocate "struct eppoll_entry" */
278 static struct kmem_cache
*pwq_cache __read_mostly
;
280 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
281 static LIST_HEAD(visited_list
);
284 * List of files with newly added links, where we may need to limit the number
285 * of emanating paths. Protected by the epmutex.
287 static LIST_HEAD(tfile_check_list
);
291 #include <linux/sysctl.h>
294 static long long_max
= LONG_MAX
;
296 struct ctl_table epoll_table
[] = {
298 .procname
= "max_user_watches",
299 .data
= &max_user_watches
,
300 .maxlen
= sizeof(max_user_watches
),
302 .proc_handler
= proc_doulongvec_minmax
,
308 #endif /* CONFIG_SYSCTL */
310 static const struct file_operations eventpoll_fops
;
312 static inline int is_file_epoll(struct file
*f
)
314 return f
->f_op
== &eventpoll_fops
;
317 /* Setup the structure that is used as key for the RB tree */
318 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
319 struct file
*file
, int fd
)
325 /* Compare RB tree keys */
326 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
327 struct epoll_filefd
*p2
)
329 return (p1
->file
> p2
->file
? +1:
330 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
333 /* Tells us if the item is currently linked */
334 static inline int ep_is_linked(struct list_head
*p
)
336 return !list_empty(p
);
339 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_t
*p
)
341 return container_of(p
, struct eppoll_entry
, wait
);
344 /* Get the "struct epitem" from a wait queue pointer */
345 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
347 return container_of(p
, struct eppoll_entry
, wait
)->base
;
350 /* Get the "struct epitem" from an epoll queue wrapper */
351 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
353 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
356 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
357 static inline int ep_op_has_event(int op
)
359 return op
!= EPOLL_CTL_DEL
;
362 /* Initialize the poll safe wake up structure */
363 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
365 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
366 spin_lock_init(&ncalls
->lock
);
370 * ep_events_available - Checks if ready events might be available.
372 * @ep: Pointer to the eventpoll context.
374 * Returns: Returns a value different than zero if ready events are available,
377 static inline int ep_events_available(struct eventpoll
*ep
)
379 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
383 * ep_call_nested - Perform a bound (possibly) nested call, by checking
384 * that the recursion limit is not exceeded, and that
385 * the same nested call (by the meaning of same cookie) is
388 * @ncalls: Pointer to the nested_calls structure to be used for this call.
389 * @max_nests: Maximum number of allowed nesting calls.
390 * @nproc: Nested call core function pointer.
391 * @priv: Opaque data to be passed to the @nproc callback.
392 * @cookie: Cookie to be used to identify this nested call.
393 * @ctx: This instance context.
395 * Returns: Returns the code returned by the @nproc callback, or -1 if
396 * the maximum recursion limit has been exceeded.
398 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
399 int (*nproc
)(void *, void *, int), void *priv
,
400 void *cookie
, void *ctx
)
402 int error
, call_nests
= 0;
404 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
405 struct nested_call_node
*tncur
;
406 struct nested_call_node tnode
;
408 spin_lock_irqsave(&ncalls
->lock
, flags
);
411 * Try to see if the current task is already inside this wakeup call.
412 * We use a list here, since the population inside this set is always
415 list_for_each_entry(tncur
, lsthead
, llink
) {
416 if (tncur
->ctx
== ctx
&&
417 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
419 * Ops ... loop detected or maximum nest level reached.
420 * We abort this wake by breaking the cycle itself.
427 /* Add the current task and cookie to the list */
429 tnode
.cookie
= cookie
;
430 list_add(&tnode
.llink
, lsthead
);
432 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
434 /* Call the nested function */
435 error
= (*nproc
)(priv
, cookie
, call_nests
);
437 /* Remove the current task from the list */
438 spin_lock_irqsave(&ncalls
->lock
, flags
);
439 list_del(&tnode
.llink
);
441 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
447 * As described in commit 0ccf831cb lockdep: annotate epoll
448 * the use of wait queues used by epoll is done in a very controlled
449 * manner. Wake ups can nest inside each other, but are never done
450 * with the same locking. For example:
453 * efd1 = epoll_create();
454 * efd2 = epoll_create();
455 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
456 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
458 * When a packet arrives to the device underneath "dfd", the net code will
459 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
460 * callback wakeup entry on that queue, and the wake_up() performed by the
461 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
462 * (efd1) notices that it may have some event ready, so it needs to wake up
463 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
464 * that ends up in another wake_up(), after having checked about the
465 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
466 * avoid stack blasting.
468 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
469 * this special case of epoll.
471 #ifdef CONFIG_DEBUG_LOCK_ALLOC
472 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
473 unsigned long events
, int subclass
)
477 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
478 wake_up_locked_poll(wqueue
, events
);
479 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
482 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
483 unsigned long events
, int subclass
)
485 wake_up_poll(wqueue
, events
);
489 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
491 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
497 * Perform a safe wake up of the poll wait list. The problem is that
498 * with the new callback'd wake up system, it is possible that the
499 * poll callback is reentered from inside the call to wake_up() done
500 * on the poll wait queue head. The rule is that we cannot reenter the
501 * wake up code from the same task more than EP_MAX_NESTS times,
502 * and we cannot reenter the same wait queue head at all. This will
503 * enable to have a hierarchy of epoll file descriptor of no more than
506 static void ep_poll_safewake(wait_queue_head_t
*wq
)
508 int this_cpu
= get_cpu();
510 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
511 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
516 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
518 wait_queue_head_t
*whead
;
521 /* If it is cleared by POLLFREE, it should be rcu-safe */
522 whead
= rcu_dereference(pwq
->whead
);
524 remove_wait_queue(whead
, &pwq
->wait
);
529 * This function unregisters poll callbacks from the associated file
530 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
533 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
535 struct list_head
*lsthead
= &epi
->pwqlist
;
536 struct eppoll_entry
*pwq
;
538 while (!list_empty(lsthead
)) {
539 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
541 list_del(&pwq
->llink
);
542 ep_remove_wait_queue(pwq
);
543 kmem_cache_free(pwq_cache
, pwq
);
547 /* call only when ep->mtx is held */
548 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
550 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
553 /* call only when ep->mtx is held */
554 static inline void ep_pm_stay_awake(struct epitem
*epi
)
556 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
562 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
564 return rcu_access_pointer(epi
->ws
) ? true : false;
567 /* call when ep->mtx cannot be held (ep_poll_callback) */
568 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
570 struct wakeup_source
*ws
;
573 ws
= rcu_dereference(epi
->ws
);
580 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
581 * the scan code, to call f_op->poll(). Also allows for
582 * O(NumReady) performance.
584 * @ep: Pointer to the epoll private data structure.
585 * @sproc: Pointer to the scan callback.
586 * @priv: Private opaque data passed to the @sproc callback.
587 * @depth: The current depth of recursive f_op->poll calls.
588 * @ep_locked: caller already holds ep->mtx
590 * Returns: The same integer error code returned by the @sproc callback.
592 static int ep_scan_ready_list(struct eventpoll
*ep
,
593 int (*sproc
)(struct eventpoll
*,
594 struct list_head
*, void *),
595 void *priv
, int depth
, bool ep_locked
)
597 int error
, pwake
= 0;
599 struct epitem
*epi
, *nepi
;
603 * We need to lock this because we could be hit by
604 * eventpoll_release_file() and epoll_ctl().
608 mutex_lock_nested(&ep
->mtx
, depth
);
611 * Steal the ready list, and re-init the original one to the
612 * empty list. Also, set ep->ovflist to NULL so that events
613 * happening while looping w/out locks, are not lost. We cannot
614 * have the poll callback to queue directly on ep->rdllist,
615 * because we want the "sproc" callback to be able to do it
618 spin_lock_irqsave(&ep
->lock
, flags
);
619 list_splice_init(&ep
->rdllist
, &txlist
);
621 spin_unlock_irqrestore(&ep
->lock
, flags
);
624 * Now call the callback function.
626 error
= (*sproc
)(ep
, &txlist
, priv
);
628 spin_lock_irqsave(&ep
->lock
, flags
);
630 * During the time we spent inside the "sproc" callback, some
631 * other events might have been queued by the poll callback.
632 * We re-insert them inside the main ready-list here.
634 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
635 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
637 * We need to check if the item is already in the list.
638 * During the "sproc" callback execution time, items are
639 * queued into ->ovflist but the "txlist" might already
640 * contain them, and the list_splice() below takes care of them.
642 if (!ep_is_linked(&epi
->rdllink
)) {
643 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
644 ep_pm_stay_awake(epi
);
648 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
649 * releasing the lock, events will be queued in the normal way inside
652 ep
->ovflist
= EP_UNACTIVE_PTR
;
655 * Quickly re-inject items left on "txlist".
657 list_splice(&txlist
, &ep
->rdllist
);
660 if (!list_empty(&ep
->rdllist
)) {
662 * Wake up (if active) both the eventpoll wait list and
663 * the ->poll() wait list (delayed after we release the lock).
665 if (waitqueue_active(&ep
->wq
))
666 wake_up_locked(&ep
->wq
);
667 if (waitqueue_active(&ep
->poll_wait
))
670 spin_unlock_irqrestore(&ep
->lock
, flags
);
673 mutex_unlock(&ep
->mtx
);
675 /* We have to call this outside the lock */
677 ep_poll_safewake(&ep
->poll_wait
);
682 static void epi_rcu_free(struct rcu_head
*head
)
684 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
685 kmem_cache_free(epi_cache
, epi
);
689 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
690 * all the associated resources. Must be called with "mtx" held.
692 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
695 struct file
*file
= epi
->ffd
.file
;
698 * Removes poll wait queue hooks. We _have_ to do this without holding
699 * the "ep->lock" otherwise a deadlock might occur. This because of the
700 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
701 * queue head lock when unregistering the wait queue. The wakeup callback
702 * will run by holding the wait queue head lock and will call our callback
703 * that will try to get "ep->lock".
705 ep_unregister_pollwait(ep
, epi
);
707 /* Remove the current item from the list of epoll hooks */
708 spin_lock(&file
->f_lock
);
709 list_del_rcu(&epi
->fllink
);
710 spin_unlock(&file
->f_lock
);
712 rb_erase(&epi
->rbn
, &ep
->rbr
);
714 spin_lock_irqsave(&ep
->lock
, flags
);
715 if (ep_is_linked(&epi
->rdllink
))
716 list_del_init(&epi
->rdllink
);
717 spin_unlock_irqrestore(&ep
->lock
, flags
);
719 wakeup_source_unregister(ep_wakeup_source(epi
));
721 * At this point it is safe to free the eventpoll item. Use the union
722 * field epi->rcu, since we are trying to minimize the size of
723 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
724 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
725 * use of the rbn field.
727 call_rcu(&epi
->rcu
, epi_rcu_free
);
729 atomic_long_dec(&ep
->user
->epoll_watches
);
734 static void ep_free(struct eventpoll
*ep
)
739 /* We need to release all tasks waiting for these file */
740 if (waitqueue_active(&ep
->poll_wait
))
741 ep_poll_safewake(&ep
->poll_wait
);
744 * We need to lock this because we could be hit by
745 * eventpoll_release_file() while we're freeing the "struct eventpoll".
746 * We do not need to hold "ep->mtx" here because the epoll file
747 * is on the way to be removed and no one has references to it
748 * anymore. The only hit might come from eventpoll_release_file() but
749 * holding "epmutex" is sufficient here.
751 mutex_lock(&epmutex
);
754 * Walks through the whole tree by unregistering poll callbacks.
756 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
757 epi
= rb_entry(rbp
, struct epitem
, rbn
);
759 ep_unregister_pollwait(ep
, epi
);
764 * Walks through the whole tree by freeing each "struct epitem". At this
765 * point we are sure no poll callbacks will be lingering around, and also by
766 * holding "epmutex" we can be sure that no file cleanup code will hit
767 * us during this operation. So we can avoid the lock on "ep->lock".
768 * We do not need to lock ep->mtx, either, we only do it to prevent
771 mutex_lock(&ep
->mtx
);
772 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
773 epi
= rb_entry(rbp
, struct epitem
, rbn
);
777 mutex_unlock(&ep
->mtx
);
779 mutex_unlock(&epmutex
);
780 mutex_destroy(&ep
->mtx
);
782 wakeup_source_unregister(ep
->ws
);
786 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
788 struct eventpoll
*ep
= file
->private_data
;
796 static inline unsigned int ep_item_poll(struct epitem
*epi
, poll_table
*pt
)
798 pt
->_key
= epi
->event
.events
;
800 return epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
803 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
806 struct epitem
*epi
, *tmp
;
809 init_poll_funcptr(&pt
, NULL
);
811 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
812 if (ep_item_poll(epi
, &pt
))
813 return POLLIN
| POLLRDNORM
;
816 * Item has been dropped into the ready list by the poll
817 * callback, but it's not actually ready, as far as
818 * caller requested events goes. We can remove it here.
820 __pm_relax(ep_wakeup_source(epi
));
821 list_del_init(&epi
->rdllink
);
828 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
831 struct readyevents_arg
{
832 struct eventpoll
*ep
;
836 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
838 struct readyevents_arg
*arg
= priv
;
840 return ep_scan_ready_list(arg
->ep
, ep_read_events_proc
, NULL
,
841 call_nests
+ 1, arg
->locked
);
844 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
847 struct eventpoll
*ep
= file
->private_data
;
848 struct readyevents_arg arg
;
851 * During ep_insert() we already hold the ep->mtx for the tfile.
852 * Prevent re-aquisition.
854 arg
.locked
= wait
&& (wait
->_qproc
== ep_ptable_queue_proc
);
857 /* Insert inside our poll wait queue */
858 poll_wait(file
, &ep
->poll_wait
, wait
);
861 * Proceed to find out if wanted events are really available inside
862 * the ready list. This need to be done under ep_call_nested()
863 * supervision, since the call to f_op->poll() done on listed files
864 * could re-enter here.
866 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
867 ep_poll_readyevents_proc
, &arg
, ep
, current
);
869 return pollflags
!= -1 ? pollflags
: 0;
872 #ifdef CONFIG_PROC_FS
873 static int ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
875 struct eventpoll
*ep
= f
->private_data
;
879 mutex_lock(&ep
->mtx
);
880 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
881 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
883 ret
= seq_printf(m
, "tfd: %8d events: %8x data: %16llx\n",
884 epi
->ffd
.fd
, epi
->event
.events
,
885 (long long)epi
->event
.data
);
889 mutex_unlock(&ep
->mtx
);
895 /* File callbacks that implement the eventpoll file behaviour */
896 static const struct file_operations eventpoll_fops
= {
897 #ifdef CONFIG_PROC_FS
898 .show_fdinfo
= ep_show_fdinfo
,
900 .release
= ep_eventpoll_release
,
901 .poll
= ep_eventpoll_poll
,
902 .llseek
= noop_llseek
,
906 * This is called from eventpoll_release() to unlink files from the eventpoll
907 * interface. We need to have this facility to cleanup correctly files that are
908 * closed without being removed from the eventpoll interface.
910 void eventpoll_release_file(struct file
*file
)
912 struct eventpoll
*ep
;
913 struct epitem
*epi
, *next
;
916 * We don't want to get "file->f_lock" because it is not
917 * necessary. It is not necessary because we're in the "struct file"
918 * cleanup path, and this means that no one is using this file anymore.
919 * So, for example, epoll_ctl() cannot hit here since if we reach this
920 * point, the file counter already went to zero and fget() would fail.
921 * The only hit might come from ep_free() but by holding the mutex
922 * will correctly serialize the operation. We do need to acquire
923 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
924 * from anywhere but ep_free().
926 * Besides, ep_remove() acquires the lock, so we can't hold it here.
928 mutex_lock(&epmutex
);
929 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
931 mutex_lock_nested(&ep
->mtx
, 0);
933 mutex_unlock(&ep
->mtx
);
935 mutex_unlock(&epmutex
);
938 static int ep_alloc(struct eventpoll
**pep
)
941 struct user_struct
*user
;
942 struct eventpoll
*ep
;
944 user
= get_current_user();
946 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
950 spin_lock_init(&ep
->lock
);
951 mutex_init(&ep
->mtx
);
952 init_waitqueue_head(&ep
->wq
);
953 init_waitqueue_head(&ep
->poll_wait
);
954 INIT_LIST_HEAD(&ep
->rdllist
);
956 ep
->ovflist
= EP_UNACTIVE_PTR
;
969 * Search the file inside the eventpoll tree. The RB tree operations
970 * are protected by the "mtx" mutex, and ep_find() must be called with
973 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
977 struct epitem
*epi
, *epir
= NULL
;
978 struct epoll_filefd ffd
;
980 ep_set_ffd(&ffd
, file
, fd
);
981 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
982 epi
= rb_entry(rbp
, struct epitem
, rbn
);
983 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
998 * This is the callback that is passed to the wait queue wakeup
999 * mechanism. It is called by the stored file descriptors when they
1000 * have events to report.
1002 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1005 unsigned long flags
;
1006 struct epitem
*epi
= ep_item_from_wait(wait
);
1007 struct eventpoll
*ep
= epi
->ep
;
1009 if ((unsigned long)key
& POLLFREE
) {
1010 ep_pwq_from_wait(wait
)->whead
= NULL
;
1012 * whead = NULL above can race with ep_remove_wait_queue()
1013 * which can do another remove_wait_queue() after us, so we
1014 * can't use __remove_wait_queue(). whead->lock is held by
1017 list_del_init(&wait
->task_list
);
1020 spin_lock_irqsave(&ep
->lock
, flags
);
1023 * If the event mask does not contain any poll(2) event, we consider the
1024 * descriptor to be disabled. This condition is likely the effect of the
1025 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1026 * until the next EPOLL_CTL_MOD will be issued.
1028 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1032 * Check the events coming with the callback. At this stage, not
1033 * every device reports the events in the "key" parameter of the
1034 * callback. We need to be able to handle both cases here, hence the
1035 * test for "key" != NULL before the event match test.
1037 if (key
&& !((unsigned long) key
& epi
->event
.events
))
1041 * If we are transferring events to userspace, we can hold no locks
1042 * (because we're accessing user memory, and because of linux f_op->poll()
1043 * semantics). All the events that happen during that period of time are
1044 * chained in ep->ovflist and requeued later on.
1046 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
1047 if (epi
->next
== EP_UNACTIVE_PTR
) {
1048 epi
->next
= ep
->ovflist
;
1052 * Activate ep->ws since epi->ws may get
1053 * deactivated at any time.
1055 __pm_stay_awake(ep
->ws
);
1062 /* If this file is already in the ready list we exit soon */
1063 if (!ep_is_linked(&epi
->rdllink
)) {
1064 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1065 ep_pm_stay_awake_rcu(epi
);
1069 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1072 if (waitqueue_active(&ep
->wq
))
1073 wake_up_locked(&ep
->wq
);
1074 if (waitqueue_active(&ep
->poll_wait
))
1078 spin_unlock_irqrestore(&ep
->lock
, flags
);
1080 /* We have to call this outside the lock */
1082 ep_poll_safewake(&ep
->poll_wait
);
1088 * This is the callback that is used to add our wait queue to the
1089 * target file wakeup lists.
1091 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1094 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1095 struct eppoll_entry
*pwq
;
1097 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1098 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1101 add_wait_queue(whead
, &pwq
->wait
);
1102 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1105 /* We have to signal that an error occurred */
1110 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1113 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
1114 struct epitem
*epic
;
1118 epic
= rb_entry(parent
, struct epitem
, rbn
);
1119 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1121 p
= &parent
->rb_right
;
1123 p
= &parent
->rb_left
;
1125 rb_link_node(&epi
->rbn
, parent
, p
);
1126 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
1131 #define PATH_ARR_SIZE 5
1133 * These are the number paths of length 1 to 5, that we are allowing to emanate
1134 * from a single file of interest. For example, we allow 1000 paths of length
1135 * 1, to emanate from each file of interest. This essentially represents the
1136 * potential wakeup paths, which need to be limited in order to avoid massive
1137 * uncontrolled wakeup storms. The common use case should be a single ep which
1138 * is connected to n file sources. In this case each file source has 1 path
1139 * of length 1. Thus, the numbers below should be more than sufficient. These
1140 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1141 * and delete can't add additional paths. Protected by the epmutex.
1143 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1144 static int path_count
[PATH_ARR_SIZE
];
1146 static int path_count_inc(int nests
)
1148 /* Allow an arbitrary number of depth 1 paths */
1152 if (++path_count
[nests
] > path_limits
[nests
])
1157 static void path_count_init(void)
1161 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1165 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1168 struct file
*file
= priv
;
1169 struct file
*child_file
;
1172 /* CTL_DEL can remove links here, but that can't increase our count */
1174 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1175 child_file
= epi
->ep
->file
;
1176 if (is_file_epoll(child_file
)) {
1177 if (list_empty(&child_file
->f_ep_links
)) {
1178 if (path_count_inc(call_nests
)) {
1183 error
= ep_call_nested(&poll_loop_ncalls
,
1185 reverse_path_check_proc
,
1186 child_file
, child_file
,
1192 printk(KERN_ERR
"reverse_path_check_proc: "
1193 "file is not an ep!\n");
1201 * reverse_path_check - The tfile_check_list is list of file *, which have
1202 * links that are proposed to be newly added. We need to
1203 * make sure that those added links don't add too many
1204 * paths such that we will spend all our time waking up
1205 * eventpoll objects.
1207 * Returns: Returns zero if the proposed links don't create too many paths,
1210 static int reverse_path_check(void)
1213 struct file
*current_file
;
1215 /* let's call this for all tfiles */
1216 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1218 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1219 reverse_path_check_proc
, current_file
,
1220 current_file
, current
);
1227 static int ep_create_wakeup_source(struct epitem
*epi
)
1230 struct wakeup_source
*ws
;
1233 epi
->ep
->ws
= wakeup_source_register("eventpoll");
1238 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1239 ws
= wakeup_source_register(name
);
1243 rcu_assign_pointer(epi
->ws
, ws
);
1248 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1249 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1251 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1253 RCU_INIT_POINTER(epi
->ws
, NULL
);
1256 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1257 * used internally by wakeup_source_remove, too (called by
1258 * wakeup_source_unregister), so we cannot use call_rcu
1261 wakeup_source_unregister(ws
);
1265 * Must be called with "mtx" held.
1267 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
1268 struct file
*tfile
, int fd
, int full_check
)
1270 int error
, revents
, pwake
= 0;
1271 unsigned long flags
;
1274 struct ep_pqueue epq
;
1276 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1277 if (unlikely(user_watches
>= max_user_watches
))
1279 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1282 /* Item initialization follow here ... */
1283 INIT_LIST_HEAD(&epi
->rdllink
);
1284 INIT_LIST_HEAD(&epi
->fllink
);
1285 INIT_LIST_HEAD(&epi
->pwqlist
);
1287 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1288 epi
->event
= *event
;
1290 epi
->next
= EP_UNACTIVE_PTR
;
1291 if (epi
->event
.events
& EPOLLWAKEUP
) {
1292 error
= ep_create_wakeup_source(epi
);
1294 goto error_create_wakeup_source
;
1296 RCU_INIT_POINTER(epi
->ws
, NULL
);
1299 /* Initialize the poll table using the queue callback */
1301 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1304 * Attach the item to the poll hooks and get current event bits.
1305 * We can safely use the file* here because its usage count has
1306 * been increased by the caller of this function. Note that after
1307 * this operation completes, the poll callback can start hitting
1310 revents
= ep_item_poll(epi
, &epq
.pt
);
1313 * We have to check if something went wrong during the poll wait queue
1314 * install process. Namely an allocation for a wait queue failed due
1315 * high memory pressure.
1319 goto error_unregister
;
1321 /* Add the current item to the list of active epoll hook for this file */
1322 spin_lock(&tfile
->f_lock
);
1323 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1324 spin_unlock(&tfile
->f_lock
);
1327 * Add the current item to the RB tree. All RB tree operations are
1328 * protected by "mtx", and ep_insert() is called with "mtx" held.
1330 ep_rbtree_insert(ep
, epi
);
1332 /* now check if we've created too many backpaths */
1334 if (full_check
&& reverse_path_check())
1335 goto error_remove_epi
;
1337 /* We have to drop the new item inside our item list to keep track of it */
1338 spin_lock_irqsave(&ep
->lock
, flags
);
1340 /* If the file is already "ready" we drop it inside the ready list */
1341 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
1342 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1343 ep_pm_stay_awake(epi
);
1345 /* Notify waiting tasks that events are available */
1346 if (waitqueue_active(&ep
->wq
))
1347 wake_up_locked(&ep
->wq
);
1348 if (waitqueue_active(&ep
->poll_wait
))
1352 spin_unlock_irqrestore(&ep
->lock
, flags
);
1354 atomic_long_inc(&ep
->user
->epoll_watches
);
1356 /* We have to call this outside the lock */
1358 ep_poll_safewake(&ep
->poll_wait
);
1363 spin_lock(&tfile
->f_lock
);
1364 list_del_rcu(&epi
->fllink
);
1365 spin_unlock(&tfile
->f_lock
);
1367 rb_erase(&epi
->rbn
, &ep
->rbr
);
1370 ep_unregister_pollwait(ep
, epi
);
1373 * We need to do this because an event could have been arrived on some
1374 * allocated wait queue. Note that we don't care about the ep->ovflist
1375 * list, since that is used/cleaned only inside a section bound by "mtx".
1376 * And ep_insert() is called with "mtx" held.
1378 spin_lock_irqsave(&ep
->lock
, flags
);
1379 if (ep_is_linked(&epi
->rdllink
))
1380 list_del_init(&epi
->rdllink
);
1381 spin_unlock_irqrestore(&ep
->lock
, flags
);
1383 wakeup_source_unregister(ep_wakeup_source(epi
));
1385 error_create_wakeup_source
:
1386 kmem_cache_free(epi_cache
, epi
);
1392 * Modify the interest event mask by dropping an event if the new mask
1393 * has a match in the current file status. Must be called with "mtx" held.
1395 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1398 unsigned int revents
;
1401 init_poll_funcptr(&pt
, NULL
);
1404 * Set the new event interest mask before calling f_op->poll();
1405 * otherwise we might miss an event that happens between the
1406 * f_op->poll() call and the new event set registering.
1408 epi
->event
.events
= event
->events
; /* need barrier below */
1409 epi
->event
.data
= event
->data
; /* protected by mtx */
1410 if (epi
->event
.events
& EPOLLWAKEUP
) {
1411 if (!ep_has_wakeup_source(epi
))
1412 ep_create_wakeup_source(epi
);
1413 } else if (ep_has_wakeup_source(epi
)) {
1414 ep_destroy_wakeup_source(epi
);
1418 * The following barrier has two effects:
1420 * 1) Flush epi changes above to other CPUs. This ensures
1421 * we do not miss events from ep_poll_callback if an
1422 * event occurs immediately after we call f_op->poll().
1423 * We need this because we did not take ep->lock while
1424 * changing epi above (but ep_poll_callback does take
1427 * 2) We also need to ensure we do not miss _past_ events
1428 * when calling f_op->poll(). This barrier also
1429 * pairs with the barrier in wq_has_sleeper (see
1430 * comments for wq_has_sleeper).
1432 * This barrier will now guarantee ep_poll_callback or f_op->poll
1433 * (or both) will notice the readiness of an item.
1438 * Get current event bits. We can safely use the file* here because
1439 * its usage count has been increased by the caller of this function.
1441 revents
= ep_item_poll(epi
, &pt
);
1444 * If the item is "hot" and it is not registered inside the ready
1445 * list, push it inside.
1447 if (revents
& event
->events
) {
1448 spin_lock_irq(&ep
->lock
);
1449 if (!ep_is_linked(&epi
->rdllink
)) {
1450 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1451 ep_pm_stay_awake(epi
);
1453 /* Notify waiting tasks that events are available */
1454 if (waitqueue_active(&ep
->wq
))
1455 wake_up_locked(&ep
->wq
);
1456 if (waitqueue_active(&ep
->poll_wait
))
1459 spin_unlock_irq(&ep
->lock
);
1462 /* We have to call this outside the lock */
1464 ep_poll_safewake(&ep
->poll_wait
);
1469 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1472 struct ep_send_events_data
*esed
= priv
;
1474 unsigned int revents
;
1476 struct epoll_event __user
*uevent
;
1477 struct wakeup_source
*ws
;
1480 init_poll_funcptr(&pt
, NULL
);
1483 * We can loop without lock because we are passed a task private list.
1484 * Items cannot vanish during the loop because ep_scan_ready_list() is
1485 * holding "mtx" during this call.
1487 for (eventcnt
= 0, uevent
= esed
->events
;
1488 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1489 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1492 * Activate ep->ws before deactivating epi->ws to prevent
1493 * triggering auto-suspend here (in case we reactive epi->ws
1496 * This could be rearranged to delay the deactivation of epi->ws
1497 * instead, but then epi->ws would temporarily be out of sync
1498 * with ep_is_linked().
1500 ws
= ep_wakeup_source(epi
);
1503 __pm_stay_awake(ep
->ws
);
1507 list_del_init(&epi
->rdllink
);
1509 revents
= ep_item_poll(epi
, &pt
);
1512 * If the event mask intersect the caller-requested one,
1513 * deliver the event to userspace. Again, ep_scan_ready_list()
1514 * is holding "mtx", so no operations coming from userspace
1515 * can change the item.
1518 if (__put_user(revents
, &uevent
->events
) ||
1519 __put_user(epi
->event
.data
, &uevent
->data
)) {
1520 list_add(&epi
->rdllink
, head
);
1521 ep_pm_stay_awake(epi
);
1522 return eventcnt
? eventcnt
: -EFAULT
;
1526 if (epi
->event
.events
& EPOLLONESHOT
)
1527 epi
->event
.events
&= EP_PRIVATE_BITS
;
1528 else if (!(epi
->event
.events
& EPOLLET
)) {
1530 * If this file has been added with Level
1531 * Trigger mode, we need to insert back inside
1532 * the ready list, so that the next call to
1533 * epoll_wait() will check again the events
1534 * availability. At this point, no one can insert
1535 * into ep->rdllist besides us. The epoll_ctl()
1536 * callers are locked out by
1537 * ep_scan_ready_list() holding "mtx" and the
1538 * poll callback will queue them in ep->ovflist.
1540 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1541 ep_pm_stay_awake(epi
);
1549 static int ep_send_events(struct eventpoll
*ep
,
1550 struct epoll_event __user
*events
, int maxevents
)
1552 struct ep_send_events_data esed
;
1554 esed
.maxevents
= maxevents
;
1555 esed
.events
= events
;
1557 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1560 static inline struct timespec
ep_set_mstimeout(long ms
)
1562 struct timespec now
, ts
= {
1563 .tv_sec
= ms
/ MSEC_PER_SEC
,
1564 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1568 return timespec_add_safe(now
, ts
);
1572 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1575 * @ep: Pointer to the eventpoll context.
1576 * @events: Pointer to the userspace buffer where the ready events should be
1578 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1579 * @timeout: Maximum timeout for the ready events fetch operation, in
1580 * milliseconds. If the @timeout is zero, the function will not block,
1581 * while if the @timeout is less than zero, the function will block
1582 * until at least one event has been retrieved (or an error
1585 * Returns: Returns the number of ready events which have been fetched, or an
1586 * error code, in case of error.
1588 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1589 int maxevents
, long timeout
)
1591 int res
= 0, eavail
, timed_out
= 0;
1592 unsigned long flags
;
1595 ktime_t expires
, *to
= NULL
;
1598 struct timespec end_time
= ep_set_mstimeout(timeout
);
1600 slack
= select_estimate_accuracy(&end_time
);
1602 *to
= timespec_to_ktime(end_time
);
1603 } else if (timeout
== 0) {
1605 * Avoid the unnecessary trip to the wait queue loop, if the
1606 * caller specified a non blocking operation.
1609 spin_lock_irqsave(&ep
->lock
, flags
);
1614 spin_lock_irqsave(&ep
->lock
, flags
);
1616 if (!ep_events_available(ep
)) {
1618 * We don't have any available event to return to the caller.
1619 * We need to sleep here, and we will be wake up by
1620 * ep_poll_callback() when events will become available.
1622 init_waitqueue_entry(&wait
, current
);
1623 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1627 * We don't want to sleep if the ep_poll_callback() sends us
1628 * a wakeup in between. That's why we set the task state
1629 * to TASK_INTERRUPTIBLE before doing the checks.
1631 set_current_state(TASK_INTERRUPTIBLE
);
1632 if (ep_events_available(ep
) || timed_out
)
1634 if (signal_pending(current
)) {
1639 spin_unlock_irqrestore(&ep
->lock
, flags
);
1640 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
))
1643 spin_lock_irqsave(&ep
->lock
, flags
);
1645 __remove_wait_queue(&ep
->wq
, &wait
);
1647 set_current_state(TASK_RUNNING
);
1650 /* Is it worth to try to dig for events ? */
1651 eavail
= ep_events_available(ep
);
1653 spin_unlock_irqrestore(&ep
->lock
, flags
);
1656 * Try to transfer events to user space. In case we get 0 events and
1657 * there's still timeout left over, we go trying again in search of
1660 if (!res
&& eavail
&&
1661 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1668 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1669 * API, to verify that adding an epoll file inside another
1670 * epoll structure, does not violate the constraints, in
1671 * terms of closed loops, or too deep chains (which can
1672 * result in excessive stack usage).
1674 * @priv: Pointer to the epoll file to be currently checked.
1675 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1676 * data structure pointer.
1677 * @call_nests: Current dept of the @ep_call_nested() call stack.
1679 * Returns: Returns zero if adding the epoll @file inside current epoll
1680 * structure @ep does not violate the constraints, or -1 otherwise.
1682 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1685 struct file
*file
= priv
;
1686 struct eventpoll
*ep
= file
->private_data
;
1687 struct eventpoll
*ep_tovisit
;
1688 struct rb_node
*rbp
;
1691 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1693 list_add(&ep
->visited_list_link
, &visited_list
);
1694 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1695 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1696 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1697 ep_tovisit
= epi
->ffd
.file
->private_data
;
1698 if (ep_tovisit
->visited
)
1700 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1701 ep_loop_check_proc
, epi
->ffd
.file
,
1702 ep_tovisit
, current
);
1707 * If we've reached a file that is not associated with
1708 * an ep, then we need to check if the newly added
1709 * links are going to add too many wakeup paths. We do
1710 * this by adding it to the tfile_check_list, if it's
1711 * not already there, and calling reverse_path_check()
1712 * during ep_insert().
1714 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1715 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1719 mutex_unlock(&ep
->mtx
);
1725 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1726 * another epoll file (represented by @ep) does not create
1727 * closed loops or too deep chains.
1729 * @ep: Pointer to the epoll private data structure.
1730 * @file: Pointer to the epoll file to be checked.
1732 * Returns: Returns zero if adding the epoll @file inside current epoll
1733 * structure @ep does not violate the constraints, or -1 otherwise.
1735 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1738 struct eventpoll
*ep_cur
, *ep_next
;
1740 ret
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1741 ep_loop_check_proc
, file
, ep
, current
);
1742 /* clear visited list */
1743 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1744 visited_list_link
) {
1745 ep_cur
->visited
= 0;
1746 list_del(&ep_cur
->visited_list_link
);
1751 static void clear_tfile_check_list(void)
1755 /* first clear the tfile_check_list */
1756 while (!list_empty(&tfile_check_list
)) {
1757 file
= list_first_entry(&tfile_check_list
, struct file
,
1759 list_del_init(&file
->f_tfile_llink
);
1761 INIT_LIST_HEAD(&tfile_check_list
);
1765 * Open an eventpoll file descriptor.
1767 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1770 struct eventpoll
*ep
= NULL
;
1773 /* Check the EPOLL_* constant for consistency. */
1774 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1776 if (flags
& ~EPOLL_CLOEXEC
)
1779 * Create the internal data structure ("struct eventpoll").
1781 error
= ep_alloc(&ep
);
1785 * Creates all the items needed to setup an eventpoll file. That is,
1786 * a file structure and a free file descriptor.
1788 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1793 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1794 O_RDWR
| (flags
& O_CLOEXEC
));
1796 error
= PTR_ERR(file
);
1800 fd_install(fd
, file
);
1810 SYSCALL_DEFINE1(epoll_create
, int, size
)
1815 return sys_epoll_create1(0);
1819 * The following function implements the controller interface for
1820 * the eventpoll file that enables the insertion/removal/change of
1821 * file descriptors inside the interest set.
1823 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1824 struct epoll_event __user
*, event
)
1829 struct eventpoll
*ep
;
1831 struct epoll_event epds
;
1832 struct eventpoll
*tep
= NULL
;
1835 if (ep_op_has_event(op
) &&
1836 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1844 /* Get the "struct file *" for the target file */
1849 /* The target file descriptor must support poll */
1851 if (!tf
.file
->f_op
->poll
)
1852 goto error_tgt_fput
;
1854 /* Check if EPOLLWAKEUP is allowed */
1855 ep_take_care_of_epollwakeup(&epds
);
1858 * We have to check that the file structure underneath the file descriptor
1859 * the user passed to us _is_ an eventpoll file. And also we do not permit
1860 * adding an epoll file descriptor inside itself.
1863 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
1864 goto error_tgt_fput
;
1867 * At this point it is safe to assume that the "private_data" contains
1868 * our own data structure.
1870 ep
= f
.file
->private_data
;
1873 * When we insert an epoll file descriptor, inside another epoll file
1874 * descriptor, there is the change of creating closed loops, which are
1875 * better be handled here, than in more critical paths. While we are
1876 * checking for loops we also determine the list of files reachable
1877 * and hang them on the tfile_check_list, so we can check that we
1878 * haven't created too many possible wakeup paths.
1880 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1881 * the epoll file descriptor is attaching directly to a wakeup source,
1882 * unless the epoll file descriptor is nested. The purpose of taking the
1883 * 'epmutex' on add is to prevent complex toplogies such as loops and
1884 * deep wakeup paths from forming in parallel through multiple
1885 * EPOLL_CTL_ADD operations.
1887 mutex_lock_nested(&ep
->mtx
, 0);
1888 if (op
== EPOLL_CTL_ADD
) {
1889 if (!list_empty(&f
.file
->f_ep_links
) ||
1890 is_file_epoll(tf
.file
)) {
1892 mutex_unlock(&ep
->mtx
);
1893 mutex_lock(&epmutex
);
1894 if (is_file_epoll(tf
.file
)) {
1896 if (ep_loop_check(ep
, tf
.file
) != 0) {
1897 clear_tfile_check_list();
1898 goto error_tgt_fput
;
1901 list_add(&tf
.file
->f_tfile_llink
,
1903 mutex_lock_nested(&ep
->mtx
, 0);
1904 if (is_file_epoll(tf
.file
)) {
1905 tep
= tf
.file
->private_data
;
1906 mutex_lock_nested(&tep
->mtx
, 1);
1912 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1913 * above, we can be sure to be able to use the item looked up by
1914 * ep_find() till we release the mutex.
1916 epi
= ep_find(ep
, tf
.file
, fd
);
1922 epds
.events
|= POLLERR
| POLLHUP
;
1923 error
= ep_insert(ep
, &epds
, tf
.file
, fd
, full_check
);
1927 clear_tfile_check_list();
1931 error
= ep_remove(ep
, epi
);
1937 epds
.events
|= POLLERR
| POLLHUP
;
1938 error
= ep_modify(ep
, epi
, &epds
);
1944 mutex_unlock(&tep
->mtx
);
1945 mutex_unlock(&ep
->mtx
);
1949 mutex_unlock(&epmutex
);
1960 * Implement the event wait interface for the eventpoll file. It is the kernel
1961 * part of the user space epoll_wait(2).
1963 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
1964 int, maxevents
, int, timeout
)
1968 struct eventpoll
*ep
;
1970 /* The maximum number of event must be greater than zero */
1971 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
1974 /* Verify that the area passed by the user is writeable */
1975 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
)))
1978 /* Get the "struct file *" for the eventpoll file */
1984 * We have to check that the file structure underneath the fd
1985 * the user passed to us _is_ an eventpoll file.
1988 if (!is_file_epoll(f
.file
))
1992 * At this point it is safe to assume that the "private_data" contains
1993 * our own data structure.
1995 ep
= f
.file
->private_data
;
1997 /* Time to fish for events ... */
1998 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2006 * Implement the event wait interface for the eventpoll file. It is the kernel
2007 * part of the user space epoll_pwait(2).
2009 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2010 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2014 sigset_t ksigmask
, sigsaved
;
2017 * If the caller wants a certain signal mask to be set during the wait,
2021 if (sigsetsize
!= sizeof(sigset_t
))
2023 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
2025 sigsaved
= current
->blocked
;
2026 set_current_blocked(&ksigmask
);
2029 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2032 * If we changed the signal mask, we need to restore the original one.
2033 * In case we've got a signal while waiting, we do not restore the
2034 * signal mask yet, and we allow do_signal() to deliver the signal on
2035 * the way back to userspace, before the signal mask is restored.
2038 if (error
== -EINTR
) {
2039 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2041 set_restore_sigmask();
2043 set_current_blocked(&sigsaved
);
2049 #ifdef CONFIG_COMPAT
2050 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2051 struct epoll_event __user
*, events
,
2052 int, maxevents
, int, timeout
,
2053 const compat_sigset_t __user
*, sigmask
,
2054 compat_size_t
, sigsetsize
)
2057 compat_sigset_t csigmask
;
2058 sigset_t ksigmask
, sigsaved
;
2061 * If the caller wants a certain signal mask to be set during the wait,
2065 if (sigsetsize
!= sizeof(compat_sigset_t
))
2067 if (copy_from_user(&csigmask
, sigmask
, sizeof(csigmask
)))
2069 sigset_from_compat(&ksigmask
, &csigmask
);
2070 sigsaved
= current
->blocked
;
2071 set_current_blocked(&ksigmask
);
2074 err
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2077 * If we changed the signal mask, we need to restore the original one.
2078 * In case we've got a signal while waiting, we do not restore the
2079 * signal mask yet, and we allow do_signal() to deliver the signal on
2080 * the way back to userspace, before the signal mask is restored.
2083 if (err
== -EINTR
) {
2084 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2086 set_restore_sigmask();
2088 set_current_blocked(&sigsaved
);
2095 static int __init
eventpoll_init(void)
2101 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2103 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2105 BUG_ON(max_user_watches
< 0);
2108 * Initialize the structure used to perform epoll file descriptor
2109 * inclusion loops checks.
2111 ep_nested_calls_init(&poll_loop_ncalls
);
2113 /* Initialize the structure used to perform safe poll wait head wake ups */
2114 ep_nested_calls_init(&poll_safewake_ncalls
);
2116 /* Initialize the structure used to perform file's f_op->poll() calls */
2117 ep_nested_calls_init(&poll_readywalk_ncalls
);
2120 * We can have many thousands of epitems, so prevent this from
2121 * using an extra cache line on 64-bit (and smaller) CPUs
2123 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2125 /* Allocates slab cache used to allocate "struct epitem" items */
2126 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2127 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2129 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2130 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2131 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
2135 fs_initcall(eventpoll_init
);