inet: frag: enforce memory limits earlier
[linux/fpc-iii.git] / drivers / dma / at_xdmac.c
blobee7b48d5243cf19a6e442319d0f228f884afea2c
1 /*
2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4 * Copyright (C) 2014 Atmel Corporation
6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
17 * You should have received a copy of the GNU General Public License along with
18 * this program. If not, see <http://www.gnu.org/licenses/>.
21 #include <asm/barrier.h>
22 #include <dt-bindings/dma/at91.h>
23 #include <linux/clk.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dmapool.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_platform.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
36 #include "dmaengine.h"
38 /* Global registers */
39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */
40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */
41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */
42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */
43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */
44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */
45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */
46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */
47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */
48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */
49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */
50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */
51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */
52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */
53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */
54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */
55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */
56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */
57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */
58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */
59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */
63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */
64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */
65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */
66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */
67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */
68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */
69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */
71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */
72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */
73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */
74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */
75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */
76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */
77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */
79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */
80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */
81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */
82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */
83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */
84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */
85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */
87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */
88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */
89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */
90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */
91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */
92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */
93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */
95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */
97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */
98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */
100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */
101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */
102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */
103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */
104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */
105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */
106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */
107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */
108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */
109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */
110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */
111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */
112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */
113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1)
114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1)
115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1)
116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1)
117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1)
118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */
119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4)
120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4)
121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */
122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5)
123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5)
124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */
125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6)
126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6)
127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */
128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7)
129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7)
130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */
131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11
132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */
134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0
135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1
136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2
137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3
138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */
139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */
140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */
141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16)
142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16)
143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16)
144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16)
145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */
146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18)
147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18)
148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18)
149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18)
150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */
151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21)
152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21)
153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */
154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22)
155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22)
156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */
157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23)
158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23)
159 #define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */
160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */
161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */
162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */
164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */
166 /* Microblock control members */
167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */
168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */
169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */
170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */
171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */
172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */
173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */
174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */
176 #define AT_XDMAC_MAX_CHAN 0x20
177 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */
178 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */
179 #define AT_XDMAC_RESIDUE_MAX_RETRIES 5
181 #define AT_XDMAC_DMA_BUSWIDTHS\
182 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
183 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
184 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
185 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
186 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
188 enum atc_status {
189 AT_XDMAC_CHAN_IS_CYCLIC = 0,
190 AT_XDMAC_CHAN_IS_PAUSED,
193 /* ----- Channels ----- */
194 struct at_xdmac_chan {
195 struct dma_chan chan;
196 void __iomem *ch_regs;
197 u32 mask; /* Channel Mask */
198 u32 cfg; /* Channel Configuration Register */
199 u8 perid; /* Peripheral ID */
200 u8 perif; /* Peripheral Interface */
201 u8 memif; /* Memory Interface */
202 u32 save_cc;
203 u32 save_cim;
204 u32 save_cnda;
205 u32 save_cndc;
206 unsigned long status;
207 struct tasklet_struct tasklet;
208 struct dma_slave_config sconfig;
210 spinlock_t lock;
212 struct list_head xfers_list;
213 struct list_head free_descs_list;
217 /* ----- Controller ----- */
218 struct at_xdmac {
219 struct dma_device dma;
220 void __iomem *regs;
221 int irq;
222 struct clk *clk;
223 u32 save_gim;
224 u32 save_gs;
225 struct dma_pool *at_xdmac_desc_pool;
226 struct at_xdmac_chan chan[0];
230 /* ----- Descriptors ----- */
232 /* Linked List Descriptor */
233 struct at_xdmac_lld {
234 dma_addr_t mbr_nda; /* Next Descriptor Member */
235 u32 mbr_ubc; /* Microblock Control Member */
236 dma_addr_t mbr_sa; /* Source Address Member */
237 dma_addr_t mbr_da; /* Destination Address Member */
238 u32 mbr_cfg; /* Configuration Register */
239 u32 mbr_bc; /* Block Control Register */
240 u32 mbr_ds; /* Data Stride Register */
241 u32 mbr_sus; /* Source Microblock Stride Register */
242 u32 mbr_dus; /* Destination Microblock Stride Register */
245 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
246 struct at_xdmac_desc {
247 struct at_xdmac_lld lld;
248 enum dma_transfer_direction direction;
249 struct dma_async_tx_descriptor tx_dma_desc;
250 struct list_head desc_node;
251 /* Following members are only used by the first descriptor */
252 bool active_xfer;
253 unsigned int xfer_size;
254 struct list_head descs_list;
255 struct list_head xfer_node;
256 } __aligned(sizeof(u64));
258 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
260 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
263 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
264 #define at_xdmac_write(atxdmac, reg, value) \
265 writel_relaxed((value), (atxdmac)->regs + (reg))
267 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
268 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
270 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
272 return container_of(dchan, struct at_xdmac_chan, chan);
275 static struct device *chan2dev(struct dma_chan *chan)
277 return &chan->dev->device;
280 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
282 return container_of(ddev, struct at_xdmac, dma);
285 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
287 return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
290 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
292 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
295 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
297 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
300 static inline int at_xdmac_csize(u32 maxburst)
302 int csize;
304 csize = ffs(maxburst) - 1;
305 if (csize > 4)
306 csize = -EINVAL;
308 return csize;
311 static inline u8 at_xdmac_get_dwidth(u32 cfg)
313 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
316 static unsigned int init_nr_desc_per_channel = 64;
317 module_param(init_nr_desc_per_channel, uint, 0644);
318 MODULE_PARM_DESC(init_nr_desc_per_channel,
319 "initial descriptors per channel (default: 64)");
322 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
324 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
327 static void at_xdmac_off(struct at_xdmac *atxdmac)
329 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
331 /* Wait that all chans are disabled. */
332 while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
333 cpu_relax();
335 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
338 /* Call with lock hold. */
339 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
340 struct at_xdmac_desc *first)
342 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
343 u32 reg;
345 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
347 if (at_xdmac_chan_is_enabled(atchan))
348 return;
350 /* Set transfer as active to not try to start it again. */
351 first->active_xfer = true;
353 /* Tell xdmac where to get the first descriptor. */
354 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
355 | AT_XDMAC_CNDA_NDAIF(atchan->memif);
356 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
359 * When doing non cyclic transfer we need to use the next
360 * descriptor view 2 since some fields of the configuration register
361 * depend on transfer size and src/dest addresses.
363 if (at_xdmac_chan_is_cyclic(atchan))
364 reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
365 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
366 reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
367 else
368 reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
370 * Even if the register will be updated from the configuration in the
371 * descriptor when using view 2 or higher, the PROT bit won't be set
372 * properly. This bit can be modified only by using the channel
373 * configuration register.
375 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
377 reg |= AT_XDMAC_CNDC_NDDUP
378 | AT_XDMAC_CNDC_NDSUP
379 | AT_XDMAC_CNDC_NDE;
380 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
382 dev_vdbg(chan2dev(&atchan->chan),
383 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
384 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
385 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
386 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
387 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
388 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
389 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
391 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
392 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE;
394 * There is no end of list when doing cyclic dma, we need to get
395 * an interrupt after each periods.
397 if (at_xdmac_chan_is_cyclic(atchan))
398 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
399 reg | AT_XDMAC_CIE_BIE);
400 else
401 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
402 reg | AT_XDMAC_CIE_LIE);
403 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
404 dev_vdbg(chan2dev(&atchan->chan),
405 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
406 wmb();
407 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
409 dev_vdbg(chan2dev(&atchan->chan),
410 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
411 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
412 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
413 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
414 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
415 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
416 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
420 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
422 struct at_xdmac_desc *desc = txd_to_at_desc(tx);
423 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan);
424 dma_cookie_t cookie;
425 unsigned long irqflags;
427 spin_lock_irqsave(&atchan->lock, irqflags);
428 cookie = dma_cookie_assign(tx);
430 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
431 __func__, atchan, desc);
432 list_add_tail(&desc->xfer_node, &atchan->xfers_list);
433 if (list_is_singular(&atchan->xfers_list))
434 at_xdmac_start_xfer(atchan, desc);
436 spin_unlock_irqrestore(&atchan->lock, irqflags);
437 return cookie;
440 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
441 gfp_t gfp_flags)
443 struct at_xdmac_desc *desc;
444 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
445 dma_addr_t phys;
447 desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
448 if (desc) {
449 memset(desc, 0, sizeof(*desc));
450 INIT_LIST_HEAD(&desc->descs_list);
451 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
452 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
453 desc->tx_dma_desc.phys = phys;
456 return desc;
459 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
461 memset(&desc->lld, 0, sizeof(desc->lld));
462 INIT_LIST_HEAD(&desc->descs_list);
463 desc->direction = DMA_TRANS_NONE;
464 desc->xfer_size = 0;
465 desc->active_xfer = false;
468 /* Call must be protected by lock. */
469 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
471 struct at_xdmac_desc *desc;
473 if (list_empty(&atchan->free_descs_list)) {
474 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
475 } else {
476 desc = list_first_entry(&atchan->free_descs_list,
477 struct at_xdmac_desc, desc_node);
478 list_del(&desc->desc_node);
479 at_xdmac_init_used_desc(desc);
482 return desc;
485 static void at_xdmac_queue_desc(struct dma_chan *chan,
486 struct at_xdmac_desc *prev,
487 struct at_xdmac_desc *desc)
489 if (!prev || !desc)
490 return;
492 prev->lld.mbr_nda = desc->tx_dma_desc.phys;
493 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
495 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
496 __func__, prev, &prev->lld.mbr_nda);
499 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
500 struct at_xdmac_desc *desc)
502 if (!desc)
503 return;
505 desc->lld.mbr_bc++;
507 dev_dbg(chan2dev(chan),
508 "%s: incrementing the block count of the desc 0x%p\n",
509 __func__, desc);
512 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
513 struct of_dma *of_dma)
515 struct at_xdmac *atxdmac = of_dma->of_dma_data;
516 struct at_xdmac_chan *atchan;
517 struct dma_chan *chan;
518 struct device *dev = atxdmac->dma.dev;
520 if (dma_spec->args_count != 1) {
521 dev_err(dev, "dma phandler args: bad number of args\n");
522 return NULL;
525 chan = dma_get_any_slave_channel(&atxdmac->dma);
526 if (!chan) {
527 dev_err(dev, "can't get a dma channel\n");
528 return NULL;
531 atchan = to_at_xdmac_chan(chan);
532 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
533 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
534 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
535 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
536 atchan->memif, atchan->perif, atchan->perid);
538 return chan;
541 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
542 enum dma_transfer_direction direction)
544 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
545 int csize, dwidth;
547 if (direction == DMA_DEV_TO_MEM) {
548 atchan->cfg =
549 AT91_XDMAC_DT_PERID(atchan->perid)
550 | AT_XDMAC_CC_DAM_INCREMENTED_AM
551 | AT_XDMAC_CC_SAM_FIXED_AM
552 | AT_XDMAC_CC_DIF(atchan->memif)
553 | AT_XDMAC_CC_SIF(atchan->perif)
554 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
555 | AT_XDMAC_CC_DSYNC_PER2MEM
556 | AT_XDMAC_CC_MBSIZE_SIXTEEN
557 | AT_XDMAC_CC_TYPE_PER_TRAN;
558 csize = ffs(atchan->sconfig.src_maxburst) - 1;
559 if (csize < 0) {
560 dev_err(chan2dev(chan), "invalid src maxburst value\n");
561 return -EINVAL;
563 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
564 dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
565 if (dwidth < 0) {
566 dev_err(chan2dev(chan), "invalid src addr width value\n");
567 return -EINVAL;
569 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
570 } else if (direction == DMA_MEM_TO_DEV) {
571 atchan->cfg =
572 AT91_XDMAC_DT_PERID(atchan->perid)
573 | AT_XDMAC_CC_DAM_FIXED_AM
574 | AT_XDMAC_CC_SAM_INCREMENTED_AM
575 | AT_XDMAC_CC_DIF(atchan->perif)
576 | AT_XDMAC_CC_SIF(atchan->memif)
577 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
578 | AT_XDMAC_CC_DSYNC_MEM2PER
579 | AT_XDMAC_CC_MBSIZE_SIXTEEN
580 | AT_XDMAC_CC_TYPE_PER_TRAN;
581 csize = ffs(atchan->sconfig.dst_maxburst) - 1;
582 if (csize < 0) {
583 dev_err(chan2dev(chan), "invalid src maxburst value\n");
584 return -EINVAL;
586 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
587 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
588 if (dwidth < 0) {
589 dev_err(chan2dev(chan), "invalid dst addr width value\n");
590 return -EINVAL;
592 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
595 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg);
597 return 0;
601 * Only check that maxburst and addr width values are supported by the
602 * the controller but not that the configuration is good to perform the
603 * transfer since we don't know the direction at this stage.
605 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
607 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
608 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
609 return -EINVAL;
611 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
612 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
613 return -EINVAL;
615 return 0;
618 static int at_xdmac_set_slave_config(struct dma_chan *chan,
619 struct dma_slave_config *sconfig)
621 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
623 if (at_xdmac_check_slave_config(sconfig)) {
624 dev_err(chan2dev(chan), "invalid slave configuration\n");
625 return -EINVAL;
628 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
630 return 0;
633 static struct dma_async_tx_descriptor *
634 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
635 unsigned int sg_len, enum dma_transfer_direction direction,
636 unsigned long flags, void *context)
638 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
639 struct at_xdmac_desc *first = NULL, *prev = NULL;
640 struct scatterlist *sg;
641 int i;
642 unsigned int xfer_size = 0;
643 unsigned long irqflags;
644 struct dma_async_tx_descriptor *ret = NULL;
646 if (!sgl)
647 return NULL;
649 if (!is_slave_direction(direction)) {
650 dev_err(chan2dev(chan), "invalid DMA direction\n");
651 return NULL;
654 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
655 __func__, sg_len,
656 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
657 flags);
659 /* Protect dma_sconfig field that can be modified by set_slave_conf. */
660 spin_lock_irqsave(&atchan->lock, irqflags);
662 if (at_xdmac_compute_chan_conf(chan, direction))
663 goto spin_unlock;
665 /* Prepare descriptors. */
666 for_each_sg(sgl, sg, sg_len, i) {
667 struct at_xdmac_desc *desc = NULL;
668 u32 len, mem, dwidth, fixed_dwidth;
670 len = sg_dma_len(sg);
671 mem = sg_dma_address(sg);
672 if (unlikely(!len)) {
673 dev_err(chan2dev(chan), "sg data length is zero\n");
674 goto spin_unlock;
676 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
677 __func__, i, len, mem);
679 desc = at_xdmac_get_desc(atchan);
680 if (!desc) {
681 dev_err(chan2dev(chan), "can't get descriptor\n");
682 if (first)
683 list_splice_init(&first->descs_list, &atchan->free_descs_list);
684 goto spin_unlock;
687 /* Linked list descriptor setup. */
688 if (direction == DMA_DEV_TO_MEM) {
689 desc->lld.mbr_sa = atchan->sconfig.src_addr;
690 desc->lld.mbr_da = mem;
691 } else {
692 desc->lld.mbr_sa = mem;
693 desc->lld.mbr_da = atchan->sconfig.dst_addr;
695 dwidth = at_xdmac_get_dwidth(atchan->cfg);
696 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
697 ? dwidth
698 : AT_XDMAC_CC_DWIDTH_BYTE;
699 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */
700 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */
701 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */
702 | (len >> fixed_dwidth); /* microblock length */
703 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
704 AT_XDMAC_CC_DWIDTH(fixed_dwidth);
705 dev_dbg(chan2dev(chan),
706 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
707 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
709 /* Chain lld. */
710 if (prev)
711 at_xdmac_queue_desc(chan, prev, desc);
713 prev = desc;
714 if (!first)
715 first = desc;
717 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
718 __func__, desc, first);
719 list_add_tail(&desc->desc_node, &first->descs_list);
720 xfer_size += len;
724 first->tx_dma_desc.flags = flags;
725 first->xfer_size = xfer_size;
726 first->direction = direction;
727 ret = &first->tx_dma_desc;
729 spin_unlock:
730 spin_unlock_irqrestore(&atchan->lock, irqflags);
731 return ret;
734 static struct dma_async_tx_descriptor *
735 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
736 size_t buf_len, size_t period_len,
737 enum dma_transfer_direction direction,
738 unsigned long flags)
740 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
741 struct at_xdmac_desc *first = NULL, *prev = NULL;
742 unsigned int periods = buf_len / period_len;
743 int i;
744 unsigned long irqflags;
746 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
747 __func__, &buf_addr, buf_len, period_len,
748 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
750 if (!is_slave_direction(direction)) {
751 dev_err(chan2dev(chan), "invalid DMA direction\n");
752 return NULL;
755 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
756 dev_err(chan2dev(chan), "channel currently used\n");
757 return NULL;
760 if (at_xdmac_compute_chan_conf(chan, direction))
761 return NULL;
763 for (i = 0; i < periods; i++) {
764 struct at_xdmac_desc *desc = NULL;
766 spin_lock_irqsave(&atchan->lock, irqflags);
767 desc = at_xdmac_get_desc(atchan);
768 if (!desc) {
769 dev_err(chan2dev(chan), "can't get descriptor\n");
770 if (first)
771 list_splice_init(&first->descs_list, &atchan->free_descs_list);
772 spin_unlock_irqrestore(&atchan->lock, irqflags);
773 return NULL;
775 spin_unlock_irqrestore(&atchan->lock, irqflags);
776 dev_dbg(chan2dev(chan),
777 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
778 __func__, desc, &desc->tx_dma_desc.phys);
780 if (direction == DMA_DEV_TO_MEM) {
781 desc->lld.mbr_sa = atchan->sconfig.src_addr;
782 desc->lld.mbr_da = buf_addr + i * period_len;
783 } else {
784 desc->lld.mbr_sa = buf_addr + i * period_len;
785 desc->lld.mbr_da = atchan->sconfig.dst_addr;
787 desc->lld.mbr_cfg = atchan->cfg;
788 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
789 | AT_XDMAC_MBR_UBC_NDEN
790 | AT_XDMAC_MBR_UBC_NSEN
791 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
793 dev_dbg(chan2dev(chan),
794 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
795 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
797 /* Chain lld. */
798 if (prev)
799 at_xdmac_queue_desc(chan, prev, desc);
801 prev = desc;
802 if (!first)
803 first = desc;
805 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
806 __func__, desc, first);
807 list_add_tail(&desc->desc_node, &first->descs_list);
810 at_xdmac_queue_desc(chan, prev, first);
811 first->tx_dma_desc.flags = flags;
812 first->xfer_size = buf_len;
813 first->direction = direction;
815 return &first->tx_dma_desc;
818 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
820 u32 width;
823 * Check address alignment to select the greater data width we
824 * can use.
826 * Some XDMAC implementations don't provide dword transfer, in
827 * this case selecting dword has the same behavior as
828 * selecting word transfers.
830 if (!(addr & 7)) {
831 width = AT_XDMAC_CC_DWIDTH_DWORD;
832 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
833 } else if (!(addr & 3)) {
834 width = AT_XDMAC_CC_DWIDTH_WORD;
835 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
836 } else if (!(addr & 1)) {
837 width = AT_XDMAC_CC_DWIDTH_HALFWORD;
838 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
839 } else {
840 width = AT_XDMAC_CC_DWIDTH_BYTE;
841 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
844 return width;
847 static struct at_xdmac_desc *
848 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
849 struct at_xdmac_chan *atchan,
850 struct at_xdmac_desc *prev,
851 dma_addr_t src, dma_addr_t dst,
852 struct dma_interleaved_template *xt,
853 struct data_chunk *chunk)
855 struct at_xdmac_desc *desc;
856 u32 dwidth;
857 unsigned long flags;
858 size_t ublen;
860 * WARNING: The channel configuration is set here since there is no
861 * dmaengine_slave_config call in this case. Moreover we don't know the
862 * direction, it involves we can't dynamically set the source and dest
863 * interface so we have to use the same one. Only interface 0 allows EBI
864 * access. Hopefully we can access DDR through both ports (at least on
865 * SAMA5D4x), so we can use the same interface for source and dest,
866 * that solves the fact we don't know the direction.
867 * ERRATA: Even if useless for memory transfers, the PERID has to not
868 * match the one of another channel. If not, it could lead to spurious
869 * flag status.
871 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
872 | AT_XDMAC_CC_DIF(0)
873 | AT_XDMAC_CC_SIF(0)
874 | AT_XDMAC_CC_MBSIZE_SIXTEEN
875 | AT_XDMAC_CC_TYPE_MEM_TRAN;
877 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
878 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
879 dev_dbg(chan2dev(chan),
880 "%s: chunk too big (%d, max size %lu)...\n",
881 __func__, chunk->size,
882 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
883 return NULL;
886 if (prev)
887 dev_dbg(chan2dev(chan),
888 "Adding items at the end of desc 0x%p\n", prev);
890 if (xt->src_inc) {
891 if (xt->src_sgl)
892 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM;
893 else
894 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM;
897 if (xt->dst_inc) {
898 if (xt->dst_sgl)
899 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM;
900 else
901 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM;
904 spin_lock_irqsave(&atchan->lock, flags);
905 desc = at_xdmac_get_desc(atchan);
906 spin_unlock_irqrestore(&atchan->lock, flags);
907 if (!desc) {
908 dev_err(chan2dev(chan), "can't get descriptor\n");
909 return NULL;
912 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
914 ublen = chunk->size >> dwidth;
916 desc->lld.mbr_sa = src;
917 desc->lld.mbr_da = dst;
918 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
919 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
921 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
922 | AT_XDMAC_MBR_UBC_NDEN
923 | AT_XDMAC_MBR_UBC_NSEN
924 | ublen;
925 desc->lld.mbr_cfg = chan_cc;
927 dev_dbg(chan2dev(chan),
928 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
929 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
930 desc->lld.mbr_ubc, desc->lld.mbr_cfg);
932 /* Chain lld. */
933 if (prev)
934 at_xdmac_queue_desc(chan, prev, desc);
936 return desc;
939 static struct dma_async_tx_descriptor *
940 at_xdmac_prep_interleaved(struct dma_chan *chan,
941 struct dma_interleaved_template *xt,
942 unsigned long flags)
944 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
945 struct at_xdmac_desc *prev = NULL, *first = NULL;
946 dma_addr_t dst_addr, src_addr;
947 size_t src_skip = 0, dst_skip = 0, len = 0;
948 struct data_chunk *chunk;
949 int i;
951 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
952 return NULL;
955 * TODO: Handle the case where we have to repeat a chain of
956 * descriptors...
958 if ((xt->numf > 1) && (xt->frame_size > 1))
959 return NULL;
961 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
962 __func__, &xt->src_start, &xt->dst_start, xt->numf,
963 xt->frame_size, flags);
965 src_addr = xt->src_start;
966 dst_addr = xt->dst_start;
968 if (xt->numf > 1) {
969 first = at_xdmac_interleaved_queue_desc(chan, atchan,
970 NULL,
971 src_addr, dst_addr,
972 xt, xt->sgl);
974 /* Length of the block is (BLEN+1) microblocks. */
975 for (i = 0; i < xt->numf - 1; i++)
976 at_xdmac_increment_block_count(chan, first);
978 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
979 __func__, first, first);
980 list_add_tail(&first->desc_node, &first->descs_list);
981 } else {
982 for (i = 0; i < xt->frame_size; i++) {
983 size_t src_icg = 0, dst_icg = 0;
984 struct at_xdmac_desc *desc;
986 chunk = xt->sgl + i;
988 dst_icg = dmaengine_get_dst_icg(xt, chunk);
989 src_icg = dmaengine_get_src_icg(xt, chunk);
991 src_skip = chunk->size + src_icg;
992 dst_skip = chunk->size + dst_icg;
994 dev_dbg(chan2dev(chan),
995 "%s: chunk size=%d, src icg=%d, dst icg=%d\n",
996 __func__, chunk->size, src_icg, dst_icg);
998 desc = at_xdmac_interleaved_queue_desc(chan, atchan,
999 prev,
1000 src_addr, dst_addr,
1001 xt, chunk);
1002 if (!desc) {
1003 list_splice_init(&first->descs_list,
1004 &atchan->free_descs_list);
1005 return NULL;
1008 if (!first)
1009 first = desc;
1011 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1012 __func__, desc, first);
1013 list_add_tail(&desc->desc_node, &first->descs_list);
1015 if (xt->src_sgl)
1016 src_addr += src_skip;
1018 if (xt->dst_sgl)
1019 dst_addr += dst_skip;
1021 len += chunk->size;
1022 prev = desc;
1026 first->tx_dma_desc.cookie = -EBUSY;
1027 first->tx_dma_desc.flags = flags;
1028 first->xfer_size = len;
1030 return &first->tx_dma_desc;
1033 static struct dma_async_tx_descriptor *
1034 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1035 size_t len, unsigned long flags)
1037 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1038 struct at_xdmac_desc *first = NULL, *prev = NULL;
1039 size_t remaining_size = len, xfer_size = 0, ublen;
1040 dma_addr_t src_addr = src, dst_addr = dest;
1041 u32 dwidth;
1043 * WARNING: We don't know the direction, it involves we can't
1044 * dynamically set the source and dest interface so we have to use the
1045 * same one. Only interface 0 allows EBI access. Hopefully we can
1046 * access DDR through both ports (at least on SAMA5D4x), so we can use
1047 * the same interface for source and dest, that solves the fact we
1048 * don't know the direction.
1049 * ERRATA: Even if useless for memory transfers, the PERID has to not
1050 * match the one of another channel. If not, it could lead to spurious
1051 * flag status.
1053 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
1054 | AT_XDMAC_CC_DAM_INCREMENTED_AM
1055 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1056 | AT_XDMAC_CC_DIF(0)
1057 | AT_XDMAC_CC_SIF(0)
1058 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1059 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1060 unsigned long irqflags;
1062 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1063 __func__, &src, &dest, len, flags);
1065 if (unlikely(!len))
1066 return NULL;
1068 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1070 /* Prepare descriptors. */
1071 while (remaining_size) {
1072 struct at_xdmac_desc *desc = NULL;
1074 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1076 spin_lock_irqsave(&atchan->lock, irqflags);
1077 desc = at_xdmac_get_desc(atchan);
1078 spin_unlock_irqrestore(&atchan->lock, irqflags);
1079 if (!desc) {
1080 dev_err(chan2dev(chan), "can't get descriptor\n");
1081 if (first)
1082 list_splice_init(&first->descs_list, &atchan->free_descs_list);
1083 return NULL;
1086 /* Update src and dest addresses. */
1087 src_addr += xfer_size;
1088 dst_addr += xfer_size;
1090 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1091 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1092 else
1093 xfer_size = remaining_size;
1095 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1097 /* Check remaining length and change data width if needed. */
1098 dwidth = at_xdmac_align_width(chan,
1099 src_addr | dst_addr | xfer_size);
1100 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1101 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1103 ublen = xfer_size >> dwidth;
1104 remaining_size -= xfer_size;
1106 desc->lld.mbr_sa = src_addr;
1107 desc->lld.mbr_da = dst_addr;
1108 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1109 | AT_XDMAC_MBR_UBC_NDEN
1110 | AT_XDMAC_MBR_UBC_NSEN
1111 | ublen;
1112 desc->lld.mbr_cfg = chan_cc;
1114 dev_dbg(chan2dev(chan),
1115 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1116 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1118 /* Chain lld. */
1119 if (prev)
1120 at_xdmac_queue_desc(chan, prev, desc);
1122 prev = desc;
1123 if (!first)
1124 first = desc;
1126 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1127 __func__, desc, first);
1128 list_add_tail(&desc->desc_node, &first->descs_list);
1131 first->tx_dma_desc.flags = flags;
1132 first->xfer_size = len;
1134 return &first->tx_dma_desc;
1137 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1138 struct at_xdmac_chan *atchan,
1139 dma_addr_t dst_addr,
1140 size_t len,
1141 int value)
1143 struct at_xdmac_desc *desc;
1144 unsigned long flags;
1145 size_t ublen;
1146 u32 dwidth;
1148 * WARNING: The channel configuration is set here since there is no
1149 * dmaengine_slave_config call in this case. Moreover we don't know the
1150 * direction, it involves we can't dynamically set the source and dest
1151 * interface so we have to use the same one. Only interface 0 allows EBI
1152 * access. Hopefully we can access DDR through both ports (at least on
1153 * SAMA5D4x), so we can use the same interface for source and dest,
1154 * that solves the fact we don't know the direction.
1155 * ERRATA: Even if useless for memory transfers, the PERID has to not
1156 * match the one of another channel. If not, it could lead to spurious
1157 * flag status.
1159 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
1160 | AT_XDMAC_CC_DAM_UBS_AM
1161 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1162 | AT_XDMAC_CC_DIF(0)
1163 | AT_XDMAC_CC_SIF(0)
1164 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1165 | AT_XDMAC_CC_MEMSET_HW_MODE
1166 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1168 dwidth = at_xdmac_align_width(chan, dst_addr);
1170 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1171 dev_err(chan2dev(chan),
1172 "%s: Transfer too large, aborting...\n",
1173 __func__);
1174 return NULL;
1177 spin_lock_irqsave(&atchan->lock, flags);
1178 desc = at_xdmac_get_desc(atchan);
1179 spin_unlock_irqrestore(&atchan->lock, flags);
1180 if (!desc) {
1181 dev_err(chan2dev(chan), "can't get descriptor\n");
1182 return NULL;
1185 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1187 ublen = len >> dwidth;
1189 desc->lld.mbr_da = dst_addr;
1190 desc->lld.mbr_ds = value;
1191 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1192 | AT_XDMAC_MBR_UBC_NDEN
1193 | AT_XDMAC_MBR_UBC_NSEN
1194 | ublen;
1195 desc->lld.mbr_cfg = chan_cc;
1197 dev_dbg(chan2dev(chan),
1198 "%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1199 __func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1200 desc->lld.mbr_cfg);
1202 return desc;
1205 static struct dma_async_tx_descriptor *
1206 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1207 size_t len, unsigned long flags)
1209 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1210 struct at_xdmac_desc *desc;
1212 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1213 __func__, &dest, len, value, flags);
1215 if (unlikely(!len))
1216 return NULL;
1218 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1219 list_add_tail(&desc->desc_node, &desc->descs_list);
1221 desc->tx_dma_desc.cookie = -EBUSY;
1222 desc->tx_dma_desc.flags = flags;
1223 desc->xfer_size = len;
1225 return &desc->tx_dma_desc;
1228 static struct dma_async_tx_descriptor *
1229 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1230 unsigned int sg_len, int value,
1231 unsigned long flags)
1233 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1234 struct at_xdmac_desc *desc, *pdesc = NULL,
1235 *ppdesc = NULL, *first = NULL;
1236 struct scatterlist *sg, *psg = NULL, *ppsg = NULL;
1237 size_t stride = 0, pstride = 0, len = 0;
1238 int i;
1240 if (!sgl)
1241 return NULL;
1243 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1244 __func__, sg_len, value, flags);
1246 /* Prepare descriptors. */
1247 for_each_sg(sgl, sg, sg_len, i) {
1248 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1249 __func__, &sg_dma_address(sg), sg_dma_len(sg),
1250 value, flags);
1251 desc = at_xdmac_memset_create_desc(chan, atchan,
1252 sg_dma_address(sg),
1253 sg_dma_len(sg),
1254 value);
1255 if (!desc && first)
1256 list_splice_init(&first->descs_list,
1257 &atchan->free_descs_list);
1259 if (!first)
1260 first = desc;
1262 /* Update our strides */
1263 pstride = stride;
1264 if (psg)
1265 stride = sg_dma_address(sg) -
1266 (sg_dma_address(psg) + sg_dma_len(psg));
1269 * The scatterlist API gives us only the address and
1270 * length of each elements.
1272 * Unfortunately, we don't have the stride, which we
1273 * will need to compute.
1275 * That make us end up in a situation like this one:
1276 * len stride len stride len
1277 * +-------+ +-------+ +-------+
1278 * | N-2 | | N-1 | | N |
1279 * +-------+ +-------+ +-------+
1281 * We need all these three elements (N-2, N-1 and N)
1282 * to actually take the decision on whether we need to
1283 * queue N-1 or reuse N-2.
1285 * We will only consider N if it is the last element.
1287 if (ppdesc && pdesc) {
1288 if ((stride == pstride) &&
1289 (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1290 dev_dbg(chan2dev(chan),
1291 "%s: desc 0x%p can be merged with desc 0x%p\n",
1292 __func__, pdesc, ppdesc);
1295 * Increment the block count of the
1296 * N-2 descriptor
1298 at_xdmac_increment_block_count(chan, ppdesc);
1299 ppdesc->lld.mbr_dus = stride;
1302 * Put back the N-1 descriptor in the
1303 * free descriptor list
1305 list_add_tail(&pdesc->desc_node,
1306 &atchan->free_descs_list);
1309 * Make our N-1 descriptor pointer
1310 * point to the N-2 since they were
1311 * actually merged.
1313 pdesc = ppdesc;
1316 * Rule out the case where we don't have
1317 * pstride computed yet (our second sg
1318 * element)
1320 * We also want to catch the case where there
1321 * would be a negative stride,
1323 } else if (pstride ||
1324 sg_dma_address(sg) < sg_dma_address(psg)) {
1326 * Queue the N-1 descriptor after the
1327 * N-2
1329 at_xdmac_queue_desc(chan, ppdesc, pdesc);
1332 * Add the N-1 descriptor to the list
1333 * of the descriptors used for this
1334 * transfer
1336 list_add_tail(&desc->desc_node,
1337 &first->descs_list);
1338 dev_dbg(chan2dev(chan),
1339 "%s: add desc 0x%p to descs_list 0x%p\n",
1340 __func__, desc, first);
1345 * If we are the last element, just see if we have the
1346 * same size than the previous element.
1348 * If so, we can merge it with the previous descriptor
1349 * since we don't care about the stride anymore.
1351 if ((i == (sg_len - 1)) &&
1352 sg_dma_len(psg) == sg_dma_len(sg)) {
1353 dev_dbg(chan2dev(chan),
1354 "%s: desc 0x%p can be merged with desc 0x%p\n",
1355 __func__, desc, pdesc);
1358 * Increment the block count of the N-1
1359 * descriptor
1361 at_xdmac_increment_block_count(chan, pdesc);
1362 pdesc->lld.mbr_dus = stride;
1365 * Put back the N descriptor in the free
1366 * descriptor list
1368 list_add_tail(&desc->desc_node,
1369 &atchan->free_descs_list);
1372 /* Update our descriptors */
1373 ppdesc = pdesc;
1374 pdesc = desc;
1376 /* Update our scatter pointers */
1377 ppsg = psg;
1378 psg = sg;
1380 len += sg_dma_len(sg);
1383 first->tx_dma_desc.cookie = -EBUSY;
1384 first->tx_dma_desc.flags = flags;
1385 first->xfer_size = len;
1387 return &first->tx_dma_desc;
1390 static enum dma_status
1391 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1392 struct dma_tx_state *txstate)
1394 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1395 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1396 struct at_xdmac_desc *desc, *_desc;
1397 struct list_head *descs_list;
1398 enum dma_status ret;
1399 int residue, retry;
1400 u32 cur_nda, check_nda, cur_ubc, mask, value;
1401 u8 dwidth = 0;
1402 unsigned long flags;
1403 bool initd;
1405 ret = dma_cookie_status(chan, cookie, txstate);
1406 if (ret == DMA_COMPLETE)
1407 return ret;
1409 if (!txstate)
1410 return ret;
1412 spin_lock_irqsave(&atchan->lock, flags);
1414 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1417 * If the transfer has not been started yet, don't need to compute the
1418 * residue, it's the transfer length.
1420 if (!desc->active_xfer) {
1421 dma_set_residue(txstate, desc->xfer_size);
1422 goto spin_unlock;
1425 residue = desc->xfer_size;
1427 * Flush FIFO: only relevant when the transfer is source peripheral
1428 * synchronized. Flush is needed before reading CUBC because data in
1429 * the FIFO are not reported by CUBC. Reporting a residue of the
1430 * transfer length while we have data in FIFO can cause issue.
1431 * Usecase: atmel USART has a timeout which means I have received
1432 * characters but there is no more character received for a while. On
1433 * timeout, it requests the residue. If the data are in the DMA FIFO,
1434 * we will return a residue of the transfer length. It means no data
1435 * received. If an application is waiting for these data, it will hang
1436 * since we won't have another USART timeout without receiving new
1437 * data.
1439 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1440 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1441 if ((desc->lld.mbr_cfg & mask) == value) {
1442 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1443 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1444 cpu_relax();
1448 * The easiest way to compute the residue should be to pause the DMA
1449 * but doing this can lead to miss some data as some devices don't
1450 * have FIFO.
1451 * We need to read several registers because:
1452 * - DMA is running therefore a descriptor change is possible while
1453 * reading these registers
1454 * - When the block transfer is done, the value of the CUBC register
1455 * is set to its initial value until the fetch of the next descriptor.
1456 * This value will corrupt the residue calculation so we have to skip
1457 * it.
1459 * INITD -------- ------------
1460 * |____________________|
1461 * _______________________ _______________
1462 * NDA @desc2 \/ @desc3
1463 * _______________________/\_______________
1464 * __________ ___________ _______________
1465 * CUBC 0 \/ MAX desc1 \/ MAX desc2
1466 * __________/\___________/\_______________
1468 * Since descriptors are aligned on 64 bits, we can assume that
1469 * the update of NDA and CUBC is atomic.
1470 * Memory barriers are used to ensure the read order of the registers.
1471 * A max number of retries is set because unlikely it could never ends.
1473 for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1474 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1475 rmb();
1476 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1477 rmb();
1478 initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1479 rmb();
1480 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1481 rmb();
1483 if ((check_nda == cur_nda) && initd)
1484 break;
1487 if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1488 ret = DMA_ERROR;
1489 goto spin_unlock;
1493 * Flush FIFO: only relevant when the transfer is source peripheral
1494 * synchronized. Another flush is needed here because CUBC is updated
1495 * when the controller sends the data write command. It can lead to
1496 * report data that are not written in the memory or the device. The
1497 * FIFO flush ensures that data are really written.
1499 if ((desc->lld.mbr_cfg & mask) == value) {
1500 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1501 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1502 cpu_relax();
1506 * Remove size of all microblocks already transferred and the current
1507 * one. Then add the remaining size to transfer of the current
1508 * microblock.
1510 descs_list = &desc->descs_list;
1511 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1512 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1513 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1514 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1515 break;
1517 residue += cur_ubc << dwidth;
1519 dma_set_residue(txstate, residue);
1521 dev_dbg(chan2dev(chan),
1522 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1523 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1525 spin_unlock:
1526 spin_unlock_irqrestore(&atchan->lock, flags);
1527 return ret;
1530 /* Call must be protected by lock. */
1531 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1532 struct at_xdmac_desc *desc)
1534 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1537 * Remove the transfer from the transfer list then move the transfer
1538 * descriptors into the free descriptors list.
1540 list_del(&desc->xfer_node);
1541 list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1544 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1546 struct at_xdmac_desc *desc;
1547 unsigned long flags;
1549 spin_lock_irqsave(&atchan->lock, flags);
1552 * If channel is enabled, do nothing, advance_work will be triggered
1553 * after the interruption.
1555 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1556 desc = list_first_entry(&atchan->xfers_list,
1557 struct at_xdmac_desc,
1558 xfer_node);
1559 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1560 if (!desc->active_xfer)
1561 at_xdmac_start_xfer(atchan, desc);
1564 spin_unlock_irqrestore(&atchan->lock, flags);
1567 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1569 struct at_xdmac_desc *desc;
1570 struct dma_async_tx_descriptor *txd;
1572 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1573 txd = &desc->tx_dma_desc;
1575 if (txd->flags & DMA_PREP_INTERRUPT)
1576 dmaengine_desc_get_callback_invoke(txd, NULL);
1579 static void at_xdmac_tasklet(unsigned long data)
1581 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data;
1582 struct at_xdmac_desc *desc;
1583 u32 error_mask;
1585 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n",
1586 __func__, atchan->status);
1588 error_mask = AT_XDMAC_CIS_RBEIS
1589 | AT_XDMAC_CIS_WBEIS
1590 | AT_XDMAC_CIS_ROIS;
1592 if (at_xdmac_chan_is_cyclic(atchan)) {
1593 at_xdmac_handle_cyclic(atchan);
1594 } else if ((atchan->status & AT_XDMAC_CIS_LIS)
1595 || (atchan->status & error_mask)) {
1596 struct dma_async_tx_descriptor *txd;
1598 if (atchan->status & AT_XDMAC_CIS_RBEIS)
1599 dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1600 if (atchan->status & AT_XDMAC_CIS_WBEIS)
1601 dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1602 if (atchan->status & AT_XDMAC_CIS_ROIS)
1603 dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1605 spin_lock_bh(&atchan->lock);
1606 desc = list_first_entry(&atchan->xfers_list,
1607 struct at_xdmac_desc,
1608 xfer_node);
1609 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1610 BUG_ON(!desc->active_xfer);
1612 txd = &desc->tx_dma_desc;
1614 at_xdmac_remove_xfer(atchan, desc);
1615 spin_unlock_bh(&atchan->lock);
1617 if (!at_xdmac_chan_is_cyclic(atchan)) {
1618 dma_cookie_complete(txd);
1619 if (txd->flags & DMA_PREP_INTERRUPT)
1620 dmaengine_desc_get_callback_invoke(txd, NULL);
1623 dma_run_dependencies(txd);
1625 at_xdmac_advance_work(atchan);
1629 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1631 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id;
1632 struct at_xdmac_chan *atchan;
1633 u32 imr, status, pending;
1634 u32 chan_imr, chan_status;
1635 int i, ret = IRQ_NONE;
1637 do {
1638 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1639 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1640 pending = status & imr;
1642 dev_vdbg(atxdmac->dma.dev,
1643 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1644 __func__, status, imr, pending);
1646 if (!pending)
1647 break;
1649 /* We have to find which channel has generated the interrupt. */
1650 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1651 if (!((1 << i) & pending))
1652 continue;
1654 atchan = &atxdmac->chan[i];
1655 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1656 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1657 atchan->status = chan_status & chan_imr;
1658 dev_vdbg(atxdmac->dma.dev,
1659 "%s: chan%d: imr=0x%x, status=0x%x\n",
1660 __func__, i, chan_imr, chan_status);
1661 dev_vdbg(chan2dev(&atchan->chan),
1662 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1663 __func__,
1664 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1665 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1666 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1667 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1668 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1669 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1671 if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1672 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1674 tasklet_schedule(&atchan->tasklet);
1675 ret = IRQ_HANDLED;
1678 } while (pending);
1680 return ret;
1683 static void at_xdmac_issue_pending(struct dma_chan *chan)
1685 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1687 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1689 if (!at_xdmac_chan_is_cyclic(atchan))
1690 at_xdmac_advance_work(atchan);
1692 return;
1695 static int at_xdmac_device_config(struct dma_chan *chan,
1696 struct dma_slave_config *config)
1698 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1699 int ret;
1700 unsigned long flags;
1702 dev_dbg(chan2dev(chan), "%s\n", __func__);
1704 spin_lock_irqsave(&atchan->lock, flags);
1705 ret = at_xdmac_set_slave_config(chan, config);
1706 spin_unlock_irqrestore(&atchan->lock, flags);
1708 return ret;
1711 static int at_xdmac_device_pause(struct dma_chan *chan)
1713 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1714 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1715 unsigned long flags;
1717 dev_dbg(chan2dev(chan), "%s\n", __func__);
1719 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1720 return 0;
1722 spin_lock_irqsave(&atchan->lock, flags);
1723 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1724 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1725 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1726 cpu_relax();
1727 spin_unlock_irqrestore(&atchan->lock, flags);
1729 return 0;
1732 static int at_xdmac_device_resume(struct dma_chan *chan)
1734 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1735 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1736 unsigned long flags;
1738 dev_dbg(chan2dev(chan), "%s\n", __func__);
1740 spin_lock_irqsave(&atchan->lock, flags);
1741 if (!at_xdmac_chan_is_paused(atchan)) {
1742 spin_unlock_irqrestore(&atchan->lock, flags);
1743 return 0;
1746 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1747 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1748 spin_unlock_irqrestore(&atchan->lock, flags);
1750 return 0;
1753 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1755 struct at_xdmac_desc *desc, *_desc;
1756 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1757 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1758 unsigned long flags;
1760 dev_dbg(chan2dev(chan), "%s\n", __func__);
1762 spin_lock_irqsave(&atchan->lock, flags);
1763 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1764 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1765 cpu_relax();
1767 /* Cancel all pending transfers. */
1768 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1769 at_xdmac_remove_xfer(atchan, desc);
1771 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1772 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1773 spin_unlock_irqrestore(&atchan->lock, flags);
1775 return 0;
1778 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1780 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1781 struct at_xdmac_desc *desc;
1782 int i;
1783 unsigned long flags;
1785 spin_lock_irqsave(&atchan->lock, flags);
1787 if (at_xdmac_chan_is_enabled(atchan)) {
1788 dev_err(chan2dev(chan),
1789 "can't allocate channel resources (channel enabled)\n");
1790 i = -EIO;
1791 goto spin_unlock;
1794 if (!list_empty(&atchan->free_descs_list)) {
1795 dev_err(chan2dev(chan),
1796 "can't allocate channel resources (channel not free from a previous use)\n");
1797 i = -EIO;
1798 goto spin_unlock;
1801 for (i = 0; i < init_nr_desc_per_channel; i++) {
1802 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1803 if (!desc) {
1804 dev_warn(chan2dev(chan),
1805 "only %d descriptors have been allocated\n", i);
1806 break;
1808 list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1811 dma_cookie_init(chan);
1813 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1815 spin_unlock:
1816 spin_unlock_irqrestore(&atchan->lock, flags);
1817 return i;
1820 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1822 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1823 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
1824 struct at_xdmac_desc *desc, *_desc;
1826 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1827 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1828 list_del(&desc->desc_node);
1829 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1832 return;
1835 #ifdef CONFIG_PM
1836 static int atmel_xdmac_prepare(struct device *dev)
1838 struct platform_device *pdev = to_platform_device(dev);
1839 struct at_xdmac *atxdmac = platform_get_drvdata(pdev);
1840 struct dma_chan *chan, *_chan;
1842 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1843 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1845 /* Wait for transfer completion, except in cyclic case. */
1846 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1847 return -EAGAIN;
1849 return 0;
1851 #else
1852 # define atmel_xdmac_prepare NULL
1853 #endif
1855 #ifdef CONFIG_PM_SLEEP
1856 static int atmel_xdmac_suspend(struct device *dev)
1858 struct platform_device *pdev = to_platform_device(dev);
1859 struct at_xdmac *atxdmac = platform_get_drvdata(pdev);
1860 struct dma_chan *chan, *_chan;
1862 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1863 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1865 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1866 if (at_xdmac_chan_is_cyclic(atchan)) {
1867 if (!at_xdmac_chan_is_paused(atchan))
1868 at_xdmac_device_pause(chan);
1869 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1870 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1871 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1874 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1876 at_xdmac_off(atxdmac);
1877 clk_disable_unprepare(atxdmac->clk);
1878 return 0;
1881 static int atmel_xdmac_resume(struct device *dev)
1883 struct platform_device *pdev = to_platform_device(dev);
1884 struct at_xdmac *atxdmac = platform_get_drvdata(pdev);
1885 struct at_xdmac_chan *atchan;
1886 struct dma_chan *chan, *_chan;
1887 int i;
1889 clk_prepare_enable(atxdmac->clk);
1891 /* Clear pending interrupts. */
1892 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1893 atchan = &atxdmac->chan[i];
1894 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1895 cpu_relax();
1898 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1899 at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs);
1900 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1901 atchan = to_at_xdmac_chan(chan);
1902 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1903 if (at_xdmac_chan_is_cyclic(atchan)) {
1904 if (at_xdmac_chan_is_paused(atchan))
1905 at_xdmac_device_resume(chan);
1906 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1907 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1908 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1909 wmb();
1910 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1913 return 0;
1915 #endif /* CONFIG_PM_SLEEP */
1917 static int at_xdmac_probe(struct platform_device *pdev)
1919 struct resource *res;
1920 struct at_xdmac *atxdmac;
1921 int irq, size, nr_channels, i, ret;
1922 void __iomem *base;
1923 u32 reg;
1925 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1926 if (!res)
1927 return -EINVAL;
1929 irq = platform_get_irq(pdev, 0);
1930 if (irq < 0)
1931 return irq;
1933 base = devm_ioremap_resource(&pdev->dev, res);
1934 if (IS_ERR(base))
1935 return PTR_ERR(base);
1938 * Read number of xdmac channels, read helper function can't be used
1939 * since atxdmac is not yet allocated and we need to know the number
1940 * of channels to do the allocation.
1942 reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1943 nr_channels = AT_XDMAC_NB_CH(reg);
1944 if (nr_channels > AT_XDMAC_MAX_CHAN) {
1945 dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1946 nr_channels);
1947 return -EINVAL;
1950 size = sizeof(*atxdmac);
1951 size += nr_channels * sizeof(struct at_xdmac_chan);
1952 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1953 if (!atxdmac) {
1954 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1955 return -ENOMEM;
1958 atxdmac->regs = base;
1959 atxdmac->irq = irq;
1961 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1962 if (IS_ERR(atxdmac->clk)) {
1963 dev_err(&pdev->dev, "can't get dma_clk\n");
1964 return PTR_ERR(atxdmac->clk);
1967 /* Do not use dev res to prevent races with tasklet */
1968 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
1969 if (ret) {
1970 dev_err(&pdev->dev, "can't request irq\n");
1971 return ret;
1974 ret = clk_prepare_enable(atxdmac->clk);
1975 if (ret) {
1976 dev_err(&pdev->dev, "can't prepare or enable clock\n");
1977 goto err_free_irq;
1980 atxdmac->at_xdmac_desc_pool =
1981 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
1982 sizeof(struct at_xdmac_desc), 4, 0);
1983 if (!atxdmac->at_xdmac_desc_pool) {
1984 dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
1985 ret = -ENOMEM;
1986 goto err_clk_disable;
1989 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
1990 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
1991 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
1992 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
1993 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
1994 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
1996 * Without DMA_PRIVATE the driver is not able to allocate more than
1997 * one channel, second allocation fails in private_candidate.
1999 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2000 atxdmac->dma.dev = &pdev->dev;
2001 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources;
2002 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources;
2003 atxdmac->dma.device_tx_status = at_xdmac_tx_status;
2004 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending;
2005 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic;
2006 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved;
2007 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy;
2008 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset;
2009 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg;
2010 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg;
2011 atxdmac->dma.device_config = at_xdmac_device_config;
2012 atxdmac->dma.device_pause = at_xdmac_device_pause;
2013 atxdmac->dma.device_resume = at_xdmac_device_resume;
2014 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all;
2015 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2016 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2017 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2018 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2020 /* Disable all chans and interrupts. */
2021 at_xdmac_off(atxdmac);
2023 /* Init channels. */
2024 INIT_LIST_HEAD(&atxdmac->dma.channels);
2025 for (i = 0; i < nr_channels; i++) {
2026 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2028 atchan->chan.device = &atxdmac->dma;
2029 list_add_tail(&atchan->chan.device_node,
2030 &atxdmac->dma.channels);
2032 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2033 atchan->mask = 1 << i;
2035 spin_lock_init(&atchan->lock);
2036 INIT_LIST_HEAD(&atchan->xfers_list);
2037 INIT_LIST_HEAD(&atchan->free_descs_list);
2038 tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
2039 (unsigned long)atchan);
2041 /* Clear pending interrupts. */
2042 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2043 cpu_relax();
2045 platform_set_drvdata(pdev, atxdmac);
2047 ret = dma_async_device_register(&atxdmac->dma);
2048 if (ret) {
2049 dev_err(&pdev->dev, "fail to register DMA engine device\n");
2050 goto err_clk_disable;
2053 ret = of_dma_controller_register(pdev->dev.of_node,
2054 at_xdmac_xlate, atxdmac);
2055 if (ret) {
2056 dev_err(&pdev->dev, "could not register of dma controller\n");
2057 goto err_dma_unregister;
2060 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2061 nr_channels, atxdmac->regs);
2063 return 0;
2065 err_dma_unregister:
2066 dma_async_device_unregister(&atxdmac->dma);
2067 err_clk_disable:
2068 clk_disable_unprepare(atxdmac->clk);
2069 err_free_irq:
2070 free_irq(atxdmac->irq, atxdmac);
2071 return ret;
2074 static int at_xdmac_remove(struct platform_device *pdev)
2076 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2077 int i;
2079 at_xdmac_off(atxdmac);
2080 of_dma_controller_free(pdev->dev.of_node);
2081 dma_async_device_unregister(&atxdmac->dma);
2082 clk_disable_unprepare(atxdmac->clk);
2084 free_irq(atxdmac->irq, atxdmac);
2086 for (i = 0; i < atxdmac->dma.chancnt; i++) {
2087 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2089 tasklet_kill(&atchan->tasklet);
2090 at_xdmac_free_chan_resources(&atchan->chan);
2093 return 0;
2096 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2097 .prepare = atmel_xdmac_prepare,
2098 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2101 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2103 .compatible = "atmel,sama5d4-dma",
2104 }, {
2105 /* sentinel */
2108 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2110 static struct platform_driver at_xdmac_driver = {
2111 .probe = at_xdmac_probe,
2112 .remove = at_xdmac_remove,
2113 .driver = {
2114 .name = "at_xdmac",
2115 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids),
2116 .pm = &atmel_xdmac_dev_pm_ops,
2120 static int __init at_xdmac_init(void)
2122 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2124 subsys_initcall(at_xdmac_init);
2126 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2127 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2128 MODULE_LICENSE("GPL");