2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 #include <linux/usb/otg.h>
54 /*-------------------------------------------------------------------------*/
57 * USB Host Controller Driver framework
59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60 * HCD-specific behaviors/bugs.
62 * This does error checks, tracks devices and urbs, and delegates to a
63 * "hc_driver" only for code (and data) that really needs to know about
64 * hardware differences. That includes root hub registers, i/o queues,
65 * and so on ... but as little else as possible.
67 * Shared code includes most of the "root hub" code (these are emulated,
68 * though each HC's hardware works differently) and PCI glue, plus request
69 * tracking overhead. The HCD code should only block on spinlocks or on
70 * hardware handshaking; blocking on software events (such as other kernel
71 * threads releasing resources, or completing actions) is all generic.
73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75 * only by the hub driver ... and that neither should be seen or used by
76 * usb client device drivers.
78 * Contributors of ideas or unattributed patches include: David Brownell,
79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
82 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
83 * associated cleanup. "usb_hcd" still != "usb_bus".
84 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
87 /*-------------------------------------------------------------------------*/
89 /* Keep track of which host controller drivers are loaded */
90 unsigned long usb_hcds_loaded
;
91 EXPORT_SYMBOL_GPL(usb_hcds_loaded
);
93 /* host controllers we manage */
94 DEFINE_IDR (usb_bus_idr
);
95 EXPORT_SYMBOL_GPL (usb_bus_idr
);
97 /* used when allocating bus numbers */
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_idr_lock
); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock
);
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock
);
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
116 static inline int is_root_hub(struct usb_device
*udev
)
118 return (udev
->parent
== NULL
);
121 /*-------------------------------------------------------------------------*/
124 * Sharable chunks of root hub code.
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor
[18] = {
133 0x12, /* __u8 bLength; */
134 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
135 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor
[18] = {
154 0x12, /* __u8 bLength; */
155 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
156 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
161 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
165 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor
[18] = {
175 0x12, /* __u8 bLength; */
176 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
177 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor
[18] = {
196 0x12, /* __u8 bLength; */
197 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
198 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
200 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
201 0x00, /* __u8 bDeviceSubClass; */
202 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
203 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
205 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
206 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
207 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
209 0x03, /* __u8 iManufacturer; */
210 0x02, /* __u8 iProduct; */
211 0x01, /* __u8 iSerialNumber; */
212 0x01 /* __u8 bNumConfigurations; */
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor
[18] = {
219 0x12, /* __u8 bLength; */
220 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
221 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
223 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
224 0x00, /* __u8 bDeviceSubClass; */
225 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
226 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
228 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
229 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
230 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
232 0x03, /* __u8 iManufacturer; */
233 0x02, /* __u8 iProduct; */
234 0x01, /* __u8 iSerialNumber; */
235 0x01 /* __u8 bNumConfigurations; */
239 /*-------------------------------------------------------------------------*/
241 /* Configuration descriptors for our root hubs */
243 static const u8 fs_rh_config_descriptor
[] = {
245 /* one configuration */
246 0x09, /* __u8 bLength; */
247 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
248 0x19, 0x00, /* __le16 wTotalLength; */
249 0x01, /* __u8 bNumInterfaces; (1) */
250 0x01, /* __u8 bConfigurationValue; */
251 0x00, /* __u8 iConfiguration; */
252 0xc0, /* __u8 bmAttributes;
257 0x00, /* __u8 MaxPower; */
260 * USB 2.0, single TT organization (mandatory):
261 * one interface, protocol 0
263 * USB 2.0, multiple TT organization (optional):
264 * two interfaces, protocols 1 (like single TT)
265 * and 2 (multiple TT mode) ... config is
271 0x09, /* __u8 if_bLength; */
272 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
273 0x00, /* __u8 if_bInterfaceNumber; */
274 0x00, /* __u8 if_bAlternateSetting; */
275 0x01, /* __u8 if_bNumEndpoints; */
276 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
277 0x00, /* __u8 if_bInterfaceSubClass; */
278 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
279 0x00, /* __u8 if_iInterface; */
281 /* one endpoint (status change endpoint) */
282 0x07, /* __u8 ep_bLength; */
283 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
284 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
285 0x03, /* __u8 ep_bmAttributes; Interrupt */
286 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
290 static const u8 hs_rh_config_descriptor
[] = {
292 /* one configuration */
293 0x09, /* __u8 bLength; */
294 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
295 0x19, 0x00, /* __le16 wTotalLength; */
296 0x01, /* __u8 bNumInterfaces; (1) */
297 0x01, /* __u8 bConfigurationValue; */
298 0x00, /* __u8 iConfiguration; */
299 0xc0, /* __u8 bmAttributes;
304 0x00, /* __u8 MaxPower; */
307 * USB 2.0, single TT organization (mandatory):
308 * one interface, protocol 0
310 * USB 2.0, multiple TT organization (optional):
311 * two interfaces, protocols 1 (like single TT)
312 * and 2 (multiple TT mode) ... config is
318 0x09, /* __u8 if_bLength; */
319 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
320 0x00, /* __u8 if_bInterfaceNumber; */
321 0x00, /* __u8 if_bAlternateSetting; */
322 0x01, /* __u8 if_bNumEndpoints; */
323 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
324 0x00, /* __u8 if_bInterfaceSubClass; */
325 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
326 0x00, /* __u8 if_iInterface; */
328 /* one endpoint (status change endpoint) */
329 0x07, /* __u8 ep_bLength; */
330 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
331 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
332 0x03, /* __u8 ep_bmAttributes; Interrupt */
333 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334 * see hub.c:hub_configure() for details. */
335 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
336 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
339 static const u8 ss_rh_config_descriptor
[] = {
340 /* one configuration */
341 0x09, /* __u8 bLength; */
342 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
343 0x1f, 0x00, /* __le16 wTotalLength; */
344 0x01, /* __u8 bNumInterfaces; (1) */
345 0x01, /* __u8 bConfigurationValue; */
346 0x00, /* __u8 iConfiguration; */
347 0xc0, /* __u8 bmAttributes;
352 0x00, /* __u8 MaxPower; */
355 0x09, /* __u8 if_bLength; */
356 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
357 0x00, /* __u8 if_bInterfaceNumber; */
358 0x00, /* __u8 if_bAlternateSetting; */
359 0x01, /* __u8 if_bNumEndpoints; */
360 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
361 0x00, /* __u8 if_bInterfaceSubClass; */
362 0x00, /* __u8 if_bInterfaceProtocol; */
363 0x00, /* __u8 if_iInterface; */
365 /* one endpoint (status change endpoint) */
366 0x07, /* __u8 ep_bLength; */
367 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
368 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
369 0x03, /* __u8 ep_bmAttributes; Interrupt */
370 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371 * see hub.c:hub_configure() for details. */
372 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
373 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
375 /* one SuperSpeed endpoint companion descriptor */
376 0x06, /* __u8 ss_bLength */
377 USB_DT_SS_ENDPOINT_COMP
, /* __u8 ss_bDescriptorType; SuperSpeed EP */
379 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
381 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
384 /* authorized_default behaviour:
385 * -1 is authorized for all devices except wireless (old behaviour)
386 * 0 is unauthorized for all devices
387 * 1 is authorized for all devices
389 static int authorized_default
= -1;
390 module_param(authorized_default
, int, S_IRUGO
|S_IWUSR
);
391 MODULE_PARM_DESC(authorized_default
,
392 "Default USB device authorization: 0 is not authorized, 1 is "
393 "authorized, -1 is authorized except for wireless USB (default, "
395 /*-------------------------------------------------------------------------*/
398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399 * @s: Null-terminated ASCII (actually ISO-8859-1) string
400 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401 * @len: Length (in bytes; may be odd) of descriptor buffer.
403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
407 * USB String descriptors can contain at most 126 characters; input
408 * strings longer than that are truncated.
411 ascii2desc(char const *s
, u8
*buf
, unsigned len
)
413 unsigned n
, t
= 2 + 2*strlen(s
);
416 t
= 254; /* Longest possible UTF string descriptor */
420 t
+= USB_DT_STRING
<< 8; /* Now t is first 16 bits to store */
428 t
= (unsigned char)*s
++;
434 * rh_string() - provides string descriptors for root hub
435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436 * @hcd: the host controller for this root hub
437 * @data: buffer for output packet
438 * @len: length of the provided buffer
440 * Produces either a manufacturer, product or serial number string for the
441 * virtual root hub device.
443 * Return: The number of bytes filled in: the length of the descriptor or
444 * of the provided buffer, whichever is less.
447 rh_string(int id
, struct usb_hcd
const *hcd
, u8
*data
, unsigned len
)
451 static char const langids
[4] = {4, USB_DT_STRING
, 0x09, 0x04};
456 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
460 memcpy(data
, langids
, len
);
464 s
= hcd
->self
.bus_name
;
468 s
= hcd
->product_desc
;
472 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
473 init_utsname()->release
, hcd
->driver
->description
);
477 /* Can't happen; caller guarantees it */
481 return ascii2desc(s
, data
, len
);
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
488 struct usb_ctrlrequest
*cmd
;
489 u16 typeReq
, wValue
, wIndex
, wLength
;
490 u8
*ubuf
= urb
->transfer_buffer
;
494 u8 patch_protocol
= 0;
501 spin_lock_irq(&hcd_root_hub_lock
);
502 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
503 spin_unlock_irq(&hcd_root_hub_lock
);
506 urb
->hcpriv
= hcd
; /* Indicate it's queued */
508 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
509 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
510 wValue
= le16_to_cpu (cmd
->wValue
);
511 wIndex
= le16_to_cpu (cmd
->wIndex
);
512 wLength
= le16_to_cpu (cmd
->wLength
);
514 if (wLength
> urb
->transfer_buffer_length
)
518 * tbuf should be at least as big as the
519 * USB hub descriptor.
521 tbuf_size
= max_t(u16
, sizeof(struct usb_hub_descriptor
), wLength
);
522 tbuf
= kzalloc(tbuf_size
, GFP_KERNEL
);
531 urb
->actual_length
= 0;
534 /* DEVICE REQUESTS */
536 /* The root hub's remote wakeup enable bit is implemented using
537 * driver model wakeup flags. If this system supports wakeup
538 * through USB, userspace may change the default "allow wakeup"
539 * policy through sysfs or these calls.
541 * Most root hubs support wakeup from downstream devices, for
542 * runtime power management (disabling USB clocks and reducing
543 * VBUS power usage). However, not all of them do so; silicon,
544 * board, and BIOS bugs here are not uncommon, so these can't
545 * be treated quite like external hubs.
547 * Likewise, not all root hubs will pass wakeup events upstream,
548 * to wake up the whole system. So don't assume root hub and
549 * controller capabilities are identical.
552 case DeviceRequest
| USB_REQ_GET_STATUS
:
553 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
554 << USB_DEVICE_REMOTE_WAKEUP
)
555 | (1 << USB_DEVICE_SELF_POWERED
);
559 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
560 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
561 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
565 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
566 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
567 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
568 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
572 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
576 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
578 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
579 switch (wValue
& 0xff00) {
580 case USB_DT_DEVICE
<< 8:
581 switch (hcd
->speed
) {
583 bufp
= usb31_rh_dev_descriptor
;
586 bufp
= usb3_rh_dev_descriptor
;
589 bufp
= usb25_rh_dev_descriptor
;
592 bufp
= usb2_rh_dev_descriptor
;
595 bufp
= usb11_rh_dev_descriptor
;
604 case USB_DT_CONFIG
<< 8:
605 switch (hcd
->speed
) {
608 bufp
= ss_rh_config_descriptor
;
609 len
= sizeof ss_rh_config_descriptor
;
613 bufp
= hs_rh_config_descriptor
;
614 len
= sizeof hs_rh_config_descriptor
;
617 bufp
= fs_rh_config_descriptor
;
618 len
= sizeof fs_rh_config_descriptor
;
623 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
626 case USB_DT_STRING
<< 8:
627 if ((wValue
& 0xff) < 4)
628 urb
->actual_length
= rh_string(wValue
& 0xff,
630 else /* unsupported IDs --> "protocol stall" */
633 case USB_DT_BOS
<< 8:
639 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
643 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
645 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
646 /* wValue == urb->dev->devaddr */
647 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
651 /* INTERFACE REQUESTS (no defined feature/status flags) */
653 /* ENDPOINT REQUESTS */
655 case EndpointRequest
| USB_REQ_GET_STATUS
:
656 /* ENDPOINT_HALT flag */
661 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
662 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
663 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
666 /* CLASS REQUESTS (and errors) */
670 /* non-generic request */
676 if (wValue
== HUB_PORT_STATUS
)
679 /* other port status types return 8 bytes */
682 case GetHubDescriptor
:
683 len
= sizeof (struct usb_hub_descriptor
);
685 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
686 /* len is returned by hub_control */
689 status
= hcd
->driver
->hub_control (hcd
,
690 typeReq
, wValue
, wIndex
,
693 if (typeReq
== GetHubDescriptor
)
694 usb_hub_adjust_deviceremovable(hcd
->self
.root_hub
,
695 (struct usb_hub_descriptor
*)tbuf
);
698 /* "protocol stall" on error */
704 if (status
!= -EPIPE
) {
705 dev_dbg (hcd
->self
.controller
,
706 "CTRL: TypeReq=0x%x val=0x%x "
707 "idx=0x%x len=%d ==> %d\n",
708 typeReq
, wValue
, wIndex
,
711 } else if (status
> 0) {
712 /* hub_control may return the length of data copied. */
717 if (urb
->transfer_buffer_length
< len
)
718 len
= urb
->transfer_buffer_length
;
719 urb
->actual_length
= len
;
720 /* always USB_DIR_IN, toward host */
721 memcpy (ubuf
, bufp
, len
);
723 /* report whether RH hardware supports remote wakeup */
725 len
> offsetof (struct usb_config_descriptor
,
727 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
728 |= USB_CONFIG_ATT_WAKEUP
;
730 /* report whether RH hardware has an integrated TT */
731 if (patch_protocol
&&
732 len
> offsetof(struct usb_device_descriptor
,
734 ((struct usb_device_descriptor
*) ubuf
)->
735 bDeviceProtocol
= USB_HUB_PR_HS_SINGLE_TT
;
741 /* any errors get returned through the urb completion */
742 spin_lock_irq(&hcd_root_hub_lock
);
743 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
744 usb_hcd_giveback_urb(hcd
, urb
, status
);
745 spin_unlock_irq(&hcd_root_hub_lock
);
749 /*-------------------------------------------------------------------------*/
752 * Root Hub interrupt transfers are polled using a timer if the
753 * driver requests it; otherwise the driver is responsible for
754 * calling usb_hcd_poll_rh_status() when an event occurs.
756 * Completions are called in_interrupt(), but they may or may not
759 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
764 char buffer
[6]; /* Any root hubs with > 31 ports? */
766 if (unlikely(!hcd
->rh_pollable
))
768 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
771 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
774 /* try to complete the status urb */
775 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
776 urb
= hcd
->status_urb
;
778 clear_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
779 hcd
->status_urb
= NULL
;
780 urb
->actual_length
= length
;
781 memcpy(urb
->transfer_buffer
, buffer
, length
);
783 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
784 usb_hcd_giveback_urb(hcd
, urb
, 0);
787 set_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
789 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd
->uses_new_polling
? HCD_POLL_RH(hcd
) :
797 (length
== 0 && hcd
->status_urb
!= NULL
))
798 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
803 static void rh_timer_func (unsigned long _hcd
)
805 usb_hcd_poll_rh_status((struct usb_hcd
*) _hcd
);
808 /*-------------------------------------------------------------------------*/
810 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
814 unsigned len
= 1 + (urb
->dev
->maxchild
/ 8);
816 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
817 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
818 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
823 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
827 hcd
->status_urb
= urb
;
828 urb
->hcpriv
= hcd
; /* indicate it's queued */
829 if (!hcd
->uses_new_polling
)
830 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
832 /* If a status change has already occurred, report it ASAP */
833 else if (HCD_POLL_PENDING(hcd
))
834 mod_timer(&hcd
->rh_timer
, jiffies
);
837 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
841 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
843 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
844 return rh_queue_status (hcd
, urb
);
845 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
846 return rh_call_control (hcd
, urb
);
850 /*-------------------------------------------------------------------------*/
852 /* Unlinks of root-hub control URBs are legal, but they don't do anything
853 * since these URBs always execute synchronously.
855 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
860 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
861 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
865 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
868 } else { /* Status URB */
869 if (!hcd
->uses_new_polling
)
870 del_timer (&hcd
->rh_timer
);
871 if (urb
== hcd
->status_urb
) {
872 hcd
->status_urb
= NULL
;
873 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
874 usb_hcd_giveback_urb(hcd
, urb
, status
);
878 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
885 * Show & store the current value of authorized_default
887 static ssize_t
authorized_default_show(struct device
*dev
,
888 struct device_attribute
*attr
, char *buf
)
890 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
891 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
894 hcd
= bus_to_hcd(usb_bus
);
895 return snprintf(buf
, PAGE_SIZE
, "%u\n", !!HCD_DEV_AUTHORIZED(hcd
));
898 static ssize_t
authorized_default_store(struct device
*dev
,
899 struct device_attribute
*attr
,
900 const char *buf
, size_t size
)
904 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
905 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
908 hcd
= bus_to_hcd(usb_bus
);
909 result
= sscanf(buf
, "%u\n", &val
);
912 set_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
914 clear_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
922 static DEVICE_ATTR_RW(authorized_default
);
925 * interface_authorized_default_show - show default authorization status
928 * note: interface_authorized_default is the default value
929 * for initializing the authorized attribute of interfaces
931 static ssize_t
interface_authorized_default_show(struct device
*dev
,
932 struct device_attribute
*attr
, char *buf
)
934 struct usb_device
*usb_dev
= to_usb_device(dev
);
935 struct usb_hcd
*hcd
= bus_to_hcd(usb_dev
->bus
);
937 return sprintf(buf
, "%u\n", !!HCD_INTF_AUTHORIZED(hcd
));
941 * interface_authorized_default_store - store default authorization status
944 * note: interface_authorized_default is the default value
945 * for initializing the authorized attribute of interfaces
947 static ssize_t
interface_authorized_default_store(struct device
*dev
,
948 struct device_attribute
*attr
, const char *buf
, size_t count
)
950 struct usb_device
*usb_dev
= to_usb_device(dev
);
951 struct usb_hcd
*hcd
= bus_to_hcd(usb_dev
->bus
);
955 if (strtobool(buf
, &val
) != 0)
959 set_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
961 clear_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
965 static DEVICE_ATTR_RW(interface_authorized_default
);
967 /* Group all the USB bus attributes */
968 static struct attribute
*usb_bus_attrs
[] = {
969 &dev_attr_authorized_default
.attr
,
970 &dev_attr_interface_authorized_default
.attr
,
974 static struct attribute_group usb_bus_attr_group
= {
975 .name
= NULL
, /* we want them in the same directory */
976 .attrs
= usb_bus_attrs
,
981 /*-------------------------------------------------------------------------*/
984 * usb_bus_init - shared initialization code
985 * @bus: the bus structure being initialized
987 * This code is used to initialize a usb_bus structure, memory for which is
988 * separately managed.
990 static void usb_bus_init (struct usb_bus
*bus
)
992 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
994 bus
->devnum_next
= 1;
996 bus
->root_hub
= NULL
;
998 bus
->bandwidth_allocated
= 0;
999 bus
->bandwidth_int_reqs
= 0;
1000 bus
->bandwidth_isoc_reqs
= 0;
1001 mutex_init(&bus
->devnum_next_mutex
);
1004 /*-------------------------------------------------------------------------*/
1007 * usb_register_bus - registers the USB host controller with the usb core
1008 * @bus: pointer to the bus to register
1009 * Context: !in_interrupt()
1011 * Assigns a bus number, and links the controller into usbcore data
1012 * structures so that it can be seen by scanning the bus list.
1014 * Return: 0 if successful. A negative error code otherwise.
1016 static int usb_register_bus(struct usb_bus
*bus
)
1018 int result
= -E2BIG
;
1021 mutex_lock(&usb_bus_idr_lock
);
1022 busnum
= idr_alloc(&usb_bus_idr
, bus
, 1, USB_MAXBUS
, GFP_KERNEL
);
1024 pr_err("%s: failed to get bus number\n", usbcore_name
);
1025 goto error_find_busnum
;
1027 bus
->busnum
= busnum
;
1028 mutex_unlock(&usb_bus_idr_lock
);
1030 usb_notify_add_bus(bus
);
1032 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
1033 "number %d\n", bus
->busnum
);
1037 mutex_unlock(&usb_bus_idr_lock
);
1042 * usb_deregister_bus - deregisters the USB host controller
1043 * @bus: pointer to the bus to deregister
1044 * Context: !in_interrupt()
1046 * Recycles the bus number, and unlinks the controller from usbcore data
1047 * structures so that it won't be seen by scanning the bus list.
1049 static void usb_deregister_bus (struct usb_bus
*bus
)
1051 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
1054 * NOTE: make sure that all the devices are removed by the
1055 * controller code, as well as having it call this when cleaning
1058 mutex_lock(&usb_bus_idr_lock
);
1059 idr_remove(&usb_bus_idr
, bus
->busnum
);
1060 mutex_unlock(&usb_bus_idr_lock
);
1062 usb_notify_remove_bus(bus
);
1066 * register_root_hub - called by usb_add_hcd() to register a root hub
1067 * @hcd: host controller for this root hub
1069 * This function registers the root hub with the USB subsystem. It sets up
1070 * the device properly in the device tree and then calls usb_new_device()
1071 * to register the usb device. It also assigns the root hub's USB address
1074 * Return: 0 if successful. A negative error code otherwise.
1076 static int register_root_hub(struct usb_hcd
*hcd
)
1078 struct device
*parent_dev
= hcd
->self
.controller
;
1079 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
1080 const int devnum
= 1;
1083 usb_dev
->devnum
= devnum
;
1084 usb_dev
->bus
->devnum_next
= devnum
+ 1;
1085 memset (&usb_dev
->bus
->devmap
.devicemap
, 0,
1086 sizeof usb_dev
->bus
->devmap
.devicemap
);
1087 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
1088 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
1090 mutex_lock(&usb_bus_idr_lock
);
1092 usb_dev
->ep0
.desc
.wMaxPacketSize
= cpu_to_le16(64);
1093 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
1094 if (retval
!= sizeof usb_dev
->descriptor
) {
1095 mutex_unlock(&usb_bus_idr_lock
);
1096 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
1097 dev_name(&usb_dev
->dev
), retval
);
1098 return (retval
< 0) ? retval
: -EMSGSIZE
;
1101 if (le16_to_cpu(usb_dev
->descriptor
.bcdUSB
) >= 0x0201) {
1102 retval
= usb_get_bos_descriptor(usb_dev
);
1104 usb_dev
->lpm_capable
= usb_device_supports_lpm(usb_dev
);
1105 } else if (usb_dev
->speed
>= USB_SPEED_SUPER
) {
1106 mutex_unlock(&usb_bus_idr_lock
);
1107 dev_dbg(parent_dev
, "can't read %s bos descriptor %d\n",
1108 dev_name(&usb_dev
->dev
), retval
);
1113 retval
= usb_new_device (usb_dev
);
1115 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
1116 dev_name(&usb_dev
->dev
), retval
);
1118 spin_lock_irq (&hcd_root_hub_lock
);
1119 hcd
->rh_registered
= 1;
1120 spin_unlock_irq (&hcd_root_hub_lock
);
1122 /* Did the HC die before the root hub was registered? */
1124 usb_hc_died (hcd
); /* This time clean up */
1125 usb_dev
->dev
.of_node
= parent_dev
->of_node
;
1127 mutex_unlock(&usb_bus_idr_lock
);
1133 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134 * @bus: the bus which the root hub belongs to
1135 * @portnum: the port which is being resumed
1137 * HCDs should call this function when they know that a resume signal is
1138 * being sent to a root-hub port. The root hub will be prevented from
1139 * going into autosuspend until usb_hcd_end_port_resume() is called.
1141 * The bus's private lock must be held by the caller.
1143 void usb_hcd_start_port_resume(struct usb_bus
*bus
, int portnum
)
1145 unsigned bit
= 1 << portnum
;
1147 if (!(bus
->resuming_ports
& bit
)) {
1148 bus
->resuming_ports
|= bit
;
1149 pm_runtime_get_noresume(&bus
->root_hub
->dev
);
1152 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume
);
1155 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156 * @bus: the bus which the root hub belongs to
1157 * @portnum: the port which is being resumed
1159 * HCDs should call this function when they know that a resume signal has
1160 * stopped being sent to a root-hub port. The root hub will be allowed to
1161 * autosuspend again.
1163 * The bus's private lock must be held by the caller.
1165 void usb_hcd_end_port_resume(struct usb_bus
*bus
, int portnum
)
1167 unsigned bit
= 1 << portnum
;
1169 if (bus
->resuming_ports
& bit
) {
1170 bus
->resuming_ports
&= ~bit
;
1171 pm_runtime_put_noidle(&bus
->root_hub
->dev
);
1174 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume
);
1176 /*-------------------------------------------------------------------------*/
1179 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181 * @is_input: true iff the transaction sends data to the host
1182 * @isoc: true for isochronous transactions, false for interrupt ones
1183 * @bytecount: how many bytes in the transaction.
1185 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1188 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189 * scheduled in software, this function is only used for such scheduling.
1191 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
1196 case USB_SPEED_LOW
: /* INTR only */
1198 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1199 return 64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1201 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1202 return 64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1204 case USB_SPEED_FULL
: /* ISOC or INTR */
1206 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1207 return ((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
;
1209 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1210 return 9107L + BW_HOST_DELAY
+ tmp
;
1212 case USB_SPEED_HIGH
: /* ISOC or INTR */
1213 /* FIXME adjust for input vs output */
1215 tmp
= HS_NSECS_ISO (bytecount
);
1217 tmp
= HS_NSECS (bytecount
);
1220 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
1224 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
1227 /*-------------------------------------------------------------------------*/
1230 * Generic HC operations.
1233 /*-------------------------------------------------------------------------*/
1236 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237 * @hcd: host controller to which @urb was submitted
1238 * @urb: URB being submitted
1240 * Host controller drivers should call this routine in their enqueue()
1241 * method. The HCD's private spinlock must be held and interrupts must
1242 * be disabled. The actions carried out here are required for URB
1243 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1245 * Return: 0 for no error, otherwise a negative error code (in which case
1246 * the enqueue() method must fail). If no error occurs but enqueue() fails
1247 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248 * the private spinlock and returning.
1250 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1254 spin_lock(&hcd_urb_list_lock
);
1256 /* Check that the URB isn't being killed */
1257 if (unlikely(atomic_read(&urb
->reject
))) {
1262 if (unlikely(!urb
->ep
->enabled
)) {
1267 if (unlikely(!urb
->dev
->can_submit
)) {
1273 * Check the host controller's state and add the URB to the
1276 if (HCD_RH_RUNNING(hcd
)) {
1278 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1284 spin_unlock(&hcd_urb_list_lock
);
1287 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1290 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291 * @hcd: host controller to which @urb was submitted
1292 * @urb: URB being checked for unlinkability
1293 * @status: error code to store in @urb if the unlink succeeds
1295 * Host controller drivers should call this routine in their dequeue()
1296 * method. The HCD's private spinlock must be held and interrupts must
1297 * be disabled. The actions carried out here are required for making
1298 * sure than an unlink is valid.
1300 * Return: 0 for no error, otherwise a negative error code (in which case
1301 * the dequeue() method must fail). The possible error codes are:
1303 * -EIDRM: @urb was not submitted or has already completed.
1304 * The completion function may not have been called yet.
1306 * -EBUSY: @urb has already been unlinked.
1308 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1311 struct list_head
*tmp
;
1313 /* insist the urb is still queued */
1314 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1315 if (tmp
== &urb
->urb_list
)
1318 if (tmp
!= &urb
->urb_list
)
1321 /* Any status except -EINPROGRESS means something already started to
1322 * unlink this URB from the hardware. So there's no more work to do.
1326 urb
->unlinked
= status
;
1329 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1332 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333 * @hcd: host controller to which @urb was submitted
1334 * @urb: URB being unlinked
1336 * Host controller drivers should call this routine before calling
1337 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1338 * interrupts must be disabled. The actions carried out here are required
1339 * for URB completion.
1341 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1343 /* clear all state linking urb to this dev (and hcd) */
1344 spin_lock(&hcd_urb_list_lock
);
1345 list_del_init(&urb
->urb_list
);
1346 spin_unlock(&hcd_urb_list_lock
);
1348 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1351 * Some usb host controllers can only perform dma using a small SRAM area.
1352 * The usb core itself is however optimized for host controllers that can dma
1353 * using regular system memory - like pci devices doing bus mastering.
1355 * To support host controllers with limited dma capabilities we provide dma
1356 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357 * For this to work properly the host controller code must first use the
1358 * function dma_declare_coherent_memory() to point out which memory area
1359 * that should be used for dma allocations.
1361 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362 * dma using dma_alloc_coherent() which in turn allocates from the memory
1363 * area pointed out with dma_declare_coherent_memory().
1365 * So, to summarize...
1367 * - We need "local" memory, canonical example being
1368 * a small SRAM on a discrete controller being the
1369 * only memory that the controller can read ...
1370 * (a) "normal" kernel memory is no good, and
1371 * (b) there's not enough to share
1373 * - The only *portable* hook for such stuff in the
1374 * DMA framework is dma_declare_coherent_memory()
1376 * - So we use that, even though the primary requirement
1377 * is that the memory be "local" (hence addressable
1378 * by that device), not "coherent".
1382 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1383 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1384 void **vaddr_handle
, size_t size
,
1385 enum dma_data_direction dir
)
1387 unsigned char *vaddr
;
1389 if (*vaddr_handle
== NULL
) {
1394 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1395 mem_flags
, dma_handle
);
1400 * Store the virtual address of the buffer at the end
1401 * of the allocated dma buffer. The size of the buffer
1402 * may be uneven so use unaligned functions instead
1403 * of just rounding up. It makes sense to optimize for
1404 * memory footprint over access speed since the amount
1405 * of memory available for dma may be limited.
1407 put_unaligned((unsigned long)*vaddr_handle
,
1408 (unsigned long *)(vaddr
+ size
));
1410 if (dir
== DMA_TO_DEVICE
)
1411 memcpy(vaddr
, *vaddr_handle
, size
);
1413 *vaddr_handle
= vaddr
;
1417 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1418 void **vaddr_handle
, size_t size
,
1419 enum dma_data_direction dir
)
1421 unsigned char *vaddr
= *vaddr_handle
;
1423 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1425 if (dir
== DMA_FROM_DEVICE
)
1426 memcpy(vaddr
, *vaddr_handle
, size
);
1428 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1430 *vaddr_handle
= vaddr
;
1434 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1436 if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1437 (urb
->transfer_flags
& URB_SETUP_MAP_SINGLE
))
1438 dma_unmap_single(hcd
->self
.controller
,
1440 sizeof(struct usb_ctrlrequest
),
1442 else if (urb
->transfer_flags
& URB_SETUP_MAP_LOCAL
)
1443 hcd_free_coherent(urb
->dev
->bus
,
1445 (void **) &urb
->setup_packet
,
1446 sizeof(struct usb_ctrlrequest
),
1449 /* Make it safe to call this routine more than once */
1450 urb
->transfer_flags
&= ~(URB_SETUP_MAP_SINGLE
| URB_SETUP_MAP_LOCAL
);
1452 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma
);
1454 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1456 if (hcd
->driver
->unmap_urb_for_dma
)
1457 hcd
->driver
->unmap_urb_for_dma(hcd
, urb
);
1459 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1462 void usb_hcd_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1464 enum dma_data_direction dir
;
1466 usb_hcd_unmap_urb_setup_for_dma(hcd
, urb
);
1468 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1469 if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1470 (urb
->transfer_flags
& URB_DMA_MAP_SG
))
1471 dma_unmap_sg(hcd
->self
.controller
,
1475 else if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1476 (urb
->transfer_flags
& URB_DMA_MAP_PAGE
))
1477 dma_unmap_page(hcd
->self
.controller
,
1479 urb
->transfer_buffer_length
,
1481 else if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1482 (urb
->transfer_flags
& URB_DMA_MAP_SINGLE
))
1483 dma_unmap_single(hcd
->self
.controller
,
1485 urb
->transfer_buffer_length
,
1487 else if (urb
->transfer_flags
& URB_MAP_LOCAL
)
1488 hcd_free_coherent(urb
->dev
->bus
,
1490 &urb
->transfer_buffer
,
1491 urb
->transfer_buffer_length
,
1494 /* Make it safe to call this routine more than once */
1495 urb
->transfer_flags
&= ~(URB_DMA_MAP_SG
| URB_DMA_MAP_PAGE
|
1496 URB_DMA_MAP_SINGLE
| URB_MAP_LOCAL
);
1498 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma
);
1500 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1503 if (hcd
->driver
->map_urb_for_dma
)
1504 return hcd
->driver
->map_urb_for_dma(hcd
, urb
, mem_flags
);
1506 return usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
1509 int usb_hcd_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1512 enum dma_data_direction dir
;
1515 /* Map the URB's buffers for DMA access.
1516 * Lower level HCD code should use *_dma exclusively,
1517 * unless it uses pio or talks to another transport,
1518 * or uses the provided scatter gather list for bulk.
1521 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1522 if (hcd
->self
.uses_pio_for_control
)
1524 if (IS_ENABLED(CONFIG_HAS_DMA
) && hcd
->self
.uses_dma
) {
1525 urb
->setup_dma
= dma_map_single(
1526 hcd
->self
.controller
,
1528 sizeof(struct usb_ctrlrequest
),
1530 if (dma_mapping_error(hcd
->self
.controller
,
1533 urb
->transfer_flags
|= URB_SETUP_MAP_SINGLE
;
1534 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1535 ret
= hcd_alloc_coherent(
1536 urb
->dev
->bus
, mem_flags
,
1538 (void **)&urb
->setup_packet
,
1539 sizeof(struct usb_ctrlrequest
),
1543 urb
->transfer_flags
|= URB_SETUP_MAP_LOCAL
;
1547 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1548 if (urb
->transfer_buffer_length
!= 0
1549 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1550 if (IS_ENABLED(CONFIG_HAS_DMA
) && hcd
->self
.uses_dma
) {
1554 /* We don't support sg for isoc transfers ! */
1555 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
)) {
1561 hcd
->self
.controller
,
1568 urb
->transfer_flags
|= URB_DMA_MAP_SG
;
1569 urb
->num_mapped_sgs
= n
;
1570 if (n
!= urb
->num_sgs
)
1571 urb
->transfer_flags
|=
1572 URB_DMA_SG_COMBINED
;
1573 } else if (urb
->sg
) {
1574 struct scatterlist
*sg
= urb
->sg
;
1575 urb
->transfer_dma
= dma_map_page(
1576 hcd
->self
.controller
,
1579 urb
->transfer_buffer_length
,
1581 if (dma_mapping_error(hcd
->self
.controller
,
1585 urb
->transfer_flags
|= URB_DMA_MAP_PAGE
;
1586 } else if (is_vmalloc_addr(urb
->transfer_buffer
)) {
1587 WARN_ONCE(1, "transfer buffer not dma capable\n");
1590 urb
->transfer_dma
= dma_map_single(
1591 hcd
->self
.controller
,
1592 urb
->transfer_buffer
,
1593 urb
->transfer_buffer_length
,
1595 if (dma_mapping_error(hcd
->self
.controller
,
1599 urb
->transfer_flags
|= URB_DMA_MAP_SINGLE
;
1601 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1602 ret
= hcd_alloc_coherent(
1603 urb
->dev
->bus
, mem_flags
,
1605 &urb
->transfer_buffer
,
1606 urb
->transfer_buffer_length
,
1609 urb
->transfer_flags
|= URB_MAP_LOCAL
;
1611 if (ret
&& (urb
->transfer_flags
& (URB_SETUP_MAP_SINGLE
|
1612 URB_SETUP_MAP_LOCAL
)))
1613 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1617 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma
);
1619 /*-------------------------------------------------------------------------*/
1621 /* may be called in any context with a valid urb->dev usecount
1622 * caller surrenders "ownership" of urb
1623 * expects usb_submit_urb() to have sanity checked and conditioned all
1626 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1629 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1631 /* increment urb's reference count as part of giving it to the HCD
1632 * (which will control it). HCD guarantees that it either returns
1633 * an error or calls giveback(), but not both.
1636 atomic_inc(&urb
->use_count
);
1637 atomic_inc(&urb
->dev
->urbnum
);
1638 usbmon_urb_submit(&hcd
->self
, urb
);
1640 /* NOTE requirements on root-hub callers (usbfs and the hub
1641 * driver, for now): URBs' urb->transfer_buffer must be
1642 * valid and usb_buffer_{sync,unmap}() not be needed, since
1643 * they could clobber root hub response data. Also, control
1644 * URBs must be submitted in process context with interrupts
1648 if (is_root_hub(urb
->dev
)) {
1649 status
= rh_urb_enqueue(hcd
, urb
);
1651 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1652 if (likely(status
== 0)) {
1653 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1654 if (unlikely(status
))
1655 unmap_urb_for_dma(hcd
, urb
);
1659 if (unlikely(status
)) {
1660 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1662 INIT_LIST_HEAD(&urb
->urb_list
);
1663 atomic_dec(&urb
->use_count
);
1664 atomic_dec(&urb
->dev
->urbnum
);
1665 if (atomic_read(&urb
->reject
))
1666 wake_up(&usb_kill_urb_queue
);
1672 /*-------------------------------------------------------------------------*/
1674 /* this makes the hcd giveback() the urb more quickly, by kicking it
1675 * off hardware queues (which may take a while) and returning it as
1676 * soon as practical. we've already set up the urb's return status,
1677 * but we can't know if the callback completed already.
1679 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1683 if (is_root_hub(urb
->dev
))
1684 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1687 /* The only reason an HCD might fail this call is if
1688 * it has not yet fully queued the urb to begin with.
1689 * Such failures should be harmless. */
1690 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1696 * called in any context
1698 * caller guarantees urb won't be recycled till both unlink()
1699 * and the urb's completion function return
1701 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1703 struct usb_hcd
*hcd
;
1704 struct usb_device
*udev
= urb
->dev
;
1705 int retval
= -EIDRM
;
1706 unsigned long flags
;
1708 /* Prevent the device and bus from going away while
1709 * the unlink is carried out. If they are already gone
1710 * then urb->use_count must be 0, since disconnected
1711 * devices can't have any active URBs.
1713 spin_lock_irqsave(&hcd_urb_unlink_lock
, flags
);
1714 if (atomic_read(&urb
->use_count
) > 0) {
1718 spin_unlock_irqrestore(&hcd_urb_unlink_lock
, flags
);
1720 hcd
= bus_to_hcd(urb
->dev
->bus
);
1721 retval
= unlink1(hcd
, urb
, status
);
1723 retval
= -EINPROGRESS
;
1724 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1725 dev_dbg(&udev
->dev
, "hcd_unlink_urb %pK fail %d\n",
1732 /*-------------------------------------------------------------------------*/
1734 static void __usb_hcd_giveback_urb(struct urb
*urb
)
1736 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1737 struct usb_anchor
*anchor
= urb
->anchor
;
1738 int status
= urb
->unlinked
;
1739 unsigned long flags
;
1742 if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1743 urb
->actual_length
< urb
->transfer_buffer_length
&&
1745 status
= -EREMOTEIO
;
1747 unmap_urb_for_dma(hcd
, urb
);
1748 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1749 usb_anchor_suspend_wakeups(anchor
);
1750 usb_unanchor_urb(urb
);
1751 if (likely(status
== 0))
1752 usb_led_activity(USB_LED_EVENT_HOST
);
1754 /* pass ownership to the completion handler */
1755 urb
->status
= status
;
1758 * We disable local IRQs here avoid possible deadlock because
1759 * drivers may call spin_lock() to hold lock which might be
1760 * acquired in one hard interrupt handler.
1762 * The local_irq_save()/local_irq_restore() around complete()
1763 * will be removed if current USB drivers have been cleaned up
1764 * and no one may trigger the above deadlock situation when
1765 * running complete() in tasklet.
1767 local_irq_save(flags
);
1769 local_irq_restore(flags
);
1771 usb_anchor_resume_wakeups(anchor
);
1772 atomic_dec(&urb
->use_count
);
1773 if (unlikely(atomic_read(&urb
->reject
)))
1774 wake_up(&usb_kill_urb_queue
);
1778 static void usb_giveback_urb_bh(unsigned long param
)
1780 struct giveback_urb_bh
*bh
= (struct giveback_urb_bh
*)param
;
1781 struct list_head local_list
;
1783 spin_lock_irq(&bh
->lock
);
1786 list_replace_init(&bh
->head
, &local_list
);
1787 spin_unlock_irq(&bh
->lock
);
1789 while (!list_empty(&local_list
)) {
1792 urb
= list_entry(local_list
.next
, struct urb
, urb_list
);
1793 list_del_init(&urb
->urb_list
);
1794 bh
->completing_ep
= urb
->ep
;
1795 __usb_hcd_giveback_urb(urb
);
1796 bh
->completing_ep
= NULL
;
1799 /* check if there are new URBs to giveback */
1800 spin_lock_irq(&bh
->lock
);
1801 if (!list_empty(&bh
->head
))
1803 bh
->running
= false;
1804 spin_unlock_irq(&bh
->lock
);
1808 * usb_hcd_giveback_urb - return URB from HCD to device driver
1809 * @hcd: host controller returning the URB
1810 * @urb: urb being returned to the USB device driver.
1811 * @status: completion status code for the URB.
1812 * Context: in_interrupt()
1814 * This hands the URB from HCD to its USB device driver, using its
1815 * completion function. The HCD has freed all per-urb resources
1816 * (and is done using urb->hcpriv). It also released all HCD locks;
1817 * the device driver won't cause problems if it frees, modifies,
1818 * or resubmits this URB.
1820 * If @urb was unlinked, the value of @status will be overridden by
1821 * @urb->unlinked. Erroneous short transfers are detected in case
1822 * the HCD hasn't checked for them.
1824 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1826 struct giveback_urb_bh
*bh
;
1827 bool running
, high_prio_bh
;
1829 /* pass status to tasklet via unlinked */
1830 if (likely(!urb
->unlinked
))
1831 urb
->unlinked
= status
;
1833 if (!hcd_giveback_urb_in_bh(hcd
) && !is_root_hub(urb
->dev
)) {
1834 __usb_hcd_giveback_urb(urb
);
1838 if (usb_pipeisoc(urb
->pipe
) || usb_pipeint(urb
->pipe
)) {
1839 bh
= &hcd
->high_prio_bh
;
1840 high_prio_bh
= true;
1842 bh
= &hcd
->low_prio_bh
;
1843 high_prio_bh
= false;
1846 spin_lock(&bh
->lock
);
1847 list_add_tail(&urb
->urb_list
, &bh
->head
);
1848 running
= bh
->running
;
1849 spin_unlock(&bh
->lock
);
1853 else if (high_prio_bh
)
1854 tasklet_hi_schedule(&bh
->bh
);
1856 tasklet_schedule(&bh
->bh
);
1858 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1860 /*-------------------------------------------------------------------------*/
1862 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1863 * queue to drain completely. The caller must first insure that no more
1864 * URBs can be submitted for this endpoint.
1866 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1867 struct usb_host_endpoint
*ep
)
1869 struct usb_hcd
*hcd
;
1875 hcd
= bus_to_hcd(udev
->bus
);
1877 /* No more submits can occur */
1878 spin_lock_irq(&hcd_urb_list_lock
);
1880 list_for_each_entry_reverse(urb
, &ep
->urb_list
, urb_list
) {
1886 is_in
= usb_urb_dir_in(urb
);
1887 spin_unlock(&hcd_urb_list_lock
);
1890 unlink1(hcd
, urb
, -ESHUTDOWN
);
1891 dev_dbg (hcd
->self
.controller
,
1892 "shutdown urb %pK ep%d%s%s\n",
1893 urb
, usb_endpoint_num(&ep
->desc
),
1894 is_in
? "in" : "out",
1897 switch (usb_endpoint_type(&ep
->desc
)) {
1898 case USB_ENDPOINT_XFER_CONTROL
:
1900 case USB_ENDPOINT_XFER_BULK
:
1902 case USB_ENDPOINT_XFER_INT
:
1911 /* list contents may have changed */
1912 spin_lock(&hcd_urb_list_lock
);
1915 spin_unlock_irq(&hcd_urb_list_lock
);
1917 /* Wait until the endpoint queue is completely empty */
1918 while (!list_empty (&ep
->urb_list
)) {
1919 spin_lock_irq(&hcd_urb_list_lock
);
1921 /* The list may have changed while we acquired the spinlock */
1923 if (!list_empty (&ep
->urb_list
)) {
1924 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1928 spin_unlock_irq(&hcd_urb_list_lock
);
1938 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1940 * @udev: target &usb_device
1941 * @new_config: new configuration to install
1942 * @cur_alt: the current alternate interface setting
1943 * @new_alt: alternate interface setting that is being installed
1945 * To change configurations, pass in the new configuration in new_config,
1946 * and pass NULL for cur_alt and new_alt.
1948 * To reset a device's configuration (put the device in the ADDRESSED state),
1949 * pass in NULL for new_config, cur_alt, and new_alt.
1951 * To change alternate interface settings, pass in NULL for new_config,
1952 * pass in the current alternate interface setting in cur_alt,
1953 * and pass in the new alternate interface setting in new_alt.
1955 * Return: An error if the requested bandwidth change exceeds the
1956 * bus bandwidth or host controller internal resources.
1958 int usb_hcd_alloc_bandwidth(struct usb_device
*udev
,
1959 struct usb_host_config
*new_config
,
1960 struct usb_host_interface
*cur_alt
,
1961 struct usb_host_interface
*new_alt
)
1963 int num_intfs
, i
, j
;
1964 struct usb_host_interface
*alt
= NULL
;
1966 struct usb_hcd
*hcd
;
1967 struct usb_host_endpoint
*ep
;
1969 hcd
= bus_to_hcd(udev
->bus
);
1970 if (!hcd
->driver
->check_bandwidth
)
1973 /* Configuration is being removed - set configuration 0 */
1974 if (!new_config
&& !cur_alt
) {
1975 for (i
= 1; i
< 16; ++i
) {
1976 ep
= udev
->ep_out
[i
];
1978 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1979 ep
= udev
->ep_in
[i
];
1981 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1983 hcd
->driver
->check_bandwidth(hcd
, udev
);
1986 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1987 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1988 * of the bus. There will always be bandwidth for endpoint 0, so it's
1992 num_intfs
= new_config
->desc
.bNumInterfaces
;
1993 /* Remove endpoints (except endpoint 0, which is always on the
1994 * schedule) from the old config from the schedule
1996 for (i
= 1; i
< 16; ++i
) {
1997 ep
= udev
->ep_out
[i
];
1999 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
2003 ep
= udev
->ep_in
[i
];
2005 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
2010 for (i
= 0; i
< num_intfs
; ++i
) {
2011 struct usb_host_interface
*first_alt
;
2014 first_alt
= &new_config
->intf_cache
[i
]->altsetting
[0];
2015 iface_num
= first_alt
->desc
.bInterfaceNumber
;
2016 /* Set up endpoints for alternate interface setting 0 */
2017 alt
= usb_find_alt_setting(new_config
, iface_num
, 0);
2019 /* No alt setting 0? Pick the first setting. */
2022 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
2023 ret
= hcd
->driver
->add_endpoint(hcd
, udev
, &alt
->endpoint
[j
]);
2029 if (cur_alt
&& new_alt
) {
2030 struct usb_interface
*iface
= usb_ifnum_to_if(udev
,
2031 cur_alt
->desc
.bInterfaceNumber
);
2035 if (iface
->resetting_device
) {
2037 * The USB core just reset the device, so the xHCI host
2038 * and the device will think alt setting 0 is installed.
2039 * However, the USB core will pass in the alternate
2040 * setting installed before the reset as cur_alt. Dig
2041 * out the alternate setting 0 structure, or the first
2042 * alternate setting if a broken device doesn't have alt
2045 cur_alt
= usb_altnum_to_altsetting(iface
, 0);
2047 cur_alt
= &iface
->altsetting
[0];
2050 /* Drop all the endpoints in the current alt setting */
2051 for (i
= 0; i
< cur_alt
->desc
.bNumEndpoints
; i
++) {
2052 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
,
2053 &cur_alt
->endpoint
[i
]);
2057 /* Add all the endpoints in the new alt setting */
2058 for (i
= 0; i
< new_alt
->desc
.bNumEndpoints
; i
++) {
2059 ret
= hcd
->driver
->add_endpoint(hcd
, udev
,
2060 &new_alt
->endpoint
[i
]);
2065 ret
= hcd
->driver
->check_bandwidth(hcd
, udev
);
2068 hcd
->driver
->reset_bandwidth(hcd
, udev
);
2072 /* Disables the endpoint: synchronizes with the hcd to make sure all
2073 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2074 * have been called previously. Use for set_configuration, set_interface,
2075 * driver removal, physical disconnect.
2077 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2078 * type, maxpacket size, toggle, halt status, and scheduling.
2080 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
2081 struct usb_host_endpoint
*ep
)
2083 struct usb_hcd
*hcd
;
2086 hcd
= bus_to_hcd(udev
->bus
);
2087 if (hcd
->driver
->endpoint_disable
)
2088 hcd
->driver
->endpoint_disable(hcd
, ep
);
2092 * usb_hcd_reset_endpoint - reset host endpoint state
2093 * @udev: USB device.
2094 * @ep: the endpoint to reset.
2096 * Resets any host endpoint state such as the toggle bit, sequence
2097 * number and current window.
2099 void usb_hcd_reset_endpoint(struct usb_device
*udev
,
2100 struct usb_host_endpoint
*ep
)
2102 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2104 if (hcd
->driver
->endpoint_reset
)
2105 hcd
->driver
->endpoint_reset(hcd
, ep
);
2107 int epnum
= usb_endpoint_num(&ep
->desc
);
2108 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
2109 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
2111 usb_settoggle(udev
, epnum
, is_out
, 0);
2113 usb_settoggle(udev
, epnum
, !is_out
, 0);
2118 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2119 * @interface: alternate setting that includes all endpoints.
2120 * @eps: array of endpoints that need streams.
2121 * @num_eps: number of endpoints in the array.
2122 * @num_streams: number of streams to allocate.
2123 * @mem_flags: flags hcd should use to allocate memory.
2125 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2126 * Drivers may queue multiple transfers to different stream IDs, which may
2127 * complete in a different order than they were queued.
2129 * Return: On success, the number of allocated streams. On failure, a negative
2132 int usb_alloc_streams(struct usb_interface
*interface
,
2133 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2134 unsigned int num_streams
, gfp_t mem_flags
)
2136 struct usb_hcd
*hcd
;
2137 struct usb_device
*dev
;
2140 dev
= interface_to_usbdev(interface
);
2141 hcd
= bus_to_hcd(dev
->bus
);
2142 if (!hcd
->driver
->alloc_streams
|| !hcd
->driver
->free_streams
)
2144 if (dev
->speed
< USB_SPEED_SUPER
)
2146 if (dev
->state
< USB_STATE_CONFIGURED
)
2149 for (i
= 0; i
< num_eps
; i
++) {
2150 /* Streams only apply to bulk endpoints. */
2151 if (!usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
2153 /* Re-alloc is not allowed */
2154 if (eps
[i
]->streams
)
2158 ret
= hcd
->driver
->alloc_streams(hcd
, dev
, eps
, num_eps
,
2159 num_streams
, mem_flags
);
2163 for (i
= 0; i
< num_eps
; i
++)
2164 eps
[i
]->streams
= ret
;
2168 EXPORT_SYMBOL_GPL(usb_alloc_streams
);
2171 * usb_free_streams - free bulk endpoint stream IDs.
2172 * @interface: alternate setting that includes all endpoints.
2173 * @eps: array of endpoints to remove streams from.
2174 * @num_eps: number of endpoints in the array.
2175 * @mem_flags: flags hcd should use to allocate memory.
2177 * Reverts a group of bulk endpoints back to not using stream IDs.
2178 * Can fail if we are given bad arguments, or HCD is broken.
2180 * Return: 0 on success. On failure, a negative error code.
2182 int usb_free_streams(struct usb_interface
*interface
,
2183 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2186 struct usb_hcd
*hcd
;
2187 struct usb_device
*dev
;
2190 dev
= interface_to_usbdev(interface
);
2191 hcd
= bus_to_hcd(dev
->bus
);
2192 if (dev
->speed
< USB_SPEED_SUPER
)
2195 /* Double-free is not allowed */
2196 for (i
= 0; i
< num_eps
; i
++)
2197 if (!eps
[i
] || !eps
[i
]->streams
)
2200 ret
= hcd
->driver
->free_streams(hcd
, dev
, eps
, num_eps
, mem_flags
);
2204 for (i
= 0; i
< num_eps
; i
++)
2205 eps
[i
]->streams
= 0;
2209 EXPORT_SYMBOL_GPL(usb_free_streams
);
2211 /* Protect against drivers that try to unlink URBs after the device
2212 * is gone, by waiting until all unlinks for @udev are finished.
2213 * Since we don't currently track URBs by device, simply wait until
2214 * nothing is running in the locked region of usb_hcd_unlink_urb().
2216 void usb_hcd_synchronize_unlinks(struct usb_device
*udev
)
2218 spin_lock_irq(&hcd_urb_unlink_lock
);
2219 spin_unlock_irq(&hcd_urb_unlink_lock
);
2222 /*-------------------------------------------------------------------------*/
2224 /* called in any context */
2225 int usb_hcd_get_frame_number (struct usb_device
*udev
)
2227 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2229 if (!HCD_RH_RUNNING(hcd
))
2231 return hcd
->driver
->get_frame_number (hcd
);
2234 /*-------------------------------------------------------------------------*/
2238 int hcd_bus_suspend(struct usb_device
*rhdev
, pm_message_t msg
)
2240 struct usb_hcd
*hcd
= bus_to_hcd(rhdev
->bus
);
2242 int old_state
= hcd
->state
;
2244 dev_dbg(&rhdev
->dev
, "bus %ssuspend, wakeup %d\n",
2245 (PMSG_IS_AUTO(msg
) ? "auto-" : ""),
2246 rhdev
->do_remote_wakeup
);
2247 if (HCD_DEAD(hcd
)) {
2248 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "suspend");
2252 if (!hcd
->driver
->bus_suspend
) {
2255 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2256 hcd
->state
= HC_STATE_QUIESCING
;
2257 status
= hcd
->driver
->bus_suspend(hcd
);
2260 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
2261 hcd
->state
= HC_STATE_SUSPENDED
;
2263 /* Did we race with a root-hub wakeup event? */
2264 if (rhdev
->do_remote_wakeup
) {
2267 status
= hcd
->driver
->hub_status_data(hcd
, buffer
);
2269 dev_dbg(&rhdev
->dev
, "suspend raced with wakeup event\n");
2270 hcd_bus_resume(rhdev
, PMSG_AUTO_RESUME
);
2275 spin_lock_irq(&hcd_root_hub_lock
);
2276 if (!HCD_DEAD(hcd
)) {
2277 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2278 hcd
->state
= old_state
;
2280 spin_unlock_irq(&hcd_root_hub_lock
);
2281 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2287 int hcd_bus_resume(struct usb_device
*rhdev
, pm_message_t msg
)
2289 struct usb_hcd
*hcd
= bus_to_hcd(rhdev
->bus
);
2291 int old_state
= hcd
->state
;
2293 dev_dbg(&rhdev
->dev
, "usb %sresume\n",
2294 (PMSG_IS_AUTO(msg
) ? "auto-" : ""));
2295 if (HCD_DEAD(hcd
)) {
2296 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "resume");
2299 if (!hcd
->driver
->bus_resume
)
2301 if (HCD_RH_RUNNING(hcd
))
2304 hcd
->state
= HC_STATE_RESUMING
;
2305 status
= hcd
->driver
->bus_resume(hcd
);
2306 clear_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2308 struct usb_device
*udev
;
2311 spin_lock_irq(&hcd_root_hub_lock
);
2312 if (!HCD_DEAD(hcd
)) {
2313 usb_set_device_state(rhdev
, rhdev
->actconfig
2314 ? USB_STATE_CONFIGURED
2315 : USB_STATE_ADDRESS
);
2316 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2317 hcd
->state
= HC_STATE_RUNNING
;
2319 spin_unlock_irq(&hcd_root_hub_lock
);
2322 * Check whether any of the enabled ports on the root hub are
2323 * unsuspended. If they are then a TRSMRCY delay is needed
2324 * (this is what the USB-2 spec calls a "global resume").
2325 * Otherwise we can skip the delay.
2327 usb_hub_for_each_child(rhdev
, port1
, udev
) {
2328 if (udev
->state
!= USB_STATE_NOTATTACHED
&&
2329 !udev
->port_is_suspended
) {
2330 usleep_range(10000, 11000); /* TRSMRCY */
2335 hcd
->state
= old_state
;
2336 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2338 if (status
!= -ESHUTDOWN
)
2344 /* Workqueue routine for root-hub remote wakeup */
2345 static void hcd_resume_work(struct work_struct
*work
)
2347 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
2348 struct usb_device
*udev
= hcd
->self
.root_hub
;
2350 usb_remote_wakeup(udev
);
2354 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2355 * @hcd: host controller for this root hub
2357 * The USB host controller calls this function when its root hub is
2358 * suspended (with the remote wakeup feature enabled) and a remote
2359 * wakeup request is received. The routine submits a workqueue request
2360 * to resume the root hub (that is, manage its downstream ports again).
2362 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
2364 unsigned long flags
;
2366 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2367 if (hcd
->rh_registered
) {
2368 pm_wakeup_event(&hcd
->self
.root_hub
->dev
, 0);
2369 set_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2370 queue_work(pm_wq
, &hcd
->wakeup_work
);
2372 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2374 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
2376 #endif /* CONFIG_PM */
2378 /*-------------------------------------------------------------------------*/
2380 #ifdef CONFIG_USB_OTG
2383 * usb_bus_start_enum - start immediate enumeration (for OTG)
2384 * @bus: the bus (must use hcd framework)
2385 * @port_num: 1-based number of port; usually bus->otg_port
2386 * Context: in_interrupt()
2388 * Starts enumeration, with an immediate reset followed later by
2389 * hub_wq identifying and possibly configuring the device.
2390 * This is needed by OTG controller drivers, where it helps meet
2391 * HNP protocol timing requirements for starting a port reset.
2393 * Return: 0 if successful.
2395 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
2397 struct usb_hcd
*hcd
;
2398 int status
= -EOPNOTSUPP
;
2400 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2401 * boards with root hubs hooked up to internal devices (instead of
2402 * just the OTG port) may need more attention to resetting...
2404 hcd
= bus_to_hcd(bus
);
2405 if (port_num
&& hcd
->driver
->start_port_reset
)
2406 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
2408 /* allocate hub_wq shortly after (first) root port reset finishes;
2409 * it may issue others, until at least 50 msecs have passed.
2412 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
2415 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
2419 /*-------------------------------------------------------------------------*/
2422 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2423 * @irq: the IRQ being raised
2424 * @__hcd: pointer to the HCD whose IRQ is being signaled
2426 * If the controller isn't HALTed, calls the driver's irq handler.
2427 * Checks whether the controller is now dead.
2429 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2431 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
2433 struct usb_hcd
*hcd
= __hcd
;
2436 if (unlikely(HCD_DEAD(hcd
) || !HCD_HW_ACCESSIBLE(hcd
)))
2438 else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
)
2445 EXPORT_SYMBOL_GPL(usb_hcd_irq
);
2447 /*-------------------------------------------------------------------------*/
2450 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2451 * @hcd: pointer to the HCD representing the controller
2453 * This is called by bus glue to report a USB host controller that died
2454 * while operations may still have been pending. It's called automatically
2455 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2457 * Only call this function with the primary HCD.
2459 void usb_hc_died (struct usb_hcd
*hcd
)
2461 unsigned long flags
;
2463 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
2465 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2466 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2467 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2468 if (hcd
->rh_registered
) {
2469 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2471 /* make hub_wq clean up old urbs and devices */
2472 usb_set_device_state (hcd
->self
.root_hub
,
2473 USB_STATE_NOTATTACHED
);
2474 usb_kick_hub_wq(hcd
->self
.root_hub
);
2476 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->shared_hcd
) {
2477 hcd
= hcd
->shared_hcd
;
2478 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2479 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2480 if (hcd
->rh_registered
) {
2481 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2483 /* make hub_wq clean up old urbs and devices */
2484 usb_set_device_state(hcd
->self
.root_hub
,
2485 USB_STATE_NOTATTACHED
);
2486 usb_kick_hub_wq(hcd
->self
.root_hub
);
2489 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2490 /* Make sure that the other roothub is also deallocated. */
2492 EXPORT_SYMBOL_GPL (usb_hc_died
);
2494 /*-------------------------------------------------------------------------*/
2496 static void init_giveback_urb_bh(struct giveback_urb_bh
*bh
)
2499 spin_lock_init(&bh
->lock
);
2500 INIT_LIST_HEAD(&bh
->head
);
2501 tasklet_init(&bh
->bh
, usb_giveback_urb_bh
, (unsigned long)bh
);
2505 * usb_create_shared_hcd - create and initialize an HCD structure
2506 * @driver: HC driver that will use this hcd
2507 * @dev: device for this HC, stored in hcd->self.controller
2508 * @bus_name: value to store in hcd->self.bus_name
2509 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2510 * PCI device. Only allocate certain resources for the primary HCD
2511 * Context: !in_interrupt()
2513 * Allocate a struct usb_hcd, with extra space at the end for the
2514 * HC driver's private data. Initialize the generic members of the
2517 * Return: On success, a pointer to the created and initialized HCD structure.
2518 * On failure (e.g. if memory is unavailable), %NULL.
2520 struct usb_hcd
*usb_create_shared_hcd(const struct hc_driver
*driver
,
2521 struct device
*dev
, const char *bus_name
,
2522 struct usb_hcd
*primary_hcd
)
2524 struct usb_hcd
*hcd
;
2526 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
2529 if (primary_hcd
== NULL
) {
2530 hcd
->address0_mutex
= kmalloc(sizeof(*hcd
->address0_mutex
),
2532 if (!hcd
->address0_mutex
) {
2534 dev_dbg(dev
, "hcd address0 mutex alloc failed\n");
2537 mutex_init(hcd
->address0_mutex
);
2538 hcd
->bandwidth_mutex
= kmalloc(sizeof(*hcd
->bandwidth_mutex
),
2540 if (!hcd
->bandwidth_mutex
) {
2541 kfree(hcd
->address0_mutex
);
2543 dev_dbg(dev
, "hcd bandwidth mutex alloc failed\n");
2546 mutex_init(hcd
->bandwidth_mutex
);
2547 dev_set_drvdata(dev
, hcd
);
2549 mutex_lock(&usb_port_peer_mutex
);
2550 hcd
->address0_mutex
= primary_hcd
->address0_mutex
;
2551 hcd
->bandwidth_mutex
= primary_hcd
->bandwidth_mutex
;
2552 hcd
->primary_hcd
= primary_hcd
;
2553 primary_hcd
->primary_hcd
= primary_hcd
;
2554 hcd
->shared_hcd
= primary_hcd
;
2555 primary_hcd
->shared_hcd
= hcd
;
2556 mutex_unlock(&usb_port_peer_mutex
);
2559 kref_init(&hcd
->kref
);
2561 usb_bus_init(&hcd
->self
);
2562 hcd
->self
.controller
= dev
;
2563 hcd
->self
.bus_name
= bus_name
;
2564 hcd
->self
.uses_dma
= (dev
->dma_mask
!= NULL
);
2566 init_timer(&hcd
->rh_timer
);
2567 hcd
->rh_timer
.function
= rh_timer_func
;
2568 hcd
->rh_timer
.data
= (unsigned long) hcd
;
2570 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
2573 hcd
->driver
= driver
;
2574 hcd
->speed
= driver
->flags
& HCD_MASK
;
2575 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
2576 "USB Host Controller";
2579 EXPORT_SYMBOL_GPL(usb_create_shared_hcd
);
2582 * usb_create_hcd - create and initialize an HCD structure
2583 * @driver: HC driver that will use this hcd
2584 * @dev: device for this HC, stored in hcd->self.controller
2585 * @bus_name: value to store in hcd->self.bus_name
2586 * Context: !in_interrupt()
2588 * Allocate a struct usb_hcd, with extra space at the end for the
2589 * HC driver's private data. Initialize the generic members of the
2592 * Return: On success, a pointer to the created and initialized HCD
2593 * structure. On failure (e.g. if memory is unavailable), %NULL.
2595 struct usb_hcd
*usb_create_hcd(const struct hc_driver
*driver
,
2596 struct device
*dev
, const char *bus_name
)
2598 return usb_create_shared_hcd(driver
, dev
, bus_name
, NULL
);
2600 EXPORT_SYMBOL_GPL(usb_create_hcd
);
2603 * Roothubs that share one PCI device must also share the bandwidth mutex.
2604 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2607 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2608 * freed. When hcd_release() is called for either hcd in a peer set,
2609 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2611 static void hcd_release(struct kref
*kref
)
2613 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
2615 mutex_lock(&usb_port_peer_mutex
);
2616 if (hcd
->shared_hcd
) {
2617 struct usb_hcd
*peer
= hcd
->shared_hcd
;
2619 peer
->shared_hcd
= NULL
;
2620 peer
->primary_hcd
= NULL
;
2622 kfree(hcd
->address0_mutex
);
2623 kfree(hcd
->bandwidth_mutex
);
2625 mutex_unlock(&usb_port_peer_mutex
);
2629 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
2632 kref_get (&hcd
->kref
);
2635 EXPORT_SYMBOL_GPL(usb_get_hcd
);
2637 void usb_put_hcd (struct usb_hcd
*hcd
)
2640 kref_put (&hcd
->kref
, hcd_release
);
2642 EXPORT_SYMBOL_GPL(usb_put_hcd
);
2644 int usb_hcd_is_primary_hcd(struct usb_hcd
*hcd
)
2646 if (!hcd
->primary_hcd
)
2648 return hcd
== hcd
->primary_hcd
;
2650 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd
);
2652 int usb_hcd_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
2654 if (!hcd
->driver
->find_raw_port_number
)
2657 return hcd
->driver
->find_raw_port_number(hcd
, port1
);
2660 static int usb_hcd_request_irqs(struct usb_hcd
*hcd
,
2661 unsigned int irqnum
, unsigned long irqflags
)
2665 if (hcd
->driver
->irq
) {
2667 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
2668 hcd
->driver
->description
, hcd
->self
.busnum
);
2669 retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
2670 hcd
->irq_descr
, hcd
);
2672 dev_err(hcd
->self
.controller
,
2673 "request interrupt %d failed\n",
2678 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
2679 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2680 "io mem" : "io base",
2681 (unsigned long long)hcd
->rsrc_start
);
2684 if (hcd
->rsrc_start
)
2685 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
2686 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2687 "io mem" : "io base",
2688 (unsigned long long)hcd
->rsrc_start
);
2694 * Before we free this root hub, flush in-flight peering attempts
2695 * and disable peer lookups
2697 static void usb_put_invalidate_rhdev(struct usb_hcd
*hcd
)
2699 struct usb_device
*rhdev
;
2701 mutex_lock(&usb_port_peer_mutex
);
2702 rhdev
= hcd
->self
.root_hub
;
2703 hcd
->self
.root_hub
= NULL
;
2704 mutex_unlock(&usb_port_peer_mutex
);
2709 * usb_add_hcd - finish generic HCD structure initialization and register
2710 * @hcd: the usb_hcd structure to initialize
2711 * @irqnum: Interrupt line to allocate
2712 * @irqflags: Interrupt type flags
2714 * Finish the remaining parts of generic HCD initialization: allocate the
2715 * buffers of consistent memory, register the bus, request the IRQ line,
2716 * and call the driver's reset() and start() routines.
2718 int usb_add_hcd(struct usb_hcd
*hcd
,
2719 unsigned int irqnum
, unsigned long irqflags
)
2722 struct usb_device
*rhdev
;
2724 if (IS_ENABLED(CONFIG_USB_PHY
) && !hcd
->usb_phy
) {
2725 struct usb_phy
*phy
= usb_get_phy_dev(hcd
->self
.controller
, 0);
2728 retval
= PTR_ERR(phy
);
2729 if (retval
== -EPROBE_DEFER
)
2732 retval
= usb_phy_init(phy
);
2738 hcd
->remove_phy
= 1;
2742 if (IS_ENABLED(CONFIG_GENERIC_PHY
) && !hcd
->phy
) {
2743 struct phy
*phy
= phy_get(hcd
->self
.controller
, "usb");
2746 retval
= PTR_ERR(phy
);
2747 if (retval
== -EPROBE_DEFER
)
2750 retval
= phy_init(phy
);
2755 retval
= phy_power_on(phy
);
2762 hcd
->remove_phy
= 1;
2766 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
2768 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2769 if (authorized_default
< 0 || authorized_default
> 1) {
2771 clear_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2773 set_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2775 if (authorized_default
)
2776 set_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2778 clear_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2780 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
2782 /* per default all interfaces are authorized */
2783 set_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
2785 /* HC is in reset state, but accessible. Now do the one-time init,
2786 * bottom up so that hcds can customize the root hubs before hub_wq
2787 * starts talking to them. (Note, bus id is assigned early too.)
2789 retval
= hcd_buffer_create(hcd
);
2791 dev_dbg(hcd
->self
.controller
, "pool alloc failed\n");
2792 goto err_create_buf
;
2795 retval
= usb_register_bus(&hcd
->self
);
2797 goto err_register_bus
;
2799 rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0);
2800 if (rhdev
== NULL
) {
2801 dev_err(hcd
->self
.controller
, "unable to allocate root hub\n");
2803 goto err_allocate_root_hub
;
2805 mutex_lock(&usb_port_peer_mutex
);
2806 hcd
->self
.root_hub
= rhdev
;
2807 mutex_unlock(&usb_port_peer_mutex
);
2809 switch (hcd
->speed
) {
2811 rhdev
->speed
= USB_SPEED_FULL
;
2814 rhdev
->speed
= USB_SPEED_HIGH
;
2817 rhdev
->speed
= USB_SPEED_WIRELESS
;
2820 rhdev
->speed
= USB_SPEED_SUPER
;
2823 rhdev
->speed
= USB_SPEED_SUPER_PLUS
;
2827 goto err_set_rh_speed
;
2830 /* wakeup flag init defaults to "everything works" for root hubs,
2831 * but drivers can override it in reset() if needed, along with
2832 * recording the overall controller's system wakeup capability.
2834 device_set_wakeup_capable(&rhdev
->dev
, 1);
2836 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2837 * registered. But since the controller can die at any time,
2838 * let's initialize the flag before touching the hardware.
2840 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2842 /* "reset" is misnamed; its role is now one-time init. the controller
2843 * should already have been reset (and boot firmware kicked off etc).
2845 if (hcd
->driver
->reset
) {
2846 retval
= hcd
->driver
->reset(hcd
);
2848 dev_err(hcd
->self
.controller
, "can't setup: %d\n",
2850 goto err_hcd_driver_setup
;
2853 hcd
->rh_pollable
= 1;
2855 /* NOTE: root hub and controller capabilities may not be the same */
2856 if (device_can_wakeup(hcd
->self
.controller
)
2857 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
2858 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
2860 /* initialize tasklets */
2861 init_giveback_urb_bh(&hcd
->high_prio_bh
);
2862 init_giveback_urb_bh(&hcd
->low_prio_bh
);
2864 /* enable irqs just before we start the controller,
2865 * if the BIOS provides legacy PCI irqs.
2867 if (usb_hcd_is_primary_hcd(hcd
) && irqnum
) {
2868 retval
= usb_hcd_request_irqs(hcd
, irqnum
, irqflags
);
2870 goto err_request_irq
;
2873 hcd
->state
= HC_STATE_RUNNING
;
2874 retval
= hcd
->driver
->start(hcd
);
2876 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
2877 goto err_hcd_driver_start
;
2880 /* starting here, usbcore will pay attention to this root hub */
2881 retval
= register_root_hub(hcd
);
2883 goto err_register_root_hub
;
2885 retval
= sysfs_create_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2887 printk(KERN_ERR
"Cannot register USB bus sysfs attributes: %d\n",
2889 goto error_create_attr_group
;
2891 if (hcd
->uses_new_polling
&& HCD_POLL_RH(hcd
))
2892 usb_hcd_poll_rh_status(hcd
);
2896 error_create_attr_group
:
2897 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2898 if (HC_IS_RUNNING(hcd
->state
))
2899 hcd
->state
= HC_STATE_QUIESCING
;
2900 spin_lock_irq(&hcd_root_hub_lock
);
2901 hcd
->rh_registered
= 0;
2902 spin_unlock_irq(&hcd_root_hub_lock
);
2905 cancel_work_sync(&hcd
->wakeup_work
);
2907 mutex_lock(&usb_bus_idr_lock
);
2908 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2909 mutex_unlock(&usb_bus_idr_lock
);
2910 err_register_root_hub
:
2911 hcd
->rh_pollable
= 0;
2912 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2913 del_timer_sync(&hcd
->rh_timer
);
2914 hcd
->driver
->stop(hcd
);
2915 hcd
->state
= HC_STATE_HALT
;
2916 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2917 del_timer_sync(&hcd
->rh_timer
);
2918 err_hcd_driver_start
:
2919 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->irq
> 0)
2920 free_irq(irqnum
, hcd
);
2922 err_hcd_driver_setup
:
2924 usb_put_invalidate_rhdev(hcd
);
2925 err_allocate_root_hub
:
2926 usb_deregister_bus(&hcd
->self
);
2928 hcd_buffer_destroy(hcd
);
2930 if (IS_ENABLED(CONFIG_GENERIC_PHY
) && hcd
->remove_phy
&& hcd
->phy
) {
2931 phy_power_off(hcd
->phy
);
2937 if (hcd
->remove_phy
&& hcd
->usb_phy
) {
2938 usb_phy_shutdown(hcd
->usb_phy
);
2939 usb_put_phy(hcd
->usb_phy
);
2940 hcd
->usb_phy
= NULL
;
2944 EXPORT_SYMBOL_GPL(usb_add_hcd
);
2947 * usb_remove_hcd - shutdown processing for generic HCDs
2948 * @hcd: the usb_hcd structure to remove
2949 * Context: !in_interrupt()
2951 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2952 * invoking the HCD's stop() method.
2954 void usb_remove_hcd(struct usb_hcd
*hcd
)
2956 struct usb_device
*rhdev
= hcd
->self
.root_hub
;
2958 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
2961 sysfs_remove_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2963 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2964 if (HC_IS_RUNNING (hcd
->state
))
2965 hcd
->state
= HC_STATE_QUIESCING
;
2967 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
2968 spin_lock_irq (&hcd_root_hub_lock
);
2969 hcd
->rh_registered
= 0;
2970 spin_unlock_irq (&hcd_root_hub_lock
);
2973 cancel_work_sync(&hcd
->wakeup_work
);
2976 mutex_lock(&usb_bus_idr_lock
);
2977 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2978 mutex_unlock(&usb_bus_idr_lock
);
2981 * tasklet_kill() isn't needed here because:
2982 * - driver's disconnect() called from usb_disconnect() should
2983 * make sure its URBs are completed during the disconnect()
2986 * - it is too late to run complete() here since driver may have
2987 * been removed already now
2990 /* Prevent any more root-hub status calls from the timer.
2991 * The HCD might still restart the timer (if a port status change
2992 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2993 * the hub_status_data() callback.
2995 hcd
->rh_pollable
= 0;
2996 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2997 del_timer_sync(&hcd
->rh_timer
);
2999 hcd
->driver
->stop(hcd
);
3000 hcd
->state
= HC_STATE_HALT
;
3002 /* In case the HCD restarted the timer, stop it again. */
3003 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
3004 del_timer_sync(&hcd
->rh_timer
);
3006 if (usb_hcd_is_primary_hcd(hcd
)) {
3008 free_irq(hcd
->irq
, hcd
);
3011 usb_deregister_bus(&hcd
->self
);
3012 hcd_buffer_destroy(hcd
);
3014 if (IS_ENABLED(CONFIG_GENERIC_PHY
) && hcd
->remove_phy
&& hcd
->phy
) {
3015 phy_power_off(hcd
->phy
);
3020 if (hcd
->remove_phy
&& hcd
->usb_phy
) {
3021 usb_phy_shutdown(hcd
->usb_phy
);
3022 usb_put_phy(hcd
->usb_phy
);
3023 hcd
->usb_phy
= NULL
;
3026 usb_put_invalidate_rhdev(hcd
);
3029 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
3032 usb_hcd_platform_shutdown(struct platform_device
*dev
)
3034 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
3036 if (hcd
->driver
->shutdown
)
3037 hcd
->driver
->shutdown(hcd
);
3039 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
3041 /*-------------------------------------------------------------------------*/
3043 #if IS_ENABLED(CONFIG_USB_MON)
3045 const struct usb_mon_operations
*mon_ops
;
3048 * The registration is unlocked.
3049 * We do it this way because we do not want to lock in hot paths.
3051 * Notice that the code is minimally error-proof. Because usbmon needs
3052 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3055 int usb_mon_register(const struct usb_mon_operations
*ops
)
3065 EXPORT_SYMBOL_GPL (usb_mon_register
);
3067 void usb_mon_deregister (void)
3070 if (mon_ops
== NULL
) {
3071 printk(KERN_ERR
"USB: monitor was not registered\n");
3077 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
3079 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */