inet: frag: enforce memory limits earlier
[linux/fpc-iii.git] / drivers / usb / core / hcd.c
blobbdb0d7a08ff9b54bf8a4b439d0c49831d8d3d50a
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 #include <linux/usb/otg.h>
51 #include "usb.h"
54 /*-------------------------------------------------------------------------*/
57 * USB Host Controller Driver framework
59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60 * HCD-specific behaviors/bugs.
62 * This does error checks, tracks devices and urbs, and delegates to a
63 * "hc_driver" only for code (and data) that really needs to know about
64 * hardware differences. That includes root hub registers, i/o queues,
65 * and so on ... but as little else as possible.
67 * Shared code includes most of the "root hub" code (these are emulated,
68 * though each HC's hardware works differently) and PCI glue, plus request
69 * tracking overhead. The HCD code should only block on spinlocks or on
70 * hardware handshaking; blocking on software events (such as other kernel
71 * threads releasing resources, or completing actions) is all generic.
73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75 * only by the hub driver ... and that neither should be seen or used by
76 * usb client device drivers.
78 * Contributors of ideas or unattributed patches include: David Brownell,
79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
81 * HISTORY:
82 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
83 * associated cleanup. "usb_hcd" still != "usb_bus".
84 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
87 /*-------------------------------------------------------------------------*/
89 /* Keep track of which host controller drivers are loaded */
90 unsigned long usb_hcds_loaded;
91 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
93 /* host controllers we manage */
94 DEFINE_IDR (usb_bus_idr);
95 EXPORT_SYMBOL_GPL (usb_bus_idr);
97 /* used when allocating bus numbers */
98 #define USB_MAXBUS 64
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
116 static inline int is_root_hub(struct usb_device *udev)
118 return (udev->parent == NULL);
121 /*-------------------------------------------------------------------------*/
124 * Sharable chunks of root hub code.
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor[18] = {
154 0x12, /* __u8 bLength; */
155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
161 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor[18] = {
175 0x12, /* __u8 bLength; */
176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor[18] = {
196 0x12, /* __u8 bLength; */
197 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
200 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
201 0x00, /* __u8 bDeviceSubClass; */
202 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
203 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
205 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
206 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
207 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
209 0x03, /* __u8 iManufacturer; */
210 0x02, /* __u8 iProduct; */
211 0x01, /* __u8 iSerialNumber; */
212 0x01 /* __u8 bNumConfigurations; */
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor[18] = {
219 0x12, /* __u8 bLength; */
220 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
223 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
224 0x00, /* __u8 bDeviceSubClass; */
225 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
226 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
228 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
229 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
230 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
232 0x03, /* __u8 iManufacturer; */
233 0x02, /* __u8 iProduct; */
234 0x01, /* __u8 iSerialNumber; */
235 0x01 /* __u8 bNumConfigurations; */
239 /*-------------------------------------------------------------------------*/
241 /* Configuration descriptors for our root hubs */
243 static const u8 fs_rh_config_descriptor[] = {
245 /* one configuration */
246 0x09, /* __u8 bLength; */
247 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248 0x19, 0x00, /* __le16 wTotalLength; */
249 0x01, /* __u8 bNumInterfaces; (1) */
250 0x01, /* __u8 bConfigurationValue; */
251 0x00, /* __u8 iConfiguration; */
252 0xc0, /* __u8 bmAttributes;
253 Bit 7: must be set,
254 6: Self-powered,
255 5: Remote wakeup,
256 4..0: resvd */
257 0x00, /* __u8 MaxPower; */
259 /* USB 1.1:
260 * USB 2.0, single TT organization (mandatory):
261 * one interface, protocol 0
263 * USB 2.0, multiple TT organization (optional):
264 * two interfaces, protocols 1 (like single TT)
265 * and 2 (multiple TT mode) ... config is
266 * sometimes settable
267 * NOT IMPLEMENTED
270 /* one interface */
271 0x09, /* __u8 if_bLength; */
272 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
273 0x00, /* __u8 if_bInterfaceNumber; */
274 0x00, /* __u8 if_bAlternateSetting; */
275 0x01, /* __u8 if_bNumEndpoints; */
276 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
277 0x00, /* __u8 if_bInterfaceSubClass; */
278 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
279 0x00, /* __u8 if_iInterface; */
281 /* one endpoint (status change endpoint) */
282 0x07, /* __u8 ep_bLength; */
283 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
285 0x03, /* __u8 ep_bmAttributes; Interrupt */
286 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
290 static const u8 hs_rh_config_descriptor[] = {
292 /* one configuration */
293 0x09, /* __u8 bLength; */
294 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295 0x19, 0x00, /* __le16 wTotalLength; */
296 0x01, /* __u8 bNumInterfaces; (1) */
297 0x01, /* __u8 bConfigurationValue; */
298 0x00, /* __u8 iConfiguration; */
299 0xc0, /* __u8 bmAttributes;
300 Bit 7: must be set,
301 6: Self-powered,
302 5: Remote wakeup,
303 4..0: resvd */
304 0x00, /* __u8 MaxPower; */
306 /* USB 1.1:
307 * USB 2.0, single TT organization (mandatory):
308 * one interface, protocol 0
310 * USB 2.0, multiple TT organization (optional):
311 * two interfaces, protocols 1 (like single TT)
312 * and 2 (multiple TT mode) ... config is
313 * sometimes settable
314 * NOT IMPLEMENTED
317 /* one interface */
318 0x09, /* __u8 if_bLength; */
319 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320 0x00, /* __u8 if_bInterfaceNumber; */
321 0x00, /* __u8 if_bAlternateSetting; */
322 0x01, /* __u8 if_bNumEndpoints; */
323 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
324 0x00, /* __u8 if_bInterfaceSubClass; */
325 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
326 0x00, /* __u8 if_iInterface; */
328 /* one endpoint (status change endpoint) */
329 0x07, /* __u8 ep_bLength; */
330 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
332 0x03, /* __u8 ep_bmAttributes; Interrupt */
333 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334 * see hub.c:hub_configure() for details. */
335 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
339 static const u8 ss_rh_config_descriptor[] = {
340 /* one configuration */
341 0x09, /* __u8 bLength; */
342 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343 0x1f, 0x00, /* __le16 wTotalLength; */
344 0x01, /* __u8 bNumInterfaces; (1) */
345 0x01, /* __u8 bConfigurationValue; */
346 0x00, /* __u8 iConfiguration; */
347 0xc0, /* __u8 bmAttributes;
348 Bit 7: must be set,
349 6: Self-powered,
350 5: Remote wakeup,
351 4..0: resvd */
352 0x00, /* __u8 MaxPower; */
354 /* one interface */
355 0x09, /* __u8 if_bLength; */
356 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357 0x00, /* __u8 if_bInterfaceNumber; */
358 0x00, /* __u8 if_bAlternateSetting; */
359 0x01, /* __u8 if_bNumEndpoints; */
360 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
361 0x00, /* __u8 if_bInterfaceSubClass; */
362 0x00, /* __u8 if_bInterfaceProtocol; */
363 0x00, /* __u8 if_iInterface; */
365 /* one endpoint (status change endpoint) */
366 0x07, /* __u8 ep_bLength; */
367 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
369 0x03, /* __u8 ep_bmAttributes; Interrupt */
370 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371 * see hub.c:hub_configure() for details. */
372 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
375 /* one SuperSpeed endpoint companion descriptor */
376 0x06, /* __u8 ss_bLength */
377 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378 /* Companion */
379 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
381 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
384 /* authorized_default behaviour:
385 * -1 is authorized for all devices except wireless (old behaviour)
386 * 0 is unauthorized for all devices
387 * 1 is authorized for all devices
389 static int authorized_default = -1;
390 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391 MODULE_PARM_DESC(authorized_default,
392 "Default USB device authorization: 0 is not authorized, 1 is "
393 "authorized, -1 is authorized except for wireless USB (default, "
394 "old behaviour");
395 /*-------------------------------------------------------------------------*/
398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399 * @s: Null-terminated ASCII (actually ISO-8859-1) string
400 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401 * @len: Length (in bytes; may be odd) of descriptor buffer.
403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404 * whichever is less.
406 * Note:
407 * USB String descriptors can contain at most 126 characters; input
408 * strings longer than that are truncated.
410 static unsigned
411 ascii2desc(char const *s, u8 *buf, unsigned len)
413 unsigned n, t = 2 + 2*strlen(s);
415 if (t > 254)
416 t = 254; /* Longest possible UTF string descriptor */
417 if (len > t)
418 len = t;
420 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
422 n = len;
423 while (n--) {
424 *buf++ = t;
425 if (!n--)
426 break;
427 *buf++ = t >> 8;
428 t = (unsigned char)*s++;
430 return len;
434 * rh_string() - provides string descriptors for root hub
435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436 * @hcd: the host controller for this root hub
437 * @data: buffer for output packet
438 * @len: length of the provided buffer
440 * Produces either a manufacturer, product or serial number string for the
441 * virtual root hub device.
443 * Return: The number of bytes filled in: the length of the descriptor or
444 * of the provided buffer, whichever is less.
446 static unsigned
447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
449 char buf[100];
450 char const *s;
451 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
453 /* language ids */
454 switch (id) {
455 case 0:
456 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458 if (len > 4)
459 len = 4;
460 memcpy(data, langids, len);
461 return len;
462 case 1:
463 /* Serial number */
464 s = hcd->self.bus_name;
465 break;
466 case 2:
467 /* Product name */
468 s = hcd->product_desc;
469 break;
470 case 3:
471 /* Manufacturer */
472 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473 init_utsname()->release, hcd->driver->description);
474 s = buf;
475 break;
476 default:
477 /* Can't happen; caller guarantees it */
478 return 0;
481 return ascii2desc(s, data, len);
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
488 struct usb_ctrlrequest *cmd;
489 u16 typeReq, wValue, wIndex, wLength;
490 u8 *ubuf = urb->transfer_buffer;
491 unsigned len = 0;
492 int status;
493 u8 patch_wakeup = 0;
494 u8 patch_protocol = 0;
495 u16 tbuf_size;
496 u8 *tbuf = NULL;
497 const u8 *bufp;
499 might_sleep();
501 spin_lock_irq(&hcd_root_hub_lock);
502 status = usb_hcd_link_urb_to_ep(hcd, urb);
503 spin_unlock_irq(&hcd_root_hub_lock);
504 if (status)
505 return status;
506 urb->hcpriv = hcd; /* Indicate it's queued */
508 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
510 wValue = le16_to_cpu (cmd->wValue);
511 wIndex = le16_to_cpu (cmd->wIndex);
512 wLength = le16_to_cpu (cmd->wLength);
514 if (wLength > urb->transfer_buffer_length)
515 goto error;
518 * tbuf should be at least as big as the
519 * USB hub descriptor.
521 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523 if (!tbuf) {
524 status = -ENOMEM;
525 goto err_alloc;
528 bufp = tbuf;
531 urb->actual_length = 0;
532 switch (typeReq) {
534 /* DEVICE REQUESTS */
536 /* The root hub's remote wakeup enable bit is implemented using
537 * driver model wakeup flags. If this system supports wakeup
538 * through USB, userspace may change the default "allow wakeup"
539 * policy through sysfs or these calls.
541 * Most root hubs support wakeup from downstream devices, for
542 * runtime power management (disabling USB clocks and reducing
543 * VBUS power usage). However, not all of them do so; silicon,
544 * board, and BIOS bugs here are not uncommon, so these can't
545 * be treated quite like external hubs.
547 * Likewise, not all root hubs will pass wakeup events upstream,
548 * to wake up the whole system. So don't assume root hub and
549 * controller capabilities are identical.
552 case DeviceRequest | USB_REQ_GET_STATUS:
553 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
554 << USB_DEVICE_REMOTE_WAKEUP)
555 | (1 << USB_DEVICE_SELF_POWERED);
556 tbuf[1] = 0;
557 len = 2;
558 break;
559 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
560 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
561 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
562 else
563 goto error;
564 break;
565 case DeviceOutRequest | USB_REQ_SET_FEATURE:
566 if (device_can_wakeup(&hcd->self.root_hub->dev)
567 && wValue == USB_DEVICE_REMOTE_WAKEUP)
568 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
569 else
570 goto error;
571 break;
572 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
573 tbuf[0] = 1;
574 len = 1;
575 /* FALLTHROUGH */
576 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
577 break;
578 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
579 switch (wValue & 0xff00) {
580 case USB_DT_DEVICE << 8:
581 switch (hcd->speed) {
582 case HCD_USB31:
583 bufp = usb31_rh_dev_descriptor;
584 break;
585 case HCD_USB3:
586 bufp = usb3_rh_dev_descriptor;
587 break;
588 case HCD_USB25:
589 bufp = usb25_rh_dev_descriptor;
590 break;
591 case HCD_USB2:
592 bufp = usb2_rh_dev_descriptor;
593 break;
594 case HCD_USB11:
595 bufp = usb11_rh_dev_descriptor;
596 break;
597 default:
598 goto error;
600 len = 18;
601 if (hcd->has_tt)
602 patch_protocol = 1;
603 break;
604 case USB_DT_CONFIG << 8:
605 switch (hcd->speed) {
606 case HCD_USB31:
607 case HCD_USB3:
608 bufp = ss_rh_config_descriptor;
609 len = sizeof ss_rh_config_descriptor;
610 break;
611 case HCD_USB25:
612 case HCD_USB2:
613 bufp = hs_rh_config_descriptor;
614 len = sizeof hs_rh_config_descriptor;
615 break;
616 case HCD_USB11:
617 bufp = fs_rh_config_descriptor;
618 len = sizeof fs_rh_config_descriptor;
619 break;
620 default:
621 goto error;
623 if (device_can_wakeup(&hcd->self.root_hub->dev))
624 patch_wakeup = 1;
625 break;
626 case USB_DT_STRING << 8:
627 if ((wValue & 0xff) < 4)
628 urb->actual_length = rh_string(wValue & 0xff,
629 hcd, ubuf, wLength);
630 else /* unsupported IDs --> "protocol stall" */
631 goto error;
632 break;
633 case USB_DT_BOS << 8:
634 goto nongeneric;
635 default:
636 goto error;
638 break;
639 case DeviceRequest | USB_REQ_GET_INTERFACE:
640 tbuf[0] = 0;
641 len = 1;
642 /* FALLTHROUGH */
643 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
644 break;
645 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
646 /* wValue == urb->dev->devaddr */
647 dev_dbg (hcd->self.controller, "root hub device address %d\n",
648 wValue);
649 break;
651 /* INTERFACE REQUESTS (no defined feature/status flags) */
653 /* ENDPOINT REQUESTS */
655 case EndpointRequest | USB_REQ_GET_STATUS:
656 /* ENDPOINT_HALT flag */
657 tbuf[0] = 0;
658 tbuf[1] = 0;
659 len = 2;
660 /* FALLTHROUGH */
661 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
662 case EndpointOutRequest | USB_REQ_SET_FEATURE:
663 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
664 break;
666 /* CLASS REQUESTS (and errors) */
668 default:
669 nongeneric:
670 /* non-generic request */
671 switch (typeReq) {
672 case GetHubStatus:
673 len = 4;
674 break;
675 case GetPortStatus:
676 if (wValue == HUB_PORT_STATUS)
677 len = 4;
678 else
679 /* other port status types return 8 bytes */
680 len = 8;
681 break;
682 case GetHubDescriptor:
683 len = sizeof (struct usb_hub_descriptor);
684 break;
685 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
686 /* len is returned by hub_control */
687 break;
689 status = hcd->driver->hub_control (hcd,
690 typeReq, wValue, wIndex,
691 tbuf, wLength);
693 if (typeReq == GetHubDescriptor)
694 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
695 (struct usb_hub_descriptor *)tbuf);
696 break;
697 error:
698 /* "protocol stall" on error */
699 status = -EPIPE;
702 if (status < 0) {
703 len = 0;
704 if (status != -EPIPE) {
705 dev_dbg (hcd->self.controller,
706 "CTRL: TypeReq=0x%x val=0x%x "
707 "idx=0x%x len=%d ==> %d\n",
708 typeReq, wValue, wIndex,
709 wLength, status);
711 } else if (status > 0) {
712 /* hub_control may return the length of data copied. */
713 len = status;
714 status = 0;
716 if (len) {
717 if (urb->transfer_buffer_length < len)
718 len = urb->transfer_buffer_length;
719 urb->actual_length = len;
720 /* always USB_DIR_IN, toward host */
721 memcpy (ubuf, bufp, len);
723 /* report whether RH hardware supports remote wakeup */
724 if (patch_wakeup &&
725 len > offsetof (struct usb_config_descriptor,
726 bmAttributes))
727 ((struct usb_config_descriptor *)ubuf)->bmAttributes
728 |= USB_CONFIG_ATT_WAKEUP;
730 /* report whether RH hardware has an integrated TT */
731 if (patch_protocol &&
732 len > offsetof(struct usb_device_descriptor,
733 bDeviceProtocol))
734 ((struct usb_device_descriptor *) ubuf)->
735 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
738 kfree(tbuf);
739 err_alloc:
741 /* any errors get returned through the urb completion */
742 spin_lock_irq(&hcd_root_hub_lock);
743 usb_hcd_unlink_urb_from_ep(hcd, urb);
744 usb_hcd_giveback_urb(hcd, urb, status);
745 spin_unlock_irq(&hcd_root_hub_lock);
746 return 0;
749 /*-------------------------------------------------------------------------*/
752 * Root Hub interrupt transfers are polled using a timer if the
753 * driver requests it; otherwise the driver is responsible for
754 * calling usb_hcd_poll_rh_status() when an event occurs.
756 * Completions are called in_interrupt(), but they may or may not
757 * be in_irq().
759 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
761 struct urb *urb;
762 int length;
763 unsigned long flags;
764 char buffer[6]; /* Any root hubs with > 31 ports? */
766 if (unlikely(!hcd->rh_pollable))
767 return;
768 if (!hcd->uses_new_polling && !hcd->status_urb)
769 return;
771 length = hcd->driver->hub_status_data(hcd, buffer);
772 if (length > 0) {
774 /* try to complete the status urb */
775 spin_lock_irqsave(&hcd_root_hub_lock, flags);
776 urb = hcd->status_urb;
777 if (urb) {
778 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
779 hcd->status_urb = NULL;
780 urb->actual_length = length;
781 memcpy(urb->transfer_buffer, buffer, length);
783 usb_hcd_unlink_urb_from_ep(hcd, urb);
784 usb_hcd_giveback_urb(hcd, urb, 0);
785 } else {
786 length = 0;
787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 (length == 0 && hcd->status_urb != NULL))
798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
802 /* timer callback */
803 static void rh_timer_func (unsigned long _hcd)
805 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
808 /*-------------------------------------------------------------------------*/
810 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
812 int retval;
813 unsigned long flags;
814 unsigned len = 1 + (urb->dev->maxchild / 8);
816 spin_lock_irqsave (&hcd_root_hub_lock, flags);
817 if (hcd->status_urb || urb->transfer_buffer_length < len) {
818 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
819 retval = -EINVAL;
820 goto done;
823 retval = usb_hcd_link_urb_to_ep(hcd, urb);
824 if (retval)
825 goto done;
827 hcd->status_urb = urb;
828 urb->hcpriv = hcd; /* indicate it's queued */
829 if (!hcd->uses_new_polling)
830 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
832 /* If a status change has already occurred, report it ASAP */
833 else if (HCD_POLL_PENDING(hcd))
834 mod_timer(&hcd->rh_timer, jiffies);
835 retval = 0;
836 done:
837 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
838 return retval;
841 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
843 if (usb_endpoint_xfer_int(&urb->ep->desc))
844 return rh_queue_status (hcd, urb);
845 if (usb_endpoint_xfer_control(&urb->ep->desc))
846 return rh_call_control (hcd, urb);
847 return -EINVAL;
850 /*-------------------------------------------------------------------------*/
852 /* Unlinks of root-hub control URBs are legal, but they don't do anything
853 * since these URBs always execute synchronously.
855 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
857 unsigned long flags;
858 int rc;
860 spin_lock_irqsave(&hcd_root_hub_lock, flags);
861 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
862 if (rc)
863 goto done;
865 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
866 ; /* Do nothing */
868 } else { /* Status URB */
869 if (!hcd->uses_new_polling)
870 del_timer (&hcd->rh_timer);
871 if (urb == hcd->status_urb) {
872 hcd->status_urb = NULL;
873 usb_hcd_unlink_urb_from_ep(hcd, urb);
874 usb_hcd_giveback_urb(hcd, urb, status);
877 done:
878 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
879 return rc;
885 * Show & store the current value of authorized_default
887 static ssize_t authorized_default_show(struct device *dev,
888 struct device_attribute *attr, char *buf)
890 struct usb_device *rh_usb_dev = to_usb_device(dev);
891 struct usb_bus *usb_bus = rh_usb_dev->bus;
892 struct usb_hcd *hcd;
894 hcd = bus_to_hcd(usb_bus);
895 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
898 static ssize_t authorized_default_store(struct device *dev,
899 struct device_attribute *attr,
900 const char *buf, size_t size)
902 ssize_t result;
903 unsigned val;
904 struct usb_device *rh_usb_dev = to_usb_device(dev);
905 struct usb_bus *usb_bus = rh_usb_dev->bus;
906 struct usb_hcd *hcd;
908 hcd = bus_to_hcd(usb_bus);
909 result = sscanf(buf, "%u\n", &val);
910 if (result == 1) {
911 if (val)
912 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
913 else
914 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
916 result = size;
917 } else {
918 result = -EINVAL;
920 return result;
922 static DEVICE_ATTR_RW(authorized_default);
925 * interface_authorized_default_show - show default authorization status
926 * for USB interfaces
928 * note: interface_authorized_default is the default value
929 * for initializing the authorized attribute of interfaces
931 static ssize_t interface_authorized_default_show(struct device *dev,
932 struct device_attribute *attr, char *buf)
934 struct usb_device *usb_dev = to_usb_device(dev);
935 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
937 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
941 * interface_authorized_default_store - store default authorization status
942 * for USB interfaces
944 * note: interface_authorized_default is the default value
945 * for initializing the authorized attribute of interfaces
947 static ssize_t interface_authorized_default_store(struct device *dev,
948 struct device_attribute *attr, const char *buf, size_t count)
950 struct usb_device *usb_dev = to_usb_device(dev);
951 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
952 int rc = count;
953 bool val;
955 if (strtobool(buf, &val) != 0)
956 return -EINVAL;
958 if (val)
959 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
960 else
961 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
963 return rc;
965 static DEVICE_ATTR_RW(interface_authorized_default);
967 /* Group all the USB bus attributes */
968 static struct attribute *usb_bus_attrs[] = {
969 &dev_attr_authorized_default.attr,
970 &dev_attr_interface_authorized_default.attr,
971 NULL,
974 static struct attribute_group usb_bus_attr_group = {
975 .name = NULL, /* we want them in the same directory */
976 .attrs = usb_bus_attrs,
981 /*-------------------------------------------------------------------------*/
984 * usb_bus_init - shared initialization code
985 * @bus: the bus structure being initialized
987 * This code is used to initialize a usb_bus structure, memory for which is
988 * separately managed.
990 static void usb_bus_init (struct usb_bus *bus)
992 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
994 bus->devnum_next = 1;
996 bus->root_hub = NULL;
997 bus->busnum = -1;
998 bus->bandwidth_allocated = 0;
999 bus->bandwidth_int_reqs = 0;
1000 bus->bandwidth_isoc_reqs = 0;
1001 mutex_init(&bus->devnum_next_mutex);
1004 /*-------------------------------------------------------------------------*/
1007 * usb_register_bus - registers the USB host controller with the usb core
1008 * @bus: pointer to the bus to register
1009 * Context: !in_interrupt()
1011 * Assigns a bus number, and links the controller into usbcore data
1012 * structures so that it can be seen by scanning the bus list.
1014 * Return: 0 if successful. A negative error code otherwise.
1016 static int usb_register_bus(struct usb_bus *bus)
1018 int result = -E2BIG;
1019 int busnum;
1021 mutex_lock(&usb_bus_idr_lock);
1022 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023 if (busnum < 0) {
1024 pr_err("%s: failed to get bus number\n", usbcore_name);
1025 goto error_find_busnum;
1027 bus->busnum = busnum;
1028 mutex_unlock(&usb_bus_idr_lock);
1030 usb_notify_add_bus(bus);
1032 dev_info (bus->controller, "new USB bus registered, assigned bus "
1033 "number %d\n", bus->busnum);
1034 return 0;
1036 error_find_busnum:
1037 mutex_unlock(&usb_bus_idr_lock);
1038 return result;
1042 * usb_deregister_bus - deregisters the USB host controller
1043 * @bus: pointer to the bus to deregister
1044 * Context: !in_interrupt()
1046 * Recycles the bus number, and unlinks the controller from usbcore data
1047 * structures so that it won't be seen by scanning the bus list.
1049 static void usb_deregister_bus (struct usb_bus *bus)
1051 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1054 * NOTE: make sure that all the devices are removed by the
1055 * controller code, as well as having it call this when cleaning
1056 * itself up
1058 mutex_lock(&usb_bus_idr_lock);
1059 idr_remove(&usb_bus_idr, bus->busnum);
1060 mutex_unlock(&usb_bus_idr_lock);
1062 usb_notify_remove_bus(bus);
1066 * register_root_hub - called by usb_add_hcd() to register a root hub
1067 * @hcd: host controller for this root hub
1069 * This function registers the root hub with the USB subsystem. It sets up
1070 * the device properly in the device tree and then calls usb_new_device()
1071 * to register the usb device. It also assigns the root hub's USB address
1072 * (always 1).
1074 * Return: 0 if successful. A negative error code otherwise.
1076 static int register_root_hub(struct usb_hcd *hcd)
1078 struct device *parent_dev = hcd->self.controller;
1079 struct usb_device *usb_dev = hcd->self.root_hub;
1080 const int devnum = 1;
1081 int retval;
1083 usb_dev->devnum = devnum;
1084 usb_dev->bus->devnum_next = devnum + 1;
1085 memset (&usb_dev->bus->devmap.devicemap, 0,
1086 sizeof usb_dev->bus->devmap.devicemap);
1087 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1088 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1090 mutex_lock(&usb_bus_idr_lock);
1092 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1093 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1094 if (retval != sizeof usb_dev->descriptor) {
1095 mutex_unlock(&usb_bus_idr_lock);
1096 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1097 dev_name(&usb_dev->dev), retval);
1098 return (retval < 0) ? retval : -EMSGSIZE;
1101 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1102 retval = usb_get_bos_descriptor(usb_dev);
1103 if (!retval) {
1104 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1105 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1106 mutex_unlock(&usb_bus_idr_lock);
1107 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1108 dev_name(&usb_dev->dev), retval);
1109 return retval;
1113 retval = usb_new_device (usb_dev);
1114 if (retval) {
1115 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1116 dev_name(&usb_dev->dev), retval);
1117 } else {
1118 spin_lock_irq (&hcd_root_hub_lock);
1119 hcd->rh_registered = 1;
1120 spin_unlock_irq (&hcd_root_hub_lock);
1122 /* Did the HC die before the root hub was registered? */
1123 if (HCD_DEAD(hcd))
1124 usb_hc_died (hcd); /* This time clean up */
1125 usb_dev->dev.of_node = parent_dev->of_node;
1127 mutex_unlock(&usb_bus_idr_lock);
1129 return retval;
1133 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134 * @bus: the bus which the root hub belongs to
1135 * @portnum: the port which is being resumed
1137 * HCDs should call this function when they know that a resume signal is
1138 * being sent to a root-hub port. The root hub will be prevented from
1139 * going into autosuspend until usb_hcd_end_port_resume() is called.
1141 * The bus's private lock must be held by the caller.
1143 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1145 unsigned bit = 1 << portnum;
1147 if (!(bus->resuming_ports & bit)) {
1148 bus->resuming_ports |= bit;
1149 pm_runtime_get_noresume(&bus->root_hub->dev);
1152 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1155 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156 * @bus: the bus which the root hub belongs to
1157 * @portnum: the port which is being resumed
1159 * HCDs should call this function when they know that a resume signal has
1160 * stopped being sent to a root-hub port. The root hub will be allowed to
1161 * autosuspend again.
1163 * The bus's private lock must be held by the caller.
1165 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1167 unsigned bit = 1 << portnum;
1169 if (bus->resuming_ports & bit) {
1170 bus->resuming_ports &= ~bit;
1171 pm_runtime_put_noidle(&bus->root_hub->dev);
1174 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1176 /*-------------------------------------------------------------------------*/
1179 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181 * @is_input: true iff the transaction sends data to the host
1182 * @isoc: true for isochronous transactions, false for interrupt ones
1183 * @bytecount: how many bytes in the transaction.
1185 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1187 * Note:
1188 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189 * scheduled in software, this function is only used for such scheduling.
1191 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1193 unsigned long tmp;
1195 switch (speed) {
1196 case USB_SPEED_LOW: /* INTR only */
1197 if (is_input) {
1198 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200 } else {
1201 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1204 case USB_SPEED_FULL: /* ISOC or INTR */
1205 if (isoc) {
1206 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1208 } else {
1209 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1210 return 9107L + BW_HOST_DELAY + tmp;
1212 case USB_SPEED_HIGH: /* ISOC or INTR */
1213 /* FIXME adjust for input vs output */
1214 if (isoc)
1215 tmp = HS_NSECS_ISO (bytecount);
1216 else
1217 tmp = HS_NSECS (bytecount);
1218 return tmp;
1219 default:
1220 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1221 return -1;
1224 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1227 /*-------------------------------------------------------------------------*/
1230 * Generic HC operations.
1233 /*-------------------------------------------------------------------------*/
1236 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237 * @hcd: host controller to which @urb was submitted
1238 * @urb: URB being submitted
1240 * Host controller drivers should call this routine in their enqueue()
1241 * method. The HCD's private spinlock must be held and interrupts must
1242 * be disabled. The actions carried out here are required for URB
1243 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1245 * Return: 0 for no error, otherwise a negative error code (in which case
1246 * the enqueue() method must fail). If no error occurs but enqueue() fails
1247 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248 * the private spinlock and returning.
1250 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1252 int rc = 0;
1254 spin_lock(&hcd_urb_list_lock);
1256 /* Check that the URB isn't being killed */
1257 if (unlikely(atomic_read(&urb->reject))) {
1258 rc = -EPERM;
1259 goto done;
1262 if (unlikely(!urb->ep->enabled)) {
1263 rc = -ENOENT;
1264 goto done;
1267 if (unlikely(!urb->dev->can_submit)) {
1268 rc = -EHOSTUNREACH;
1269 goto done;
1273 * Check the host controller's state and add the URB to the
1274 * endpoint's queue.
1276 if (HCD_RH_RUNNING(hcd)) {
1277 urb->unlinked = 0;
1278 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1279 } else {
1280 rc = -ESHUTDOWN;
1281 goto done;
1283 done:
1284 spin_unlock(&hcd_urb_list_lock);
1285 return rc;
1287 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1290 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291 * @hcd: host controller to which @urb was submitted
1292 * @urb: URB being checked for unlinkability
1293 * @status: error code to store in @urb if the unlink succeeds
1295 * Host controller drivers should call this routine in their dequeue()
1296 * method. The HCD's private spinlock must be held and interrupts must
1297 * be disabled. The actions carried out here are required for making
1298 * sure than an unlink is valid.
1300 * Return: 0 for no error, otherwise a negative error code (in which case
1301 * the dequeue() method must fail). The possible error codes are:
1303 * -EIDRM: @urb was not submitted or has already completed.
1304 * The completion function may not have been called yet.
1306 * -EBUSY: @urb has already been unlinked.
1308 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309 int status)
1311 struct list_head *tmp;
1313 /* insist the urb is still queued */
1314 list_for_each(tmp, &urb->ep->urb_list) {
1315 if (tmp == &urb->urb_list)
1316 break;
1318 if (tmp != &urb->urb_list)
1319 return -EIDRM;
1321 /* Any status except -EINPROGRESS means something already started to
1322 * unlink this URB from the hardware. So there's no more work to do.
1324 if (urb->unlinked)
1325 return -EBUSY;
1326 urb->unlinked = status;
1327 return 0;
1329 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1332 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333 * @hcd: host controller to which @urb was submitted
1334 * @urb: URB being unlinked
1336 * Host controller drivers should call this routine before calling
1337 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1338 * interrupts must be disabled. The actions carried out here are required
1339 * for URB completion.
1341 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1343 /* clear all state linking urb to this dev (and hcd) */
1344 spin_lock(&hcd_urb_list_lock);
1345 list_del_init(&urb->urb_list);
1346 spin_unlock(&hcd_urb_list_lock);
1348 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1351 * Some usb host controllers can only perform dma using a small SRAM area.
1352 * The usb core itself is however optimized for host controllers that can dma
1353 * using regular system memory - like pci devices doing bus mastering.
1355 * To support host controllers with limited dma capabilities we provide dma
1356 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357 * For this to work properly the host controller code must first use the
1358 * function dma_declare_coherent_memory() to point out which memory area
1359 * that should be used for dma allocations.
1361 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362 * dma using dma_alloc_coherent() which in turn allocates from the memory
1363 * area pointed out with dma_declare_coherent_memory().
1365 * So, to summarize...
1367 * - We need "local" memory, canonical example being
1368 * a small SRAM on a discrete controller being the
1369 * only memory that the controller can read ...
1370 * (a) "normal" kernel memory is no good, and
1371 * (b) there's not enough to share
1373 * - The only *portable* hook for such stuff in the
1374 * DMA framework is dma_declare_coherent_memory()
1376 * - So we use that, even though the primary requirement
1377 * is that the memory be "local" (hence addressable
1378 * by that device), not "coherent".
1382 static int hcd_alloc_coherent(struct usb_bus *bus,
1383 gfp_t mem_flags, dma_addr_t *dma_handle,
1384 void **vaddr_handle, size_t size,
1385 enum dma_data_direction dir)
1387 unsigned char *vaddr;
1389 if (*vaddr_handle == NULL) {
1390 WARN_ON_ONCE(1);
1391 return -EFAULT;
1394 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1395 mem_flags, dma_handle);
1396 if (!vaddr)
1397 return -ENOMEM;
1400 * Store the virtual address of the buffer at the end
1401 * of the allocated dma buffer. The size of the buffer
1402 * may be uneven so use unaligned functions instead
1403 * of just rounding up. It makes sense to optimize for
1404 * memory footprint over access speed since the amount
1405 * of memory available for dma may be limited.
1407 put_unaligned((unsigned long)*vaddr_handle,
1408 (unsigned long *)(vaddr + size));
1410 if (dir == DMA_TO_DEVICE)
1411 memcpy(vaddr, *vaddr_handle, size);
1413 *vaddr_handle = vaddr;
1414 return 0;
1417 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1418 void **vaddr_handle, size_t size,
1419 enum dma_data_direction dir)
1421 unsigned char *vaddr = *vaddr_handle;
1423 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1425 if (dir == DMA_FROM_DEVICE)
1426 memcpy(vaddr, *vaddr_handle, size);
1428 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1430 *vaddr_handle = vaddr;
1431 *dma_handle = 0;
1434 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1436 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1437 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1438 dma_unmap_single(hcd->self.controller,
1439 urb->setup_dma,
1440 sizeof(struct usb_ctrlrequest),
1441 DMA_TO_DEVICE);
1442 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1443 hcd_free_coherent(urb->dev->bus,
1444 &urb->setup_dma,
1445 (void **) &urb->setup_packet,
1446 sizeof(struct usb_ctrlrequest),
1447 DMA_TO_DEVICE);
1449 /* Make it safe to call this routine more than once */
1450 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1452 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1454 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1456 if (hcd->driver->unmap_urb_for_dma)
1457 hcd->driver->unmap_urb_for_dma(hcd, urb);
1458 else
1459 usb_hcd_unmap_urb_for_dma(hcd, urb);
1462 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1464 enum dma_data_direction dir;
1466 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1468 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1470 (urb->transfer_flags & URB_DMA_MAP_SG))
1471 dma_unmap_sg(hcd->self.controller,
1472 urb->sg,
1473 urb->num_sgs,
1474 dir);
1475 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1476 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1477 dma_unmap_page(hcd->self.controller,
1478 urb->transfer_dma,
1479 urb->transfer_buffer_length,
1480 dir);
1481 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1482 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1483 dma_unmap_single(hcd->self.controller,
1484 urb->transfer_dma,
1485 urb->transfer_buffer_length,
1486 dir);
1487 else if (urb->transfer_flags & URB_MAP_LOCAL)
1488 hcd_free_coherent(urb->dev->bus,
1489 &urb->transfer_dma,
1490 &urb->transfer_buffer,
1491 urb->transfer_buffer_length,
1492 dir);
1494 /* Make it safe to call this routine more than once */
1495 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1496 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1498 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1500 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501 gfp_t mem_flags)
1503 if (hcd->driver->map_urb_for_dma)
1504 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1505 else
1506 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1509 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510 gfp_t mem_flags)
1512 enum dma_data_direction dir;
1513 int ret = 0;
1515 /* Map the URB's buffers for DMA access.
1516 * Lower level HCD code should use *_dma exclusively,
1517 * unless it uses pio or talks to another transport,
1518 * or uses the provided scatter gather list for bulk.
1521 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522 if (hcd->self.uses_pio_for_control)
1523 return ret;
1524 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1525 urb->setup_dma = dma_map_single(
1526 hcd->self.controller,
1527 urb->setup_packet,
1528 sizeof(struct usb_ctrlrequest),
1529 DMA_TO_DEVICE);
1530 if (dma_mapping_error(hcd->self.controller,
1531 urb->setup_dma))
1532 return -EAGAIN;
1533 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1534 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1535 ret = hcd_alloc_coherent(
1536 urb->dev->bus, mem_flags,
1537 &urb->setup_dma,
1538 (void **)&urb->setup_packet,
1539 sizeof(struct usb_ctrlrequest),
1540 DMA_TO_DEVICE);
1541 if (ret)
1542 return ret;
1543 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1547 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1548 if (urb->transfer_buffer_length != 0
1549 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1550 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1551 if (urb->num_sgs) {
1552 int n;
1554 /* We don't support sg for isoc transfers ! */
1555 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1556 WARN_ON(1);
1557 return -EINVAL;
1560 n = dma_map_sg(
1561 hcd->self.controller,
1562 urb->sg,
1563 urb->num_sgs,
1564 dir);
1565 if (n <= 0)
1566 ret = -EAGAIN;
1567 else
1568 urb->transfer_flags |= URB_DMA_MAP_SG;
1569 urb->num_mapped_sgs = n;
1570 if (n != urb->num_sgs)
1571 urb->transfer_flags |=
1572 URB_DMA_SG_COMBINED;
1573 } else if (urb->sg) {
1574 struct scatterlist *sg = urb->sg;
1575 urb->transfer_dma = dma_map_page(
1576 hcd->self.controller,
1577 sg_page(sg),
1578 sg->offset,
1579 urb->transfer_buffer_length,
1580 dir);
1581 if (dma_mapping_error(hcd->self.controller,
1582 urb->transfer_dma))
1583 ret = -EAGAIN;
1584 else
1585 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1586 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1587 WARN_ONCE(1, "transfer buffer not dma capable\n");
1588 ret = -EAGAIN;
1589 } else {
1590 urb->transfer_dma = dma_map_single(
1591 hcd->self.controller,
1592 urb->transfer_buffer,
1593 urb->transfer_buffer_length,
1594 dir);
1595 if (dma_mapping_error(hcd->self.controller,
1596 urb->transfer_dma))
1597 ret = -EAGAIN;
1598 else
1599 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1601 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1602 ret = hcd_alloc_coherent(
1603 urb->dev->bus, mem_flags,
1604 &urb->transfer_dma,
1605 &urb->transfer_buffer,
1606 urb->transfer_buffer_length,
1607 dir);
1608 if (ret == 0)
1609 urb->transfer_flags |= URB_MAP_LOCAL;
1611 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1612 URB_SETUP_MAP_LOCAL)))
1613 usb_hcd_unmap_urb_for_dma(hcd, urb);
1615 return ret;
1617 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1619 /*-------------------------------------------------------------------------*/
1621 /* may be called in any context with a valid urb->dev usecount
1622 * caller surrenders "ownership" of urb
1623 * expects usb_submit_urb() to have sanity checked and conditioned all
1624 * inputs in the urb
1626 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1628 int status;
1629 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1631 /* increment urb's reference count as part of giving it to the HCD
1632 * (which will control it). HCD guarantees that it either returns
1633 * an error or calls giveback(), but not both.
1635 usb_get_urb(urb);
1636 atomic_inc(&urb->use_count);
1637 atomic_inc(&urb->dev->urbnum);
1638 usbmon_urb_submit(&hcd->self, urb);
1640 /* NOTE requirements on root-hub callers (usbfs and the hub
1641 * driver, for now): URBs' urb->transfer_buffer must be
1642 * valid and usb_buffer_{sync,unmap}() not be needed, since
1643 * they could clobber root hub response data. Also, control
1644 * URBs must be submitted in process context with interrupts
1645 * enabled.
1648 if (is_root_hub(urb->dev)) {
1649 status = rh_urb_enqueue(hcd, urb);
1650 } else {
1651 status = map_urb_for_dma(hcd, urb, mem_flags);
1652 if (likely(status == 0)) {
1653 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1654 if (unlikely(status))
1655 unmap_urb_for_dma(hcd, urb);
1659 if (unlikely(status)) {
1660 usbmon_urb_submit_error(&hcd->self, urb, status);
1661 urb->hcpriv = NULL;
1662 INIT_LIST_HEAD(&urb->urb_list);
1663 atomic_dec(&urb->use_count);
1664 atomic_dec(&urb->dev->urbnum);
1665 if (atomic_read(&urb->reject))
1666 wake_up(&usb_kill_urb_queue);
1667 usb_put_urb(urb);
1669 return status;
1672 /*-------------------------------------------------------------------------*/
1674 /* this makes the hcd giveback() the urb more quickly, by kicking it
1675 * off hardware queues (which may take a while) and returning it as
1676 * soon as practical. we've already set up the urb's return status,
1677 * but we can't know if the callback completed already.
1679 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1681 int value;
1683 if (is_root_hub(urb->dev))
1684 value = usb_rh_urb_dequeue(hcd, urb, status);
1685 else {
1687 /* The only reason an HCD might fail this call is if
1688 * it has not yet fully queued the urb to begin with.
1689 * Such failures should be harmless. */
1690 value = hcd->driver->urb_dequeue(hcd, urb, status);
1692 return value;
1696 * called in any context
1698 * caller guarantees urb won't be recycled till both unlink()
1699 * and the urb's completion function return
1701 int usb_hcd_unlink_urb (struct urb *urb, int status)
1703 struct usb_hcd *hcd;
1704 struct usb_device *udev = urb->dev;
1705 int retval = -EIDRM;
1706 unsigned long flags;
1708 /* Prevent the device and bus from going away while
1709 * the unlink is carried out. If they are already gone
1710 * then urb->use_count must be 0, since disconnected
1711 * devices can't have any active URBs.
1713 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1714 if (atomic_read(&urb->use_count) > 0) {
1715 retval = 0;
1716 usb_get_dev(udev);
1718 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1719 if (retval == 0) {
1720 hcd = bus_to_hcd(urb->dev->bus);
1721 retval = unlink1(hcd, urb, status);
1722 if (retval == 0)
1723 retval = -EINPROGRESS;
1724 else if (retval != -EIDRM && retval != -EBUSY)
1725 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1726 urb, retval);
1727 usb_put_dev(udev);
1729 return retval;
1732 /*-------------------------------------------------------------------------*/
1734 static void __usb_hcd_giveback_urb(struct urb *urb)
1736 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1737 struct usb_anchor *anchor = urb->anchor;
1738 int status = urb->unlinked;
1739 unsigned long flags;
1741 urb->hcpriv = NULL;
1742 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1743 urb->actual_length < urb->transfer_buffer_length &&
1744 !status))
1745 status = -EREMOTEIO;
1747 unmap_urb_for_dma(hcd, urb);
1748 usbmon_urb_complete(&hcd->self, urb, status);
1749 usb_anchor_suspend_wakeups(anchor);
1750 usb_unanchor_urb(urb);
1751 if (likely(status == 0))
1752 usb_led_activity(USB_LED_EVENT_HOST);
1754 /* pass ownership to the completion handler */
1755 urb->status = status;
1758 * We disable local IRQs here avoid possible deadlock because
1759 * drivers may call spin_lock() to hold lock which might be
1760 * acquired in one hard interrupt handler.
1762 * The local_irq_save()/local_irq_restore() around complete()
1763 * will be removed if current USB drivers have been cleaned up
1764 * and no one may trigger the above deadlock situation when
1765 * running complete() in tasklet.
1767 local_irq_save(flags);
1768 urb->complete(urb);
1769 local_irq_restore(flags);
1771 usb_anchor_resume_wakeups(anchor);
1772 atomic_dec(&urb->use_count);
1773 if (unlikely(atomic_read(&urb->reject)))
1774 wake_up(&usb_kill_urb_queue);
1775 usb_put_urb(urb);
1778 static void usb_giveback_urb_bh(unsigned long param)
1780 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1781 struct list_head local_list;
1783 spin_lock_irq(&bh->lock);
1784 bh->running = true;
1785 restart:
1786 list_replace_init(&bh->head, &local_list);
1787 spin_unlock_irq(&bh->lock);
1789 while (!list_empty(&local_list)) {
1790 struct urb *urb;
1792 urb = list_entry(local_list.next, struct urb, urb_list);
1793 list_del_init(&urb->urb_list);
1794 bh->completing_ep = urb->ep;
1795 __usb_hcd_giveback_urb(urb);
1796 bh->completing_ep = NULL;
1799 /* check if there are new URBs to giveback */
1800 spin_lock_irq(&bh->lock);
1801 if (!list_empty(&bh->head))
1802 goto restart;
1803 bh->running = false;
1804 spin_unlock_irq(&bh->lock);
1808 * usb_hcd_giveback_urb - return URB from HCD to device driver
1809 * @hcd: host controller returning the URB
1810 * @urb: urb being returned to the USB device driver.
1811 * @status: completion status code for the URB.
1812 * Context: in_interrupt()
1814 * This hands the URB from HCD to its USB device driver, using its
1815 * completion function. The HCD has freed all per-urb resources
1816 * (and is done using urb->hcpriv). It also released all HCD locks;
1817 * the device driver won't cause problems if it frees, modifies,
1818 * or resubmits this URB.
1820 * If @urb was unlinked, the value of @status will be overridden by
1821 * @urb->unlinked. Erroneous short transfers are detected in case
1822 * the HCD hasn't checked for them.
1824 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1826 struct giveback_urb_bh *bh;
1827 bool running, high_prio_bh;
1829 /* pass status to tasklet via unlinked */
1830 if (likely(!urb->unlinked))
1831 urb->unlinked = status;
1833 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1834 __usb_hcd_giveback_urb(urb);
1835 return;
1838 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1839 bh = &hcd->high_prio_bh;
1840 high_prio_bh = true;
1841 } else {
1842 bh = &hcd->low_prio_bh;
1843 high_prio_bh = false;
1846 spin_lock(&bh->lock);
1847 list_add_tail(&urb->urb_list, &bh->head);
1848 running = bh->running;
1849 spin_unlock(&bh->lock);
1851 if (running)
1853 else if (high_prio_bh)
1854 tasklet_hi_schedule(&bh->bh);
1855 else
1856 tasklet_schedule(&bh->bh);
1858 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1860 /*-------------------------------------------------------------------------*/
1862 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1863 * queue to drain completely. The caller must first insure that no more
1864 * URBs can be submitted for this endpoint.
1866 void usb_hcd_flush_endpoint(struct usb_device *udev,
1867 struct usb_host_endpoint *ep)
1869 struct usb_hcd *hcd;
1870 struct urb *urb;
1872 if (!ep)
1873 return;
1874 might_sleep();
1875 hcd = bus_to_hcd(udev->bus);
1877 /* No more submits can occur */
1878 spin_lock_irq(&hcd_urb_list_lock);
1879 rescan:
1880 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1881 int is_in;
1883 if (urb->unlinked)
1884 continue;
1885 usb_get_urb (urb);
1886 is_in = usb_urb_dir_in(urb);
1887 spin_unlock(&hcd_urb_list_lock);
1889 /* kick hcd */
1890 unlink1(hcd, urb, -ESHUTDOWN);
1891 dev_dbg (hcd->self.controller,
1892 "shutdown urb %pK ep%d%s%s\n",
1893 urb, usb_endpoint_num(&ep->desc),
1894 is_in ? "in" : "out",
1895 ({ char *s;
1897 switch (usb_endpoint_type(&ep->desc)) {
1898 case USB_ENDPOINT_XFER_CONTROL:
1899 s = ""; break;
1900 case USB_ENDPOINT_XFER_BULK:
1901 s = "-bulk"; break;
1902 case USB_ENDPOINT_XFER_INT:
1903 s = "-intr"; break;
1904 default:
1905 s = "-iso"; break;
1908 }));
1909 usb_put_urb (urb);
1911 /* list contents may have changed */
1912 spin_lock(&hcd_urb_list_lock);
1913 goto rescan;
1915 spin_unlock_irq(&hcd_urb_list_lock);
1917 /* Wait until the endpoint queue is completely empty */
1918 while (!list_empty (&ep->urb_list)) {
1919 spin_lock_irq(&hcd_urb_list_lock);
1921 /* The list may have changed while we acquired the spinlock */
1922 urb = NULL;
1923 if (!list_empty (&ep->urb_list)) {
1924 urb = list_entry (ep->urb_list.prev, struct urb,
1925 urb_list);
1926 usb_get_urb (urb);
1928 spin_unlock_irq(&hcd_urb_list_lock);
1930 if (urb) {
1931 usb_kill_urb (urb);
1932 usb_put_urb (urb);
1938 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1939 * the bus bandwidth
1940 * @udev: target &usb_device
1941 * @new_config: new configuration to install
1942 * @cur_alt: the current alternate interface setting
1943 * @new_alt: alternate interface setting that is being installed
1945 * To change configurations, pass in the new configuration in new_config,
1946 * and pass NULL for cur_alt and new_alt.
1948 * To reset a device's configuration (put the device in the ADDRESSED state),
1949 * pass in NULL for new_config, cur_alt, and new_alt.
1951 * To change alternate interface settings, pass in NULL for new_config,
1952 * pass in the current alternate interface setting in cur_alt,
1953 * and pass in the new alternate interface setting in new_alt.
1955 * Return: An error if the requested bandwidth change exceeds the
1956 * bus bandwidth or host controller internal resources.
1958 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1959 struct usb_host_config *new_config,
1960 struct usb_host_interface *cur_alt,
1961 struct usb_host_interface *new_alt)
1963 int num_intfs, i, j;
1964 struct usb_host_interface *alt = NULL;
1965 int ret = 0;
1966 struct usb_hcd *hcd;
1967 struct usb_host_endpoint *ep;
1969 hcd = bus_to_hcd(udev->bus);
1970 if (!hcd->driver->check_bandwidth)
1971 return 0;
1973 /* Configuration is being removed - set configuration 0 */
1974 if (!new_config && !cur_alt) {
1975 for (i = 1; i < 16; ++i) {
1976 ep = udev->ep_out[i];
1977 if (ep)
1978 hcd->driver->drop_endpoint(hcd, udev, ep);
1979 ep = udev->ep_in[i];
1980 if (ep)
1981 hcd->driver->drop_endpoint(hcd, udev, ep);
1983 hcd->driver->check_bandwidth(hcd, udev);
1984 return 0;
1986 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1987 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1988 * of the bus. There will always be bandwidth for endpoint 0, so it's
1989 * ok to exclude it.
1991 if (new_config) {
1992 num_intfs = new_config->desc.bNumInterfaces;
1993 /* Remove endpoints (except endpoint 0, which is always on the
1994 * schedule) from the old config from the schedule
1996 for (i = 1; i < 16; ++i) {
1997 ep = udev->ep_out[i];
1998 if (ep) {
1999 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2000 if (ret < 0)
2001 goto reset;
2003 ep = udev->ep_in[i];
2004 if (ep) {
2005 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2006 if (ret < 0)
2007 goto reset;
2010 for (i = 0; i < num_intfs; ++i) {
2011 struct usb_host_interface *first_alt;
2012 int iface_num;
2014 first_alt = &new_config->intf_cache[i]->altsetting[0];
2015 iface_num = first_alt->desc.bInterfaceNumber;
2016 /* Set up endpoints for alternate interface setting 0 */
2017 alt = usb_find_alt_setting(new_config, iface_num, 0);
2018 if (!alt)
2019 /* No alt setting 0? Pick the first setting. */
2020 alt = first_alt;
2022 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2023 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2024 if (ret < 0)
2025 goto reset;
2029 if (cur_alt && new_alt) {
2030 struct usb_interface *iface = usb_ifnum_to_if(udev,
2031 cur_alt->desc.bInterfaceNumber);
2033 if (!iface)
2034 return -EINVAL;
2035 if (iface->resetting_device) {
2037 * The USB core just reset the device, so the xHCI host
2038 * and the device will think alt setting 0 is installed.
2039 * However, the USB core will pass in the alternate
2040 * setting installed before the reset as cur_alt. Dig
2041 * out the alternate setting 0 structure, or the first
2042 * alternate setting if a broken device doesn't have alt
2043 * setting 0.
2045 cur_alt = usb_altnum_to_altsetting(iface, 0);
2046 if (!cur_alt)
2047 cur_alt = &iface->altsetting[0];
2050 /* Drop all the endpoints in the current alt setting */
2051 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2052 ret = hcd->driver->drop_endpoint(hcd, udev,
2053 &cur_alt->endpoint[i]);
2054 if (ret < 0)
2055 goto reset;
2057 /* Add all the endpoints in the new alt setting */
2058 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2059 ret = hcd->driver->add_endpoint(hcd, udev,
2060 &new_alt->endpoint[i]);
2061 if (ret < 0)
2062 goto reset;
2065 ret = hcd->driver->check_bandwidth(hcd, udev);
2066 reset:
2067 if (ret < 0)
2068 hcd->driver->reset_bandwidth(hcd, udev);
2069 return ret;
2072 /* Disables the endpoint: synchronizes with the hcd to make sure all
2073 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2074 * have been called previously. Use for set_configuration, set_interface,
2075 * driver removal, physical disconnect.
2077 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2078 * type, maxpacket size, toggle, halt status, and scheduling.
2080 void usb_hcd_disable_endpoint(struct usb_device *udev,
2081 struct usb_host_endpoint *ep)
2083 struct usb_hcd *hcd;
2085 might_sleep();
2086 hcd = bus_to_hcd(udev->bus);
2087 if (hcd->driver->endpoint_disable)
2088 hcd->driver->endpoint_disable(hcd, ep);
2092 * usb_hcd_reset_endpoint - reset host endpoint state
2093 * @udev: USB device.
2094 * @ep: the endpoint to reset.
2096 * Resets any host endpoint state such as the toggle bit, sequence
2097 * number and current window.
2099 void usb_hcd_reset_endpoint(struct usb_device *udev,
2100 struct usb_host_endpoint *ep)
2102 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2104 if (hcd->driver->endpoint_reset)
2105 hcd->driver->endpoint_reset(hcd, ep);
2106 else {
2107 int epnum = usb_endpoint_num(&ep->desc);
2108 int is_out = usb_endpoint_dir_out(&ep->desc);
2109 int is_control = usb_endpoint_xfer_control(&ep->desc);
2111 usb_settoggle(udev, epnum, is_out, 0);
2112 if (is_control)
2113 usb_settoggle(udev, epnum, !is_out, 0);
2118 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2119 * @interface: alternate setting that includes all endpoints.
2120 * @eps: array of endpoints that need streams.
2121 * @num_eps: number of endpoints in the array.
2122 * @num_streams: number of streams to allocate.
2123 * @mem_flags: flags hcd should use to allocate memory.
2125 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2126 * Drivers may queue multiple transfers to different stream IDs, which may
2127 * complete in a different order than they were queued.
2129 * Return: On success, the number of allocated streams. On failure, a negative
2130 * error code.
2132 int usb_alloc_streams(struct usb_interface *interface,
2133 struct usb_host_endpoint **eps, unsigned int num_eps,
2134 unsigned int num_streams, gfp_t mem_flags)
2136 struct usb_hcd *hcd;
2137 struct usb_device *dev;
2138 int i, ret;
2140 dev = interface_to_usbdev(interface);
2141 hcd = bus_to_hcd(dev->bus);
2142 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2143 return -EINVAL;
2144 if (dev->speed < USB_SPEED_SUPER)
2145 return -EINVAL;
2146 if (dev->state < USB_STATE_CONFIGURED)
2147 return -ENODEV;
2149 for (i = 0; i < num_eps; i++) {
2150 /* Streams only apply to bulk endpoints. */
2151 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2152 return -EINVAL;
2153 /* Re-alloc is not allowed */
2154 if (eps[i]->streams)
2155 return -EINVAL;
2158 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2159 num_streams, mem_flags);
2160 if (ret < 0)
2161 return ret;
2163 for (i = 0; i < num_eps; i++)
2164 eps[i]->streams = ret;
2166 return ret;
2168 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2171 * usb_free_streams - free bulk endpoint stream IDs.
2172 * @interface: alternate setting that includes all endpoints.
2173 * @eps: array of endpoints to remove streams from.
2174 * @num_eps: number of endpoints in the array.
2175 * @mem_flags: flags hcd should use to allocate memory.
2177 * Reverts a group of bulk endpoints back to not using stream IDs.
2178 * Can fail if we are given bad arguments, or HCD is broken.
2180 * Return: 0 on success. On failure, a negative error code.
2182 int usb_free_streams(struct usb_interface *interface,
2183 struct usb_host_endpoint **eps, unsigned int num_eps,
2184 gfp_t mem_flags)
2186 struct usb_hcd *hcd;
2187 struct usb_device *dev;
2188 int i, ret;
2190 dev = interface_to_usbdev(interface);
2191 hcd = bus_to_hcd(dev->bus);
2192 if (dev->speed < USB_SPEED_SUPER)
2193 return -EINVAL;
2195 /* Double-free is not allowed */
2196 for (i = 0; i < num_eps; i++)
2197 if (!eps[i] || !eps[i]->streams)
2198 return -EINVAL;
2200 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2201 if (ret < 0)
2202 return ret;
2204 for (i = 0; i < num_eps; i++)
2205 eps[i]->streams = 0;
2207 return ret;
2209 EXPORT_SYMBOL_GPL(usb_free_streams);
2211 /* Protect against drivers that try to unlink URBs after the device
2212 * is gone, by waiting until all unlinks for @udev are finished.
2213 * Since we don't currently track URBs by device, simply wait until
2214 * nothing is running in the locked region of usb_hcd_unlink_urb().
2216 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2218 spin_lock_irq(&hcd_urb_unlink_lock);
2219 spin_unlock_irq(&hcd_urb_unlink_lock);
2222 /*-------------------------------------------------------------------------*/
2224 /* called in any context */
2225 int usb_hcd_get_frame_number (struct usb_device *udev)
2227 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2229 if (!HCD_RH_RUNNING(hcd))
2230 return -ESHUTDOWN;
2231 return hcd->driver->get_frame_number (hcd);
2234 /*-------------------------------------------------------------------------*/
2236 #ifdef CONFIG_PM
2238 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2240 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2241 int status;
2242 int old_state = hcd->state;
2244 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2245 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2246 rhdev->do_remote_wakeup);
2247 if (HCD_DEAD(hcd)) {
2248 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2249 return 0;
2252 if (!hcd->driver->bus_suspend) {
2253 status = -ENOENT;
2254 } else {
2255 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2256 hcd->state = HC_STATE_QUIESCING;
2257 status = hcd->driver->bus_suspend(hcd);
2259 if (status == 0) {
2260 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2261 hcd->state = HC_STATE_SUSPENDED;
2263 /* Did we race with a root-hub wakeup event? */
2264 if (rhdev->do_remote_wakeup) {
2265 char buffer[6];
2267 status = hcd->driver->hub_status_data(hcd, buffer);
2268 if (status != 0) {
2269 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2270 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2271 status = -EBUSY;
2274 } else {
2275 spin_lock_irq(&hcd_root_hub_lock);
2276 if (!HCD_DEAD(hcd)) {
2277 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2278 hcd->state = old_state;
2280 spin_unlock_irq(&hcd_root_hub_lock);
2281 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2282 "suspend", status);
2284 return status;
2287 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2289 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2290 int status;
2291 int old_state = hcd->state;
2293 dev_dbg(&rhdev->dev, "usb %sresume\n",
2294 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2295 if (HCD_DEAD(hcd)) {
2296 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2297 return 0;
2299 if (!hcd->driver->bus_resume)
2300 return -ENOENT;
2301 if (HCD_RH_RUNNING(hcd))
2302 return 0;
2304 hcd->state = HC_STATE_RESUMING;
2305 status = hcd->driver->bus_resume(hcd);
2306 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2307 if (status == 0) {
2308 struct usb_device *udev;
2309 int port1;
2311 spin_lock_irq(&hcd_root_hub_lock);
2312 if (!HCD_DEAD(hcd)) {
2313 usb_set_device_state(rhdev, rhdev->actconfig
2314 ? USB_STATE_CONFIGURED
2315 : USB_STATE_ADDRESS);
2316 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2317 hcd->state = HC_STATE_RUNNING;
2319 spin_unlock_irq(&hcd_root_hub_lock);
2322 * Check whether any of the enabled ports on the root hub are
2323 * unsuspended. If they are then a TRSMRCY delay is needed
2324 * (this is what the USB-2 spec calls a "global resume").
2325 * Otherwise we can skip the delay.
2327 usb_hub_for_each_child(rhdev, port1, udev) {
2328 if (udev->state != USB_STATE_NOTATTACHED &&
2329 !udev->port_is_suspended) {
2330 usleep_range(10000, 11000); /* TRSMRCY */
2331 break;
2334 } else {
2335 hcd->state = old_state;
2336 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2337 "resume", status);
2338 if (status != -ESHUTDOWN)
2339 usb_hc_died(hcd);
2341 return status;
2344 /* Workqueue routine for root-hub remote wakeup */
2345 static void hcd_resume_work(struct work_struct *work)
2347 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2348 struct usb_device *udev = hcd->self.root_hub;
2350 usb_remote_wakeup(udev);
2354 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2355 * @hcd: host controller for this root hub
2357 * The USB host controller calls this function when its root hub is
2358 * suspended (with the remote wakeup feature enabled) and a remote
2359 * wakeup request is received. The routine submits a workqueue request
2360 * to resume the root hub (that is, manage its downstream ports again).
2362 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2364 unsigned long flags;
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 if (hcd->rh_registered) {
2368 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2369 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2370 queue_work(pm_wq, &hcd->wakeup_work);
2372 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2374 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2376 #endif /* CONFIG_PM */
2378 /*-------------------------------------------------------------------------*/
2380 #ifdef CONFIG_USB_OTG
2383 * usb_bus_start_enum - start immediate enumeration (for OTG)
2384 * @bus: the bus (must use hcd framework)
2385 * @port_num: 1-based number of port; usually bus->otg_port
2386 * Context: in_interrupt()
2388 * Starts enumeration, with an immediate reset followed later by
2389 * hub_wq identifying and possibly configuring the device.
2390 * This is needed by OTG controller drivers, where it helps meet
2391 * HNP protocol timing requirements for starting a port reset.
2393 * Return: 0 if successful.
2395 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2397 struct usb_hcd *hcd;
2398 int status = -EOPNOTSUPP;
2400 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2401 * boards with root hubs hooked up to internal devices (instead of
2402 * just the OTG port) may need more attention to resetting...
2404 hcd = bus_to_hcd(bus);
2405 if (port_num && hcd->driver->start_port_reset)
2406 status = hcd->driver->start_port_reset(hcd, port_num);
2408 /* allocate hub_wq shortly after (first) root port reset finishes;
2409 * it may issue others, until at least 50 msecs have passed.
2411 if (status == 0)
2412 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2413 return status;
2415 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2417 #endif
2419 /*-------------------------------------------------------------------------*/
2422 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2423 * @irq: the IRQ being raised
2424 * @__hcd: pointer to the HCD whose IRQ is being signaled
2426 * If the controller isn't HALTed, calls the driver's irq handler.
2427 * Checks whether the controller is now dead.
2429 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2431 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2433 struct usb_hcd *hcd = __hcd;
2434 irqreturn_t rc;
2436 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2437 rc = IRQ_NONE;
2438 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2439 rc = IRQ_NONE;
2440 else
2441 rc = IRQ_HANDLED;
2443 return rc;
2445 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2447 /*-------------------------------------------------------------------------*/
2450 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2451 * @hcd: pointer to the HCD representing the controller
2453 * This is called by bus glue to report a USB host controller that died
2454 * while operations may still have been pending. It's called automatically
2455 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2457 * Only call this function with the primary HCD.
2459 void usb_hc_died (struct usb_hcd *hcd)
2461 unsigned long flags;
2463 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2465 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2466 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2467 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2468 if (hcd->rh_registered) {
2469 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2471 /* make hub_wq clean up old urbs and devices */
2472 usb_set_device_state (hcd->self.root_hub,
2473 USB_STATE_NOTATTACHED);
2474 usb_kick_hub_wq(hcd->self.root_hub);
2476 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2477 hcd = hcd->shared_hcd;
2478 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2479 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2480 if (hcd->rh_registered) {
2481 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2483 /* make hub_wq clean up old urbs and devices */
2484 usb_set_device_state(hcd->self.root_hub,
2485 USB_STATE_NOTATTACHED);
2486 usb_kick_hub_wq(hcd->self.root_hub);
2489 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2490 /* Make sure that the other roothub is also deallocated. */
2492 EXPORT_SYMBOL_GPL (usb_hc_died);
2494 /*-------------------------------------------------------------------------*/
2496 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2499 spin_lock_init(&bh->lock);
2500 INIT_LIST_HEAD(&bh->head);
2501 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2505 * usb_create_shared_hcd - create and initialize an HCD structure
2506 * @driver: HC driver that will use this hcd
2507 * @dev: device for this HC, stored in hcd->self.controller
2508 * @bus_name: value to store in hcd->self.bus_name
2509 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2510 * PCI device. Only allocate certain resources for the primary HCD
2511 * Context: !in_interrupt()
2513 * Allocate a struct usb_hcd, with extra space at the end for the
2514 * HC driver's private data. Initialize the generic members of the
2515 * hcd structure.
2517 * Return: On success, a pointer to the created and initialized HCD structure.
2518 * On failure (e.g. if memory is unavailable), %NULL.
2520 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2521 struct device *dev, const char *bus_name,
2522 struct usb_hcd *primary_hcd)
2524 struct usb_hcd *hcd;
2526 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2527 if (!hcd)
2528 return NULL;
2529 if (primary_hcd == NULL) {
2530 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2531 GFP_KERNEL);
2532 if (!hcd->address0_mutex) {
2533 kfree(hcd);
2534 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2535 return NULL;
2537 mutex_init(hcd->address0_mutex);
2538 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2539 GFP_KERNEL);
2540 if (!hcd->bandwidth_mutex) {
2541 kfree(hcd->address0_mutex);
2542 kfree(hcd);
2543 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2544 return NULL;
2546 mutex_init(hcd->bandwidth_mutex);
2547 dev_set_drvdata(dev, hcd);
2548 } else {
2549 mutex_lock(&usb_port_peer_mutex);
2550 hcd->address0_mutex = primary_hcd->address0_mutex;
2551 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2552 hcd->primary_hcd = primary_hcd;
2553 primary_hcd->primary_hcd = primary_hcd;
2554 hcd->shared_hcd = primary_hcd;
2555 primary_hcd->shared_hcd = hcd;
2556 mutex_unlock(&usb_port_peer_mutex);
2559 kref_init(&hcd->kref);
2561 usb_bus_init(&hcd->self);
2562 hcd->self.controller = dev;
2563 hcd->self.bus_name = bus_name;
2564 hcd->self.uses_dma = (dev->dma_mask != NULL);
2566 init_timer(&hcd->rh_timer);
2567 hcd->rh_timer.function = rh_timer_func;
2568 hcd->rh_timer.data = (unsigned long) hcd;
2569 #ifdef CONFIG_PM
2570 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2571 #endif
2573 hcd->driver = driver;
2574 hcd->speed = driver->flags & HCD_MASK;
2575 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2576 "USB Host Controller";
2577 return hcd;
2579 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2582 * usb_create_hcd - create and initialize an HCD structure
2583 * @driver: HC driver that will use this hcd
2584 * @dev: device for this HC, stored in hcd->self.controller
2585 * @bus_name: value to store in hcd->self.bus_name
2586 * Context: !in_interrupt()
2588 * Allocate a struct usb_hcd, with extra space at the end for the
2589 * HC driver's private data. Initialize the generic members of the
2590 * hcd structure.
2592 * Return: On success, a pointer to the created and initialized HCD
2593 * structure. On failure (e.g. if memory is unavailable), %NULL.
2595 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2596 struct device *dev, const char *bus_name)
2598 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2600 EXPORT_SYMBOL_GPL(usb_create_hcd);
2603 * Roothubs that share one PCI device must also share the bandwidth mutex.
2604 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2605 * deallocated.
2607 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2608 * freed. When hcd_release() is called for either hcd in a peer set,
2609 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2611 static void hcd_release(struct kref *kref)
2613 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2615 mutex_lock(&usb_port_peer_mutex);
2616 if (hcd->shared_hcd) {
2617 struct usb_hcd *peer = hcd->shared_hcd;
2619 peer->shared_hcd = NULL;
2620 peer->primary_hcd = NULL;
2621 } else {
2622 kfree(hcd->address0_mutex);
2623 kfree(hcd->bandwidth_mutex);
2625 mutex_unlock(&usb_port_peer_mutex);
2626 kfree(hcd);
2629 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2631 if (hcd)
2632 kref_get (&hcd->kref);
2633 return hcd;
2635 EXPORT_SYMBOL_GPL(usb_get_hcd);
2637 void usb_put_hcd (struct usb_hcd *hcd)
2639 if (hcd)
2640 kref_put (&hcd->kref, hcd_release);
2642 EXPORT_SYMBOL_GPL(usb_put_hcd);
2644 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2646 if (!hcd->primary_hcd)
2647 return 1;
2648 return hcd == hcd->primary_hcd;
2650 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2652 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2654 if (!hcd->driver->find_raw_port_number)
2655 return port1;
2657 return hcd->driver->find_raw_port_number(hcd, port1);
2660 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2661 unsigned int irqnum, unsigned long irqflags)
2663 int retval;
2665 if (hcd->driver->irq) {
2667 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2668 hcd->driver->description, hcd->self.busnum);
2669 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2670 hcd->irq_descr, hcd);
2671 if (retval != 0) {
2672 dev_err(hcd->self.controller,
2673 "request interrupt %d failed\n",
2674 irqnum);
2675 return retval;
2677 hcd->irq = irqnum;
2678 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2679 (hcd->driver->flags & HCD_MEMORY) ?
2680 "io mem" : "io base",
2681 (unsigned long long)hcd->rsrc_start);
2682 } else {
2683 hcd->irq = 0;
2684 if (hcd->rsrc_start)
2685 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2686 (hcd->driver->flags & HCD_MEMORY) ?
2687 "io mem" : "io base",
2688 (unsigned long long)hcd->rsrc_start);
2690 return 0;
2694 * Before we free this root hub, flush in-flight peering attempts
2695 * and disable peer lookups
2697 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2699 struct usb_device *rhdev;
2701 mutex_lock(&usb_port_peer_mutex);
2702 rhdev = hcd->self.root_hub;
2703 hcd->self.root_hub = NULL;
2704 mutex_unlock(&usb_port_peer_mutex);
2705 usb_put_dev(rhdev);
2709 * usb_add_hcd - finish generic HCD structure initialization and register
2710 * @hcd: the usb_hcd structure to initialize
2711 * @irqnum: Interrupt line to allocate
2712 * @irqflags: Interrupt type flags
2714 * Finish the remaining parts of generic HCD initialization: allocate the
2715 * buffers of consistent memory, register the bus, request the IRQ line,
2716 * and call the driver's reset() and start() routines.
2718 int usb_add_hcd(struct usb_hcd *hcd,
2719 unsigned int irqnum, unsigned long irqflags)
2721 int retval;
2722 struct usb_device *rhdev;
2724 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2725 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2727 if (IS_ERR(phy)) {
2728 retval = PTR_ERR(phy);
2729 if (retval == -EPROBE_DEFER)
2730 return retval;
2731 } else {
2732 retval = usb_phy_init(phy);
2733 if (retval) {
2734 usb_put_phy(phy);
2735 return retval;
2737 hcd->usb_phy = phy;
2738 hcd->remove_phy = 1;
2742 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2743 struct phy *phy = phy_get(hcd->self.controller, "usb");
2745 if (IS_ERR(phy)) {
2746 retval = PTR_ERR(phy);
2747 if (retval == -EPROBE_DEFER)
2748 goto err_phy;
2749 } else {
2750 retval = phy_init(phy);
2751 if (retval) {
2752 phy_put(phy);
2753 goto err_phy;
2755 retval = phy_power_on(phy);
2756 if (retval) {
2757 phy_exit(phy);
2758 phy_put(phy);
2759 goto err_phy;
2761 hcd->phy = phy;
2762 hcd->remove_phy = 1;
2766 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2768 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2769 if (authorized_default < 0 || authorized_default > 1) {
2770 if (hcd->wireless)
2771 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2772 else
2773 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2774 } else {
2775 if (authorized_default)
2776 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2777 else
2778 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2780 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2782 /* per default all interfaces are authorized */
2783 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2785 /* HC is in reset state, but accessible. Now do the one-time init,
2786 * bottom up so that hcds can customize the root hubs before hub_wq
2787 * starts talking to them. (Note, bus id is assigned early too.)
2789 retval = hcd_buffer_create(hcd);
2790 if (retval != 0) {
2791 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2792 goto err_create_buf;
2795 retval = usb_register_bus(&hcd->self);
2796 if (retval < 0)
2797 goto err_register_bus;
2799 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2800 if (rhdev == NULL) {
2801 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2802 retval = -ENOMEM;
2803 goto err_allocate_root_hub;
2805 mutex_lock(&usb_port_peer_mutex);
2806 hcd->self.root_hub = rhdev;
2807 mutex_unlock(&usb_port_peer_mutex);
2809 switch (hcd->speed) {
2810 case HCD_USB11:
2811 rhdev->speed = USB_SPEED_FULL;
2812 break;
2813 case HCD_USB2:
2814 rhdev->speed = USB_SPEED_HIGH;
2815 break;
2816 case HCD_USB25:
2817 rhdev->speed = USB_SPEED_WIRELESS;
2818 break;
2819 case HCD_USB3:
2820 rhdev->speed = USB_SPEED_SUPER;
2821 break;
2822 case HCD_USB31:
2823 rhdev->speed = USB_SPEED_SUPER_PLUS;
2824 break;
2825 default:
2826 retval = -EINVAL;
2827 goto err_set_rh_speed;
2830 /* wakeup flag init defaults to "everything works" for root hubs,
2831 * but drivers can override it in reset() if needed, along with
2832 * recording the overall controller's system wakeup capability.
2834 device_set_wakeup_capable(&rhdev->dev, 1);
2836 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2837 * registered. But since the controller can die at any time,
2838 * let's initialize the flag before touching the hardware.
2840 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2842 /* "reset" is misnamed; its role is now one-time init. the controller
2843 * should already have been reset (and boot firmware kicked off etc).
2845 if (hcd->driver->reset) {
2846 retval = hcd->driver->reset(hcd);
2847 if (retval < 0) {
2848 dev_err(hcd->self.controller, "can't setup: %d\n",
2849 retval);
2850 goto err_hcd_driver_setup;
2853 hcd->rh_pollable = 1;
2855 /* NOTE: root hub and controller capabilities may not be the same */
2856 if (device_can_wakeup(hcd->self.controller)
2857 && device_can_wakeup(&hcd->self.root_hub->dev))
2858 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2860 /* initialize tasklets */
2861 init_giveback_urb_bh(&hcd->high_prio_bh);
2862 init_giveback_urb_bh(&hcd->low_prio_bh);
2864 /* enable irqs just before we start the controller,
2865 * if the BIOS provides legacy PCI irqs.
2867 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2868 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2869 if (retval)
2870 goto err_request_irq;
2873 hcd->state = HC_STATE_RUNNING;
2874 retval = hcd->driver->start(hcd);
2875 if (retval < 0) {
2876 dev_err(hcd->self.controller, "startup error %d\n", retval);
2877 goto err_hcd_driver_start;
2880 /* starting here, usbcore will pay attention to this root hub */
2881 retval = register_root_hub(hcd);
2882 if (retval != 0)
2883 goto err_register_root_hub;
2885 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2886 if (retval < 0) {
2887 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2888 retval);
2889 goto error_create_attr_group;
2891 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2892 usb_hcd_poll_rh_status(hcd);
2894 return retval;
2896 error_create_attr_group:
2897 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2898 if (HC_IS_RUNNING(hcd->state))
2899 hcd->state = HC_STATE_QUIESCING;
2900 spin_lock_irq(&hcd_root_hub_lock);
2901 hcd->rh_registered = 0;
2902 spin_unlock_irq(&hcd_root_hub_lock);
2904 #ifdef CONFIG_PM
2905 cancel_work_sync(&hcd->wakeup_work);
2906 #endif
2907 mutex_lock(&usb_bus_idr_lock);
2908 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2909 mutex_unlock(&usb_bus_idr_lock);
2910 err_register_root_hub:
2911 hcd->rh_pollable = 0;
2912 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2913 del_timer_sync(&hcd->rh_timer);
2914 hcd->driver->stop(hcd);
2915 hcd->state = HC_STATE_HALT;
2916 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2917 del_timer_sync(&hcd->rh_timer);
2918 err_hcd_driver_start:
2919 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2920 free_irq(irqnum, hcd);
2921 err_request_irq:
2922 err_hcd_driver_setup:
2923 err_set_rh_speed:
2924 usb_put_invalidate_rhdev(hcd);
2925 err_allocate_root_hub:
2926 usb_deregister_bus(&hcd->self);
2927 err_register_bus:
2928 hcd_buffer_destroy(hcd);
2929 err_create_buf:
2930 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2931 phy_power_off(hcd->phy);
2932 phy_exit(hcd->phy);
2933 phy_put(hcd->phy);
2934 hcd->phy = NULL;
2936 err_phy:
2937 if (hcd->remove_phy && hcd->usb_phy) {
2938 usb_phy_shutdown(hcd->usb_phy);
2939 usb_put_phy(hcd->usb_phy);
2940 hcd->usb_phy = NULL;
2942 return retval;
2944 EXPORT_SYMBOL_GPL(usb_add_hcd);
2947 * usb_remove_hcd - shutdown processing for generic HCDs
2948 * @hcd: the usb_hcd structure to remove
2949 * Context: !in_interrupt()
2951 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2952 * invoking the HCD's stop() method.
2954 void usb_remove_hcd(struct usb_hcd *hcd)
2956 struct usb_device *rhdev = hcd->self.root_hub;
2958 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2960 usb_get_dev(rhdev);
2961 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2963 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2964 if (HC_IS_RUNNING (hcd->state))
2965 hcd->state = HC_STATE_QUIESCING;
2967 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2968 spin_lock_irq (&hcd_root_hub_lock);
2969 hcd->rh_registered = 0;
2970 spin_unlock_irq (&hcd_root_hub_lock);
2972 #ifdef CONFIG_PM
2973 cancel_work_sync(&hcd->wakeup_work);
2974 #endif
2976 mutex_lock(&usb_bus_idr_lock);
2977 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2978 mutex_unlock(&usb_bus_idr_lock);
2981 * tasklet_kill() isn't needed here because:
2982 * - driver's disconnect() called from usb_disconnect() should
2983 * make sure its URBs are completed during the disconnect()
2984 * callback
2986 * - it is too late to run complete() here since driver may have
2987 * been removed already now
2990 /* Prevent any more root-hub status calls from the timer.
2991 * The HCD might still restart the timer (if a port status change
2992 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2993 * the hub_status_data() callback.
2995 hcd->rh_pollable = 0;
2996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2997 del_timer_sync(&hcd->rh_timer);
2999 hcd->driver->stop(hcd);
3000 hcd->state = HC_STATE_HALT;
3002 /* In case the HCD restarted the timer, stop it again. */
3003 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3004 del_timer_sync(&hcd->rh_timer);
3006 if (usb_hcd_is_primary_hcd(hcd)) {
3007 if (hcd->irq > 0)
3008 free_irq(hcd->irq, hcd);
3011 usb_deregister_bus(&hcd->self);
3012 hcd_buffer_destroy(hcd);
3014 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3015 phy_power_off(hcd->phy);
3016 phy_exit(hcd->phy);
3017 phy_put(hcd->phy);
3018 hcd->phy = NULL;
3020 if (hcd->remove_phy && hcd->usb_phy) {
3021 usb_phy_shutdown(hcd->usb_phy);
3022 usb_put_phy(hcd->usb_phy);
3023 hcd->usb_phy = NULL;
3026 usb_put_invalidate_rhdev(hcd);
3027 hcd->flags = 0;
3029 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3031 void
3032 usb_hcd_platform_shutdown(struct platform_device *dev)
3034 struct usb_hcd *hcd = platform_get_drvdata(dev);
3036 if (hcd->driver->shutdown)
3037 hcd->driver->shutdown(hcd);
3039 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3041 /*-------------------------------------------------------------------------*/
3043 #if IS_ENABLED(CONFIG_USB_MON)
3045 const struct usb_mon_operations *mon_ops;
3048 * The registration is unlocked.
3049 * We do it this way because we do not want to lock in hot paths.
3051 * Notice that the code is minimally error-proof. Because usbmon needs
3052 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3055 int usb_mon_register(const struct usb_mon_operations *ops)
3058 if (mon_ops)
3059 return -EBUSY;
3061 mon_ops = ops;
3062 mb();
3063 return 0;
3065 EXPORT_SYMBOL_GPL (usb_mon_register);
3067 void usb_mon_deregister (void)
3070 if (mon_ops == NULL) {
3071 printk(KERN_ERR "USB: monitor was not registered\n");
3072 return;
3074 mon_ops = NULL;
3075 mb();
3077 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3079 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */