1 /* Faraday FOTG210 EHCI-like driver
3 * Copyright (c) 2013 Faraday Technology Corporation
5 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
6 * Feng-Hsin Chiang <john453@faraday-tech.com>
7 * Po-Yu Chuang <ratbert.chuang@gmail.com>
9 * Most of code borrowed from the Linux-3.7 EHCI driver
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software Foundation,
23 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/device.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/sched.h>
32 #include <linux/vmalloc.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/hrtimer.h>
36 #include <linux/list.h>
37 #include <linux/interrupt.h>
38 #include <linux/usb.h>
39 #include <linux/usb/hcd.h>
40 #include <linux/moduleparam.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/debugfs.h>
43 #include <linux/slab.h>
44 #include <linux/uaccess.h>
45 #include <linux/platform_device.h>
48 #include <asm/byteorder.h>
50 #include <asm/unaligned.h>
52 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
53 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
54 static const char hcd_name
[] = "fotg210_hcd";
56 #undef FOTG210_URB_TRACE
59 /* magic numbers that can affect system performance */
60 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
61 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
62 #define FOTG210_TUNE_RL_TT 0
63 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
64 #define FOTG210_TUNE_MULT_TT 1
66 /* Some drivers think it's safe to schedule isochronous transfers more than 256
67 * ms into the future (partly as a result of an old bug in the scheduling
68 * code). In an attempt to avoid trouble, we will use a minimum scheduling
69 * length of 512 frames instead of 256.
71 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
73 /* Initial IRQ latency: faster than hw default */
74 static int log2_irq_thresh
; /* 0 to 6 */
75 module_param(log2_irq_thresh
, int, S_IRUGO
);
76 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
78 /* initial park setting: slower than hw default */
80 module_param(park
, uint
, S_IRUGO
);
81 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
83 /* for link power management(LPM) feature */
84 static unsigned int hird
;
85 module_param(hird
, int, S_IRUGO
);
86 MODULE_PARM_DESC(hird
, "host initiated resume duration, +1 for each 75us");
88 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
92 #define fotg210_dbg(fotg210, fmt, args...) \
93 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
94 #define fotg210_err(fotg210, fmt, args...) \
95 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
96 #define fotg210_info(fotg210, fmt, args...) \
97 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
98 #define fotg210_warn(fotg210, fmt, args...) \
99 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
101 /* check the values in the HCSPARAMS register (host controller _Structural_
102 * parameters) see EHCI spec, Table 2-4 for each value
104 static void dbg_hcs_params(struct fotg210_hcd
*fotg210
, char *label
)
106 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
108 fotg210_dbg(fotg210
, "%s hcs_params 0x%x ports=%d\n", label
, params
,
109 HCS_N_PORTS(params
));
112 /* check the values in the HCCPARAMS register (host controller _Capability_
113 * parameters) see EHCI Spec, Table 2-5 for each value
115 static void dbg_hcc_params(struct fotg210_hcd
*fotg210
, char *label
)
117 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
119 fotg210_dbg(fotg210
, "%s hcc_params %04x uframes %s%s\n", label
,
121 HCC_PGM_FRAMELISTLEN(params
) ? "256/512/1024" : "1024",
122 HCC_CANPARK(params
) ? " park" : "");
125 static void __maybe_unused
126 dbg_qtd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
)
128 fotg210_dbg(fotg210
, "%s td %p n%08x %08x t%08x p0=%08x\n", label
, qtd
,
129 hc32_to_cpup(fotg210
, &qtd
->hw_next
),
130 hc32_to_cpup(fotg210
, &qtd
->hw_alt_next
),
131 hc32_to_cpup(fotg210
, &qtd
->hw_token
),
132 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[0]));
134 fotg210_dbg(fotg210
, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
135 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[1]),
136 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[2]),
137 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[3]),
138 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[4]));
141 static void __maybe_unused
142 dbg_qh(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
144 struct fotg210_qh_hw
*hw
= qh
->hw
;
146 fotg210_dbg(fotg210
, "%s qh %p n%08x info %x %x qtd %x\n", label
, qh
,
147 hw
->hw_next
, hw
->hw_info1
, hw
->hw_info2
,
150 dbg_qtd("overlay", fotg210
, (struct fotg210_qtd
*) &hw
->hw_qtd_next
);
153 static void __maybe_unused
154 dbg_itd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
156 fotg210_dbg(fotg210
, "%s[%d] itd %p, next %08x, urb %p\n", label
,
157 itd
->frame
, itd
, hc32_to_cpu(fotg210
, itd
->hw_next
),
161 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
162 hc32_to_cpu(fotg210
, itd
->hw_transaction
[0]),
163 hc32_to_cpu(fotg210
, itd
->hw_transaction
[1]),
164 hc32_to_cpu(fotg210
, itd
->hw_transaction
[2]),
165 hc32_to_cpu(fotg210
, itd
->hw_transaction
[3]),
166 hc32_to_cpu(fotg210
, itd
->hw_transaction
[4]),
167 hc32_to_cpu(fotg210
, itd
->hw_transaction
[5]),
168 hc32_to_cpu(fotg210
, itd
->hw_transaction
[6]),
169 hc32_to_cpu(fotg210
, itd
->hw_transaction
[7]));
172 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
173 hc32_to_cpu(fotg210
, itd
->hw_bufp
[0]),
174 hc32_to_cpu(fotg210
, itd
->hw_bufp
[1]),
175 hc32_to_cpu(fotg210
, itd
->hw_bufp
[2]),
176 hc32_to_cpu(fotg210
, itd
->hw_bufp
[3]),
177 hc32_to_cpu(fotg210
, itd
->hw_bufp
[4]),
178 hc32_to_cpu(fotg210
, itd
->hw_bufp
[5]),
179 hc32_to_cpu(fotg210
, itd
->hw_bufp
[6]));
181 fotg210_dbg(fotg210
, " index: %d %d %d %d %d %d %d %d\n",
182 itd
->index
[0], itd
->index
[1], itd
->index
[2],
183 itd
->index
[3], itd
->index
[4], itd
->index
[5],
184 itd
->index
[6], itd
->index
[7]);
187 static int __maybe_unused
188 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
190 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
191 label
, label
[0] ? " " : "", status
,
192 (status
& STS_ASS
) ? " Async" : "",
193 (status
& STS_PSS
) ? " Periodic" : "",
194 (status
& STS_RECL
) ? " Recl" : "",
195 (status
& STS_HALT
) ? " Halt" : "",
196 (status
& STS_IAA
) ? " IAA" : "",
197 (status
& STS_FATAL
) ? " FATAL" : "",
198 (status
& STS_FLR
) ? " FLR" : "",
199 (status
& STS_PCD
) ? " PCD" : "",
200 (status
& STS_ERR
) ? " ERR" : "",
201 (status
& STS_INT
) ? " INT" : "");
204 static int __maybe_unused
205 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
207 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
208 label
, label
[0] ? " " : "", enable
,
209 (enable
& STS_IAA
) ? " IAA" : "",
210 (enable
& STS_FATAL
) ? " FATAL" : "",
211 (enable
& STS_FLR
) ? " FLR" : "",
212 (enable
& STS_PCD
) ? " PCD" : "",
213 (enable
& STS_ERR
) ? " ERR" : "",
214 (enable
& STS_INT
) ? " INT" : "");
217 static const char *const fls_strings
[] = { "1024", "512", "256", "??" };
219 static int dbg_command_buf(char *buf
, unsigned len
, const char *label
,
222 return scnprintf(buf
, len
,
223 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
224 label
, label
[0] ? " " : "", command
,
225 (command
& CMD_PARK
) ? " park" : "(park)",
226 CMD_PARK_CNT(command
),
227 (command
>> 16) & 0x3f,
228 (command
& CMD_IAAD
) ? " IAAD" : "",
229 (command
& CMD_ASE
) ? " Async" : "",
230 (command
& CMD_PSE
) ? " Periodic" : "",
231 fls_strings
[(command
>> 2) & 0x3],
232 (command
& CMD_RESET
) ? " Reset" : "",
233 (command
& CMD_RUN
) ? "RUN" : "HALT");
236 static char *dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
,
241 /* signaling state */
242 switch (status
& (3 << 10)) {
248 break; /* low speed */
257 scnprintf(buf
, len
, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
258 label
, label
[0] ? " " : "", port
, status
,
259 status
>> 25, /*device address */
261 (status
& PORT_RESET
) ? " RESET" : "",
262 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
263 (status
& PORT_RESUME
) ? " RESUME" : "",
264 (status
& PORT_PEC
) ? " PEC" : "",
265 (status
& PORT_PE
) ? " PE" : "",
266 (status
& PORT_CSC
) ? " CSC" : "",
267 (status
& PORT_CONNECT
) ? " CONNECT" : "");
272 /* functions have the "wrong" filename when they're output... */
273 #define dbg_status(fotg210, label, status) { \
275 dbg_status_buf(_buf, sizeof(_buf), label, status); \
276 fotg210_dbg(fotg210, "%s\n", _buf); \
279 #define dbg_cmd(fotg210, label, command) { \
281 dbg_command_buf(_buf, sizeof(_buf), label, command); \
282 fotg210_dbg(fotg210, "%s\n", _buf); \
285 #define dbg_port(fotg210, label, port, status) { \
287 fotg210_dbg(fotg210, "%s\n", \
288 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
291 /* troubleshooting help: expose state in debugfs */
292 static int debug_async_open(struct inode
*, struct file
*);
293 static int debug_periodic_open(struct inode
*, struct file
*);
294 static int debug_registers_open(struct inode
*, struct file
*);
295 static int debug_async_open(struct inode
*, struct file
*);
297 static ssize_t
debug_output(struct file
*, char __user
*, size_t, loff_t
*);
298 static int debug_close(struct inode
*, struct file
*);
300 static const struct file_operations debug_async_fops
= {
301 .owner
= THIS_MODULE
,
302 .open
= debug_async_open
,
303 .read
= debug_output
,
304 .release
= debug_close
,
305 .llseek
= default_llseek
,
307 static const struct file_operations debug_periodic_fops
= {
308 .owner
= THIS_MODULE
,
309 .open
= debug_periodic_open
,
310 .read
= debug_output
,
311 .release
= debug_close
,
312 .llseek
= default_llseek
,
314 static const struct file_operations debug_registers_fops
= {
315 .owner
= THIS_MODULE
,
316 .open
= debug_registers_open
,
317 .read
= debug_output
,
318 .release
= debug_close
,
319 .llseek
= default_llseek
,
322 static struct dentry
*fotg210_debug_root
;
324 struct debug_buffer
{
325 ssize_t (*fill_func
)(struct debug_buffer
*); /* fill method */
327 struct mutex mutex
; /* protect filling of buffer */
328 size_t count
; /* number of characters filled into buffer */
333 static inline char speed_char(u32 scratch
)
335 switch (scratch
& (3 << 12)) {
350 static inline char token_mark(struct fotg210_hcd
*fotg210
, __hc32 token
)
352 __u32 v
= hc32_to_cpu(fotg210
, token
);
354 if (v
& QTD_STS_ACTIVE
)
356 if (v
& QTD_STS_HALT
)
358 if (!IS_SHORT_READ(v
))
360 /* tries to advance through hw_alt_next */
364 static void qh_lines(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
,
365 char **nextp
, unsigned *sizep
)
369 struct fotg210_qtd
*td
;
371 unsigned size
= *sizep
;
374 __le32 list_end
= FOTG210_LIST_END(fotg210
);
375 struct fotg210_qh_hw
*hw
= qh
->hw
;
377 if (hw
->hw_qtd_next
== list_end
) /* NEC does this */
380 mark
= token_mark(fotg210
, hw
->hw_token
);
381 if (mark
== '/') { /* qh_alt_next controls qh advance? */
382 if ((hw
->hw_alt_next
& QTD_MASK(fotg210
)) ==
383 fotg210
->async
->hw
->hw_alt_next
)
384 mark
= '#'; /* blocked */
385 else if (hw
->hw_alt_next
== list_end
)
386 mark
= '.'; /* use hw_qtd_next */
387 /* else alt_next points to some other qtd */
389 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
390 hw_curr
= (mark
== '*') ? hc32_to_cpup(fotg210
, &hw
->hw_current
) : 0;
391 temp
= scnprintf(next
, size
,
392 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
393 qh
, scratch
& 0x007f,
395 (scratch
>> 8) & 0x000f,
396 scratch
, hc32_to_cpup(fotg210
, &hw
->hw_info2
),
397 hc32_to_cpup(fotg210
, &hw
->hw_token
), mark
,
398 (cpu_to_hc32(fotg210
, QTD_TOGGLE
) & hw
->hw_token
)
400 (hc32_to_cpup(fotg210
, &hw
->hw_alt_next
) >> 1) & 0x0f);
404 /* hc may be modifying the list as we read it ... */
405 list_for_each_entry(td
, &qh
->qtd_list
, qtd_list
) {
406 scratch
= hc32_to_cpup(fotg210
, &td
->hw_token
);
408 if (hw_curr
== td
->qtd_dma
)
410 else if (hw
->hw_qtd_next
== cpu_to_hc32(fotg210
, td
->qtd_dma
))
412 else if (QTD_LENGTH(scratch
)) {
413 if (td
->hw_alt_next
== fotg210
->async
->hw
->hw_alt_next
)
415 else if (td
->hw_alt_next
!= list_end
)
418 temp
= snprintf(next
, size
,
419 "\n\t%p%c%s len=%d %08x urb %p",
420 td
, mark
, ({ char *tmp
;
421 switch ((scratch
>>8)&0x03) {
435 (scratch
>> 16) & 0x7fff,
446 temp
= snprintf(next
, size
, "\n");
458 static ssize_t
fill_async_buffer(struct debug_buffer
*buf
)
461 struct fotg210_hcd
*fotg210
;
465 struct fotg210_qh
*qh
;
467 hcd
= bus_to_hcd(buf
->bus
);
468 fotg210
= hcd_to_fotg210(hcd
);
469 next
= buf
->output_buf
;
470 size
= buf
->alloc_size
;
474 /* dumps a snapshot of the async schedule.
475 * usually empty except for long-term bulk reads, or head.
476 * one QH per line, and TDs we know about
478 spin_lock_irqsave(&fotg210
->lock
, flags
);
479 for (qh
= fotg210
->async
->qh_next
.qh
; size
> 0 && qh
;
481 qh_lines(fotg210
, qh
, &next
, &size
);
482 if (fotg210
->async_unlink
&& size
> 0) {
483 temp
= scnprintf(next
, size
, "\nunlink =\n");
487 for (qh
= fotg210
->async_unlink
; size
> 0 && qh
;
488 qh
= qh
->unlink_next
)
489 qh_lines(fotg210
, qh
, &next
, &size
);
491 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
493 return strlen(buf
->output_buf
);
496 /* count tds, get ep direction */
497 static unsigned output_buf_tds_dir(char *buf
, struct fotg210_hcd
*fotg210
,
498 struct fotg210_qh_hw
*hw
, struct fotg210_qh
*qh
, unsigned size
)
500 u32 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
501 struct fotg210_qtd
*qtd
;
505 /* count tds, get ep direction */
506 list_for_each_entry(qtd
, &qh
->qtd_list
, qtd_list
) {
508 switch ((hc32_to_cpu(fotg210
, qtd
->hw_token
) >> 8) & 0x03) {
518 return scnprintf(buf
, size
, "(%c%d ep%d%s [%d/%d] q%d p%d)",
519 speed_char(scratch
), scratch
& 0x007f,
520 (scratch
>> 8) & 0x000f, type
, qh
->usecs
,
521 qh
->c_usecs
, temp
, (scratch
>> 16) & 0x7ff);
524 #define DBG_SCHED_LIMIT 64
525 static ssize_t
fill_periodic_buffer(struct debug_buffer
*buf
)
528 struct fotg210_hcd
*fotg210
;
530 union fotg210_shadow p
, *seen
;
531 unsigned temp
, size
, seen_count
;
536 seen
= kmalloc_array(DBG_SCHED_LIMIT
, sizeof(*seen
), GFP_ATOMIC
);
542 hcd
= bus_to_hcd(buf
->bus
);
543 fotg210
= hcd_to_fotg210(hcd
);
544 next
= buf
->output_buf
;
545 size
= buf
->alloc_size
;
547 temp
= scnprintf(next
, size
, "size = %d\n", fotg210
->periodic_size
);
551 /* dump a snapshot of the periodic schedule.
552 * iso changes, interrupt usually doesn't.
554 spin_lock_irqsave(&fotg210
->lock
, flags
);
555 for (i
= 0; i
< fotg210
->periodic_size
; i
++) {
556 p
= fotg210
->pshadow
[i
];
560 tag
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[i
]);
562 temp
= scnprintf(next
, size
, "%4d: ", i
);
567 struct fotg210_qh_hw
*hw
;
569 switch (hc32_to_cpu(fotg210
, tag
)) {
572 temp
= scnprintf(next
, size
, " qh%d-%04x/%p",
574 hc32_to_cpup(fotg210
,
577 & (QH_CMASK
| QH_SMASK
),
581 /* don't repeat what follows this qh */
582 for (temp
= 0; temp
< seen_count
; temp
++) {
583 if (seen
[temp
].ptr
!= p
.ptr
)
585 if (p
.qh
->qh_next
.ptr
) {
586 temp
= scnprintf(next
, size
,
593 /* show more info the first time around */
594 if (temp
== seen_count
) {
595 temp
= output_buf_tds_dir(next
,
599 if (seen_count
< DBG_SCHED_LIMIT
)
600 seen
[seen_count
++].qh
= p
.qh
;
603 tag
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
607 temp
= scnprintf(next
, size
,
609 p
.fstn
->hw_prev
, p
.fstn
);
610 tag
= Q_NEXT_TYPE(fotg210
, p
.fstn
->hw_next
);
611 p
= p
.fstn
->fstn_next
;
614 temp
= scnprintf(next
, size
,
616 tag
= Q_NEXT_TYPE(fotg210
, p
.itd
->hw_next
);
624 temp
= scnprintf(next
, size
, "\n");
628 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
631 return buf
->alloc_size
- size
;
633 #undef DBG_SCHED_LIMIT
635 static const char *rh_state_string(struct fotg210_hcd
*fotg210
)
637 switch (fotg210
->rh_state
) {
638 case FOTG210_RH_HALTED
:
640 case FOTG210_RH_SUSPENDED
:
642 case FOTG210_RH_RUNNING
:
644 case FOTG210_RH_STOPPING
:
650 static ssize_t
fill_registers_buffer(struct debug_buffer
*buf
)
653 struct fotg210_hcd
*fotg210
;
655 unsigned temp
, size
, i
;
656 char *next
, scratch
[80];
657 static const char fmt
[] = "%*s\n";
658 static const char label
[] = "";
660 hcd
= bus_to_hcd(buf
->bus
);
661 fotg210
= hcd_to_fotg210(hcd
);
662 next
= buf
->output_buf
;
663 size
= buf
->alloc_size
;
665 spin_lock_irqsave(&fotg210
->lock
, flags
);
667 if (!HCD_HW_ACCESSIBLE(hcd
)) {
668 size
= scnprintf(next
, size
,
669 "bus %s, device %s\n"
671 "SUSPENDED(no register access)\n",
672 hcd
->self
.controller
->bus
->name
,
673 dev_name(hcd
->self
.controller
),
678 /* Capability Registers */
679 i
= HC_VERSION(fotg210
, fotg210_readl(fotg210
,
680 &fotg210
->caps
->hc_capbase
));
681 temp
= scnprintf(next
, size
,
682 "bus %s, device %s\n"
684 "EHCI %x.%02x, rh state %s\n",
685 hcd
->self
.controller
->bus
->name
,
686 dev_name(hcd
->self
.controller
),
688 i
>> 8, i
& 0x0ff, rh_state_string(fotg210
));
692 /* FIXME interpret both types of params */
693 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
694 temp
= scnprintf(next
, size
, "structural params 0x%08x\n", i
);
698 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
699 temp
= scnprintf(next
, size
, "capability params 0x%08x\n", i
);
703 /* Operational Registers */
704 temp
= dbg_status_buf(scratch
, sizeof(scratch
), label
,
705 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
706 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
710 temp
= dbg_command_buf(scratch
, sizeof(scratch
), label
,
711 fotg210_readl(fotg210
, &fotg210
->regs
->command
));
712 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
716 temp
= dbg_intr_buf(scratch
, sizeof(scratch
), label
,
717 fotg210_readl(fotg210
, &fotg210
->regs
->intr_enable
));
718 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
722 temp
= scnprintf(next
, size
, "uframe %04x\n",
723 fotg210_read_frame_index(fotg210
));
727 if (fotg210
->async_unlink
) {
728 temp
= scnprintf(next
, size
, "async unlink qh %p\n",
729 fotg210
->async_unlink
);
735 temp
= scnprintf(next
, size
,
736 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
737 fotg210
->stats
.normal
, fotg210
->stats
.error
,
738 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
742 temp
= scnprintf(next
, size
, "complete %ld unlink %ld\n",
743 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
749 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
751 return buf
->alloc_size
- size
;
754 static struct debug_buffer
755 *alloc_buffer(struct usb_bus
*bus
, ssize_t (*fill_func
)(struct debug_buffer
*))
757 struct debug_buffer
*buf
;
759 buf
= kzalloc(sizeof(struct debug_buffer
), GFP_KERNEL
);
763 buf
->fill_func
= fill_func
;
764 mutex_init(&buf
->mutex
);
765 buf
->alloc_size
= PAGE_SIZE
;
771 static int fill_buffer(struct debug_buffer
*buf
)
775 if (!buf
->output_buf
)
776 buf
->output_buf
= vmalloc(buf
->alloc_size
);
778 if (!buf
->output_buf
) {
783 ret
= buf
->fill_func(buf
);
794 static ssize_t
debug_output(struct file
*file
, char __user
*user_buf
,
795 size_t len
, loff_t
*offset
)
797 struct debug_buffer
*buf
= file
->private_data
;
800 mutex_lock(&buf
->mutex
);
801 if (buf
->count
== 0) {
802 ret
= fill_buffer(buf
);
804 mutex_unlock(&buf
->mutex
);
808 mutex_unlock(&buf
->mutex
);
810 ret
= simple_read_from_buffer(user_buf
, len
, offset
,
811 buf
->output_buf
, buf
->count
);
818 static int debug_close(struct inode
*inode
, struct file
*file
)
820 struct debug_buffer
*buf
= file
->private_data
;
823 vfree(buf
->output_buf
);
829 static int debug_async_open(struct inode
*inode
, struct file
*file
)
831 file
->private_data
= alloc_buffer(inode
->i_private
, fill_async_buffer
);
833 return file
->private_data
? 0 : -ENOMEM
;
836 static int debug_periodic_open(struct inode
*inode
, struct file
*file
)
838 struct debug_buffer
*buf
;
840 buf
= alloc_buffer(inode
->i_private
, fill_periodic_buffer
);
844 buf
->alloc_size
= (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE
;
845 file
->private_data
= buf
;
849 static int debug_registers_open(struct inode
*inode
, struct file
*file
)
851 file
->private_data
= alloc_buffer(inode
->i_private
,
852 fill_registers_buffer
);
854 return file
->private_data
? 0 : -ENOMEM
;
857 static inline void create_debug_files(struct fotg210_hcd
*fotg210
)
859 struct usb_bus
*bus
= &fotg210_to_hcd(fotg210
)->self
;
861 fotg210
->debug_dir
= debugfs_create_dir(bus
->bus_name
,
863 if (!fotg210
->debug_dir
)
866 if (!debugfs_create_file("async", S_IRUGO
, fotg210
->debug_dir
, bus
,
870 if (!debugfs_create_file("periodic", S_IRUGO
, fotg210
->debug_dir
, bus
,
871 &debug_periodic_fops
))
874 if (!debugfs_create_file("registers", S_IRUGO
, fotg210
->debug_dir
, bus
,
875 &debug_registers_fops
))
881 debugfs_remove_recursive(fotg210
->debug_dir
);
884 static inline void remove_debug_files(struct fotg210_hcd
*fotg210
)
886 debugfs_remove_recursive(fotg210
->debug_dir
);
889 /* handshake - spin reading hc until handshake completes or fails
890 * @ptr: address of hc register to be read
891 * @mask: bits to look at in result of read
892 * @done: value of those bits when handshake succeeds
893 * @usec: timeout in microseconds
895 * Returns negative errno, or zero on success
897 * Success happens when the "mask" bits have the specified value (hardware
898 * handshake done). There are two failure modes: "usec" have passed (major
899 * hardware flakeout), or the register reads as all-ones (hardware removed).
901 * That last failure should_only happen in cases like physical cardbus eject
902 * before driver shutdown. But it also seems to be caused by bugs in cardbus
903 * bridge shutdown: shutting down the bridge before the devices using it.
905 static int handshake(struct fotg210_hcd
*fotg210
, void __iomem
*ptr
,
906 u32 mask
, u32 done
, int usec
)
911 result
= fotg210_readl(fotg210
, ptr
);
912 if (result
== ~(u32
)0) /* card removed */
923 /* Force HC to halt state from unknown (EHCI spec section 2.3).
924 * Must be called with interrupts enabled and the lock not held.
926 static int fotg210_halt(struct fotg210_hcd
*fotg210
)
930 spin_lock_irq(&fotg210
->lock
);
932 /* disable any irqs left enabled by previous code */
933 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
936 * This routine gets called during probe before fotg210->command
937 * has been initialized, so we can't rely on its value.
939 fotg210
->command
&= ~CMD_RUN
;
940 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
941 temp
&= ~(CMD_RUN
| CMD_IAAD
);
942 fotg210_writel(fotg210
, temp
, &fotg210
->regs
->command
);
944 spin_unlock_irq(&fotg210
->lock
);
945 synchronize_irq(fotg210_to_hcd(fotg210
)->irq
);
947 return handshake(fotg210
, &fotg210
->regs
->status
,
948 STS_HALT
, STS_HALT
, 16 * 125);
951 /* Reset a non-running (STS_HALT == 1) controller.
952 * Must be called with interrupts enabled and the lock not held.
954 static int fotg210_reset(struct fotg210_hcd
*fotg210
)
957 u32 command
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
959 /* If the EHCI debug controller is active, special care must be
960 * taken before and after a host controller reset
962 if (fotg210
->debug
&& !dbgp_reset_prep(fotg210_to_hcd(fotg210
)))
963 fotg210
->debug
= NULL
;
965 command
|= CMD_RESET
;
966 dbg_cmd(fotg210
, "reset", command
);
967 fotg210_writel(fotg210
, command
, &fotg210
->regs
->command
);
968 fotg210
->rh_state
= FOTG210_RH_HALTED
;
969 fotg210
->next_statechange
= jiffies
;
970 retval
= handshake(fotg210
, &fotg210
->regs
->command
,
971 CMD_RESET
, 0, 250 * 1000);
977 dbgp_external_startup(fotg210_to_hcd(fotg210
));
979 fotg210
->port_c_suspend
= fotg210
->suspended_ports
=
980 fotg210
->resuming_ports
= 0;
984 /* Idle the controller (turn off the schedules).
985 * Must be called with interrupts enabled and the lock not held.
987 static void fotg210_quiesce(struct fotg210_hcd
*fotg210
)
991 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
994 /* wait for any schedule enables/disables to take effect */
995 temp
= (fotg210
->command
<< 10) & (STS_ASS
| STS_PSS
);
996 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, temp
,
999 /* then disable anything that's still active */
1000 spin_lock_irq(&fotg210
->lock
);
1001 fotg210
->command
&= ~(CMD_ASE
| CMD_PSE
);
1002 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1003 spin_unlock_irq(&fotg210
->lock
);
1005 /* hardware can take 16 microframes to turn off ... */
1006 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, 0,
1010 static void end_unlink_async(struct fotg210_hcd
*fotg210
);
1011 static void unlink_empty_async(struct fotg210_hcd
*fotg210
);
1012 static void fotg210_work(struct fotg210_hcd
*fotg210
);
1013 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
1014 struct fotg210_qh
*qh
);
1015 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
1017 /* Set a bit in the USBCMD register */
1018 static void fotg210_set_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1020 fotg210
->command
|= bit
;
1021 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1023 /* unblock posted write */
1024 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1027 /* Clear a bit in the USBCMD register */
1028 static void fotg210_clear_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1030 fotg210
->command
&= ~bit
;
1031 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1033 /* unblock posted write */
1034 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1037 /* EHCI timer support... Now using hrtimers.
1039 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1040 * the timer routine runs, it checks each possible event; events that are
1041 * currently enabled and whose expiration time has passed get handled.
1042 * The set of enabled events is stored as a collection of bitflags in
1043 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044 * increasing delay values (ranging between 1 ms and 100 ms).
1046 * Rather than implementing a sorted list or tree of all pending events,
1047 * we keep track only of the lowest-numbered pending event, in
1048 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1049 * expiration time is set to the timeout value for this event.
1051 * As a result, events might not get handled right away; the actual delay
1052 * could be anywhere up to twice the requested delay. This doesn't
1053 * matter, because none of the events are especially time-critical. The
1054 * ones that matter most all have a delay of 1 ms, so they will be
1055 * handled after 2 ms at most, which is okay. In addition to this, we
1056 * allow for an expiration range of 1 ms.
1059 /* Delay lengths for the hrtimer event types.
1060 * Keep this list sorted by delay length, in the same order as
1061 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1063 static unsigned event_delays_ns
[] = {
1064 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_ASS */
1065 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_PSS */
1066 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_DEAD */
1067 1125 * NSEC_PER_USEC
, /* FOTG210_HRTIMER_UNLINK_INTR */
1068 2 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_FREE_ITDS */
1069 6 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1071 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072 15 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1073 100 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1076 /* Enable a pending hrtimer event */
1077 static void fotg210_enable_event(struct fotg210_hcd
*fotg210
, unsigned event
,
1080 ktime_t
*timeout
= &fotg210
->hr_timeouts
[event
];
1083 *timeout
= ktime_add(ktime_get(),
1084 ktime_set(0, event_delays_ns
[event
]));
1085 fotg210
->enabled_hrtimer_events
|= (1 << event
);
1087 /* Track only the lowest-numbered pending event */
1088 if (event
< fotg210
->next_hrtimer_event
) {
1089 fotg210
->next_hrtimer_event
= event
;
1090 hrtimer_start_range_ns(&fotg210
->hrtimer
, *timeout
,
1091 NSEC_PER_MSEC
, HRTIMER_MODE_ABS
);
1096 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1097 static void fotg210_poll_ASS(struct fotg210_hcd
*fotg210
)
1099 unsigned actual
, want
;
1101 /* Don't enable anything if the controller isn't running (e.g., died) */
1102 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1105 want
= (fotg210
->command
& CMD_ASE
) ? STS_ASS
: 0;
1106 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_ASS
;
1108 if (want
!= actual
) {
1110 /* Poll again later, but give up after about 20 ms */
1111 if (fotg210
->ASS_poll_count
++ < 20) {
1112 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_ASS
,
1116 fotg210_dbg(fotg210
, "Waited too long for the async schedule status (%x/%x), giving up\n",
1119 fotg210
->ASS_poll_count
= 0;
1121 /* The status is up-to-date; restart or stop the schedule as needed */
1122 if (want
== 0) { /* Stopped */
1123 if (fotg210
->async_count
> 0)
1124 fotg210_set_command_bit(fotg210
, CMD_ASE
);
1126 } else { /* Running */
1127 if (fotg210
->async_count
== 0) {
1129 /* Turn off the schedule after a while */
1130 fotg210_enable_event(fotg210
,
1131 FOTG210_HRTIMER_DISABLE_ASYNC
,
1137 /* Turn off the async schedule after a brief delay */
1138 static void fotg210_disable_ASE(struct fotg210_hcd
*fotg210
)
1140 fotg210_clear_command_bit(fotg210
, CMD_ASE
);
1144 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1145 static void fotg210_poll_PSS(struct fotg210_hcd
*fotg210
)
1147 unsigned actual
, want
;
1149 /* Don't do anything if the controller isn't running (e.g., died) */
1150 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1153 want
= (fotg210
->command
& CMD_PSE
) ? STS_PSS
: 0;
1154 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_PSS
;
1156 if (want
!= actual
) {
1158 /* Poll again later, but give up after about 20 ms */
1159 if (fotg210
->PSS_poll_count
++ < 20) {
1160 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_PSS
,
1164 fotg210_dbg(fotg210
, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1167 fotg210
->PSS_poll_count
= 0;
1169 /* The status is up-to-date; restart or stop the schedule as needed */
1170 if (want
== 0) { /* Stopped */
1171 if (fotg210
->periodic_count
> 0)
1172 fotg210_set_command_bit(fotg210
, CMD_PSE
);
1174 } else { /* Running */
1175 if (fotg210
->periodic_count
== 0) {
1177 /* Turn off the schedule after a while */
1178 fotg210_enable_event(fotg210
,
1179 FOTG210_HRTIMER_DISABLE_PERIODIC
,
1185 /* Turn off the periodic schedule after a brief delay */
1186 static void fotg210_disable_PSE(struct fotg210_hcd
*fotg210
)
1188 fotg210_clear_command_bit(fotg210
, CMD_PSE
);
1192 /* Poll the STS_HALT status bit; see when a dead controller stops */
1193 static void fotg210_handle_controller_death(struct fotg210_hcd
*fotg210
)
1195 if (!(fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_HALT
)) {
1197 /* Give up after a few milliseconds */
1198 if (fotg210
->died_poll_count
++ < 5) {
1199 /* Try again later */
1200 fotg210_enable_event(fotg210
,
1201 FOTG210_HRTIMER_POLL_DEAD
, true);
1204 fotg210_warn(fotg210
, "Waited too long for the controller to stop, giving up\n");
1207 /* Clean up the mess */
1208 fotg210
->rh_state
= FOTG210_RH_HALTED
;
1209 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
1210 fotg210_work(fotg210
);
1211 end_unlink_async(fotg210
);
1213 /* Not in process context, so don't try to reset the controller */
1217 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1218 static void fotg210_handle_intr_unlinks(struct fotg210_hcd
*fotg210
)
1220 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
1223 * Process all the QHs on the intr_unlink list that were added
1224 * before the current unlink cycle began. The list is in
1225 * temporal order, so stop when we reach the first entry in the
1226 * current cycle. But if the root hub isn't running then
1227 * process all the QHs on the list.
1229 fotg210
->intr_unlinking
= true;
1230 while (fotg210
->intr_unlink
) {
1231 struct fotg210_qh
*qh
= fotg210
->intr_unlink
;
1233 if (!stopped
&& qh
->unlink_cycle
== fotg210
->intr_unlink_cycle
)
1235 fotg210
->intr_unlink
= qh
->unlink_next
;
1236 qh
->unlink_next
= NULL
;
1237 end_unlink_intr(fotg210
, qh
);
1240 /* Handle remaining entries later */
1241 if (fotg210
->intr_unlink
) {
1242 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
1244 ++fotg210
->intr_unlink_cycle
;
1246 fotg210
->intr_unlinking
= false;
1250 /* Start another free-iTDs/siTDs cycle */
1251 static void start_free_itds(struct fotg210_hcd
*fotg210
)
1253 if (!(fotg210
->enabled_hrtimer_events
&
1254 BIT(FOTG210_HRTIMER_FREE_ITDS
))) {
1255 fotg210
->last_itd_to_free
= list_entry(
1256 fotg210
->cached_itd_list
.prev
,
1257 struct fotg210_itd
, itd_list
);
1258 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_FREE_ITDS
, true);
1262 /* Wait for controller to stop using old iTDs and siTDs */
1263 static void end_free_itds(struct fotg210_hcd
*fotg210
)
1265 struct fotg210_itd
*itd
, *n
;
1267 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
1268 fotg210
->last_itd_to_free
= NULL
;
1270 list_for_each_entry_safe(itd
, n
, &fotg210
->cached_itd_list
, itd_list
) {
1271 list_del(&itd
->itd_list
);
1272 dma_pool_free(fotg210
->itd_pool
, itd
, itd
->itd_dma
);
1273 if (itd
== fotg210
->last_itd_to_free
)
1277 if (!list_empty(&fotg210
->cached_itd_list
))
1278 start_free_itds(fotg210
);
1282 /* Handle lost (or very late) IAA interrupts */
1283 static void fotg210_iaa_watchdog(struct fotg210_hcd
*fotg210
)
1285 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1289 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1290 * So we need this watchdog, but must protect it against both
1291 * (a) SMP races against real IAA firing and retriggering, and
1292 * (b) clean HC shutdown, when IAA watchdog was pending.
1294 if (fotg210
->async_iaa
) {
1297 /* If we get here, IAA is *REALLY* late. It's barely
1298 * conceivable that the system is so busy that CMD_IAAD
1299 * is still legitimately set, so let's be sure it's
1300 * clear before we read STS_IAA. (The HC should clear
1301 * CMD_IAAD when it sets STS_IAA.)
1303 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1306 * If IAA is set here it either legitimately triggered
1307 * after the watchdog timer expired (_way_ late, so we'll
1308 * still count it as lost) ... or a silicon erratum:
1309 * - VIA seems to set IAA without triggering the IRQ;
1310 * - IAAD potentially cleared without setting IAA.
1312 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
1313 if ((status
& STS_IAA
) || !(cmd
& CMD_IAAD
)) {
1314 COUNT(fotg210
->stats
.lost_iaa
);
1315 fotg210_writel(fotg210
, STS_IAA
,
1316 &fotg210
->regs
->status
);
1319 fotg210_dbg(fotg210
, "IAA watchdog: status %x cmd %x\n",
1321 end_unlink_async(fotg210
);
1326 /* Enable the I/O watchdog, if appropriate */
1327 static void turn_on_io_watchdog(struct fotg210_hcd
*fotg210
)
1329 /* Not needed if the controller isn't running or it's already enabled */
1330 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
||
1331 (fotg210
->enabled_hrtimer_events
&
1332 BIT(FOTG210_HRTIMER_IO_WATCHDOG
)))
1336 * Isochronous transfers always need the watchdog.
1337 * For other sorts we use it only if the flag is set.
1339 if (fotg210
->isoc_count
> 0 || (fotg210
->need_io_watchdog
&&
1340 fotg210
->async_count
+ fotg210
->intr_count
> 0))
1341 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IO_WATCHDOG
,
1346 /* Handler functions for the hrtimer event types.
1347 * Keep this array in the same order as the event types indexed by
1348 * enum fotg210_hrtimer_event in fotg210.h.
1350 static void (*event_handlers
[])(struct fotg210_hcd
*) = {
1351 fotg210_poll_ASS
, /* FOTG210_HRTIMER_POLL_ASS */
1352 fotg210_poll_PSS
, /* FOTG210_HRTIMER_POLL_PSS */
1353 fotg210_handle_controller_death
, /* FOTG210_HRTIMER_POLL_DEAD */
1354 fotg210_handle_intr_unlinks
, /* FOTG210_HRTIMER_UNLINK_INTR */
1355 end_free_itds
, /* FOTG210_HRTIMER_FREE_ITDS */
1356 unlink_empty_async
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1357 fotg210_iaa_watchdog
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1358 fotg210_disable_PSE
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1359 fotg210_disable_ASE
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1360 fotg210_work
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1363 static enum hrtimer_restart
fotg210_hrtimer_func(struct hrtimer
*t
)
1365 struct fotg210_hcd
*fotg210
=
1366 container_of(t
, struct fotg210_hcd
, hrtimer
);
1368 unsigned long events
;
1369 unsigned long flags
;
1372 spin_lock_irqsave(&fotg210
->lock
, flags
);
1374 events
= fotg210
->enabled_hrtimer_events
;
1375 fotg210
->enabled_hrtimer_events
= 0;
1376 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
1379 * Check each pending event. If its time has expired, handle
1380 * the event; otherwise re-enable it.
1383 for_each_set_bit(e
, &events
, FOTG210_HRTIMER_NUM_EVENTS
) {
1384 if (now
.tv64
>= fotg210
->hr_timeouts
[e
].tv64
)
1385 event_handlers
[e
](fotg210
);
1387 fotg210_enable_event(fotg210
, e
, false);
1390 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1391 return HRTIMER_NORESTART
;
1394 #define fotg210_bus_suspend NULL
1395 #define fotg210_bus_resume NULL
1397 static int check_reset_complete(struct fotg210_hcd
*fotg210
, int index
,
1398 u32 __iomem
*status_reg
, int port_status
)
1400 if (!(port_status
& PORT_CONNECT
))
1403 /* if reset finished and it's still not enabled -- handoff */
1404 if (!(port_status
& PORT_PE
))
1405 /* with integrated TT, there's nobody to hand it to! */
1406 fotg210_dbg(fotg210
, "Failed to enable port %d on root hub TT\n",
1409 fotg210_dbg(fotg210
, "port %d reset complete, port enabled\n",
1416 /* build "status change" packet (one or two bytes) from HC registers */
1418 static int fotg210_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
1420 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1424 unsigned long flags
;
1426 /* init status to no-changes */
1429 /* Inform the core about resumes-in-progress by returning
1430 * a non-zero value even if there are no status changes.
1432 status
= fotg210
->resuming_ports
;
1434 mask
= PORT_CSC
| PORT_PEC
;
1435 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1437 /* no hub change reports (bit 0) for now (power, ...) */
1439 /* port N changes (bit N)? */
1440 spin_lock_irqsave(&fotg210
->lock
, flags
);
1442 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->port_status
);
1445 * Return status information even for ports with OWNER set.
1446 * Otherwise hub_wq wouldn't see the disconnect event when a
1447 * high-speed device is switched over to the companion
1448 * controller by the user.
1451 if ((temp
& mask
) != 0 || test_bit(0, &fotg210
->port_c_suspend
) ||
1452 (fotg210
->reset_done
[0] &&
1453 time_after_eq(jiffies
, fotg210
->reset_done
[0]))) {
1457 /* FIXME autosuspend idle root hubs */
1458 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1459 return status
? retval
: 0;
1462 static void fotg210_hub_descriptor(struct fotg210_hcd
*fotg210
,
1463 struct usb_hub_descriptor
*desc
)
1465 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1468 desc
->bDescriptorType
= USB_DT_HUB
;
1469 desc
->bPwrOn2PwrGood
= 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1470 desc
->bHubContrCurrent
= 0;
1472 desc
->bNbrPorts
= ports
;
1473 temp
= 1 + (ports
/ 8);
1474 desc
->bDescLength
= 7 + 2 * temp
;
1476 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1477 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
1478 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
1480 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
1481 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
1482 desc
->wHubCharacteristics
= cpu_to_le16(temp
);
1485 static int fotg210_hub_control(struct usb_hcd
*hcd
, u16 typeReq
, u16 wValue
,
1486 u16 wIndex
, char *buf
, u16 wLength
)
1488 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1489 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1490 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
1491 u32 temp
, temp1
, status
;
1492 unsigned long flags
;
1497 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1498 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1499 * (track current state ourselves) ... blink for diagnostics,
1500 * power, "this is the one", etc. EHCI spec supports this.
1503 spin_lock_irqsave(&fotg210
->lock
, flags
);
1505 case ClearHubFeature
:
1507 case C_HUB_LOCAL_POWER
:
1508 case C_HUB_OVER_CURRENT
:
1509 /* no hub-wide feature/status flags */
1515 case ClearPortFeature
:
1516 if (!wIndex
|| wIndex
> ports
)
1519 temp
= fotg210_readl(fotg210
, status_reg
);
1520 temp
&= ~PORT_RWC_BITS
;
1523 * Even if OWNER is set, so the port is owned by the
1524 * companion controller, hub_wq needs to be able to clear
1525 * the port-change status bits (especially
1526 * USB_PORT_STAT_C_CONNECTION).
1530 case USB_PORT_FEAT_ENABLE
:
1531 fotg210_writel(fotg210
, temp
& ~PORT_PE
, status_reg
);
1533 case USB_PORT_FEAT_C_ENABLE
:
1534 fotg210_writel(fotg210
, temp
| PORT_PEC
, status_reg
);
1536 case USB_PORT_FEAT_SUSPEND
:
1537 if (temp
& PORT_RESET
)
1539 if (!(temp
& PORT_SUSPEND
))
1541 if ((temp
& PORT_PE
) == 0)
1544 /* resume signaling for 20 msec */
1545 fotg210_writel(fotg210
, temp
| PORT_RESUME
, status_reg
);
1546 fotg210
->reset_done
[wIndex
] = jiffies
1547 + msecs_to_jiffies(USB_RESUME_TIMEOUT
);
1549 case USB_PORT_FEAT_C_SUSPEND
:
1550 clear_bit(wIndex
, &fotg210
->port_c_suspend
);
1552 case USB_PORT_FEAT_C_CONNECTION
:
1553 fotg210_writel(fotg210
, temp
| PORT_CSC
, status_reg
);
1555 case USB_PORT_FEAT_C_OVER_CURRENT
:
1556 fotg210_writel(fotg210
, temp
| OTGISR_OVC
,
1557 &fotg210
->regs
->otgisr
);
1559 case USB_PORT_FEAT_C_RESET
:
1560 /* GetPortStatus clears reset */
1565 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1567 case GetHubDescriptor
:
1568 fotg210_hub_descriptor(fotg210
, (struct usb_hub_descriptor
*)
1572 /* no hub-wide feature/status flags */
1574 /*cpu_to_le32s ((u32 *) buf); */
1577 if (!wIndex
|| wIndex
> ports
)
1581 temp
= fotg210_readl(fotg210
, status_reg
);
1583 /* wPortChange bits */
1584 if (temp
& PORT_CSC
)
1585 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
1586 if (temp
& PORT_PEC
)
1587 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
1589 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1590 if (temp1
& OTGISR_OVC
)
1591 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
1593 /* whoever resumes must GetPortStatus to complete it!! */
1594 if (temp
& PORT_RESUME
) {
1596 /* Remote Wakeup received? */
1597 if (!fotg210
->reset_done
[wIndex
]) {
1598 /* resume signaling for 20 msec */
1599 fotg210
->reset_done
[wIndex
] = jiffies
1600 + msecs_to_jiffies(20);
1601 /* check the port again */
1602 mod_timer(&fotg210_to_hcd(fotg210
)->rh_timer
,
1603 fotg210
->reset_done
[wIndex
]);
1606 /* resume completed? */
1607 else if (time_after_eq(jiffies
,
1608 fotg210
->reset_done
[wIndex
])) {
1609 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1610 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1611 fotg210
->reset_done
[wIndex
] = 0;
1613 /* stop resume signaling */
1614 temp
= fotg210_readl(fotg210
, status_reg
);
1615 fotg210_writel(fotg210
, temp
&
1616 ~(PORT_RWC_BITS
| PORT_RESUME
),
1618 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1619 retval
= handshake(fotg210
, status_reg
,
1620 PORT_RESUME
, 0, 2000);/* 2ms */
1622 fotg210_err(fotg210
,
1623 "port %d resume error %d\n",
1624 wIndex
+ 1, retval
);
1627 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
1631 /* whoever resets must GetPortStatus to complete it!! */
1632 if ((temp
& PORT_RESET
) && time_after_eq(jiffies
,
1633 fotg210
->reset_done
[wIndex
])) {
1634 status
|= USB_PORT_STAT_C_RESET
<< 16;
1635 fotg210
->reset_done
[wIndex
] = 0;
1636 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1638 /* force reset to complete */
1639 fotg210_writel(fotg210
,
1640 temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
1642 /* REVISIT: some hardware needs 550+ usec to clear
1643 * this bit; seems too long to spin routinely...
1645 retval
= handshake(fotg210
, status_reg
,
1646 PORT_RESET
, 0, 1000);
1648 fotg210_err(fotg210
, "port %d reset error %d\n",
1649 wIndex
+ 1, retval
);
1653 /* see what we found out */
1654 temp
= check_reset_complete(fotg210
, wIndex
, status_reg
,
1655 fotg210_readl(fotg210
, status_reg
));
1658 if (!(temp
& (PORT_RESUME
|PORT_RESET
))) {
1659 fotg210
->reset_done
[wIndex
] = 0;
1660 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1663 /* transfer dedicated ports to the companion hc */
1664 if ((temp
& PORT_CONNECT
) &&
1665 test_bit(wIndex
, &fotg210
->companion_ports
)) {
1666 temp
&= ~PORT_RWC_BITS
;
1667 fotg210_writel(fotg210
, temp
, status_reg
);
1668 fotg210_dbg(fotg210
, "port %d --> companion\n",
1670 temp
= fotg210_readl(fotg210
, status_reg
);
1674 * Even if OWNER is set, there's no harm letting hub_wq
1675 * see the wPortStatus values (they should all be 0 except
1676 * for PORT_POWER anyway).
1679 if (temp
& PORT_CONNECT
) {
1680 status
|= USB_PORT_STAT_CONNECTION
;
1681 status
|= fotg210_port_speed(fotg210
, temp
);
1684 status
|= USB_PORT_STAT_ENABLE
;
1686 /* maybe the port was unsuspended without our knowledge */
1687 if (temp
& (PORT_SUSPEND
|PORT_RESUME
)) {
1688 status
|= USB_PORT_STAT_SUSPEND
;
1689 } else if (test_bit(wIndex
, &fotg210
->suspended_ports
)) {
1690 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1691 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1692 fotg210
->reset_done
[wIndex
] = 0;
1694 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1697 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1698 if (temp1
& OTGISR_OVC
)
1699 status
|= USB_PORT_STAT_OVERCURRENT
;
1700 if (temp
& PORT_RESET
)
1701 status
|= USB_PORT_STAT_RESET
;
1702 if (test_bit(wIndex
, &fotg210
->port_c_suspend
))
1703 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
1705 if (status
& ~0xffff) /* only if wPortChange is interesting */
1706 dbg_port(fotg210
, "GetStatus", wIndex
+ 1, temp
);
1707 put_unaligned_le32(status
, buf
);
1711 case C_HUB_LOCAL_POWER
:
1712 case C_HUB_OVER_CURRENT
:
1713 /* no hub-wide feature/status flags */
1719 case SetPortFeature
:
1720 selector
= wIndex
>> 8;
1723 if (!wIndex
|| wIndex
> ports
)
1726 temp
= fotg210_readl(fotg210
, status_reg
);
1727 temp
&= ~PORT_RWC_BITS
;
1729 case USB_PORT_FEAT_SUSPEND
:
1730 if ((temp
& PORT_PE
) == 0
1731 || (temp
& PORT_RESET
) != 0)
1734 /* After above check the port must be connected.
1735 * Set appropriate bit thus could put phy into low power
1736 * mode if we have hostpc feature
1738 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1740 set_bit(wIndex
, &fotg210
->suspended_ports
);
1742 case USB_PORT_FEAT_RESET
:
1743 if (temp
& PORT_RESUME
)
1745 /* line status bits may report this as low speed,
1746 * which can be fine if this root hub has a
1747 * transaction translator built in.
1749 fotg210_dbg(fotg210
, "port %d reset\n", wIndex
+ 1);
1754 * caller must wait, then call GetPortStatus
1755 * usb 2.0 spec says 50 ms resets on root
1757 fotg210
->reset_done
[wIndex
] = jiffies
1758 + msecs_to_jiffies(50);
1759 fotg210_writel(fotg210
, temp
, status_reg
);
1762 /* For downstream facing ports (these): one hub port is put
1763 * into test mode according to USB2 11.24.2.13, then the hub
1764 * must be reset (which for root hub now means rmmod+modprobe,
1765 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1766 * about the EHCI-specific stuff.
1768 case USB_PORT_FEAT_TEST
:
1769 if (!selector
|| selector
> 5)
1771 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1772 fotg210_quiesce(fotg210
);
1773 spin_lock_irqsave(&fotg210
->lock
, flags
);
1775 /* Put all enabled ports into suspend */
1776 temp
= fotg210_readl(fotg210
, status_reg
) &
1779 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1782 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1783 fotg210_halt(fotg210
);
1784 spin_lock_irqsave(&fotg210
->lock
, flags
);
1786 temp
= fotg210_readl(fotg210
, status_reg
);
1787 temp
|= selector
<< 16;
1788 fotg210_writel(fotg210
, temp
, status_reg
);
1794 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1799 /* "stall" on error */
1802 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1806 static void __maybe_unused
fotg210_relinquish_port(struct usb_hcd
*hcd
,
1812 static int __maybe_unused
fotg210_port_handed_over(struct usb_hcd
*hcd
,
1818 /* There's basically three types of memory:
1819 * - data used only by the HCD ... kmalloc is fine
1820 * - async and periodic schedules, shared by HC and HCD ... these
1821 * need to use dma_pool or dma_alloc_coherent
1822 * - driver buffers, read/written by HC ... single shot DMA mapped
1824 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1825 * No memory seen by this driver is pageable.
1828 /* Allocate the key transfer structures from the previously allocated pool */
1829 static inline void fotg210_qtd_init(struct fotg210_hcd
*fotg210
,
1830 struct fotg210_qtd
*qtd
, dma_addr_t dma
)
1832 memset(qtd
, 0, sizeof(*qtd
));
1834 qtd
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
1835 qtd
->hw_next
= FOTG210_LIST_END(fotg210
);
1836 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
1837 INIT_LIST_HEAD(&qtd
->qtd_list
);
1840 static struct fotg210_qtd
*fotg210_qtd_alloc(struct fotg210_hcd
*fotg210
,
1843 struct fotg210_qtd
*qtd
;
1846 qtd
= dma_pool_alloc(fotg210
->qtd_pool
, flags
, &dma
);
1848 fotg210_qtd_init(fotg210
, qtd
, dma
);
1853 static inline void fotg210_qtd_free(struct fotg210_hcd
*fotg210
,
1854 struct fotg210_qtd
*qtd
)
1856 dma_pool_free(fotg210
->qtd_pool
, qtd
, qtd
->qtd_dma
);
1860 static void qh_destroy(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
1862 /* clean qtds first, and know this is not linked */
1863 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
1864 fotg210_dbg(fotg210
, "unused qh not empty!\n");
1868 fotg210_qtd_free(fotg210
, qh
->dummy
);
1869 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1873 static struct fotg210_qh
*fotg210_qh_alloc(struct fotg210_hcd
*fotg210
,
1876 struct fotg210_qh
*qh
;
1879 qh
= kzalloc(sizeof(*qh
), GFP_ATOMIC
);
1882 qh
->hw
= (struct fotg210_qh_hw
*)
1883 dma_pool_alloc(fotg210
->qh_pool
, flags
, &dma
);
1886 memset(qh
->hw
, 0, sizeof(*qh
->hw
));
1888 INIT_LIST_HEAD(&qh
->qtd_list
);
1890 /* dummy td enables safe urb queuing */
1891 qh
->dummy
= fotg210_qtd_alloc(fotg210
, flags
);
1892 if (qh
->dummy
== NULL
) {
1893 fotg210_dbg(fotg210
, "no dummy td\n");
1899 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1905 /* The queue heads and transfer descriptors are managed from pools tied
1906 * to each of the "per device" structures.
1907 * This is the initialisation and cleanup code.
1910 static void fotg210_mem_cleanup(struct fotg210_hcd
*fotg210
)
1913 qh_destroy(fotg210
, fotg210
->async
);
1914 fotg210
->async
= NULL
;
1917 qh_destroy(fotg210
, fotg210
->dummy
);
1918 fotg210
->dummy
= NULL
;
1920 /* DMA consistent memory and pools */
1921 dma_pool_destroy(fotg210
->qtd_pool
);
1922 fotg210
->qtd_pool
= NULL
;
1924 dma_pool_destroy(fotg210
->qh_pool
);
1925 fotg210
->qh_pool
= NULL
;
1927 dma_pool_destroy(fotg210
->itd_pool
);
1928 fotg210
->itd_pool
= NULL
;
1930 if (fotg210
->periodic
)
1931 dma_free_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1932 fotg210
->periodic_size
* sizeof(u32
),
1933 fotg210
->periodic
, fotg210
->periodic_dma
);
1934 fotg210
->periodic
= NULL
;
1936 /* shadow periodic table */
1937 kfree(fotg210
->pshadow
);
1938 fotg210
->pshadow
= NULL
;
1941 /* remember to add cleanup code (above) if you add anything here */
1942 static int fotg210_mem_init(struct fotg210_hcd
*fotg210
, gfp_t flags
)
1946 /* QTDs for control/bulk/intr transfers */
1947 fotg210
->qtd_pool
= dma_pool_create("fotg210_qtd",
1948 fotg210_to_hcd(fotg210
)->self
.controller
,
1949 sizeof(struct fotg210_qtd
),
1950 32 /* byte alignment (for hw parts) */,
1951 4096 /* can't cross 4K */);
1952 if (!fotg210
->qtd_pool
)
1955 /* QHs for control/bulk/intr transfers */
1956 fotg210
->qh_pool
= dma_pool_create("fotg210_qh",
1957 fotg210_to_hcd(fotg210
)->self
.controller
,
1958 sizeof(struct fotg210_qh_hw
),
1959 32 /* byte alignment (for hw parts) */,
1960 4096 /* can't cross 4K */);
1961 if (!fotg210
->qh_pool
)
1964 fotg210
->async
= fotg210_qh_alloc(fotg210
, flags
);
1965 if (!fotg210
->async
)
1968 /* ITD for high speed ISO transfers */
1969 fotg210
->itd_pool
= dma_pool_create("fotg210_itd",
1970 fotg210_to_hcd(fotg210
)->self
.controller
,
1971 sizeof(struct fotg210_itd
),
1972 64 /* byte alignment (for hw parts) */,
1973 4096 /* can't cross 4K */);
1974 if (!fotg210
->itd_pool
)
1977 /* Hardware periodic table */
1978 fotg210
->periodic
= (__le32
*)
1979 dma_alloc_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1980 fotg210
->periodic_size
* sizeof(__le32
),
1981 &fotg210
->periodic_dma
, 0);
1982 if (fotg210
->periodic
== NULL
)
1985 for (i
= 0; i
< fotg210
->periodic_size
; i
++)
1986 fotg210
->periodic
[i
] = FOTG210_LIST_END(fotg210
);
1988 /* software shadow of hardware table */
1989 fotg210
->pshadow
= kcalloc(fotg210
->periodic_size
, sizeof(void *),
1991 if (fotg210
->pshadow
!= NULL
)
1995 fotg210_dbg(fotg210
, "couldn't init memory\n");
1996 fotg210_mem_cleanup(fotg210
);
1999 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
2001 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
2002 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2003 * buffers needed for the larger number). We use one QH per endpoint, queue
2004 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
2006 * ISO traffic uses "ISO TD" (itd) records, and (along with
2007 * interrupts) needs careful scheduling. Performance improvements can be
2008 * an ongoing challenge. That's in "ehci-sched.c".
2010 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2011 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2012 * (b) special fields in qh entries or (c) split iso entries. TTs will
2013 * buffer low/full speed data so the host collects it at high speed.
2016 /* fill a qtd, returning how much of the buffer we were able to queue up */
2017 static int qtd_fill(struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
,
2018 dma_addr_t buf
, size_t len
, int token
, int maxpacket
)
2023 /* one buffer entry per 4K ... first might be short or unaligned */
2024 qtd
->hw_buf
[0] = cpu_to_hc32(fotg210
, (u32
)addr
);
2025 qtd
->hw_buf_hi
[0] = cpu_to_hc32(fotg210
, (u32
)(addr
>> 32));
2026 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
2027 if (likely(len
< count
)) /* ... iff needed */
2033 /* per-qtd limit: from 16K to 20K (best alignment) */
2034 for (i
= 1; count
< len
&& i
< 5; i
++) {
2036 qtd
->hw_buf
[i
] = cpu_to_hc32(fotg210
, (u32
)addr
);
2037 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(fotg210
,
2040 if ((count
+ 0x1000) < len
)
2046 /* short packets may only terminate transfers */
2048 count
-= (count
% maxpacket
);
2050 qtd
->hw_token
= cpu_to_hc32(fotg210
, (count
<< 16) | token
);
2051 qtd
->length
= count
;
2056 static inline void qh_update(struct fotg210_hcd
*fotg210
,
2057 struct fotg210_qh
*qh
, struct fotg210_qtd
*qtd
)
2059 struct fotg210_qh_hw
*hw
= qh
->hw
;
2061 /* writes to an active overlay are unsafe */
2062 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2064 hw
->hw_qtd_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2065 hw
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2067 /* Except for control endpoints, we make hardware maintain data
2068 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2069 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2072 if (!(hw
->hw_info1
& cpu_to_hc32(fotg210
, QH_TOGGLE_CTL
))) {
2073 unsigned is_out
, epnum
;
2075 is_out
= qh
->is_out
;
2076 epnum
= (hc32_to_cpup(fotg210
, &hw
->hw_info1
) >> 8) & 0x0f;
2077 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
2078 hw
->hw_token
&= ~cpu_to_hc32(fotg210
, QTD_TOGGLE
);
2079 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
2083 hw
->hw_token
&= cpu_to_hc32(fotg210
, QTD_TOGGLE
| QTD_STS_PING
);
2086 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2087 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2088 * recovery (including urb dequeue) would need software changes to a QH...
2090 static void qh_refresh(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2092 struct fotg210_qtd
*qtd
;
2094 if (list_empty(&qh
->qtd_list
))
2097 qtd
= list_entry(qh
->qtd_list
.next
,
2098 struct fotg210_qtd
, qtd_list
);
2100 * first qtd may already be partially processed.
2101 * If we come here during unlink, the QH overlay region
2102 * might have reference to the just unlinked qtd. The
2103 * qtd is updated in qh_completions(). Update the QH
2106 if (cpu_to_hc32(fotg210
, qtd
->qtd_dma
) == qh
->hw
->hw_current
) {
2107 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
2113 qh_update(fotg210
, qh
, qtd
);
2116 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2118 static void fotg210_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
2119 struct usb_host_endpoint
*ep
)
2121 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
2122 struct fotg210_qh
*qh
= ep
->hcpriv
;
2123 unsigned long flags
;
2125 spin_lock_irqsave(&fotg210
->lock
, flags
);
2126 qh
->clearing_tt
= 0;
2127 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
2128 && fotg210
->rh_state
== FOTG210_RH_RUNNING
)
2129 qh_link_async(fotg210
, qh
);
2130 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
2133 static void fotg210_clear_tt_buffer(struct fotg210_hcd
*fotg210
,
2134 struct fotg210_qh
*qh
, struct urb
*urb
, u32 token
)
2137 /* If an async split transaction gets an error or is unlinked,
2138 * the TT buffer may be left in an indeterminate state. We
2139 * have to clear the TT buffer.
2141 * Note: this routine is never called for Isochronous transfers.
2143 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
2144 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
2147 "clear tt buffer port %d, a%d ep%d t%08x\n",
2148 urb
->dev
->ttport
, urb
->dev
->devnum
,
2149 usb_pipeendpoint(urb
->pipe
), token
);
2151 if (urb
->dev
->tt
->hub
!=
2152 fotg210_to_hcd(fotg210
)->self
.root_hub
) {
2153 if (usb_hub_clear_tt_buffer(urb
) == 0)
2154 qh
->clearing_tt
= 1;
2159 static int qtd_copy_status(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2160 size_t length
, u32 token
)
2162 int status
= -EINPROGRESS
;
2164 /* count IN/OUT bytes, not SETUP (even short packets) */
2165 if (likely(QTD_PID(token
) != 2))
2166 urb
->actual_length
+= length
- QTD_LENGTH(token
);
2168 /* don't modify error codes */
2169 if (unlikely(urb
->unlinked
))
2172 /* force cleanup after short read; not always an error */
2173 if (unlikely(IS_SHORT_READ(token
)))
2174 status
= -EREMOTEIO
;
2176 /* serious "can't proceed" faults reported by the hardware */
2177 if (token
& QTD_STS_HALT
) {
2178 if (token
& QTD_STS_BABBLE
) {
2179 /* FIXME "must" disable babbling device's port too */
2180 status
= -EOVERFLOW
;
2181 /* CERR nonzero + halt --> stall */
2182 } else if (QTD_CERR(token
)) {
2185 /* In theory, more than one of the following bits can be set
2186 * since they are sticky and the transaction is retried.
2187 * Which to test first is rather arbitrary.
2189 } else if (token
& QTD_STS_MMF
) {
2190 /* fs/ls interrupt xfer missed the complete-split */
2192 } else if (token
& QTD_STS_DBE
) {
2193 status
= (QTD_PID(token
) == 1) /* IN ? */
2194 ? -ENOSR
/* hc couldn't read data */
2195 : -ECOMM
; /* hc couldn't write data */
2196 } else if (token
& QTD_STS_XACT
) {
2197 /* timeout, bad CRC, wrong PID, etc */
2198 fotg210_dbg(fotg210
, "devpath %s ep%d%s 3strikes\n",
2200 usb_pipeendpoint(urb
->pipe
),
2201 usb_pipein(urb
->pipe
) ? "in" : "out");
2203 } else { /* unknown */
2207 fotg210_dbg(fotg210
,
2208 "dev%d ep%d%s qtd token %08x --> status %d\n",
2209 usb_pipedevice(urb
->pipe
),
2210 usb_pipeendpoint(urb
->pipe
),
2211 usb_pipein(urb
->pipe
) ? "in" : "out",
2218 static void fotg210_urb_done(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2220 __releases(fotg210
->lock
)
2221 __acquires(fotg210
->lock
)
2223 if (likely(urb
->hcpriv
!= NULL
)) {
2224 struct fotg210_qh
*qh
= (struct fotg210_qh
*) urb
->hcpriv
;
2226 /* S-mask in a QH means it's an interrupt urb */
2227 if ((qh
->hw
->hw_info2
& cpu_to_hc32(fotg210
, QH_SMASK
)) != 0) {
2229 /* ... update hc-wide periodic stats (for usbfs) */
2230 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
--;
2234 if (unlikely(urb
->unlinked
)) {
2235 COUNT(fotg210
->stats
.unlink
);
2237 /* report non-error and short read status as zero */
2238 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
2240 COUNT(fotg210
->stats
.complete
);
2243 #ifdef FOTG210_URB_TRACE
2244 fotg210_dbg(fotg210
,
2245 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2246 __func__
, urb
->dev
->devpath
, urb
,
2247 usb_pipeendpoint(urb
->pipe
),
2248 usb_pipein(urb
->pipe
) ? "in" : "out",
2250 urb
->actual_length
, urb
->transfer_buffer_length
);
2253 /* complete() can reenter this HCD */
2254 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
2255 spin_unlock(&fotg210
->lock
);
2256 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210
), urb
, status
);
2257 spin_lock(&fotg210
->lock
);
2260 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2262 /* Process and free completed qtds for a qh, returning URBs to drivers.
2263 * Chases up to qh->hw_current. Returns number of completions called,
2264 * indicating how much "real" work we did.
2266 static unsigned qh_completions(struct fotg210_hcd
*fotg210
,
2267 struct fotg210_qh
*qh
)
2269 struct fotg210_qtd
*last
, *end
= qh
->dummy
;
2270 struct fotg210_qtd
*qtd
, *tmp
;
2275 struct fotg210_qh_hw
*hw
= qh
->hw
;
2277 if (unlikely(list_empty(&qh
->qtd_list
)))
2280 /* completions (or tasks on other cpus) must never clobber HALT
2281 * till we've gone through and cleaned everything up, even when
2282 * they add urbs to this qh's queue or mark them for unlinking.
2284 * NOTE: unlinking expects to be done in queue order.
2286 * It's a bug for qh->qh_state to be anything other than
2287 * QH_STATE_IDLE, unless our caller is scan_async() or
2290 state
= qh
->qh_state
;
2291 qh
->qh_state
= QH_STATE_COMPLETING
;
2292 stopped
= (state
== QH_STATE_IDLE
);
2296 last_status
= -EINPROGRESS
;
2297 qh
->needs_rescan
= 0;
2299 /* remove de-activated QTDs from front of queue.
2300 * after faults (including short reads), cleanup this urb
2301 * then let the queue advance.
2302 * if queue is stopped, handles unlinks.
2304 list_for_each_entry_safe(qtd
, tmp
, &qh
->qtd_list
, qtd_list
) {
2310 /* clean up any state from previous QTD ...*/
2312 if (likely(last
->urb
!= urb
)) {
2313 fotg210_urb_done(fotg210
, last
->urb
,
2316 last_status
= -EINPROGRESS
;
2318 fotg210_qtd_free(fotg210
, last
);
2322 /* ignore urbs submitted during completions we reported */
2326 /* hardware copies qtd out of qh overlay */
2328 token
= hc32_to_cpu(fotg210
, qtd
->hw_token
);
2330 /* always clean up qtds the hc de-activated */
2332 if ((token
& QTD_STS_ACTIVE
) == 0) {
2334 /* Report Data Buffer Error: non-fatal but useful */
2335 if (token
& QTD_STS_DBE
)
2336 fotg210_dbg(fotg210
,
2337 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2338 urb
, usb_endpoint_num(&urb
->ep
->desc
),
2339 usb_endpoint_dir_in(&urb
->ep
->desc
)
2341 urb
->transfer_buffer_length
, qtd
, qh
);
2343 /* on STALL, error, and short reads this urb must
2344 * complete and all its qtds must be recycled.
2346 if ((token
& QTD_STS_HALT
) != 0) {
2348 /* retry transaction errors until we
2349 * reach the software xacterr limit
2351 if ((token
& QTD_STS_XACT
) &&
2352 QTD_CERR(token
) == 0 &&
2353 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
2355 fotg210_dbg(fotg210
,
2356 "detected XactErr len %zu/%zu retry %d\n",
2357 qtd
->length
- QTD_LENGTH(token
),
2361 /* reset the token in the qtd and the
2362 * qh overlay (which still contains
2363 * the qtd) so that we pick up from
2366 token
&= ~QTD_STS_HALT
;
2367 token
|= QTD_STS_ACTIVE
|
2368 (FOTG210_TUNE_CERR
<< 10);
2369 qtd
->hw_token
= cpu_to_hc32(fotg210
,
2372 hw
->hw_token
= cpu_to_hc32(fotg210
,
2378 /* magic dummy for some short reads; qh won't advance.
2379 * that silicon quirk can kick in with this dummy too.
2381 * other short reads won't stop the queue, including
2382 * control transfers (status stage handles that) or
2383 * most other single-qtd reads ... the queue stops if
2384 * URB_SHORT_NOT_OK was set so the driver submitting
2385 * the urbs could clean it up.
2387 } else if (IS_SHORT_READ(token
) &&
2388 !(qtd
->hw_alt_next
&
2389 FOTG210_LIST_END(fotg210
))) {
2393 /* stop scanning when we reach qtds the hc is using */
2394 } else if (likely(!stopped
2395 && fotg210
->rh_state
>= FOTG210_RH_RUNNING
)) {
2398 /* scan the whole queue for unlinks whenever it stops */
2402 /* cancel everything if we halt, suspend, etc */
2403 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
2404 last_status
= -ESHUTDOWN
;
2406 /* this qtd is active; skip it unless a previous qtd
2407 * for its urb faulted, or its urb was canceled.
2409 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
2412 /* qh unlinked; token in overlay may be most current */
2413 if (state
== QH_STATE_IDLE
&&
2414 cpu_to_hc32(fotg210
, qtd
->qtd_dma
)
2415 == hw
->hw_current
) {
2416 token
= hc32_to_cpu(fotg210
, hw
->hw_token
);
2418 /* An unlink may leave an incomplete
2419 * async transaction in the TT buffer.
2420 * We have to clear it.
2422 fotg210_clear_tt_buffer(fotg210
, qh
, urb
,
2427 /* unless we already know the urb's status, collect qtd status
2428 * and update count of bytes transferred. in common short read
2429 * cases with only one data qtd (including control transfers),
2430 * queue processing won't halt. but with two or more qtds (for
2431 * example, with a 32 KB transfer), when the first qtd gets a
2432 * short read the second must be removed by hand.
2434 if (last_status
== -EINPROGRESS
) {
2435 last_status
= qtd_copy_status(fotg210
, urb
,
2436 qtd
->length
, token
);
2437 if (last_status
== -EREMOTEIO
&&
2439 FOTG210_LIST_END(fotg210
)))
2440 last_status
= -EINPROGRESS
;
2442 /* As part of low/full-speed endpoint-halt processing
2443 * we must clear the TT buffer (11.17.5).
2445 if (unlikely(last_status
!= -EINPROGRESS
&&
2446 last_status
!= -EREMOTEIO
)) {
2447 /* The TT's in some hubs malfunction when they
2448 * receive this request following a STALL (they
2449 * stop sending isochronous packets). Since a
2450 * STALL can't leave the TT buffer in a busy
2451 * state (if you believe Figures 11-48 - 11-51
2452 * in the USB 2.0 spec), we won't clear the TT
2453 * buffer in this case. Strictly speaking this
2454 * is a violation of the spec.
2456 if (last_status
!= -EPIPE
)
2457 fotg210_clear_tt_buffer(fotg210
, qh
,
2462 /* if we're removing something not at the queue head,
2463 * patch the hardware queue pointer.
2465 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
2466 last
= list_entry(qtd
->qtd_list
.prev
,
2467 struct fotg210_qtd
, qtd_list
);
2468 last
->hw_next
= qtd
->hw_next
;
2471 /* remove qtd; it's recycled after possible urb completion */
2472 list_del(&qtd
->qtd_list
);
2475 /* reinit the xacterr counter for the next qtd */
2479 /* last urb's completion might still need calling */
2480 if (likely(last
!= NULL
)) {
2481 fotg210_urb_done(fotg210
, last
->urb
, last_status
);
2483 fotg210_qtd_free(fotg210
, last
);
2486 /* Do we need to rescan for URBs dequeued during a giveback? */
2487 if (unlikely(qh
->needs_rescan
)) {
2488 /* If the QH is already unlinked, do the rescan now. */
2489 if (state
== QH_STATE_IDLE
)
2492 /* Otherwise we have to wait until the QH is fully unlinked.
2493 * Our caller will start an unlink if qh->needs_rescan is
2494 * set. But if an unlink has already started, nothing needs
2497 if (state
!= QH_STATE_LINKED
)
2498 qh
->needs_rescan
= 0;
2501 /* restore original state; caller must unlink or relink */
2502 qh
->qh_state
= state
;
2504 /* be sure the hardware's done with the qh before refreshing
2505 * it after fault cleanup, or recovering from silicon wrongly
2506 * overlaying the dummy qtd (which reduces DMA chatter).
2508 if (stopped
!= 0 || hw
->hw_qtd_next
== FOTG210_LIST_END(fotg210
)) {
2511 qh_refresh(fotg210
, qh
);
2513 case QH_STATE_LINKED
:
2514 /* We won't refresh a QH that's linked (after the HC
2515 * stopped the queue). That avoids a race:
2516 * - HC reads first part of QH;
2517 * - CPU updates that first part and the token;
2518 * - HC reads rest of that QH, including token
2519 * Result: HC gets an inconsistent image, and then
2520 * DMAs to/from the wrong memory (corrupting it).
2522 * That should be rare for interrupt transfers,
2523 * except maybe high bandwidth ...
2526 /* Tell the caller to start an unlink */
2527 qh
->needs_rescan
= 1;
2529 /* otherwise, unlink already started */
2536 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2537 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2538 /* ... and packet size, for any kind of endpoint descriptor */
2539 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2541 /* reverse of qh_urb_transaction: free a list of TDs.
2542 * used for cleanup after errors, before HC sees an URB's TDs.
2544 static void qtd_list_free(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2545 struct list_head
*head
)
2547 struct fotg210_qtd
*qtd
, *temp
;
2549 list_for_each_entry_safe(qtd
, temp
, head
, qtd_list
) {
2550 list_del(&qtd
->qtd_list
);
2551 fotg210_qtd_free(fotg210
, qtd
);
2555 /* create a list of filled qtds for this URB; won't link into qh.
2557 static struct list_head
*qh_urb_transaction(struct fotg210_hcd
*fotg210
,
2558 struct urb
*urb
, struct list_head
*head
, gfp_t flags
)
2560 struct fotg210_qtd
*qtd
, *qtd_prev
;
2562 int len
, this_sg_len
, maxpacket
;
2566 struct scatterlist
*sg
;
2569 * URBs map to sequences of QTDs: one logical transaction
2571 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2574 list_add_tail(&qtd
->qtd_list
, head
);
2577 token
= QTD_STS_ACTIVE
;
2578 token
|= (FOTG210_TUNE_CERR
<< 10);
2579 /* for split transactions, SplitXState initialized to zero */
2581 len
= urb
->transfer_buffer_length
;
2582 is_input
= usb_pipein(urb
->pipe
);
2583 if (usb_pipecontrol(urb
->pipe
)) {
2585 qtd_fill(fotg210
, qtd
, urb
->setup_dma
,
2586 sizeof(struct usb_ctrlrequest
),
2587 token
| (2 /* "setup" */ << 8), 8);
2589 /* ... and always at least one more pid */
2590 token
^= QTD_TOGGLE
;
2592 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2596 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2597 list_add_tail(&qtd
->qtd_list
, head
);
2599 /* for zero length DATA stages, STATUS is always IN */
2601 token
|= (1 /* "in" */ << 8);
2605 * data transfer stage: buffer setup
2607 i
= urb
->num_mapped_sgs
;
2608 if (len
> 0 && i
> 0) {
2610 buf
= sg_dma_address(sg
);
2612 /* urb->transfer_buffer_length may be smaller than the
2613 * size of the scatterlist (or vice versa)
2615 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2618 buf
= urb
->transfer_dma
;
2623 token
|= (1 /* "in" */ << 8);
2624 /* else it's already initted to "out" pid (0 << 8) */
2626 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
2629 * buffer gets wrapped in one or more qtds;
2630 * last one may be "short" (including zero len)
2631 * and may serve as a control status ack
2636 this_qtd_len
= qtd_fill(fotg210
, qtd
, buf
, this_sg_len
, token
,
2638 this_sg_len
-= this_qtd_len
;
2639 len
-= this_qtd_len
;
2640 buf
+= this_qtd_len
;
2643 * short reads advance to a "magic" dummy instead of the next
2644 * qtd ... that forces the queue to stop, for manual cleanup.
2645 * (this will usually be overridden later.)
2648 qtd
->hw_alt_next
= fotg210
->async
->hw
->hw_alt_next
;
2650 /* qh makes control packets use qtd toggle; maybe switch it */
2651 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
2652 token
^= QTD_TOGGLE
;
2654 if (likely(this_sg_len
<= 0)) {
2655 if (--i
<= 0 || len
<= 0)
2658 buf
= sg_dma_address(sg
);
2659 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2663 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2667 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2668 list_add_tail(&qtd
->qtd_list
, head
);
2672 * unless the caller requires manual cleanup after short reads,
2673 * have the alt_next mechanism keep the queue running after the
2674 * last data qtd (the only one, for control and most other cases).
2676 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0 ||
2677 usb_pipecontrol(urb
->pipe
)))
2678 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2681 * control requests may need a terminating data "status" ack;
2682 * other OUT ones may need a terminating short packet
2685 if (likely(urb
->transfer_buffer_length
!= 0)) {
2688 if (usb_pipecontrol(urb
->pipe
)) {
2690 token
^= 0x0100; /* "in" <--> "out" */
2691 token
|= QTD_TOGGLE
; /* force DATA1 */
2692 } else if (usb_pipeout(urb
->pipe
)
2693 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
2694 && !(urb
->transfer_buffer_length
% maxpacket
)) {
2699 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2703 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2704 list_add_tail(&qtd
->qtd_list
, head
);
2706 /* never any data in such packets */
2707 qtd_fill(fotg210
, qtd
, 0, 0, token
, 0);
2711 /* by default, enable interrupt on urb completion */
2712 if (likely(!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
2713 qtd
->hw_token
|= cpu_to_hc32(fotg210
, QTD_IOC
);
2717 qtd_list_free(fotg210
, urb
, head
);
2721 /* Would be best to create all qh's from config descriptors,
2722 * when each interface/altsetting is established. Unlink
2723 * any previous qh and cancel its urbs first; endpoints are
2724 * implicitly reset then (data toggle too).
2725 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2729 /* Each QH holds a qtd list; a QH is used for everything except iso.
2731 * For interrupt urbs, the scheduler must set the microframe scheduling
2732 * mask(s) each time the QH gets scheduled. For highspeed, that's
2733 * just one microframe in the s-mask. For split interrupt transactions
2734 * there are additional complications: c-mask, maybe FSTNs.
2736 static struct fotg210_qh
*qh_make(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2739 struct fotg210_qh
*qh
= fotg210_qh_alloc(fotg210
, flags
);
2740 u32 info1
= 0, info2
= 0;
2743 struct usb_tt
*tt
= urb
->dev
->tt
;
2744 struct fotg210_qh_hw
*hw
;
2750 * init endpoint/device data for this QH
2752 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
2753 info1
|= usb_pipedevice(urb
->pipe
) << 0;
2755 is_input
= usb_pipein(urb
->pipe
);
2756 type
= usb_pipetype(urb
->pipe
);
2757 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
2759 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2760 * acts like up to 3KB, but is built from smaller packets.
2762 if (max_packet(maxp
) > 1024) {
2763 fotg210_dbg(fotg210
, "bogus qh maxpacket %d\n",
2768 /* Compute interrupt scheduling parameters just once, and save.
2769 * - allowing for high bandwidth, how many nsec/uframe are used?
2770 * - split transactions need a second CSPLIT uframe; same question
2771 * - splits also need a schedule gap (for full/low speed I/O)
2772 * - qh has a polling interval
2774 * For control/bulk requests, the HC or TT handles these.
2776 if (type
== PIPE_INTERRUPT
) {
2777 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
2779 hb_mult(maxp
) * max_packet(maxp
)));
2780 qh
->start
= NO_FRAME
;
2782 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
2786 qh
->period
= urb
->interval
>> 3;
2787 if (qh
->period
== 0 && urb
->interval
!= 1) {
2788 /* NOTE interval 2 or 4 uframes could work.
2789 * But interval 1 scheduling is simpler, and
2790 * includes high bandwidth.
2793 } else if (qh
->period
> fotg210
->periodic_size
) {
2794 qh
->period
= fotg210
->periodic_size
;
2795 urb
->interval
= qh
->period
<< 3;
2800 /* gap is f(FS/LS transfer times) */
2801 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
2802 is_input
, 0, maxp
) / (125 * 1000);
2804 /* FIXME this just approximates SPLIT/CSPLIT times */
2805 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
2806 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
2807 qh
->usecs
= HS_USECS(1);
2808 } else { /* SPLIT+DATA, gap, CSPLIT */
2809 qh
->usecs
+= HS_USECS(1);
2810 qh
->c_usecs
= HS_USECS(0);
2813 think_time
= tt
? tt
->think_time
: 0;
2814 qh
->tt_usecs
= NS_TO_US(think_time
+
2815 usb_calc_bus_time(urb
->dev
->speed
,
2816 is_input
, 0, max_packet(maxp
)));
2817 qh
->period
= urb
->interval
;
2818 if (qh
->period
> fotg210
->periodic_size
) {
2819 qh
->period
= fotg210
->periodic_size
;
2820 urb
->interval
= qh
->period
;
2825 /* support for tt scheduling, and access to toggles */
2829 switch (urb
->dev
->speed
) {
2831 info1
|= QH_LOW_SPEED
;
2834 case USB_SPEED_FULL
:
2835 /* EPS 0 means "full" */
2836 if (type
!= PIPE_INTERRUPT
)
2837 info1
|= (FOTG210_TUNE_RL_TT
<< 28);
2838 if (type
== PIPE_CONTROL
) {
2839 info1
|= QH_CONTROL_EP
; /* for TT */
2840 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2842 info1
|= maxp
<< 16;
2844 info2
|= (FOTG210_TUNE_MULT_TT
<< 30);
2846 /* Some Freescale processors have an erratum in which the
2847 * port number in the queue head was 0..N-1 instead of 1..N.
2849 if (fotg210_has_fsl_portno_bug(fotg210
))
2850 info2
|= (urb
->dev
->ttport
-1) << 23;
2852 info2
|= urb
->dev
->ttport
<< 23;
2854 /* set the address of the TT; for TDI's integrated
2855 * root hub tt, leave it zeroed.
2857 if (tt
&& tt
->hub
!= fotg210_to_hcd(fotg210
)->self
.root_hub
)
2858 info2
|= tt
->hub
->devnum
<< 16;
2860 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2864 case USB_SPEED_HIGH
: /* no TT involved */
2865 info1
|= QH_HIGH_SPEED
;
2866 if (type
== PIPE_CONTROL
) {
2867 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2868 info1
|= 64 << 16; /* usb2 fixed maxpacket */
2869 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2870 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2871 } else if (type
== PIPE_BULK
) {
2872 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2873 /* The USB spec says that high speed bulk endpoints
2874 * always use 512 byte maxpacket. But some device
2875 * vendors decided to ignore that, and MSFT is happy
2876 * to help them do so. So now people expect to use
2877 * such nonconformant devices with Linux too; sigh.
2879 info1
|= max_packet(maxp
) << 16;
2880 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2881 } else { /* PIPE_INTERRUPT */
2882 info1
|= max_packet(maxp
) << 16;
2883 info2
|= hb_mult(maxp
) << 30;
2887 fotg210_dbg(fotg210
, "bogus dev %p speed %d\n", urb
->dev
,
2890 qh_destroy(fotg210
, qh
);
2894 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2896 /* init as live, toggle clear, advance to dummy */
2897 qh
->qh_state
= QH_STATE_IDLE
;
2899 hw
->hw_info1
= cpu_to_hc32(fotg210
, info1
);
2900 hw
->hw_info2
= cpu_to_hc32(fotg210
, info2
);
2901 qh
->is_out
= !is_input
;
2902 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
2903 qh_refresh(fotg210
, qh
);
2907 static void enable_async(struct fotg210_hcd
*fotg210
)
2909 if (fotg210
->async_count
++)
2912 /* Stop waiting to turn off the async schedule */
2913 fotg210
->enabled_hrtimer_events
&= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC
);
2915 /* Don't start the schedule until ASS is 0 */
2916 fotg210_poll_ASS(fotg210
);
2917 turn_on_io_watchdog(fotg210
);
2920 static void disable_async(struct fotg210_hcd
*fotg210
)
2922 if (--fotg210
->async_count
)
2925 /* The async schedule and async_unlink list are supposed to be empty */
2926 WARN_ON(fotg210
->async
->qh_next
.qh
|| fotg210
->async_unlink
);
2928 /* Don't turn off the schedule until ASS is 1 */
2929 fotg210_poll_ASS(fotg210
);
2932 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2934 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2936 __hc32 dma
= QH_NEXT(fotg210
, qh
->qh_dma
);
2937 struct fotg210_qh
*head
;
2939 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2940 if (unlikely(qh
->clearing_tt
))
2943 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2945 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2946 qh_refresh(fotg210
, qh
);
2948 /* splice right after start */
2949 head
= fotg210
->async
;
2950 qh
->qh_next
= head
->qh_next
;
2951 qh
->hw
->hw_next
= head
->hw
->hw_next
;
2954 head
->qh_next
.qh
= qh
;
2955 head
->hw
->hw_next
= dma
;
2958 qh
->qh_state
= QH_STATE_LINKED
;
2959 /* qtd completions reported later by interrupt */
2961 enable_async(fotg210
);
2964 /* For control/bulk/interrupt, return QH with these TDs appended.
2965 * Allocates and initializes the QH if necessary.
2966 * Returns null if it can't allocate a QH it needs to.
2967 * If the QH has TDs (urbs) already, that's great.
2969 static struct fotg210_qh
*qh_append_tds(struct fotg210_hcd
*fotg210
,
2970 struct urb
*urb
, struct list_head
*qtd_list
,
2971 int epnum
, void **ptr
)
2973 struct fotg210_qh
*qh
= NULL
;
2974 __hc32 qh_addr_mask
= cpu_to_hc32(fotg210
, 0x7f);
2976 qh
= (struct fotg210_qh
*) *ptr
;
2977 if (unlikely(qh
== NULL
)) {
2978 /* can't sleep here, we have fotg210->lock... */
2979 qh
= qh_make(fotg210
, urb
, GFP_ATOMIC
);
2982 if (likely(qh
!= NULL
)) {
2983 struct fotg210_qtd
*qtd
;
2985 if (unlikely(list_empty(qtd_list
)))
2988 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
,
2991 /* control qh may need patching ... */
2992 if (unlikely(epnum
== 0)) {
2993 /* usb_reset_device() briefly reverts to address 0 */
2994 if (usb_pipedevice(urb
->pipe
) == 0)
2995 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
2998 /* just one way to queue requests: swap with the dummy qtd.
2999 * only hc or qh_refresh() ever modify the overlay.
3001 if (likely(qtd
!= NULL
)) {
3002 struct fotg210_qtd
*dummy
;
3006 /* to avoid racing the HC, use the dummy td instead of
3007 * the first td of our list (becomes new dummy). both
3008 * tds stay deactivated until we're done, when the
3009 * HC is allowed to fetch the old dummy (4.10.2).
3011 token
= qtd
->hw_token
;
3012 qtd
->hw_token
= HALT_BIT(fotg210
);
3016 dma
= dummy
->qtd_dma
;
3018 dummy
->qtd_dma
= dma
;
3020 list_del(&qtd
->qtd_list
);
3021 list_add(&dummy
->qtd_list
, qtd_list
);
3022 list_splice_tail(qtd_list
, &qh
->qtd_list
);
3024 fotg210_qtd_init(fotg210
, qtd
, qtd
->qtd_dma
);
3027 /* hc must see the new dummy at list end */
3029 qtd
= list_entry(qh
->qtd_list
.prev
,
3030 struct fotg210_qtd
, qtd_list
);
3031 qtd
->hw_next
= QTD_NEXT(fotg210
, dma
);
3033 /* let the hc process these next qtds */
3035 dummy
->hw_token
= token
;
3043 static int submit_async(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3044 struct list_head
*qtd_list
, gfp_t mem_flags
)
3047 unsigned long flags
;
3048 struct fotg210_qh
*qh
= NULL
;
3051 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3053 #ifdef FOTG210_URB_TRACE
3055 struct fotg210_qtd
*qtd
;
3057 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
, qtd_list
);
3058 fotg210_dbg(fotg210
,
3059 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3060 __func__
, urb
->dev
->devpath
, urb
,
3061 epnum
& 0x0f, (epnum
& USB_DIR_IN
)
3063 urb
->transfer_buffer_length
,
3064 qtd
, urb
->ep
->hcpriv
);
3068 spin_lock_irqsave(&fotg210
->lock
, flags
);
3069 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3073 rc
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3077 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3078 if (unlikely(qh
== NULL
)) {
3079 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3084 /* Control/bulk operations through TTs don't need scheduling,
3085 * the HC and TT handle it when the TT has a buffer ready.
3087 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
3088 qh_link_async(fotg210
, qh
);
3090 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3091 if (unlikely(qh
== NULL
))
3092 qtd_list_free(fotg210
, urb
, qtd_list
);
3096 static void single_unlink_async(struct fotg210_hcd
*fotg210
,
3097 struct fotg210_qh
*qh
)
3099 struct fotg210_qh
*prev
;
3101 /* Add to the end of the list of QHs waiting for the next IAAD */
3102 qh
->qh_state
= QH_STATE_UNLINK
;
3103 if (fotg210
->async_unlink
)
3104 fotg210
->async_unlink_last
->unlink_next
= qh
;
3106 fotg210
->async_unlink
= qh
;
3107 fotg210
->async_unlink_last
= qh
;
3109 /* Unlink it from the schedule */
3110 prev
= fotg210
->async
;
3111 while (prev
->qh_next
.qh
!= qh
)
3112 prev
= prev
->qh_next
.qh
;
3114 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
3115 prev
->qh_next
= qh
->qh_next
;
3116 if (fotg210
->qh_scan_next
== qh
)
3117 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3120 static void start_iaa_cycle(struct fotg210_hcd
*fotg210
, bool nested
)
3123 * Do nothing if an IAA cycle is already running or
3124 * if one will be started shortly.
3126 if (fotg210
->async_iaa
|| fotg210
->async_unlinking
)
3129 /* Do all the waiting QHs at once */
3130 fotg210
->async_iaa
= fotg210
->async_unlink
;
3131 fotg210
->async_unlink
= NULL
;
3133 /* If the controller isn't running, we don't have to wait for it */
3134 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
)) {
3135 if (!nested
) /* Avoid recursion */
3136 end_unlink_async(fotg210
);
3138 /* Otherwise start a new IAA cycle */
3139 } else if (likely(fotg210
->rh_state
== FOTG210_RH_RUNNING
)) {
3140 /* Make sure the unlinks are all visible to the hardware */
3143 fotg210_writel(fotg210
, fotg210
->command
| CMD_IAAD
,
3144 &fotg210
->regs
->command
);
3145 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
3146 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IAA_WATCHDOG
,
3151 /* the async qh for the qtds being unlinked are now gone from the HC */
3153 static void end_unlink_async(struct fotg210_hcd
*fotg210
)
3155 struct fotg210_qh
*qh
;
3157 /* Process the idle QHs */
3159 fotg210
->async_unlinking
= true;
3160 while (fotg210
->async_iaa
) {
3161 qh
= fotg210
->async_iaa
;
3162 fotg210
->async_iaa
= qh
->unlink_next
;
3163 qh
->unlink_next
= NULL
;
3165 qh
->qh_state
= QH_STATE_IDLE
;
3166 qh
->qh_next
.qh
= NULL
;
3168 qh_completions(fotg210
, qh
);
3169 if (!list_empty(&qh
->qtd_list
) &&
3170 fotg210
->rh_state
== FOTG210_RH_RUNNING
)
3171 qh_link_async(fotg210
, qh
);
3172 disable_async(fotg210
);
3174 fotg210
->async_unlinking
= false;
3176 /* Start a new IAA cycle if any QHs are waiting for it */
3177 if (fotg210
->async_unlink
) {
3178 start_iaa_cycle(fotg210
, true);
3179 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
))
3184 static void unlink_empty_async(struct fotg210_hcd
*fotg210
)
3186 struct fotg210_qh
*qh
, *next
;
3187 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
3188 bool check_unlinks_later
= false;
3190 /* Unlink all the async QHs that have been empty for a timer cycle */
3191 next
= fotg210
->async
->qh_next
.qh
;
3194 next
= qh
->qh_next
.qh
;
3196 if (list_empty(&qh
->qtd_list
) &&
3197 qh
->qh_state
== QH_STATE_LINKED
) {
3198 if (!stopped
&& qh
->unlink_cycle
==
3199 fotg210
->async_unlink_cycle
)
3200 check_unlinks_later
= true;
3202 single_unlink_async(fotg210
, qh
);
3206 /* Start a new IAA cycle if any QHs are waiting for it */
3207 if (fotg210
->async_unlink
)
3208 start_iaa_cycle(fotg210
, false);
3210 /* QHs that haven't been empty for long enough will be handled later */
3211 if (check_unlinks_later
) {
3212 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_ASYNC_UNLINKS
,
3214 ++fotg210
->async_unlink_cycle
;
3218 /* makes sure the async qh will become idle */
3219 /* caller must own fotg210->lock */
3221 static void start_unlink_async(struct fotg210_hcd
*fotg210
,
3222 struct fotg210_qh
*qh
)
3225 * If the QH isn't linked then there's nothing we can do
3226 * unless we were called during a giveback, in which case
3227 * qh_completions() has to deal with it.
3229 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3230 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3231 qh
->needs_rescan
= 1;
3235 single_unlink_async(fotg210
, qh
);
3236 start_iaa_cycle(fotg210
, false);
3239 static void scan_async(struct fotg210_hcd
*fotg210
)
3241 struct fotg210_qh
*qh
;
3242 bool check_unlinks_later
= false;
3244 fotg210
->qh_scan_next
= fotg210
->async
->qh_next
.qh
;
3245 while (fotg210
->qh_scan_next
) {
3246 qh
= fotg210
->qh_scan_next
;
3247 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3249 /* clean any finished work for this qh */
3250 if (!list_empty(&qh
->qtd_list
)) {
3254 * Unlinks could happen here; completion reporting
3255 * drops the lock. That's why fotg210->qh_scan_next
3256 * always holds the next qh to scan; if the next qh
3257 * gets unlinked then fotg210->qh_scan_next is adjusted
3258 * in single_unlink_async().
3260 temp
= qh_completions(fotg210
, qh
);
3261 if (qh
->needs_rescan
) {
3262 start_unlink_async(fotg210
, qh
);
3263 } else if (list_empty(&qh
->qtd_list
)
3264 && qh
->qh_state
== QH_STATE_LINKED
) {
3265 qh
->unlink_cycle
= fotg210
->async_unlink_cycle
;
3266 check_unlinks_later
= true;
3267 } else if (temp
!= 0)
3273 * Unlink empty entries, reducing DMA usage as well
3274 * as HCD schedule-scanning costs. Delay for any qh
3275 * we just scanned, there's a not-unusual case that it
3276 * doesn't stay idle for long.
3278 if (check_unlinks_later
&& fotg210
->rh_state
== FOTG210_RH_RUNNING
&&
3279 !(fotg210
->enabled_hrtimer_events
&
3280 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS
))) {
3281 fotg210_enable_event(fotg210
,
3282 FOTG210_HRTIMER_ASYNC_UNLINKS
, true);
3283 ++fotg210
->async_unlink_cycle
;
3286 /* EHCI scheduled transaction support: interrupt, iso, split iso
3287 * These are called "periodic" transactions in the EHCI spec.
3289 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3290 * with the "asynchronous" transaction support (control/bulk transfers).
3291 * The only real difference is in how interrupt transfers are scheduled.
3293 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3294 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3295 * pre-calculated schedule data to make appending to the queue be quick.
3297 static int fotg210_get_frame(struct usb_hcd
*hcd
);
3299 /* periodic_next_shadow - return "next" pointer on shadow list
3300 * @periodic: host pointer to qh/itd
3301 * @tag: hardware tag for type of this record
3303 static union fotg210_shadow
*periodic_next_shadow(struct fotg210_hcd
*fotg210
,
3304 union fotg210_shadow
*periodic
, __hc32 tag
)
3306 switch (hc32_to_cpu(fotg210
, tag
)) {
3308 return &periodic
->qh
->qh_next
;
3310 return &periodic
->fstn
->fstn_next
;
3312 return &periodic
->itd
->itd_next
;
3316 static __hc32
*shadow_next_periodic(struct fotg210_hcd
*fotg210
,
3317 union fotg210_shadow
*periodic
, __hc32 tag
)
3319 switch (hc32_to_cpu(fotg210
, tag
)) {
3320 /* our fotg210_shadow.qh is actually software part */
3322 return &periodic
->qh
->hw
->hw_next
;
3323 /* others are hw parts */
3325 return periodic
->hw_next
;
3329 /* caller must hold fotg210->lock */
3330 static void periodic_unlink(struct fotg210_hcd
*fotg210
, unsigned frame
,
3333 union fotg210_shadow
*prev_p
= &fotg210
->pshadow
[frame
];
3334 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3335 union fotg210_shadow here
= *prev_p
;
3337 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3338 while (here
.ptr
&& here
.ptr
!= ptr
) {
3339 prev_p
= periodic_next_shadow(fotg210
, prev_p
,
3340 Q_NEXT_TYPE(fotg210
, *hw_p
));
3341 hw_p
= shadow_next_periodic(fotg210
, &here
,
3342 Q_NEXT_TYPE(fotg210
, *hw_p
));
3345 /* an interrupt entry (at list end) could have been shared */
3349 /* update shadow and hardware lists ... the old "next" pointers
3350 * from ptr may still be in use, the caller updates them.
3352 *prev_p
= *periodic_next_shadow(fotg210
, &here
,
3353 Q_NEXT_TYPE(fotg210
, *hw_p
));
3355 *hw_p
= *shadow_next_periodic(fotg210
, &here
,
3356 Q_NEXT_TYPE(fotg210
, *hw_p
));
3359 /* how many of the uframe's 125 usecs are allocated? */
3360 static unsigned short periodic_usecs(struct fotg210_hcd
*fotg210
,
3361 unsigned frame
, unsigned uframe
)
3363 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3364 union fotg210_shadow
*q
= &fotg210
->pshadow
[frame
];
3366 struct fotg210_qh_hw
*hw
;
3369 switch (hc32_to_cpu(fotg210
, Q_NEXT_TYPE(fotg210
, *hw_p
))) {
3372 /* is it in the S-mask? */
3373 if (hw
->hw_info2
& cpu_to_hc32(fotg210
, 1 << uframe
))
3374 usecs
+= q
->qh
->usecs
;
3375 /* ... or C-mask? */
3376 if (hw
->hw_info2
& cpu_to_hc32(fotg210
,
3378 usecs
+= q
->qh
->c_usecs
;
3379 hw_p
= &hw
->hw_next
;
3380 q
= &q
->qh
->qh_next
;
3382 /* case Q_TYPE_FSTN: */
3384 /* for "save place" FSTNs, count the relevant INTR
3385 * bandwidth from the previous frame
3387 if (q
->fstn
->hw_prev
!= FOTG210_LIST_END(fotg210
))
3388 fotg210_dbg(fotg210
, "ignoring FSTN cost ...\n");
3390 hw_p
= &q
->fstn
->hw_next
;
3391 q
= &q
->fstn
->fstn_next
;
3394 if (q
->itd
->hw_transaction
[uframe
])
3395 usecs
+= q
->itd
->stream
->usecs
;
3396 hw_p
= &q
->itd
->hw_next
;
3397 q
= &q
->itd
->itd_next
;
3401 if (usecs
> fotg210
->uframe_periodic_max
)
3402 fotg210_err(fotg210
, "uframe %d sched overrun: %d usecs\n",
3403 frame
* 8 + uframe
, usecs
);
3407 static int same_tt(struct usb_device
*dev1
, struct usb_device
*dev2
)
3409 if (!dev1
->tt
|| !dev2
->tt
)
3411 if (dev1
->tt
!= dev2
->tt
)
3413 if (dev1
->tt
->multi
)
3414 return dev1
->ttport
== dev2
->ttport
;
3419 /* return true iff the device's transaction translator is available
3420 * for a periodic transfer starting at the specified frame, using
3421 * all the uframes in the mask.
3423 static int tt_no_collision(struct fotg210_hcd
*fotg210
, unsigned period
,
3424 struct usb_device
*dev
, unsigned frame
, u32 uf_mask
)
3426 if (period
== 0) /* error */
3429 /* note bandwidth wastage: split never follows csplit
3430 * (different dev or endpoint) until the next uframe.
3431 * calling convention doesn't make that distinction.
3433 for (; frame
< fotg210
->periodic_size
; frame
+= period
) {
3434 union fotg210_shadow here
;
3436 struct fotg210_qh_hw
*hw
;
3438 here
= fotg210
->pshadow
[frame
];
3439 type
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[frame
]);
3441 switch (hc32_to_cpu(fotg210
, type
)) {
3443 type
= Q_NEXT_TYPE(fotg210
, here
.itd
->hw_next
);
3444 here
= here
.itd
->itd_next
;
3448 if (same_tt(dev
, here
.qh
->dev
)) {
3451 mask
= hc32_to_cpu(fotg210
,
3453 /* "knows" no gap is needed */
3458 type
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
3459 here
= here
.qh
->qh_next
;
3461 /* case Q_TYPE_FSTN: */
3463 fotg210_dbg(fotg210
,
3464 "periodic frame %d bogus type %d\n",
3468 /* collision or error */
3477 static void enable_periodic(struct fotg210_hcd
*fotg210
)
3479 if (fotg210
->periodic_count
++)
3482 /* Stop waiting to turn off the periodic schedule */
3483 fotg210
->enabled_hrtimer_events
&=
3484 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC
);
3486 /* Don't start the schedule until PSS is 0 */
3487 fotg210_poll_PSS(fotg210
);
3488 turn_on_io_watchdog(fotg210
);
3491 static void disable_periodic(struct fotg210_hcd
*fotg210
)
3493 if (--fotg210
->periodic_count
)
3496 /* Don't turn off the schedule until PSS is 1 */
3497 fotg210_poll_PSS(fotg210
);
3500 /* periodic schedule slots have iso tds (normal or split) first, then a
3501 * sparse tree for active interrupt transfers.
3503 * this just links in a qh; caller guarantees uframe masks are set right.
3504 * no FSTN support (yet; fotg210 0.96+)
3506 static void qh_link_periodic(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3509 unsigned period
= qh
->period
;
3511 dev_dbg(&qh
->dev
->dev
,
3512 "link qh%d-%04x/%p start %d [%d/%d us]\n", period
,
3513 hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3514 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3517 /* high bandwidth, or otherwise every microframe */
3521 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
) {
3522 union fotg210_shadow
*prev
= &fotg210
->pshadow
[i
];
3523 __hc32
*hw_p
= &fotg210
->periodic
[i
];
3524 union fotg210_shadow here
= *prev
;
3527 /* skip the iso nodes at list head */
3529 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
3530 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
3532 prev
= periodic_next_shadow(fotg210
, prev
, type
);
3533 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
3537 /* sorting each branch by period (slow-->fast)
3538 * enables sharing interior tree nodes
3540 while (here
.ptr
&& qh
!= here
.qh
) {
3541 if (qh
->period
> here
.qh
->period
)
3543 prev
= &here
.qh
->qh_next
;
3544 hw_p
= &here
.qh
->hw
->hw_next
;
3547 /* link in this qh, unless some earlier pass did that */
3548 if (qh
!= here
.qh
) {
3551 qh
->hw
->hw_next
= *hw_p
;
3554 *hw_p
= QH_NEXT(fotg210
, qh
->qh_dma
);
3557 qh
->qh_state
= QH_STATE_LINKED
;
3560 /* update per-qh bandwidth for usbfs */
3561 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
+= qh
->period
3562 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3565 list_add(&qh
->intr_node
, &fotg210
->intr_qh_list
);
3567 /* maybe enable periodic schedule processing */
3568 ++fotg210
->intr_count
;
3569 enable_periodic(fotg210
);
3572 static void qh_unlink_periodic(struct fotg210_hcd
*fotg210
,
3573 struct fotg210_qh
*qh
)
3579 * If qh is for a low/full-speed device, simply unlinking it
3580 * could interfere with an ongoing split transaction. To unlink
3581 * it safely would require setting the QH_INACTIVATE bit and
3582 * waiting at least one frame, as described in EHCI 4.12.2.5.
3584 * We won't bother with any of this. Instead, we assume that the
3585 * only reason for unlinking an interrupt QH while the current URB
3586 * is still active is to dequeue all the URBs (flush the whole
3589 * If rebalancing the periodic schedule is ever implemented, this
3590 * approach will no longer be valid.
3593 /* high bandwidth, or otherwise part of every microframe */
3594 period
= qh
->period
;
3598 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
)
3599 periodic_unlink(fotg210
, i
, qh
);
3601 /* update per-qh bandwidth for usbfs */
3602 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
-= qh
->period
3603 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3606 dev_dbg(&qh
->dev
->dev
,
3607 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3608 qh
->period
, hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3609 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3612 /* qh->qh_next still "live" to HC */
3613 qh
->qh_state
= QH_STATE_UNLINK
;
3614 qh
->qh_next
.ptr
= NULL
;
3616 if (fotg210
->qh_scan_next
== qh
)
3617 fotg210
->qh_scan_next
= list_entry(qh
->intr_node
.next
,
3618 struct fotg210_qh
, intr_node
);
3619 list_del(&qh
->intr_node
);
3622 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
3623 struct fotg210_qh
*qh
)
3625 /* If the QH isn't linked then there's nothing we can do
3626 * unless we were called during a giveback, in which case
3627 * qh_completions() has to deal with it.
3629 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3630 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3631 qh
->needs_rescan
= 1;
3635 qh_unlink_periodic(fotg210
, qh
);
3637 /* Make sure the unlinks are visible before starting the timer */
3641 * The EHCI spec doesn't say how long it takes the controller to
3642 * stop accessing an unlinked interrupt QH. The timer delay is
3643 * 9 uframes; presumably that will be long enough.
3645 qh
->unlink_cycle
= fotg210
->intr_unlink_cycle
;
3647 /* New entries go at the end of the intr_unlink list */
3648 if (fotg210
->intr_unlink
)
3649 fotg210
->intr_unlink_last
->unlink_next
= qh
;
3651 fotg210
->intr_unlink
= qh
;
3652 fotg210
->intr_unlink_last
= qh
;
3654 if (fotg210
->intr_unlinking
)
3655 ; /* Avoid recursive calls */
3656 else if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
3657 fotg210_handle_intr_unlinks(fotg210
);
3658 else if (fotg210
->intr_unlink
== qh
) {
3659 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
3661 ++fotg210
->intr_unlink_cycle
;
3665 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3667 struct fotg210_qh_hw
*hw
= qh
->hw
;
3670 qh
->qh_state
= QH_STATE_IDLE
;
3671 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3673 qh_completions(fotg210
, qh
);
3675 /* reschedule QH iff another request is queued */
3676 if (!list_empty(&qh
->qtd_list
) &&
3677 fotg210
->rh_state
== FOTG210_RH_RUNNING
) {
3678 rc
= qh_schedule(fotg210
, qh
);
3680 /* An error here likely indicates handshake failure
3681 * or no space left in the schedule. Neither fault
3682 * should happen often ...
3684 * FIXME kill the now-dysfunctional queued urbs
3687 fotg210_err(fotg210
, "can't reschedule qh %p, err %d\n",
3691 /* maybe turn off periodic schedule */
3692 --fotg210
->intr_count
;
3693 disable_periodic(fotg210
);
3696 static int check_period(struct fotg210_hcd
*fotg210
, unsigned frame
,
3697 unsigned uframe
, unsigned period
, unsigned usecs
)
3701 /* complete split running into next frame?
3702 * given FSTN support, we could sometimes check...
3707 /* convert "usecs we need" to "max already claimed" */
3708 usecs
= fotg210
->uframe_periodic_max
- usecs
;
3710 /* we "know" 2 and 4 uframe intervals were rejected; so
3711 * for period 0, check _every_ microframe in the schedule.
3713 if (unlikely(period
== 0)) {
3715 for (uframe
= 0; uframe
< 7; uframe
++) {
3716 claimed
= periodic_usecs(fotg210
, frame
,
3718 if (claimed
> usecs
)
3721 } while ((frame
+= 1) < fotg210
->periodic_size
);
3723 /* just check the specified uframe, at that period */
3726 claimed
= periodic_usecs(fotg210
, frame
, uframe
);
3727 if (claimed
> usecs
)
3729 } while ((frame
+= period
) < fotg210
->periodic_size
);
3736 static int check_intr_schedule(struct fotg210_hcd
*fotg210
, unsigned frame
,
3737 unsigned uframe
, const struct fotg210_qh
*qh
, __hc32
*c_maskp
)
3739 int retval
= -ENOSPC
;
3742 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
3745 if (!check_period(fotg210
, frame
, uframe
, qh
->period
, qh
->usecs
))
3753 /* Make sure this tt's buffer is also available for CSPLITs.
3754 * We pessimize a bit; probably the typical full speed case
3755 * doesn't need the second CSPLIT.
3757 * NOTE: both SPLIT and CSPLIT could be checked in just
3760 mask
= 0x03 << (uframe
+ qh
->gap_uf
);
3761 *c_maskp
= cpu_to_hc32(fotg210
, mask
<< 8);
3763 mask
|= 1 << uframe
;
3764 if (tt_no_collision(fotg210
, qh
->period
, qh
->dev
, frame
, mask
)) {
3765 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
+ 1,
3766 qh
->period
, qh
->c_usecs
))
3768 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
,
3769 qh
->period
, qh
->c_usecs
))
3777 /* "first fit" scheduling policy used the first time through,
3778 * or when the previous schedule slot can't be re-used.
3780 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3785 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
3786 struct fotg210_qh_hw
*hw
= qh
->hw
;
3788 qh_refresh(fotg210
, qh
);
3789 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3792 /* reuse the previous schedule slots, if we can */
3793 if (frame
< qh
->period
) {
3794 uframe
= ffs(hc32_to_cpup(fotg210
, &hw
->hw_info2
) & QH_SMASK
);
3795 status
= check_intr_schedule(fotg210
, frame
, --uframe
,
3803 /* else scan the schedule to find a group of slots such that all
3804 * uframes have enough periodic bandwidth available.
3807 /* "normal" case, uframing flexible except with splits */
3811 for (i
= qh
->period
; status
&& i
> 0; --i
) {
3812 frame
= ++fotg210
->random_frame
% qh
->period
;
3813 for (uframe
= 0; uframe
< 8; uframe
++) {
3814 status
= check_intr_schedule(fotg210
,
3822 /* qh->period == 0 means every uframe */
3825 status
= check_intr_schedule(fotg210
, 0, 0, qh
,
3832 /* reset S-frame and (maybe) C-frame masks */
3833 hw
->hw_info2
&= cpu_to_hc32(fotg210
, ~(QH_CMASK
| QH_SMASK
));
3834 hw
->hw_info2
|= qh
->period
3835 ? cpu_to_hc32(fotg210
, 1 << uframe
)
3836 : cpu_to_hc32(fotg210
, QH_SMASK
);
3837 hw
->hw_info2
|= c_mask
;
3839 fotg210_dbg(fotg210
, "reused qh %p schedule\n", qh
);
3841 /* stuff into the periodic schedule */
3842 qh_link_periodic(fotg210
, qh
);
3847 static int intr_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3848 struct list_head
*qtd_list
, gfp_t mem_flags
)
3851 unsigned long flags
;
3852 struct fotg210_qh
*qh
;
3854 struct list_head empty
;
3856 /* get endpoint and transfer/schedule data */
3857 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3859 spin_lock_irqsave(&fotg210
->lock
, flags
);
3861 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3862 status
= -ESHUTDOWN
;
3863 goto done_not_linked
;
3865 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3866 if (unlikely(status
))
3867 goto done_not_linked
;
3869 /* get qh and force any scheduling errors */
3870 INIT_LIST_HEAD(&empty
);
3871 qh
= qh_append_tds(fotg210
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
3876 if (qh
->qh_state
== QH_STATE_IDLE
) {
3877 status
= qh_schedule(fotg210
, qh
);
3882 /* then queue the urb's tds to the qh */
3883 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3886 /* ... update usbfs periodic stats */
3887 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
++;
3890 if (unlikely(status
))
3891 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3893 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3895 qtd_list_free(fotg210
, urb
, qtd_list
);
3900 static void scan_intr(struct fotg210_hcd
*fotg210
)
3902 struct fotg210_qh
*qh
;
3904 list_for_each_entry_safe(qh
, fotg210
->qh_scan_next
,
3905 &fotg210
->intr_qh_list
, intr_node
) {
3907 /* clean any finished work for this qh */
3908 if (!list_empty(&qh
->qtd_list
)) {
3912 * Unlinks could happen here; completion reporting
3913 * drops the lock. That's why fotg210->qh_scan_next
3914 * always holds the next qh to scan; if the next qh
3915 * gets unlinked then fotg210->qh_scan_next is adjusted
3916 * in qh_unlink_periodic().
3918 temp
= qh_completions(fotg210
, qh
);
3919 if (unlikely(qh
->needs_rescan
||
3920 (list_empty(&qh
->qtd_list
) &&
3921 qh
->qh_state
== QH_STATE_LINKED
)))
3922 start_unlink_intr(fotg210
, qh
);
3929 /* fotg210_iso_stream ops work with both ITD and SITD */
3931 static struct fotg210_iso_stream
*iso_stream_alloc(gfp_t mem_flags
)
3933 struct fotg210_iso_stream
*stream
;
3935 stream
= kzalloc(sizeof(*stream
), mem_flags
);
3936 if (likely(stream
!= NULL
)) {
3937 INIT_LIST_HEAD(&stream
->td_list
);
3938 INIT_LIST_HEAD(&stream
->free_list
);
3939 stream
->next_uframe
= -1;
3944 static void iso_stream_init(struct fotg210_hcd
*fotg210
,
3945 struct fotg210_iso_stream
*stream
, struct usb_device
*dev
,
3946 int pipe
, unsigned interval
)
3949 unsigned epnum
, maxp
;
3955 * this might be a "high bandwidth" highspeed endpoint,
3956 * as encoded in the ep descriptor's wMaxPacket field
3958 epnum
= usb_pipeendpoint(pipe
);
3959 is_input
= usb_pipein(pipe
) ? USB_DIR_IN
: 0;
3960 maxp
= usb_maxpacket(dev
, pipe
, !is_input
);
3966 maxp
= max_packet(maxp
);
3967 multi
= hb_mult(maxp
);
3971 stream
->buf0
= cpu_to_hc32(fotg210
, (epnum
<< 8) | dev
->devnum
);
3972 stream
->buf1
= cpu_to_hc32(fotg210
, buf1
);
3973 stream
->buf2
= cpu_to_hc32(fotg210
, multi
);
3975 /* usbfs wants to report the average usecs per frame tied up
3976 * when transfers on this endpoint are scheduled ...
3978 if (dev
->speed
== USB_SPEED_FULL
) {
3980 stream
->usecs
= NS_TO_US(usb_calc_bus_time(dev
->speed
,
3981 is_input
, 1, maxp
));
3984 stream
->highspeed
= 1;
3985 stream
->usecs
= HS_USECS_ISO(maxp
);
3987 bandwidth
= stream
->usecs
* 8;
3988 bandwidth
/= interval
;
3990 stream
->bandwidth
= bandwidth
;
3992 stream
->bEndpointAddress
= is_input
| epnum
;
3993 stream
->interval
= interval
;
3994 stream
->maxp
= maxp
;
3997 static struct fotg210_iso_stream
*iso_stream_find(struct fotg210_hcd
*fotg210
,
4001 struct fotg210_iso_stream
*stream
;
4002 struct usb_host_endpoint
*ep
;
4003 unsigned long flags
;
4005 epnum
= usb_pipeendpoint(urb
->pipe
);
4006 if (usb_pipein(urb
->pipe
))
4007 ep
= urb
->dev
->ep_in
[epnum
];
4009 ep
= urb
->dev
->ep_out
[epnum
];
4011 spin_lock_irqsave(&fotg210
->lock
, flags
);
4012 stream
= ep
->hcpriv
;
4014 if (unlikely(stream
== NULL
)) {
4015 stream
= iso_stream_alloc(GFP_ATOMIC
);
4016 if (likely(stream
!= NULL
)) {
4017 ep
->hcpriv
= stream
;
4019 iso_stream_init(fotg210
, stream
, urb
->dev
, urb
->pipe
,
4023 /* if dev->ep[epnum] is a QH, hw is set */
4024 } else if (unlikely(stream
->hw
!= NULL
)) {
4025 fotg210_dbg(fotg210
, "dev %s ep%d%s, not iso??\n",
4026 urb
->dev
->devpath
, epnum
,
4027 usb_pipein(urb
->pipe
) ? "in" : "out");
4031 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4035 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4037 static struct fotg210_iso_sched
*iso_sched_alloc(unsigned packets
,
4040 struct fotg210_iso_sched
*iso_sched
;
4041 int size
= sizeof(*iso_sched
);
4043 size
+= packets
* sizeof(struct fotg210_iso_packet
);
4044 iso_sched
= kzalloc(size
, mem_flags
);
4045 if (likely(iso_sched
!= NULL
))
4046 INIT_LIST_HEAD(&iso_sched
->td_list
);
4051 static inline void itd_sched_init(struct fotg210_hcd
*fotg210
,
4052 struct fotg210_iso_sched
*iso_sched
,
4053 struct fotg210_iso_stream
*stream
, struct urb
*urb
)
4056 dma_addr_t dma
= urb
->transfer_dma
;
4058 /* how many uframes are needed for these transfers */
4059 iso_sched
->span
= urb
->number_of_packets
* stream
->interval
;
4061 /* figure out per-uframe itd fields that we'll need later
4062 * when we fit new itds into the schedule.
4064 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4065 struct fotg210_iso_packet
*uframe
= &iso_sched
->packet
[i
];
4070 length
= urb
->iso_frame_desc
[i
].length
;
4071 buf
= dma
+ urb
->iso_frame_desc
[i
].offset
;
4073 trans
= FOTG210_ISOC_ACTIVE
;
4074 trans
|= buf
& 0x0fff;
4075 if (unlikely(((i
+ 1) == urb
->number_of_packets
))
4076 && !(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4077 trans
|= FOTG210_ITD_IOC
;
4078 trans
|= length
<< 16;
4079 uframe
->transaction
= cpu_to_hc32(fotg210
, trans
);
4081 /* might need to cross a buffer page within a uframe */
4082 uframe
->bufp
= (buf
& ~(u64
)0x0fff);
4084 if (unlikely((uframe
->bufp
!= (buf
& ~(u64
)0x0fff))))
4089 static void iso_sched_free(struct fotg210_iso_stream
*stream
,
4090 struct fotg210_iso_sched
*iso_sched
)
4094 /* caller must hold fotg210->lock!*/
4095 list_splice(&iso_sched
->td_list
, &stream
->free_list
);
4099 static int itd_urb_transaction(struct fotg210_iso_stream
*stream
,
4100 struct fotg210_hcd
*fotg210
, struct urb
*urb
, gfp_t mem_flags
)
4102 struct fotg210_itd
*itd
;
4106 struct fotg210_iso_sched
*sched
;
4107 unsigned long flags
;
4109 sched
= iso_sched_alloc(urb
->number_of_packets
, mem_flags
);
4110 if (unlikely(sched
== NULL
))
4113 itd_sched_init(fotg210
, sched
, stream
, urb
);
4115 if (urb
->interval
< 8)
4116 num_itds
= 1 + (sched
->span
+ 7) / 8;
4118 num_itds
= urb
->number_of_packets
;
4120 /* allocate/init ITDs */
4121 spin_lock_irqsave(&fotg210
->lock
, flags
);
4122 for (i
= 0; i
< num_itds
; i
++) {
4125 * Use iTDs from the free list, but not iTDs that may
4126 * still be in use by the hardware.
4128 if (likely(!list_empty(&stream
->free_list
))) {
4129 itd
= list_first_entry(&stream
->free_list
,
4130 struct fotg210_itd
, itd_list
);
4131 if (itd
->frame
== fotg210
->now_frame
)
4133 list_del(&itd
->itd_list
);
4134 itd_dma
= itd
->itd_dma
;
4137 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4138 itd
= dma_pool_alloc(fotg210
->itd_pool
, mem_flags
,
4140 spin_lock_irqsave(&fotg210
->lock
, flags
);
4142 iso_sched_free(stream
, sched
);
4143 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4148 memset(itd
, 0, sizeof(*itd
));
4149 itd
->itd_dma
= itd_dma
;
4150 list_add(&itd
->itd_list
, &sched
->td_list
);
4152 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4154 /* temporarily store schedule info in hcpriv */
4155 urb
->hcpriv
= sched
;
4156 urb
->error_count
= 0;
4160 static inline int itd_slot_ok(struct fotg210_hcd
*fotg210
, u32 mod
, u32 uframe
,
4161 u8 usecs
, u32 period
)
4165 /* can't commit more than uframe_periodic_max usec */
4166 if (periodic_usecs(fotg210
, uframe
>> 3, uframe
& 0x7)
4167 > (fotg210
->uframe_periodic_max
- usecs
))
4170 /* we know urb->interval is 2^N uframes */
4172 } while (uframe
< mod
);
4176 /* This scheduler plans almost as far into the future as it has actual
4177 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4178 * "as small as possible" to be cache-friendlier.) That limits the size
4179 * transfers you can stream reliably; avoid more than 64 msec per urb.
4180 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4181 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4182 * and other factors); or more than about 230 msec total (for portability,
4183 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4186 #define SCHEDULE_SLOP 80 /* microframes */
4188 static int iso_stream_schedule(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4189 struct fotg210_iso_stream
*stream
)
4191 u32 now
, next
, start
, period
, span
;
4193 unsigned mod
= fotg210
->periodic_size
<< 3;
4194 struct fotg210_iso_sched
*sched
= urb
->hcpriv
;
4196 period
= urb
->interval
;
4199 if (span
> mod
- SCHEDULE_SLOP
) {
4200 fotg210_dbg(fotg210
, "iso request %p too long\n", urb
);
4205 now
= fotg210_read_frame_index(fotg210
) & (mod
- 1);
4207 /* Typical case: reuse current schedule, stream is still active.
4208 * Hopefully there are no gaps from the host falling behind
4209 * (irq delays etc), but if there are we'll take the next
4210 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4212 if (likely(!list_empty(&stream
->td_list
))) {
4215 /* For high speed devices, allow scheduling within the
4216 * isochronous scheduling threshold. For full speed devices
4217 * and Intel PCI-based controllers, don't (work around for
4220 if (!stream
->highspeed
&& fotg210
->fs_i_thresh
)
4221 next
= now
+ fotg210
->i_thresh
;
4225 /* Fell behind (by up to twice the slop amount)?
4226 * We decide based on the time of the last currently-scheduled
4227 * slot, not the time of the next available slot.
4229 excess
= (stream
->next_uframe
- period
- next
) & (mod
- 1);
4230 if (excess
>= mod
- 2 * SCHEDULE_SLOP
)
4231 start
= next
+ excess
- mod
+ period
*
4232 DIV_ROUND_UP(mod
- excess
, period
);
4234 start
= next
+ excess
+ period
;
4235 if (start
- now
>= mod
) {
4236 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4237 urb
, start
- now
- period
, period
,
4244 /* need to schedule; when's the next (u)frame we could start?
4245 * this is bigger than fotg210->i_thresh allows; scheduling itself
4246 * isn't free, the slop should handle reasonably slow cpus. it
4247 * can also help high bandwidth if the dma and irq loads don't
4248 * jump until after the queue is primed.
4253 start
= SCHEDULE_SLOP
+ (now
& ~0x07);
4255 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4257 /* find a uframe slot with enough bandwidth.
4258 * Early uframes are more precious because full-speed
4259 * iso IN transfers can't use late uframes,
4260 * and therefore they should be allocated last.
4266 /* check schedule: enough space? */
4267 if (itd_slot_ok(fotg210
, mod
, start
,
4268 stream
->usecs
, period
))
4270 } while (start
> next
&& !done
);
4272 /* no room in the schedule */
4274 fotg210_dbg(fotg210
, "iso resched full %p (now %d max %d)\n",
4275 urb
, now
, now
+ mod
);
4281 /* Tried to schedule too far into the future? */
4282 if (unlikely(start
- now
+ span
- period
>=
4283 mod
- 2 * SCHEDULE_SLOP
)) {
4284 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4285 urb
, start
- now
, span
- period
,
4286 mod
- 2 * SCHEDULE_SLOP
);
4291 stream
->next_uframe
= start
& (mod
- 1);
4293 /* report high speed start in uframes; full speed, in frames */
4294 urb
->start_frame
= stream
->next_uframe
;
4295 if (!stream
->highspeed
)
4296 urb
->start_frame
>>= 3;
4298 /* Make sure scan_isoc() sees these */
4299 if (fotg210
->isoc_count
== 0)
4300 fotg210
->next_frame
= now
>> 3;
4304 iso_sched_free(stream
, sched
);
4309 static inline void itd_init(struct fotg210_hcd
*fotg210
,
4310 struct fotg210_iso_stream
*stream
, struct fotg210_itd
*itd
)
4314 /* it's been recently zeroed */
4315 itd
->hw_next
= FOTG210_LIST_END(fotg210
);
4316 itd
->hw_bufp
[0] = stream
->buf0
;
4317 itd
->hw_bufp
[1] = stream
->buf1
;
4318 itd
->hw_bufp
[2] = stream
->buf2
;
4320 for (i
= 0; i
< 8; i
++)
4323 /* All other fields are filled when scheduling */
4326 static inline void itd_patch(struct fotg210_hcd
*fotg210
,
4327 struct fotg210_itd
*itd
, struct fotg210_iso_sched
*iso_sched
,
4328 unsigned index
, u16 uframe
)
4330 struct fotg210_iso_packet
*uf
= &iso_sched
->packet
[index
];
4331 unsigned pg
= itd
->pg
;
4334 itd
->index
[uframe
] = index
;
4336 itd
->hw_transaction
[uframe
] = uf
->transaction
;
4337 itd
->hw_transaction
[uframe
] |= cpu_to_hc32(fotg210
, pg
<< 12);
4338 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, uf
->bufp
& ~(u32
)0);
4339 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(uf
->bufp
>> 32));
4341 /* iso_frame_desc[].offset must be strictly increasing */
4342 if (unlikely(uf
->cross
)) {
4343 u64 bufp
= uf
->bufp
+ 4096;
4346 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, bufp
& ~(u32
)0);
4347 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(bufp
>> 32));
4351 static inline void itd_link(struct fotg210_hcd
*fotg210
, unsigned frame
,
4352 struct fotg210_itd
*itd
)
4354 union fotg210_shadow
*prev
= &fotg210
->pshadow
[frame
];
4355 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
4356 union fotg210_shadow here
= *prev
;
4359 /* skip any iso nodes which might belong to previous microframes */
4361 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4362 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
4364 prev
= periodic_next_shadow(fotg210
, prev
, type
);
4365 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
4369 itd
->itd_next
= here
;
4370 itd
->hw_next
= *hw_p
;
4374 *hw_p
= cpu_to_hc32(fotg210
, itd
->itd_dma
| Q_TYPE_ITD
);
4377 /* fit urb's itds into the selected schedule slot; activate as needed */
4378 static void itd_link_urb(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4379 unsigned mod
, struct fotg210_iso_stream
*stream
)
4382 unsigned next_uframe
, uframe
, frame
;
4383 struct fotg210_iso_sched
*iso_sched
= urb
->hcpriv
;
4384 struct fotg210_itd
*itd
;
4386 next_uframe
= stream
->next_uframe
& (mod
- 1);
4388 if (unlikely(list_empty(&stream
->td_list
))) {
4389 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4390 += stream
->bandwidth
;
4391 fotg210_dbg(fotg210
,
4392 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4393 urb
->dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4394 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out",
4396 next_uframe
>> 3, next_uframe
& 0x7);
4399 /* fill iTDs uframe by uframe */
4400 for (packet
= 0, itd
= NULL
; packet
< urb
->number_of_packets
;) {
4402 /* ASSERT: we have all necessary itds */
4404 /* ASSERT: no itds for this endpoint in this uframe */
4406 itd
= list_entry(iso_sched
->td_list
.next
,
4407 struct fotg210_itd
, itd_list
);
4408 list_move_tail(&itd
->itd_list
, &stream
->td_list
);
4409 itd
->stream
= stream
;
4411 itd_init(fotg210
, stream
, itd
);
4414 uframe
= next_uframe
& 0x07;
4415 frame
= next_uframe
>> 3;
4417 itd_patch(fotg210
, itd
, iso_sched
, packet
, uframe
);
4419 next_uframe
+= stream
->interval
;
4420 next_uframe
&= mod
- 1;
4423 /* link completed itds into the schedule */
4424 if (((next_uframe
>> 3) != frame
)
4425 || packet
== urb
->number_of_packets
) {
4426 itd_link(fotg210
, frame
& (fotg210
->periodic_size
- 1),
4431 stream
->next_uframe
= next_uframe
;
4433 /* don't need that schedule data any more */
4434 iso_sched_free(stream
, iso_sched
);
4437 ++fotg210
->isoc_count
;
4438 enable_periodic(fotg210
);
4441 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4442 FOTG210_ISOC_XACTERR)
4444 /* Process and recycle a completed ITD. Return true iff its urb completed,
4445 * and hence its completion callback probably added things to the hardware
4448 * Note that we carefully avoid recycling this descriptor until after any
4449 * completion callback runs, so that it won't be reused quickly. That is,
4450 * assuming (a) no more than two urbs per frame on this endpoint, and also
4451 * (b) only this endpoint's completions submit URBs. It seems some silicon
4452 * corrupts things if you reuse completed descriptors very quickly...
4454 static bool itd_complete(struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
4456 struct urb
*urb
= itd
->urb
;
4457 struct usb_iso_packet_descriptor
*desc
;
4461 struct fotg210_iso_stream
*stream
= itd
->stream
;
4462 struct usb_device
*dev
;
4463 bool retval
= false;
4465 /* for each uframe with a packet */
4466 for (uframe
= 0; uframe
< 8; uframe
++) {
4467 if (likely(itd
->index
[uframe
] == -1))
4469 urb_index
= itd
->index
[uframe
];
4470 desc
= &urb
->iso_frame_desc
[urb_index
];
4472 t
= hc32_to_cpup(fotg210
, &itd
->hw_transaction
[uframe
]);
4473 itd
->hw_transaction
[uframe
] = 0;
4475 /* report transfer status */
4476 if (unlikely(t
& ISO_ERRS
)) {
4478 if (t
& FOTG210_ISOC_BUF_ERR
)
4479 desc
->status
= usb_pipein(urb
->pipe
)
4480 ? -ENOSR
/* hc couldn't read */
4481 : -ECOMM
; /* hc couldn't write */
4482 else if (t
& FOTG210_ISOC_BABBLE
)
4483 desc
->status
= -EOVERFLOW
;
4484 else /* (t & FOTG210_ISOC_XACTERR) */
4485 desc
->status
= -EPROTO
;
4487 /* HC need not update length with this error */
4488 if (!(t
& FOTG210_ISOC_BABBLE
)) {
4489 desc
->actual_length
=
4490 fotg210_itdlen(urb
, desc
, t
);
4491 urb
->actual_length
+= desc
->actual_length
;
4493 } else if (likely((t
& FOTG210_ISOC_ACTIVE
) == 0)) {
4495 desc
->actual_length
= fotg210_itdlen(urb
, desc
, t
);
4496 urb
->actual_length
+= desc
->actual_length
;
4498 /* URB was too late */
4499 desc
->status
= -EXDEV
;
4503 /* handle completion now? */
4504 if (likely((urb_index
+ 1) != urb
->number_of_packets
))
4507 /* ASSERT: it's really the last itd for this urb
4508 * list_for_each_entry (itd, &stream->td_list, itd_list)
4509 * BUG_ON (itd->urb == urb);
4512 /* give urb back to the driver; completion often (re)submits */
4514 fotg210_urb_done(fotg210
, urb
, 0);
4518 --fotg210
->isoc_count
;
4519 disable_periodic(fotg210
);
4521 if (unlikely(list_is_singular(&stream
->td_list
))) {
4522 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4523 -= stream
->bandwidth
;
4524 fotg210_dbg(fotg210
,
4525 "deschedule devp %s ep%d%s-iso\n",
4526 dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4527 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out");
4533 /* Add to the end of the free list for later reuse */
4534 list_move_tail(&itd
->itd_list
, &stream
->free_list
);
4536 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4537 if (list_empty(&stream
->td_list
)) {
4538 list_splice_tail_init(&stream
->free_list
,
4539 &fotg210
->cached_itd_list
);
4540 start_free_itds(fotg210
);
4546 static int itd_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4549 int status
= -EINVAL
;
4550 unsigned long flags
;
4551 struct fotg210_iso_stream
*stream
;
4553 /* Get iso_stream head */
4554 stream
= iso_stream_find(fotg210
, urb
);
4555 if (unlikely(stream
== NULL
)) {
4556 fotg210_dbg(fotg210
, "can't get iso stream\n");
4559 if (unlikely(urb
->interval
!= stream
->interval
&&
4560 fotg210_port_speed(fotg210
, 0) ==
4561 USB_PORT_STAT_HIGH_SPEED
)) {
4562 fotg210_dbg(fotg210
, "can't change iso interval %d --> %d\n",
4563 stream
->interval
, urb
->interval
);
4567 #ifdef FOTG210_URB_TRACE
4568 fotg210_dbg(fotg210
,
4569 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4570 __func__
, urb
->dev
->devpath
, urb
,
4571 usb_pipeendpoint(urb
->pipe
),
4572 usb_pipein(urb
->pipe
) ? "in" : "out",
4573 urb
->transfer_buffer_length
,
4574 urb
->number_of_packets
, urb
->interval
,
4578 /* allocate ITDs w/o locking anything */
4579 status
= itd_urb_transaction(stream
, fotg210
, urb
, mem_flags
);
4580 if (unlikely(status
< 0)) {
4581 fotg210_dbg(fotg210
, "can't init itds\n");
4585 /* schedule ... need to lock */
4586 spin_lock_irqsave(&fotg210
->lock
, flags
);
4587 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
4588 status
= -ESHUTDOWN
;
4589 goto done_not_linked
;
4591 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
4592 if (unlikely(status
))
4593 goto done_not_linked
;
4594 status
= iso_stream_schedule(fotg210
, urb
, stream
);
4595 if (likely(status
== 0))
4596 itd_link_urb(fotg210
, urb
, fotg210
->periodic_size
<< 3, stream
);
4598 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
4600 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4605 static inline int scan_frame_queue(struct fotg210_hcd
*fotg210
, unsigned frame
,
4606 unsigned now_frame
, bool live
)
4610 union fotg210_shadow q
, *q_p
;
4613 /* scan each element in frame's queue for completions */
4614 q_p
= &fotg210
->pshadow
[frame
];
4615 hw_p
= &fotg210
->periodic
[frame
];
4617 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4621 switch (hc32_to_cpu(fotg210
, type
)) {
4623 /* If this ITD is still active, leave it for
4624 * later processing ... check the next entry.
4625 * No need to check for activity unless the
4628 if (frame
== now_frame
&& live
) {
4630 for (uf
= 0; uf
< 8; uf
++) {
4631 if (q
.itd
->hw_transaction
[uf
] &
4632 ITD_ACTIVE(fotg210
))
4636 q_p
= &q
.itd
->itd_next
;
4637 hw_p
= &q
.itd
->hw_next
;
4638 type
= Q_NEXT_TYPE(fotg210
,
4645 /* Take finished ITDs out of the schedule
4646 * and process them: recycle, maybe report
4647 * URB completion. HC won't cache the
4648 * pointer for much longer, if at all.
4650 *q_p
= q
.itd
->itd_next
;
4651 *hw_p
= q
.itd
->hw_next
;
4652 type
= Q_NEXT_TYPE(fotg210
, q
.itd
->hw_next
);
4654 modified
= itd_complete(fotg210
, q
.itd
);
4658 fotg210_dbg(fotg210
, "corrupt type %d frame %d shadow %p\n",
4659 type
, frame
, q
.ptr
);
4663 /* End of the iTDs and siTDs */
4668 /* assume completion callbacks modify the queue */
4669 if (unlikely(modified
&& fotg210
->isoc_count
> 0))
4675 static void scan_isoc(struct fotg210_hcd
*fotg210
)
4677 unsigned uf
, now_frame
, frame
, ret
;
4678 unsigned fmask
= fotg210
->periodic_size
- 1;
4682 * When running, scan from last scan point up to "now"
4683 * else clean up by scanning everything that's left.
4684 * Touches as few pages as possible: cache-friendly.
4686 if (fotg210
->rh_state
>= FOTG210_RH_RUNNING
) {
4687 uf
= fotg210_read_frame_index(fotg210
);
4688 now_frame
= (uf
>> 3) & fmask
;
4691 now_frame
= (fotg210
->next_frame
- 1) & fmask
;
4694 fotg210
->now_frame
= now_frame
;
4696 frame
= fotg210
->next_frame
;
4700 ret
= scan_frame_queue(fotg210
, frame
,
4703 /* Stop when we have reached the current frame */
4704 if (frame
== now_frame
)
4706 frame
= (frame
+ 1) & fmask
;
4708 fotg210
->next_frame
= now_frame
;
4711 /* Display / Set uframe_periodic_max
4713 static ssize_t
show_uframe_periodic_max(struct device
*dev
,
4714 struct device_attribute
*attr
, char *buf
)
4716 struct fotg210_hcd
*fotg210
;
4719 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4720 n
= scnprintf(buf
, PAGE_SIZE
, "%d\n", fotg210
->uframe_periodic_max
);
4725 static ssize_t
store_uframe_periodic_max(struct device
*dev
,
4726 struct device_attribute
*attr
, const char *buf
, size_t count
)
4728 struct fotg210_hcd
*fotg210
;
4729 unsigned uframe_periodic_max
;
4730 unsigned frame
, uframe
;
4731 unsigned short allocated_max
;
4732 unsigned long flags
;
4735 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4736 if (kstrtouint(buf
, 0, &uframe_periodic_max
) < 0)
4739 if (uframe_periodic_max
< 100 || uframe_periodic_max
>= 125) {
4740 fotg210_info(fotg210
, "rejecting invalid request for uframe_periodic_max=%u\n",
4741 uframe_periodic_max
);
4748 * lock, so that our checking does not race with possible periodic
4749 * bandwidth allocation through submitting new urbs.
4751 spin_lock_irqsave(&fotg210
->lock
, flags
);
4754 * for request to decrease max periodic bandwidth, we have to check
4755 * every microframe in the schedule to see whether the decrease is
4758 if (uframe_periodic_max
< fotg210
->uframe_periodic_max
) {
4761 for (frame
= 0; frame
< fotg210
->periodic_size
; ++frame
)
4762 for (uframe
= 0; uframe
< 7; ++uframe
)
4763 allocated_max
= max(allocated_max
,
4764 periodic_usecs(fotg210
, frame
,
4767 if (allocated_max
> uframe_periodic_max
) {
4768 fotg210_info(fotg210
,
4769 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4770 allocated_max
, uframe_periodic_max
);
4775 /* increasing is always ok */
4777 fotg210_info(fotg210
,
4778 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4779 100 * uframe_periodic_max
/125, uframe_periodic_max
);
4781 if (uframe_periodic_max
!= 100)
4782 fotg210_warn(fotg210
, "max periodic bandwidth set is non-standard\n");
4784 fotg210
->uframe_periodic_max
= uframe_periodic_max
;
4788 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4792 static DEVICE_ATTR(uframe_periodic_max
, 0644, show_uframe_periodic_max
,
4793 store_uframe_periodic_max
);
4795 static inline int create_sysfs_files(struct fotg210_hcd
*fotg210
)
4797 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4799 return device_create_file(controller
, &dev_attr_uframe_periodic_max
);
4802 static inline void remove_sysfs_files(struct fotg210_hcd
*fotg210
)
4804 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4806 device_remove_file(controller
, &dev_attr_uframe_periodic_max
);
4808 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4809 * The firmware seems to think that powering off is a wakeup event!
4810 * This routine turns off remote wakeup and everything else, on all ports.
4812 static void fotg210_turn_off_all_ports(struct fotg210_hcd
*fotg210
)
4814 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
4816 fotg210_writel(fotg210
, PORT_RWC_BITS
, status_reg
);
4819 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4820 * Must be called with interrupts enabled and the lock not held.
4822 static void fotg210_silence_controller(struct fotg210_hcd
*fotg210
)
4824 fotg210_halt(fotg210
);
4826 spin_lock_irq(&fotg210
->lock
);
4827 fotg210
->rh_state
= FOTG210_RH_HALTED
;
4828 fotg210_turn_off_all_ports(fotg210
);
4829 spin_unlock_irq(&fotg210
->lock
);
4832 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4833 * This forcibly disables dma and IRQs, helping kexec and other cases
4834 * where the next system software may expect clean state.
4836 static void fotg210_shutdown(struct usb_hcd
*hcd
)
4838 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4840 spin_lock_irq(&fotg210
->lock
);
4841 fotg210
->shutdown
= true;
4842 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
4843 fotg210
->enabled_hrtimer_events
= 0;
4844 spin_unlock_irq(&fotg210
->lock
);
4846 fotg210_silence_controller(fotg210
);
4848 hrtimer_cancel(&fotg210
->hrtimer
);
4851 /* fotg210_work is called from some interrupts, timers, and so on.
4852 * it calls driver completion functions, after dropping fotg210->lock.
4854 static void fotg210_work(struct fotg210_hcd
*fotg210
)
4856 /* another CPU may drop fotg210->lock during a schedule scan while
4857 * it reports urb completions. this flag guards against bogus
4858 * attempts at re-entrant schedule scanning.
4860 if (fotg210
->scanning
) {
4861 fotg210
->need_rescan
= true;
4864 fotg210
->scanning
= true;
4867 fotg210
->need_rescan
= false;
4868 if (fotg210
->async_count
)
4869 scan_async(fotg210
);
4870 if (fotg210
->intr_count
> 0)
4872 if (fotg210
->isoc_count
> 0)
4874 if (fotg210
->need_rescan
)
4876 fotg210
->scanning
= false;
4878 /* the IO watchdog guards against hardware or driver bugs that
4879 * misplace IRQs, and should let us run completely without IRQs.
4880 * such lossage has been observed on both VT6202 and VT8235.
4882 turn_on_io_watchdog(fotg210
);
4885 /* Called when the fotg210_hcd module is removed.
4887 static void fotg210_stop(struct usb_hcd
*hcd
)
4889 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4891 fotg210_dbg(fotg210
, "stop\n");
4893 /* no more interrupts ... */
4895 spin_lock_irq(&fotg210
->lock
);
4896 fotg210
->enabled_hrtimer_events
= 0;
4897 spin_unlock_irq(&fotg210
->lock
);
4899 fotg210_quiesce(fotg210
);
4900 fotg210_silence_controller(fotg210
);
4901 fotg210_reset(fotg210
);
4903 hrtimer_cancel(&fotg210
->hrtimer
);
4904 remove_sysfs_files(fotg210
);
4905 remove_debug_files(fotg210
);
4907 /* root hub is shut down separately (first, when possible) */
4908 spin_lock_irq(&fotg210
->lock
);
4909 end_free_itds(fotg210
);
4910 spin_unlock_irq(&fotg210
->lock
);
4911 fotg210_mem_cleanup(fotg210
);
4913 #ifdef FOTG210_STATS
4914 fotg210_dbg(fotg210
, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4915 fotg210
->stats
.normal
, fotg210
->stats
.error
,
4916 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
4917 fotg210_dbg(fotg210
, "complete %ld unlink %ld\n",
4918 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
4921 dbg_status(fotg210
, "fotg210_stop completed",
4922 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
4925 /* one-time init, only for memory state */
4926 static int hcd_fotg210_init(struct usb_hcd
*hcd
)
4928 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4932 struct fotg210_qh_hw
*hw
;
4934 spin_lock_init(&fotg210
->lock
);
4937 * keep io watchdog by default, those good HCDs could turn off it later
4939 fotg210
->need_io_watchdog
= 1;
4941 hrtimer_init(&fotg210
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
4942 fotg210
->hrtimer
.function
= fotg210_hrtimer_func
;
4943 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
4945 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
4948 * by default set standard 80% (== 100 usec/uframe) max periodic
4949 * bandwidth as required by USB 2.0
4951 fotg210
->uframe_periodic_max
= 100;
4954 * hw default: 1K periodic list heads, one per frame.
4955 * periodic_size can shrink by USBCMD update if hcc_params allows.
4957 fotg210
->periodic_size
= DEFAULT_I_TDPS
;
4958 INIT_LIST_HEAD(&fotg210
->intr_qh_list
);
4959 INIT_LIST_HEAD(&fotg210
->cached_itd_list
);
4961 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
4962 /* periodic schedule size can be smaller than default */
4963 switch (FOTG210_TUNE_FLS
) {
4965 fotg210
->periodic_size
= 1024;
4968 fotg210
->periodic_size
= 512;
4971 fotg210
->periodic_size
= 256;
4977 retval
= fotg210_mem_init(fotg210
, GFP_KERNEL
);
4981 /* controllers may cache some of the periodic schedule ... */
4982 fotg210
->i_thresh
= 2;
4985 * dedicate a qh for the async ring head, since we couldn't unlink
4986 * a 'real' qh without stopping the async schedule [4.8]. use it
4987 * as the 'reclamation list head' too.
4988 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4989 * from automatically advancing to the next td after short reads.
4991 fotg210
->async
->qh_next
.qh
= NULL
;
4992 hw
= fotg210
->async
->hw
;
4993 hw
->hw_next
= QH_NEXT(fotg210
, fotg210
->async
->qh_dma
);
4994 hw
->hw_info1
= cpu_to_hc32(fotg210
, QH_HEAD
);
4995 hw
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
4996 hw
->hw_qtd_next
= FOTG210_LIST_END(fotg210
);
4997 fotg210
->async
->qh_state
= QH_STATE_LINKED
;
4998 hw
->hw_alt_next
= QTD_NEXT(fotg210
, fotg210
->async
->dummy
->qtd_dma
);
5000 /* clear interrupt enables, set irq latency */
5001 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
5002 log2_irq_thresh
= 0;
5003 temp
= 1 << (16 + log2_irq_thresh
);
5004 if (HCC_CANPARK(hcc_params
)) {
5005 /* HW default park == 3, on hardware that supports it (like
5006 * NVidia and ALI silicon), maximizes throughput on the async
5007 * schedule by avoiding QH fetches between transfers.
5009 * With fast usb storage devices and NForce2, "park" seems to
5010 * make problems: throughput reduction (!), data errors...
5013 park
= min_t(unsigned, park
, 3);
5017 fotg210_dbg(fotg210
, "park %d\n", park
);
5019 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
5020 /* periodic schedule size can be smaller than default */
5022 temp
|= (FOTG210_TUNE_FLS
<< 2);
5024 fotg210
->command
= temp
;
5026 /* Accept arbitrarily long scatter-gather lists */
5027 if (!(hcd
->driver
->flags
& HCD_LOCAL_MEM
))
5028 hcd
->self
.sg_tablesize
= ~0;
5032 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5033 static int fotg210_run(struct usb_hcd
*hcd
)
5035 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5039 hcd
->uses_new_polling
= 1;
5041 /* EHCI spec section 4.1 */
5043 fotg210_writel(fotg210
, fotg210
->periodic_dma
,
5044 &fotg210
->regs
->frame_list
);
5045 fotg210_writel(fotg210
, (u32
)fotg210
->async
->qh_dma
,
5046 &fotg210
->regs
->async_next
);
5049 * hcc_params controls whether fotg210->regs->segment must (!!!)
5050 * be used; it constrains QH/ITD/SITD and QTD locations.
5051 * pci_pool consistent memory always uses segment zero.
5052 * streaming mappings for I/O buffers, like pci_map_single(),
5053 * can return segments above 4GB, if the device allows.
5055 * NOTE: the dma mask is visible through dev->dma_mask, so
5056 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5057 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5058 * host side drivers though.
5060 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
5063 * Philips, Intel, and maybe others need CMD_RUN before the
5064 * root hub will detect new devices (why?); NEC doesn't
5066 fotg210
->command
&= ~(CMD_IAAD
|CMD_PSE
|CMD_ASE
|CMD_RESET
);
5067 fotg210
->command
|= CMD_RUN
;
5068 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
5069 dbg_cmd(fotg210
, "init", fotg210
->command
);
5072 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5073 * are explicitly handed to companion controller(s), so no TT is
5074 * involved with the root hub. (Except where one is integrated,
5075 * and there's no companion controller unless maybe for USB OTG.)
5077 * Turning on the CF flag will transfer ownership of all ports
5078 * from the companions to the EHCI controller. If any of the
5079 * companions are in the middle of a port reset at the time, it
5080 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5081 * guarantees that no resets are in progress. After we set CF,
5082 * a short delay lets the hardware catch up; new resets shouldn't
5083 * be started before the port switching actions could complete.
5085 down_write(&ehci_cf_port_reset_rwsem
);
5086 fotg210
->rh_state
= FOTG210_RH_RUNNING
;
5087 /* unblock posted writes */
5088 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5089 usleep_range(5000, 10000);
5090 up_write(&ehci_cf_port_reset_rwsem
);
5091 fotg210
->last_periodic_enable
= ktime_get_real();
5093 temp
= HC_VERSION(fotg210
,
5094 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5095 fotg210_info(fotg210
,
5096 "USB %x.%x started, EHCI %x.%02x\n",
5097 ((fotg210
->sbrn
& 0xf0) >> 4), (fotg210
->sbrn
& 0x0f),
5098 temp
>> 8, temp
& 0xff);
5100 fotg210_writel(fotg210
, INTR_MASK
,
5101 &fotg210
->regs
->intr_enable
); /* Turn On Interrupts */
5103 /* GRR this is run-once init(), being done every time the HC starts.
5104 * So long as they're part of class devices, we can't do it init()
5105 * since the class device isn't created that early.
5107 create_debug_files(fotg210
);
5108 create_sysfs_files(fotg210
);
5113 static int fotg210_setup(struct usb_hcd
*hcd
)
5115 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5118 fotg210
->regs
= (void __iomem
*)fotg210
->caps
+
5120 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5121 dbg_hcs_params(fotg210
, "reset");
5122 dbg_hcc_params(fotg210
, "reset");
5124 /* cache this readonly data; minimize chip reads */
5125 fotg210
->hcs_params
= fotg210_readl(fotg210
,
5126 &fotg210
->caps
->hcs_params
);
5128 fotg210
->sbrn
= HCD_USB2
;
5130 /* data structure init */
5131 retval
= hcd_fotg210_init(hcd
);
5135 retval
= fotg210_halt(fotg210
);
5139 fotg210_reset(fotg210
);
5144 static irqreturn_t
fotg210_irq(struct usb_hcd
*hcd
)
5146 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5147 u32 status
, masked_status
, pcd_status
= 0, cmd
;
5150 spin_lock(&fotg210
->lock
);
5152 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
5154 /* e.g. cardbus physical eject */
5155 if (status
== ~(u32
) 0) {
5156 fotg210_dbg(fotg210
, "device removed\n");
5161 * We don't use STS_FLR, but some controllers don't like it to
5162 * remain on, so mask it out along with the other status bits.
5164 masked_status
= status
& (INTR_MASK
| STS_FLR
);
5167 if (!masked_status
||
5168 unlikely(fotg210
->rh_state
== FOTG210_RH_HALTED
)) {
5169 spin_unlock(&fotg210
->lock
);
5173 /* clear (just) interrupts */
5174 fotg210_writel(fotg210
, masked_status
, &fotg210
->regs
->status
);
5175 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5178 /* unrequested/ignored: Frame List Rollover */
5179 dbg_status(fotg210
, "irq", status
);
5181 /* INT, ERR, and IAA interrupt rates can be throttled */
5183 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5184 if (likely((status
& (STS_INT
|STS_ERR
)) != 0)) {
5185 if (likely((status
& STS_ERR
) == 0))
5186 COUNT(fotg210
->stats
.normal
);
5188 COUNT(fotg210
->stats
.error
);
5192 /* complete the unlinking of some qh [4.15.2.3] */
5193 if (status
& STS_IAA
) {
5195 /* Turn off the IAA watchdog */
5196 fotg210
->enabled_hrtimer_events
&=
5197 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG
);
5200 * Mild optimization: Allow another IAAD to reset the
5201 * hrtimer, if one occurs before the next expiration.
5202 * In theory we could always cancel the hrtimer, but
5203 * tests show that about half the time it will be reset
5204 * for some other event anyway.
5206 if (fotg210
->next_hrtimer_event
== FOTG210_HRTIMER_IAA_WATCHDOG
)
5207 ++fotg210
->next_hrtimer_event
;
5209 /* guard against (alleged) silicon errata */
5211 fotg210_dbg(fotg210
, "IAA with IAAD still set?\n");
5212 if (fotg210
->async_iaa
) {
5213 COUNT(fotg210
->stats
.iaa
);
5214 end_unlink_async(fotg210
);
5216 fotg210_dbg(fotg210
, "IAA with nothing unlinked?\n");
5219 /* remote wakeup [4.3.1] */
5220 if (status
& STS_PCD
) {
5222 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
5224 /* kick root hub later */
5225 pcd_status
= status
;
5227 /* resume root hub? */
5228 if (fotg210
->rh_state
== FOTG210_RH_SUSPENDED
)
5229 usb_hcd_resume_root_hub(hcd
);
5231 pstatus
= fotg210_readl(fotg210
, status_reg
);
5233 if (test_bit(0, &fotg210
->suspended_ports
) &&
5234 ((pstatus
& PORT_RESUME
) ||
5235 !(pstatus
& PORT_SUSPEND
)) &&
5236 (pstatus
& PORT_PE
) &&
5237 fotg210
->reset_done
[0] == 0) {
5239 /* start 20 msec resume signaling from this port,
5240 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5241 * stop that signaling. Use 5 ms extra for safety,
5242 * like usb_port_resume() does.
5244 fotg210
->reset_done
[0] = jiffies
+ msecs_to_jiffies(25);
5245 set_bit(0, &fotg210
->resuming_ports
);
5246 fotg210_dbg(fotg210
, "port 1 remote wakeup\n");
5247 mod_timer(&hcd
->rh_timer
, fotg210
->reset_done
[0]);
5251 /* PCI errors [4.15.2.4] */
5252 if (unlikely((status
& STS_FATAL
) != 0)) {
5253 fotg210_err(fotg210
, "fatal error\n");
5254 dbg_cmd(fotg210
, "fatal", cmd
);
5255 dbg_status(fotg210
, "fatal", status
);
5259 /* Don't let the controller do anything more */
5260 fotg210
->shutdown
= true;
5261 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
5262 fotg210
->command
&= ~(CMD_RUN
| CMD_ASE
| CMD_PSE
);
5263 fotg210_writel(fotg210
, fotg210
->command
,
5264 &fotg210
->regs
->command
);
5265 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
5266 fotg210_handle_controller_death(fotg210
);
5268 /* Handle completions when the controller stops */
5273 fotg210_work(fotg210
);
5274 spin_unlock(&fotg210
->lock
);
5276 usb_hcd_poll_rh_status(hcd
);
5280 /* non-error returns are a promise to giveback() the urb later
5281 * we drop ownership so next owner (or urb unlink) can get it
5283 * urb + dev is in hcd.self.controller.urb_list
5284 * we're queueing TDs onto software and hardware lists
5286 * hcd-specific init for hcpriv hasn't been done yet
5288 * NOTE: control, bulk, and interrupt share the same code to append TDs
5289 * to a (possibly active) QH, and the same QH scanning code.
5291 static int fotg210_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
5294 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5295 struct list_head qtd_list
;
5297 INIT_LIST_HEAD(&qtd_list
);
5299 switch (usb_pipetype(urb
->pipe
)) {
5301 /* qh_completions() code doesn't handle all the fault cases
5302 * in multi-TD control transfers. Even 1KB is rare anyway.
5304 if (urb
->transfer_buffer_length
> (16 * 1024))
5307 /* case PIPE_BULK: */
5309 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5311 return submit_async(fotg210
, urb
, &qtd_list
, mem_flags
);
5313 case PIPE_INTERRUPT
:
5314 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5316 return intr_submit(fotg210
, urb
, &qtd_list
, mem_flags
);
5318 case PIPE_ISOCHRONOUS
:
5319 return itd_submit(fotg210
, urb
, mem_flags
);
5323 /* remove from hardware lists
5324 * completions normally happen asynchronously
5327 static int fotg210_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
5329 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5330 struct fotg210_qh
*qh
;
5331 unsigned long flags
;
5334 spin_lock_irqsave(&fotg210
->lock
, flags
);
5335 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
5339 switch (usb_pipetype(urb
->pipe
)) {
5340 /* case PIPE_CONTROL: */
5341 /* case PIPE_BULK:*/
5343 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5346 switch (qh
->qh_state
) {
5347 case QH_STATE_LINKED
:
5348 case QH_STATE_COMPLETING
:
5349 start_unlink_async(fotg210
, qh
);
5351 case QH_STATE_UNLINK
:
5352 case QH_STATE_UNLINK_WAIT
:
5353 /* already started */
5356 /* QH might be waiting for a Clear-TT-Buffer */
5357 qh_completions(fotg210
, qh
);
5362 case PIPE_INTERRUPT
:
5363 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5366 switch (qh
->qh_state
) {
5367 case QH_STATE_LINKED
:
5368 case QH_STATE_COMPLETING
:
5369 start_unlink_intr(fotg210
, qh
);
5372 qh_completions(fotg210
, qh
);
5375 fotg210_dbg(fotg210
, "bogus qh %p state %d\n",
5381 case PIPE_ISOCHRONOUS
:
5384 /* wait till next completion, do it then. */
5385 /* completion irqs can wait up to 1024 msec, */
5389 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5393 /* bulk qh holds the data toggle */
5395 static void fotg210_endpoint_disable(struct usb_hcd
*hcd
,
5396 struct usb_host_endpoint
*ep
)
5398 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5399 unsigned long flags
;
5400 struct fotg210_qh
*qh
, *tmp
;
5402 /* ASSERT: any requests/urbs are being unlinked */
5403 /* ASSERT: nobody can be submitting urbs for this any more */
5406 spin_lock_irqsave(&fotg210
->lock
, flags
);
5411 /* endpoints can be iso streams. for now, we don't
5412 * accelerate iso completions ... so spin a while.
5414 if (qh
->hw
== NULL
) {
5415 struct fotg210_iso_stream
*stream
= ep
->hcpriv
;
5417 if (!list_empty(&stream
->td_list
))
5420 /* BUG_ON(!list_empty(&stream->free_list)); */
5425 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
5426 qh
->qh_state
= QH_STATE_IDLE
;
5427 switch (qh
->qh_state
) {
5428 case QH_STATE_LINKED
:
5429 case QH_STATE_COMPLETING
:
5430 for (tmp
= fotg210
->async
->qh_next
.qh
;
5432 tmp
= tmp
->qh_next
.qh
)
5434 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5435 * may already be unlinked.
5438 start_unlink_async(fotg210
, qh
);
5440 case QH_STATE_UNLINK
: /* wait for hw to finish? */
5441 case QH_STATE_UNLINK_WAIT
:
5443 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5444 schedule_timeout_uninterruptible(1);
5446 case QH_STATE_IDLE
: /* fully unlinked */
5447 if (qh
->clearing_tt
)
5449 if (list_empty(&qh
->qtd_list
)) {
5450 qh_destroy(fotg210
, qh
);
5453 /* else FALL THROUGH */
5455 /* caller was supposed to have unlinked any requests;
5456 * that's not our job. just leak this memory.
5458 fotg210_err(fotg210
, "qh %p (#%02x) state %d%s\n",
5459 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
5460 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
5465 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5468 static void fotg210_endpoint_reset(struct usb_hcd
*hcd
,
5469 struct usb_host_endpoint
*ep
)
5471 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5472 struct fotg210_qh
*qh
;
5473 int eptype
= usb_endpoint_type(&ep
->desc
);
5474 int epnum
= usb_endpoint_num(&ep
->desc
);
5475 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
5476 unsigned long flags
;
5478 if (eptype
!= USB_ENDPOINT_XFER_BULK
&& eptype
!= USB_ENDPOINT_XFER_INT
)
5481 spin_lock_irqsave(&fotg210
->lock
, flags
);
5484 /* For Bulk and Interrupt endpoints we maintain the toggle state
5485 * in the hardware; the toggle bits in udev aren't used at all.
5486 * When an endpoint is reset by usb_clear_halt() we must reset
5487 * the toggle bit in the QH.
5490 usb_settoggle(qh
->dev
, epnum
, is_out
, 0);
5491 if (!list_empty(&qh
->qtd_list
)) {
5492 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5493 } else if (qh
->qh_state
== QH_STATE_LINKED
||
5494 qh
->qh_state
== QH_STATE_COMPLETING
) {
5496 /* The toggle value in the QH can't be updated
5497 * while the QH is active. Unlink it now;
5498 * re-linking will call qh_refresh().
5500 if (eptype
== USB_ENDPOINT_XFER_BULK
)
5501 start_unlink_async(fotg210
, qh
);
5503 start_unlink_intr(fotg210
, qh
);
5506 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5509 static int fotg210_get_frame(struct usb_hcd
*hcd
)
5511 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5513 return (fotg210_read_frame_index(fotg210
) >> 3) %
5514 fotg210
->periodic_size
;
5517 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5518 * because its registers (and irq) are shared between host/gadget/otg
5519 * functions and in order to facilitate role switching we cannot
5520 * give the fotg210 driver exclusive access to those.
5522 MODULE_DESCRIPTION(DRIVER_DESC
);
5523 MODULE_AUTHOR(DRIVER_AUTHOR
);
5524 MODULE_LICENSE("GPL");
5526 static const struct hc_driver fotg210_fotg210_hc_driver
= {
5527 .description
= hcd_name
,
5528 .product_desc
= "Faraday USB2.0 Host Controller",
5529 .hcd_priv_size
= sizeof(struct fotg210_hcd
),
5532 * generic hardware linkage
5535 .flags
= HCD_MEMORY
| HCD_USB2
,
5538 * basic lifecycle operations
5540 .reset
= hcd_fotg210_init
,
5541 .start
= fotg210_run
,
5542 .stop
= fotg210_stop
,
5543 .shutdown
= fotg210_shutdown
,
5546 * managing i/o requests and associated device resources
5548 .urb_enqueue
= fotg210_urb_enqueue
,
5549 .urb_dequeue
= fotg210_urb_dequeue
,
5550 .endpoint_disable
= fotg210_endpoint_disable
,
5551 .endpoint_reset
= fotg210_endpoint_reset
,
5554 * scheduling support
5556 .get_frame_number
= fotg210_get_frame
,
5561 .hub_status_data
= fotg210_hub_status_data
,
5562 .hub_control
= fotg210_hub_control
,
5563 .bus_suspend
= fotg210_bus_suspend
,
5564 .bus_resume
= fotg210_bus_resume
,
5566 .relinquish_port
= fotg210_relinquish_port
,
5567 .port_handed_over
= fotg210_port_handed_over
,
5569 .clear_tt_buffer_complete
= fotg210_clear_tt_buffer_complete
,
5572 static void fotg210_init(struct fotg210_hcd
*fotg210
)
5576 iowrite32(GMIR_MDEV_INT
| GMIR_MOTG_INT
| GMIR_INT_POLARITY
,
5577 &fotg210
->regs
->gmir
);
5579 value
= ioread32(&fotg210
->regs
->otgcsr
);
5580 value
&= ~OTGCSR_A_BUS_DROP
;
5581 value
|= OTGCSR_A_BUS_REQ
;
5582 iowrite32(value
, &fotg210
->regs
->otgcsr
);
5586 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5588 * Allocates basic resources for this USB host controller, and
5589 * then invokes the start() method for the HCD associated with it
5590 * through the hotplug entry's driver_data.
5592 static int fotg210_hcd_probe(struct platform_device
*pdev
)
5594 struct device
*dev
= &pdev
->dev
;
5595 struct usb_hcd
*hcd
;
5596 struct resource
*res
;
5598 int retval
= -ENODEV
;
5599 struct fotg210_hcd
*fotg210
;
5604 pdev
->dev
.power
.power_state
= PMSG_ON
;
5606 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
5608 dev_err(dev
, "Found HC with no IRQ. Check %s setup!\n",
5615 hcd
= usb_create_hcd(&fotg210_fotg210_hc_driver
, dev
,
5618 dev_err(dev
, "failed to create hcd with err %d\n", retval
);
5620 goto fail_create_hcd
;
5625 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
5626 hcd
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
5627 if (IS_ERR(hcd
->regs
)) {
5628 retval
= PTR_ERR(hcd
->regs
);
5632 hcd
->rsrc_start
= res
->start
;
5633 hcd
->rsrc_len
= resource_size(res
);
5635 fotg210
= hcd_to_fotg210(hcd
);
5637 fotg210
->caps
= hcd
->regs
;
5639 retval
= fotg210_setup(hcd
);
5643 fotg210_init(fotg210
);
5645 retval
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
5647 dev_err(dev
, "failed to add hcd with err %d\n", retval
);
5650 device_wakeup_enable(hcd
->self
.controller
);
5657 dev_err(dev
, "init %s fail, %d\n", dev_name(dev
), retval
);
5662 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5663 * @dev: USB Host Controller being removed
5666 static int fotg210_hcd_remove(struct platform_device
*pdev
)
5668 struct device
*dev
= &pdev
->dev
;
5669 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
5674 usb_remove_hcd(hcd
);
5680 static struct platform_driver fotg210_hcd_driver
= {
5682 .name
= "fotg210-hcd",
5684 .probe
= fotg210_hcd_probe
,
5685 .remove
= fotg210_hcd_remove
,
5688 static int __init
fotg210_hcd_init(void)
5695 pr_info("%s: " DRIVER_DESC
"\n", hcd_name
);
5696 set_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5697 if (test_bit(USB_UHCI_LOADED
, &usb_hcds_loaded
) ||
5698 test_bit(USB_OHCI_LOADED
, &usb_hcds_loaded
))
5699 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5701 pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5702 hcd_name
, sizeof(struct fotg210_qh
),
5703 sizeof(struct fotg210_qtd
),
5704 sizeof(struct fotg210_itd
));
5706 fotg210_debug_root
= debugfs_create_dir("fotg210", usb_debug_root
);
5707 if (!fotg210_debug_root
) {
5712 retval
= platform_driver_register(&fotg210_hcd_driver
);
5718 debugfs_remove(fotg210_debug_root
);
5719 fotg210_debug_root
= NULL
;
5721 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5724 module_init(fotg210_hcd_init
);
5726 static void __exit
fotg210_hcd_cleanup(void)
5728 platform_driver_unregister(&fotg210_hcd_driver
);
5729 debugfs_remove(fotg210_debug_root
);
5730 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5732 module_exit(fotg210_hcd_cleanup
);