2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
6 * the chip is a quasi-EHCI compatible.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/timer.h>
33 #include <linux/list.h>
34 #include <linux/interrupt.h>
35 #include <linux/usb.h>
36 #include <linux/usb/hcd.h>
37 #include <linux/moduleparam.h>
38 #include <linux/dma-mapping.h>
42 #include <asm/unaligned.h>
44 #include <linux/irq.h>
45 #include <linux/platform_device.h>
49 #define DRIVER_VERSION "0.0.50"
55 #define oxu_dbg(oxu, fmt, args...) \
56 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
57 #define oxu_err(oxu, fmt, args...) \
58 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
59 #define oxu_info(oxu, fmt, args...) \
60 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
62 #ifdef CONFIG_DYNAMIC_DEBUG
66 static inline struct usb_hcd
*oxu_to_hcd(struct oxu_hcd
*oxu
)
68 return container_of((void *) oxu
, struct usb_hcd
, hcd_priv
);
71 static inline struct oxu_hcd
*hcd_to_oxu(struct usb_hcd
*hcd
)
73 return (struct oxu_hcd
*) (hcd
->hcd_priv
);
81 #undef OXU_VERBOSE_DEBUG
83 #ifdef OXU_VERBOSE_DEBUG
84 #define oxu_vdbg oxu_dbg
86 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
91 static int __attribute__((__unused__
))
92 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
94 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
95 label
, label
[0] ? " " : "", status
,
96 (status
& STS_ASS
) ? " Async" : "",
97 (status
& STS_PSS
) ? " Periodic" : "",
98 (status
& STS_RECL
) ? " Recl" : "",
99 (status
& STS_HALT
) ? " Halt" : "",
100 (status
& STS_IAA
) ? " IAA" : "",
101 (status
& STS_FATAL
) ? " FATAL" : "",
102 (status
& STS_FLR
) ? " FLR" : "",
103 (status
& STS_PCD
) ? " PCD" : "",
104 (status
& STS_ERR
) ? " ERR" : "",
105 (status
& STS_INT
) ? " INT" : ""
109 static int __attribute__((__unused__
))
110 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
112 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
113 label
, label
[0] ? " " : "", enable
,
114 (enable
& STS_IAA
) ? " IAA" : "",
115 (enable
& STS_FATAL
) ? " FATAL" : "",
116 (enable
& STS_FLR
) ? " FLR" : "",
117 (enable
& STS_PCD
) ? " PCD" : "",
118 (enable
& STS_ERR
) ? " ERR" : "",
119 (enable
& STS_INT
) ? " INT" : ""
123 static const char *const fls_strings
[] =
124 { "1024", "512", "256", "??" };
126 static int dbg_command_buf(char *buf
, unsigned len
,
127 const char *label
, u32 command
)
129 return scnprintf(buf
, len
,
130 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
131 label
, label
[0] ? " " : "", command
,
132 (command
& CMD_PARK
) ? "park" : "(park)",
133 CMD_PARK_CNT(command
),
134 (command
>> 16) & 0x3f,
135 (command
& CMD_LRESET
) ? " LReset" : "",
136 (command
& CMD_IAAD
) ? " IAAD" : "",
137 (command
& CMD_ASE
) ? " Async" : "",
138 (command
& CMD_PSE
) ? " Periodic" : "",
139 fls_strings
[(command
>> 2) & 0x3],
140 (command
& CMD_RESET
) ? " Reset" : "",
141 (command
& CMD_RUN
) ? "RUN" : "HALT"
145 static int dbg_port_buf(char *buf
, unsigned len
, const char *label
,
146 int port
, u32 status
)
150 /* signaling state */
151 switch (status
& (3 << 10)) {
156 sig
= "k"; /* low speed */
166 return scnprintf(buf
, len
,
167 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
168 label
, label
[0] ? " " : "", port
, status
,
169 (status
& PORT_POWER
) ? " POWER" : "",
170 (status
& PORT_OWNER
) ? " OWNER" : "",
172 (status
& PORT_RESET
) ? " RESET" : "",
173 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
174 (status
& PORT_RESUME
) ? " RESUME" : "",
175 (status
& PORT_OCC
) ? " OCC" : "",
176 (status
& PORT_OC
) ? " OC" : "",
177 (status
& PORT_PEC
) ? " PEC" : "",
178 (status
& PORT_PE
) ? " PE" : "",
179 (status
& PORT_CSC
) ? " CSC" : "",
180 (status
& PORT_CONNECT
) ? " CONNECT" : ""
186 static inline int __attribute__((__unused__
))
187 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
190 static inline int __attribute__((__unused__
))
191 dbg_command_buf(char *buf
, unsigned len
, const char *label
, u32 command
)
194 static inline int __attribute__((__unused__
))
195 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
198 static inline int __attribute__((__unused__
))
199 dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
, u32 status
)
204 /* functions have the "wrong" filename when they're output... */
205 #define dbg_status(oxu, label, status) { \
207 dbg_status_buf(_buf, sizeof _buf, label, status); \
208 oxu_dbg(oxu, "%s\n", _buf); \
211 #define dbg_cmd(oxu, label, command) { \
213 dbg_command_buf(_buf, sizeof _buf, label, command); \
214 oxu_dbg(oxu, "%s\n", _buf); \
217 #define dbg_port(oxu, label, port, status) { \
219 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
220 oxu_dbg(oxu, "%s\n", _buf); \
227 /* Initial IRQ latency: faster than hw default */
228 static int log2_irq_thresh
; /* 0 to 6 */
229 module_param(log2_irq_thresh
, int, S_IRUGO
);
230 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
232 /* Initial park setting: slower than hw default */
233 static unsigned park
;
234 module_param(park
, uint
, S_IRUGO
);
235 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
237 /* For flakey hardware, ignore overcurrent indicators */
238 static bool ignore_oc
;
239 module_param(ignore_oc
, bool, S_IRUGO
);
240 MODULE_PARM_DESC(ignore_oc
, "ignore bogus hardware overcurrent indications");
243 static void ehci_work(struct oxu_hcd
*oxu
);
244 static int oxu_hub_control(struct usb_hcd
*hcd
,
245 u16 typeReq
, u16 wValue
, u16 wIndex
,
246 char *buf
, u16 wLength
);
252 /* Low level read/write registers functions */
253 static inline u32
oxu_readl(void *base
, u32 reg
)
255 return readl(base
+ reg
);
258 static inline void oxu_writel(void *base
, u32 reg
, u32 val
)
260 writel(val
, base
+ reg
);
263 static inline void timer_action_done(struct oxu_hcd
*oxu
,
264 enum ehci_timer_action action
)
266 clear_bit(action
, &oxu
->actions
);
269 static inline void timer_action(struct oxu_hcd
*oxu
,
270 enum ehci_timer_action action
)
272 if (!test_and_set_bit(action
, &oxu
->actions
)) {
276 case TIMER_IAA_WATCHDOG
:
277 t
= EHCI_IAA_JIFFIES
;
279 case TIMER_IO_WATCHDOG
:
282 case TIMER_ASYNC_OFF
:
283 t
= EHCI_ASYNC_JIFFIES
;
285 case TIMER_ASYNC_SHRINK
:
287 t
= EHCI_SHRINK_JIFFIES
;
291 /* all timings except IAA watchdog can be overridden.
292 * async queue SHRINK often precedes IAA. while it's ready
293 * to go OFF neither can matter, and afterwards the IO
294 * watchdog stops unless there's still periodic traffic.
296 if (action
!= TIMER_IAA_WATCHDOG
297 && t
> oxu
->watchdog
.expires
298 && timer_pending(&oxu
->watchdog
))
300 mod_timer(&oxu
->watchdog
, t
);
305 * handshake - spin reading hc until handshake completes or fails
306 * @ptr: address of hc register to be read
307 * @mask: bits to look at in result of read
308 * @done: value of those bits when handshake succeeds
309 * @usec: timeout in microseconds
311 * Returns negative errno, or zero on success
313 * Success happens when the "mask" bits have the specified value (hardware
314 * handshake done). There are two failure modes: "usec" have passed (major
315 * hardware flakeout), or the register reads as all-ones (hardware removed).
317 * That last failure should_only happen in cases like physical cardbus eject
318 * before driver shutdown. But it also seems to be caused by bugs in cardbus
319 * bridge shutdown: shutting down the bridge before the devices using it.
321 static int handshake(struct oxu_hcd
*oxu
, void __iomem
*ptr
,
322 u32 mask
, u32 done
, int usec
)
328 if (result
== ~(u32
)0) /* card removed */
339 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
340 static int ehci_halt(struct oxu_hcd
*oxu
)
342 u32 temp
= readl(&oxu
->regs
->status
);
344 /* disable any irqs left enabled by previous code */
345 writel(0, &oxu
->regs
->intr_enable
);
347 if ((temp
& STS_HALT
) != 0)
350 temp
= readl(&oxu
->regs
->command
);
352 writel(temp
, &oxu
->regs
->command
);
353 return handshake(oxu
, &oxu
->regs
->status
,
354 STS_HALT
, STS_HALT
, 16 * 125);
357 /* Put TDI/ARC silicon into EHCI mode */
358 static void tdi_reset(struct oxu_hcd
*oxu
)
360 u32 __iomem
*reg_ptr
;
363 reg_ptr
= (u32 __iomem
*)(((u8 __iomem
*)oxu
->regs
) + 0x68);
364 tmp
= readl(reg_ptr
);
366 writel(tmp
, reg_ptr
);
369 /* Reset a non-running (STS_HALT == 1) controller */
370 static int ehci_reset(struct oxu_hcd
*oxu
)
373 u32 command
= readl(&oxu
->regs
->command
);
375 command
|= CMD_RESET
;
376 dbg_cmd(oxu
, "reset", command
);
377 writel(command
, &oxu
->regs
->command
);
378 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
379 oxu
->next_statechange
= jiffies
;
380 retval
= handshake(oxu
, &oxu
->regs
->command
,
381 CMD_RESET
, 0, 250 * 1000);
391 /* Idle the controller (from running) */
392 static void ehci_quiesce(struct oxu_hcd
*oxu
)
397 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
));
400 /* wait for any schedule enables/disables to take effect */
401 temp
= readl(&oxu
->regs
->command
) << 10;
402 temp
&= STS_ASS
| STS_PSS
;
403 if (handshake(oxu
, &oxu
->regs
->status
, STS_ASS
| STS_PSS
,
404 temp
, 16 * 125) != 0) {
405 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
409 /* then disable anything that's still active */
410 temp
= readl(&oxu
->regs
->command
);
411 temp
&= ~(CMD_ASE
| CMD_IAAD
| CMD_PSE
);
412 writel(temp
, &oxu
->regs
->command
);
414 /* hardware can take 16 microframes to turn off ... */
415 if (handshake(oxu
, &oxu
->regs
->status
, STS_ASS
| STS_PSS
,
417 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
422 static int check_reset_complete(struct oxu_hcd
*oxu
, int index
,
423 u32 __iomem
*status_reg
, int port_status
)
425 if (!(port_status
& PORT_CONNECT
)) {
426 oxu
->reset_done
[index
] = 0;
430 /* if reset finished and it's still not enabled -- handoff */
431 if (!(port_status
& PORT_PE
)) {
432 oxu_dbg(oxu
, "Failed to enable port %d on root hub TT\n",
436 oxu_dbg(oxu
, "port %d high speed\n", index
+ 1);
441 static void ehci_hub_descriptor(struct oxu_hcd
*oxu
,
442 struct usb_hub_descriptor
*desc
)
444 int ports
= HCS_N_PORTS(oxu
->hcs_params
);
447 desc
->bDescriptorType
= USB_DT_HUB
;
448 desc
->bPwrOn2PwrGood
= 10; /* oxu 1.0, 2.3.9 says 20ms max */
449 desc
->bHubContrCurrent
= 0;
451 desc
->bNbrPorts
= ports
;
452 temp
= 1 + (ports
/ 8);
453 desc
->bDescLength
= 7 + 2 * temp
;
455 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
456 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
457 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
459 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
460 if (HCS_PPC(oxu
->hcs_params
))
461 temp
|= HUB_CHAR_INDV_PORT_LPSM
; /* per-port power control */
463 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
464 desc
->wHubCharacteristics
= (__force __u16
)cpu_to_le16(temp
);
468 /* Allocate an OXU210HP on-chip memory data buffer
470 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
471 * Each transfer descriptor has one or more on-chip memory data buffers.
473 * Data buffers are allocated from a fix sized pool of data blocks.
474 * To minimise fragmentation and give reasonable memory utlisation,
475 * data buffers are allocated with sizes the power of 2 multiples of
476 * the block size, starting on an address a multiple of the allocated size.
478 * FIXME: callers of this function require a buffer to be allocated for
479 * len=0. This is a waste of on-chip memory and should be fix. Then this
480 * function should be changed to not allocate a buffer for len=0.
482 static int oxu_buf_alloc(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
, int len
)
484 int n_blocks
; /* minium blocks needed to hold len */
485 int a_blocks
; /* blocks allocated */
488 /* Don't allocte bigger than supported */
489 if (len
> BUFFER_SIZE
* BUFFER_NUM
) {
490 oxu_err(oxu
, "buffer too big (%d)\n", len
);
494 spin_lock(&oxu
->mem_lock
);
496 /* Number of blocks needed to hold len */
497 n_blocks
= (len
+ BUFFER_SIZE
- 1) / BUFFER_SIZE
;
499 /* Round the number of blocks up to the power of 2 */
500 for (a_blocks
= 1; a_blocks
< n_blocks
; a_blocks
<<= 1)
503 /* Find a suitable available data buffer */
504 for (i
= 0; i
< BUFFER_NUM
;
505 i
+= max(a_blocks
, (int)oxu
->db_used
[i
])) {
507 /* Check all the required blocks are available */
508 for (j
= 0; j
< a_blocks
; j
++)
509 if (oxu
->db_used
[i
+ j
])
515 /* Allocate blocks found! */
516 qtd
->buffer
= (void *) &oxu
->mem
->db_pool
[i
];
517 qtd
->buffer_dma
= virt_to_phys(qtd
->buffer
);
519 qtd
->qtd_buffer_len
= BUFFER_SIZE
* a_blocks
;
520 oxu
->db_used
[i
] = a_blocks
;
522 spin_unlock(&oxu
->mem_lock
);
529 spin_unlock(&oxu
->mem_lock
);
534 static void oxu_buf_free(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
)
538 spin_lock(&oxu
->mem_lock
);
540 index
= (qtd
->buffer
- (void *) &oxu
->mem
->db_pool
[0])
542 oxu
->db_used
[index
] = 0;
543 qtd
->qtd_buffer_len
= 0;
547 spin_unlock(&oxu
->mem_lock
);
550 static inline void ehci_qtd_init(struct ehci_qtd
*qtd
, dma_addr_t dma
)
552 memset(qtd
, 0, sizeof *qtd
);
554 qtd
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
555 qtd
->hw_next
= EHCI_LIST_END
;
556 qtd
->hw_alt_next
= EHCI_LIST_END
;
557 INIT_LIST_HEAD(&qtd
->qtd_list
);
560 static inline void oxu_qtd_free(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
)
565 oxu_buf_free(oxu
, qtd
);
567 spin_lock(&oxu
->mem_lock
);
569 index
= qtd
- &oxu
->mem
->qtd_pool
[0];
570 oxu
->qtd_used
[index
] = 0;
572 spin_unlock(&oxu
->mem_lock
);
575 static struct ehci_qtd
*ehci_qtd_alloc(struct oxu_hcd
*oxu
)
578 struct ehci_qtd
*qtd
= NULL
;
580 spin_lock(&oxu
->mem_lock
);
582 for (i
= 0; i
< QTD_NUM
; i
++)
583 if (!oxu
->qtd_used
[i
])
587 qtd
= (struct ehci_qtd
*) &oxu
->mem
->qtd_pool
[i
];
588 memset(qtd
, 0, sizeof *qtd
);
590 qtd
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
591 qtd
->hw_next
= EHCI_LIST_END
;
592 qtd
->hw_alt_next
= EHCI_LIST_END
;
593 INIT_LIST_HEAD(&qtd
->qtd_list
);
595 qtd
->qtd_dma
= virt_to_phys(qtd
);
597 oxu
->qtd_used
[i
] = 1;
600 spin_unlock(&oxu
->mem_lock
);
605 static void oxu_qh_free(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
609 spin_lock(&oxu
->mem_lock
);
611 index
= qh
- &oxu
->mem
->qh_pool
[0];
612 oxu
->qh_used
[index
] = 0;
614 spin_unlock(&oxu
->mem_lock
);
617 static void qh_destroy(struct kref
*kref
)
619 struct ehci_qh
*qh
= container_of(kref
, struct ehci_qh
, kref
);
620 struct oxu_hcd
*oxu
= qh
->oxu
;
622 /* clean qtds first, and know this is not linked */
623 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
624 oxu_dbg(oxu
, "unused qh not empty!\n");
628 oxu_qtd_free(oxu
, qh
->dummy
);
629 oxu_qh_free(oxu
, qh
);
632 static struct ehci_qh
*oxu_qh_alloc(struct oxu_hcd
*oxu
)
635 struct ehci_qh
*qh
= NULL
;
637 spin_lock(&oxu
->mem_lock
);
639 for (i
= 0; i
< QHEAD_NUM
; i
++)
640 if (!oxu
->qh_used
[i
])
644 qh
= (struct ehci_qh
*) &oxu
->mem
->qh_pool
[i
];
645 memset(qh
, 0, sizeof *qh
);
647 kref_init(&qh
->kref
);
649 qh
->qh_dma
= virt_to_phys(qh
);
650 INIT_LIST_HEAD(&qh
->qtd_list
);
652 /* dummy td enables safe urb queuing */
653 qh
->dummy
= ehci_qtd_alloc(oxu
);
654 if (qh
->dummy
== NULL
) {
655 oxu_dbg(oxu
, "no dummy td\n");
664 spin_unlock(&oxu
->mem_lock
);
669 /* to share a qh (cpu threads, or hc) */
670 static inline struct ehci_qh
*qh_get(struct ehci_qh
*qh
)
676 static inline void qh_put(struct ehci_qh
*qh
)
678 kref_put(&qh
->kref
, qh_destroy
);
681 static void oxu_murb_free(struct oxu_hcd
*oxu
, struct oxu_murb
*murb
)
685 spin_lock(&oxu
->mem_lock
);
687 index
= murb
- &oxu
->murb_pool
[0];
688 oxu
->murb_used
[index
] = 0;
690 spin_unlock(&oxu
->mem_lock
);
693 static struct oxu_murb
*oxu_murb_alloc(struct oxu_hcd
*oxu
)
697 struct oxu_murb
*murb
= NULL
;
699 spin_lock(&oxu
->mem_lock
);
701 for (i
= 0; i
< MURB_NUM
; i
++)
702 if (!oxu
->murb_used
[i
])
706 murb
= &(oxu
->murb_pool
)[i
];
708 oxu
->murb_used
[i
] = 1;
711 spin_unlock(&oxu
->mem_lock
);
716 /* The queue heads and transfer descriptors are managed from pools tied
717 * to each of the "per device" structures.
718 * This is the initialisation and cleanup code.
720 static void ehci_mem_cleanup(struct oxu_hcd
*oxu
)
722 kfree(oxu
->murb_pool
);
723 oxu
->murb_pool
= NULL
;
729 del_timer(&oxu
->urb_timer
);
731 oxu
->periodic
= NULL
;
733 /* shadow periodic table */
738 /* Remember to add cleanup code (above) if you add anything here.
740 static int ehci_mem_init(struct oxu_hcd
*oxu
, gfp_t flags
)
744 for (i
= 0; i
< oxu
->periodic_size
; i
++)
745 oxu
->mem
->frame_list
[i
] = EHCI_LIST_END
;
746 for (i
= 0; i
< QHEAD_NUM
; i
++)
748 for (i
= 0; i
< QTD_NUM
; i
++)
749 oxu
->qtd_used
[i
] = 0;
751 oxu
->murb_pool
= kcalloc(MURB_NUM
, sizeof(struct oxu_murb
), flags
);
755 for (i
= 0; i
< MURB_NUM
; i
++)
756 oxu
->murb_used
[i
] = 0;
758 oxu
->async
= oxu_qh_alloc(oxu
);
762 oxu
->periodic
= (__le32
*) &oxu
->mem
->frame_list
;
763 oxu
->periodic_dma
= virt_to_phys(oxu
->periodic
);
765 for (i
= 0; i
< oxu
->periodic_size
; i
++)
766 oxu
->periodic
[i
] = EHCI_LIST_END
;
768 /* software shadow of hardware table */
769 oxu
->pshadow
= kcalloc(oxu
->periodic_size
, sizeof(void *), flags
);
770 if (oxu
->pshadow
!= NULL
)
774 oxu_dbg(oxu
, "couldn't init memory\n");
775 ehci_mem_cleanup(oxu
);
779 /* Fill a qtd, returning how much of the buffer we were able to queue up.
781 static int qtd_fill(struct ehci_qtd
*qtd
, dma_addr_t buf
, size_t len
,
782 int token
, int maxpacket
)
787 /* one buffer entry per 4K ... first might be short or unaligned */
788 qtd
->hw_buf
[0] = cpu_to_le32((u32
)addr
);
789 qtd
->hw_buf_hi
[0] = cpu_to_le32((u32
)(addr
>> 32));
790 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
791 if (likely(len
< count
)) /* ... iff needed */
797 /* per-qtd limit: from 16K to 20K (best alignment) */
798 for (i
= 1; count
< len
&& i
< 5; i
++) {
800 qtd
->hw_buf
[i
] = cpu_to_le32((u32
)addr
);
801 qtd
->hw_buf_hi
[i
] = cpu_to_le32((u32
)(addr
>> 32));
803 if ((count
+ 0x1000) < len
)
809 /* short packets may only terminate transfers */
811 count
-= (count
% maxpacket
);
813 qtd
->hw_token
= cpu_to_le32((count
<< 16) | token
);
819 static inline void qh_update(struct oxu_hcd
*oxu
,
820 struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
822 /* writes to an active overlay are unsafe */
823 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
825 qh
->hw_qtd_next
= QTD_NEXT(qtd
->qtd_dma
);
826 qh
->hw_alt_next
= EHCI_LIST_END
;
828 /* Except for control endpoints, we make hardware maintain data
829 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
830 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
833 if (!(qh
->hw_info1
& cpu_to_le32(1 << 14))) {
834 unsigned is_out
, epnum
;
836 is_out
= !(qtd
->hw_token
& cpu_to_le32(1 << 8));
837 epnum
= (le32_to_cpup(&qh
->hw_info1
) >> 8) & 0x0f;
838 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
839 qh
->hw_token
&= ~cpu_to_le32(QTD_TOGGLE
);
840 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
844 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
846 qh
->hw_token
&= cpu_to_le32(QTD_TOGGLE
| QTD_STS_PING
);
849 /* If it weren't for a common silicon quirk (writing the dummy into the qh
850 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
851 * recovery (including urb dequeue) would need software changes to a QH...
853 static void qh_refresh(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
855 struct ehci_qtd
*qtd
;
857 if (list_empty(&qh
->qtd_list
))
860 qtd
= list_entry(qh
->qtd_list
.next
,
861 struct ehci_qtd
, qtd_list
);
862 /* first qtd may already be partially processed */
863 if (cpu_to_le32(qtd
->qtd_dma
) == qh
->hw_current
)
868 qh_update(oxu
, qh
, qtd
);
871 static void qtd_copy_status(struct oxu_hcd
*oxu
, struct urb
*urb
,
872 size_t length
, u32 token
)
874 /* count IN/OUT bytes, not SETUP (even short packets) */
875 if (likely(QTD_PID(token
) != 2))
876 urb
->actual_length
+= length
- QTD_LENGTH(token
);
878 /* don't modify error codes */
879 if (unlikely(urb
->status
!= -EINPROGRESS
))
882 /* force cleanup after short read; not always an error */
883 if (unlikely(IS_SHORT_READ(token
)))
884 urb
->status
= -EREMOTEIO
;
886 /* serious "can't proceed" faults reported by the hardware */
887 if (token
& QTD_STS_HALT
) {
888 if (token
& QTD_STS_BABBLE
) {
889 /* FIXME "must" disable babbling device's port too */
890 urb
->status
= -EOVERFLOW
;
891 } else if (token
& QTD_STS_MMF
) {
892 /* fs/ls interrupt xfer missed the complete-split */
893 urb
->status
= -EPROTO
;
894 } else if (token
& QTD_STS_DBE
) {
895 urb
->status
= (QTD_PID(token
) == 1) /* IN ? */
896 ? -ENOSR
/* hc couldn't read data */
897 : -ECOMM
; /* hc couldn't write data */
898 } else if (token
& QTD_STS_XACT
) {
899 /* timeout, bad crc, wrong PID, etc; retried */
901 urb
->status
= -EPIPE
;
903 oxu_dbg(oxu
, "devpath %s ep%d%s 3strikes\n",
905 usb_pipeendpoint(urb
->pipe
),
906 usb_pipein(urb
->pipe
) ? "in" : "out");
907 urb
->status
= -EPROTO
;
909 /* CERR nonzero + no errors + halt --> stall */
910 } else if (QTD_CERR(token
))
911 urb
->status
= -EPIPE
;
913 urb
->status
= -EPROTO
;
915 oxu_vdbg(oxu
, "dev%d ep%d%s qtd token %08x --> status %d\n",
916 usb_pipedevice(urb
->pipe
),
917 usb_pipeendpoint(urb
->pipe
),
918 usb_pipein(urb
->pipe
) ? "in" : "out",
923 static void ehci_urb_done(struct oxu_hcd
*oxu
, struct urb
*urb
)
924 __releases(oxu
->lock
)
925 __acquires(oxu
->lock
)
927 if (likely(urb
->hcpriv
!= NULL
)) {
928 struct ehci_qh
*qh
= (struct ehci_qh
*) urb
->hcpriv
;
930 /* S-mask in a QH means it's an interrupt urb */
931 if ((qh
->hw_info2
& cpu_to_le32(QH_SMASK
)) != 0) {
933 /* ... update hc-wide periodic stats (for usbfs) */
934 oxu_to_hcd(oxu
)->self
.bandwidth_int_reqs
--;
940 switch (urb
->status
) {
941 case -EINPROGRESS
: /* success */
945 case -EREMOTEIO
: /* fault or normal */
946 if (!(urb
->transfer_flags
& URB_SHORT_NOT_OK
))
949 case -ECONNRESET
: /* canceled */
955 oxu_dbg(oxu
, "%s %s urb %p ep%d%s status %d len %d/%d\n",
956 __func__
, urb
->dev
->devpath
, urb
,
957 usb_pipeendpoint(urb
->pipe
),
958 usb_pipein(urb
->pipe
) ? "in" : "out",
960 urb
->actual_length
, urb
->transfer_buffer_length
);
963 /* complete() can reenter this HCD */
964 spin_unlock(&oxu
->lock
);
965 usb_hcd_giveback_urb(oxu_to_hcd(oxu
), urb
, urb
->status
);
966 spin_lock(&oxu
->lock
);
969 static void start_unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
970 static void unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
972 static void intr_deschedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
973 static int qh_schedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
975 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
977 /* Process and free completed qtds for a qh, returning URBs to drivers.
978 * Chases up to qh->hw_current. Returns number of completions called,
979 * indicating how much "real" work we did.
981 static unsigned qh_completions(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
983 struct ehci_qtd
*last
= NULL
, *end
= qh
->dummy
;
984 struct ehci_qtd
*qtd
, *tmp
;
989 struct oxu_murb
*murb
= NULL
;
991 if (unlikely(list_empty(&qh
->qtd_list
)))
994 /* completions (or tasks on other cpus) must never clobber HALT
995 * till we've gone through and cleaned everything up, even when
996 * they add urbs to this qh's queue or mark them for unlinking.
998 * NOTE: unlinking expects to be done in queue order.
1000 state
= qh
->qh_state
;
1001 qh
->qh_state
= QH_STATE_COMPLETING
;
1002 stopped
= (state
== QH_STATE_IDLE
);
1004 /* remove de-activated QTDs from front of queue.
1005 * after faults (including short reads), cleanup this urb
1006 * then let the queue advance.
1007 * if queue is stopped, handles unlinks.
1009 list_for_each_entry_safe(qtd
, tmp
, &qh
->qtd_list
, qtd_list
) {
1015 /* Clean up any state from previous QTD ...*/
1017 if (likely(last
->urb
!= urb
)) {
1018 if (last
->urb
->complete
== NULL
) {
1019 murb
= (struct oxu_murb
*) last
->urb
;
1020 last
->urb
= murb
->main
;
1022 ehci_urb_done(oxu
, last
->urb
);
1025 oxu_murb_free(oxu
, murb
);
1027 ehci_urb_done(oxu
, last
->urb
);
1031 oxu_qtd_free(oxu
, last
);
1035 /* ignore urbs submitted during completions we reported */
1039 /* hardware copies qtd out of qh overlay */
1041 token
= le32_to_cpu(qtd
->hw_token
);
1043 /* always clean up qtds the hc de-activated */
1044 if ((token
& QTD_STS_ACTIVE
) == 0) {
1046 if ((token
& QTD_STS_HALT
) != 0) {
1049 /* magic dummy for some short reads; qh won't advance.
1050 * that silicon quirk can kick in with this dummy too.
1052 } else if (IS_SHORT_READ(token
) &&
1053 !(qtd
->hw_alt_next
& EHCI_LIST_END
)) {
1058 /* stop scanning when we reach qtds the hc is using */
1059 } else if (likely(!stopped
&&
1060 HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))) {
1066 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)))
1067 urb
->status
= -ESHUTDOWN
;
1069 /* ignore active urbs unless some previous qtd
1070 * for the urb faulted (including short read) or
1071 * its urb was canceled. we may patch qh or qtds.
1073 if (likely(urb
->status
== -EINPROGRESS
))
1076 /* issue status after short control reads */
1077 if (unlikely(do_status
!= 0)
1078 && QTD_PID(token
) == 0 /* OUT */) {
1083 /* token in overlay may be most current */
1084 if (state
== QH_STATE_IDLE
1085 && cpu_to_le32(qtd
->qtd_dma
)
1087 token
= le32_to_cpu(qh
->hw_token
);
1089 /* force halt for unlinked or blocked qh, so we'll
1090 * patch the qh later and so that completions can't
1091 * activate it while we "know" it's stopped.
1093 if ((HALT_BIT
& qh
->hw_token
) == 0) {
1095 qh
->hw_token
|= HALT_BIT
;
1100 /* Remove it from the queue */
1101 qtd_copy_status(oxu
, urb
->complete
?
1102 urb
: ((struct oxu_murb
*) urb
)->main
,
1103 qtd
->length
, token
);
1104 if ((usb_pipein(qtd
->urb
->pipe
)) &&
1105 (NULL
!= qtd
->transfer_buffer
))
1106 memcpy(qtd
->transfer_buffer
, qtd
->buffer
, qtd
->length
);
1107 do_status
= (urb
->status
== -EREMOTEIO
)
1108 && usb_pipecontrol(urb
->pipe
);
1110 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
1111 last
= list_entry(qtd
->qtd_list
.prev
,
1112 struct ehci_qtd
, qtd_list
);
1113 last
->hw_next
= qtd
->hw_next
;
1115 list_del(&qtd
->qtd_list
);
1119 /* last urb's completion might still need calling */
1120 if (likely(last
!= NULL
)) {
1121 if (last
->urb
->complete
== NULL
) {
1122 murb
= (struct oxu_murb
*) last
->urb
;
1123 last
->urb
= murb
->main
;
1125 ehci_urb_done(oxu
, last
->urb
);
1128 oxu_murb_free(oxu
, murb
);
1130 ehci_urb_done(oxu
, last
->urb
);
1133 oxu_qtd_free(oxu
, last
);
1136 /* restore original state; caller must unlink or relink */
1137 qh
->qh_state
= state
;
1139 /* be sure the hardware's done with the qh before refreshing
1140 * it after fault cleanup, or recovering from silicon wrongly
1141 * overlaying the dummy qtd (which reduces DMA chatter).
1143 if (stopped
!= 0 || qh
->hw_qtd_next
== EHCI_LIST_END
) {
1146 qh_refresh(oxu
, qh
);
1148 case QH_STATE_LINKED
:
1149 /* should be rare for periodic transfers,
1150 * except maybe high bandwidth ...
1152 if ((cpu_to_le32(QH_SMASK
)
1153 & qh
->hw_info2
) != 0) {
1154 intr_deschedule(oxu
, qh
);
1155 (void) qh_schedule(oxu
, qh
);
1157 unlink_async(oxu
, qh
);
1159 /* otherwise, unlink already started */
1166 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1167 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1168 /* ... and packet size, for any kind of endpoint descriptor */
1169 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1171 /* Reverse of qh_urb_transaction: free a list of TDs.
1172 * used for cleanup after errors, before HC sees an URB's TDs.
1174 static void qtd_list_free(struct oxu_hcd
*oxu
,
1175 struct urb
*urb
, struct list_head
*head
)
1177 struct ehci_qtd
*qtd
, *temp
;
1179 list_for_each_entry_safe(qtd
, temp
, head
, qtd_list
) {
1180 list_del(&qtd
->qtd_list
);
1181 oxu_qtd_free(oxu
, qtd
);
1185 /* Create a list of filled qtds for this URB; won't link into qh.
1187 static struct list_head
*qh_urb_transaction(struct oxu_hcd
*oxu
,
1189 struct list_head
*head
,
1192 struct ehci_qtd
*qtd
, *qtd_prev
;
1197 void *transfer_buf
= NULL
;
1201 * URBs map to sequences of QTDs: one logical transaction
1203 qtd
= ehci_qtd_alloc(oxu
);
1206 list_add_tail(&qtd
->qtd_list
, head
);
1209 token
= QTD_STS_ACTIVE
;
1210 token
|= (EHCI_TUNE_CERR
<< 10);
1211 /* for split transactions, SplitXState initialized to zero */
1213 len
= urb
->transfer_buffer_length
;
1214 is_input
= usb_pipein(urb
->pipe
);
1215 if (!urb
->transfer_buffer
&& urb
->transfer_buffer_length
&& is_input
)
1216 urb
->transfer_buffer
= phys_to_virt(urb
->transfer_dma
);
1218 if (usb_pipecontrol(urb
->pipe
)) {
1220 ret
= oxu_buf_alloc(oxu
, qtd
, sizeof(struct usb_ctrlrequest
));
1224 qtd_fill(qtd
, qtd
->buffer_dma
, sizeof(struct usb_ctrlrequest
),
1225 token
| (2 /* "setup" */ << 8), 8);
1226 memcpy(qtd
->buffer
, qtd
->urb
->setup_packet
,
1227 sizeof(struct usb_ctrlrequest
));
1229 /* ... and always at least one more pid */
1230 token
^= QTD_TOGGLE
;
1232 qtd
= ehci_qtd_alloc(oxu
);
1236 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1237 list_add_tail(&qtd
->qtd_list
, head
);
1239 /* for zero length DATA stages, STATUS is always IN */
1241 token
|= (1 /* "in" */ << 8);
1245 * Data transfer stage: buffer setup
1248 ret
= oxu_buf_alloc(oxu
, qtd
, len
);
1252 buf
= qtd
->buffer_dma
;
1253 transfer_buf
= urb
->transfer_buffer
;
1256 memcpy(qtd
->buffer
, qtd
->urb
->transfer_buffer
, len
);
1259 token
|= (1 /* "in" */ << 8);
1260 /* else it's already initted to "out" pid (0 << 8) */
1262 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
1265 * buffer gets wrapped in one or more qtds;
1266 * last one may be "short" (including zero len)
1267 * and may serve as a control status ack
1272 this_qtd_len
= qtd_fill(qtd
, buf
, len
, token
, maxpacket
);
1273 qtd
->transfer_buffer
= transfer_buf
;
1274 len
-= this_qtd_len
;
1275 buf
+= this_qtd_len
;
1276 transfer_buf
+= this_qtd_len
;
1278 qtd
->hw_alt_next
= oxu
->async
->hw_alt_next
;
1280 /* qh makes control packets use qtd toggle; maybe switch it */
1281 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
1282 token
^= QTD_TOGGLE
;
1284 if (likely(len
<= 0))
1288 qtd
= ehci_qtd_alloc(oxu
);
1291 if (likely(len
> 0)) {
1292 ret
= oxu_buf_alloc(oxu
, qtd
, len
);
1297 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1298 list_add_tail(&qtd
->qtd_list
, head
);
1301 /* unless the bulk/interrupt caller wants a chance to clean
1302 * up after short reads, hc should advance qh past this urb
1304 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
1305 || usb_pipecontrol(urb
->pipe
)))
1306 qtd
->hw_alt_next
= EHCI_LIST_END
;
1309 * control requests may need a terminating data "status" ack;
1310 * bulk ones may need a terminating short packet (zero length).
1312 if (likely(urb
->transfer_buffer_length
!= 0)) {
1315 if (usb_pipecontrol(urb
->pipe
)) {
1317 token
^= 0x0100; /* "in" <--> "out" */
1318 token
|= QTD_TOGGLE
; /* force DATA1 */
1319 } else if (usb_pipebulk(urb
->pipe
)
1320 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
1321 && !(urb
->transfer_buffer_length
% maxpacket
)) {
1326 qtd
= ehci_qtd_alloc(oxu
);
1330 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1331 list_add_tail(&qtd
->qtd_list
, head
);
1333 /* never any data in such packets */
1334 qtd_fill(qtd
, 0, 0, token
, 0);
1338 /* by default, enable interrupt on urb completion */
1339 qtd
->hw_token
|= cpu_to_le32(QTD_IOC
);
1343 qtd_list_free(oxu
, urb
, head
);
1347 /* Each QH holds a qtd list; a QH is used for everything except iso.
1349 * For interrupt urbs, the scheduler must set the microframe scheduling
1350 * mask(s) each time the QH gets scheduled. For highspeed, that's
1351 * just one microframe in the s-mask. For split interrupt transactions
1352 * there are additional complications: c-mask, maybe FSTNs.
1354 static struct ehci_qh
*qh_make(struct oxu_hcd
*oxu
,
1355 struct urb
*urb
, gfp_t flags
)
1357 struct ehci_qh
*qh
= oxu_qh_alloc(oxu
);
1358 u32 info1
= 0, info2
= 0;
1366 * init endpoint/device data for this QH
1368 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
1369 info1
|= usb_pipedevice(urb
->pipe
) << 0;
1371 is_input
= usb_pipein(urb
->pipe
);
1372 type
= usb_pipetype(urb
->pipe
);
1373 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
1375 /* Compute interrupt scheduling parameters just once, and save.
1376 * - allowing for high bandwidth, how many nsec/uframe are used?
1377 * - split transactions need a second CSPLIT uframe; same question
1378 * - splits also need a schedule gap (for full/low speed I/O)
1379 * - qh has a polling interval
1381 * For control/bulk requests, the HC or TT handles these.
1383 if (type
== PIPE_INTERRUPT
) {
1384 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
1386 hb_mult(maxp
) * max_packet(maxp
)));
1387 qh
->start
= NO_FRAME
;
1389 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
1393 qh
->period
= urb
->interval
>> 3;
1394 if (qh
->period
== 0 && urb
->interval
!= 1) {
1395 /* NOTE interval 2 or 4 uframes could work.
1396 * But interval 1 scheduling is simpler, and
1397 * includes high bandwidth.
1399 oxu_dbg(oxu
, "intr period %d uframes, NYET!\n",
1404 struct usb_tt
*tt
= urb
->dev
->tt
;
1407 /* gap is f(FS/LS transfer times) */
1408 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
1409 is_input
, 0, maxp
) / (125 * 1000);
1411 /* FIXME this just approximates SPLIT/CSPLIT times */
1412 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
1413 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
1414 qh
->usecs
= HS_USECS(1);
1415 } else { /* SPLIT+DATA, gap, CSPLIT */
1416 qh
->usecs
+= HS_USECS(1);
1417 qh
->c_usecs
= HS_USECS(0);
1420 think_time
= tt
? tt
->think_time
: 0;
1421 qh
->tt_usecs
= NS_TO_US(think_time
+
1422 usb_calc_bus_time(urb
->dev
->speed
,
1423 is_input
, 0, max_packet(maxp
)));
1424 qh
->period
= urb
->interval
;
1428 /* support for tt scheduling, and access to toggles */
1432 switch (urb
->dev
->speed
) {
1434 info1
|= (1 << 12); /* EPS "low" */
1437 case USB_SPEED_FULL
:
1438 /* EPS 0 means "full" */
1439 if (type
!= PIPE_INTERRUPT
)
1440 info1
|= (EHCI_TUNE_RL_TT
<< 28);
1441 if (type
== PIPE_CONTROL
) {
1442 info1
|= (1 << 27); /* for TT */
1443 info1
|= 1 << 14; /* toggle from qtd */
1445 info1
|= maxp
<< 16;
1447 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
1448 info2
|= urb
->dev
->ttport
<< 23;
1450 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1454 case USB_SPEED_HIGH
: /* no TT involved */
1455 info1
|= (2 << 12); /* EPS "high" */
1456 if (type
== PIPE_CONTROL
) {
1457 info1
|= (EHCI_TUNE_RL_HS
<< 28);
1458 info1
|= 64 << 16; /* usb2 fixed maxpacket */
1459 info1
|= 1 << 14; /* toggle from qtd */
1460 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
1461 } else if (type
== PIPE_BULK
) {
1462 info1
|= (EHCI_TUNE_RL_HS
<< 28);
1463 info1
|= 512 << 16; /* usb2 fixed maxpacket */
1464 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
1465 } else { /* PIPE_INTERRUPT */
1466 info1
|= max_packet(maxp
) << 16;
1467 info2
|= hb_mult(maxp
) << 30;
1471 oxu_dbg(oxu
, "bogus dev %p speed %d\n", urb
->dev
, urb
->dev
->speed
);
1477 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1479 /* init as live, toggle clear, advance to dummy */
1480 qh
->qh_state
= QH_STATE_IDLE
;
1481 qh
->hw_info1
= cpu_to_le32(info1
);
1482 qh
->hw_info2
= cpu_to_le32(info2
);
1483 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
1484 qh_refresh(oxu
, qh
);
1488 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1490 static void qh_link_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1492 __le32 dma
= QH_NEXT(qh
->qh_dma
);
1493 struct ehci_qh
*head
;
1495 /* (re)start the async schedule? */
1497 timer_action_done(oxu
, TIMER_ASYNC_OFF
);
1498 if (!head
->qh_next
.qh
) {
1499 u32 cmd
= readl(&oxu
->regs
->command
);
1501 if (!(cmd
& CMD_ASE
)) {
1502 /* in case a clear of CMD_ASE didn't take yet */
1503 (void)handshake(oxu
, &oxu
->regs
->status
,
1505 cmd
|= CMD_ASE
| CMD_RUN
;
1506 writel(cmd
, &oxu
->regs
->command
);
1507 oxu_to_hcd(oxu
)->state
= HC_STATE_RUNNING
;
1508 /* posted write need not be known to HC yet ... */
1512 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1513 if (qh
->qh_state
== QH_STATE_IDLE
)
1514 qh_refresh(oxu
, qh
);
1516 /* splice right after start */
1517 qh
->qh_next
= head
->qh_next
;
1518 qh
->hw_next
= head
->hw_next
;
1521 head
->qh_next
.qh
= qh
;
1522 head
->hw_next
= dma
;
1524 qh
->qh_state
= QH_STATE_LINKED
;
1525 /* qtd completions reported later by interrupt */
1528 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1531 * For control/bulk/interrupt, return QH with these TDs appended.
1532 * Allocates and initializes the QH if necessary.
1533 * Returns null if it can't allocate a QH it needs to.
1534 * If the QH has TDs (urbs) already, that's great.
1536 static struct ehci_qh
*qh_append_tds(struct oxu_hcd
*oxu
,
1537 struct urb
*urb
, struct list_head
*qtd_list
,
1538 int epnum
, void **ptr
)
1540 struct ehci_qh
*qh
= NULL
;
1542 qh
= (struct ehci_qh
*) *ptr
;
1543 if (unlikely(qh
== NULL
)) {
1544 /* can't sleep here, we have oxu->lock... */
1545 qh
= qh_make(oxu
, urb
, GFP_ATOMIC
);
1548 if (likely(qh
!= NULL
)) {
1549 struct ehci_qtd
*qtd
;
1551 if (unlikely(list_empty(qtd_list
)))
1554 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
,
1557 /* control qh may need patching ... */
1558 if (unlikely(epnum
== 0)) {
1560 /* usb_reset_device() briefly reverts to address 0 */
1561 if (usb_pipedevice(urb
->pipe
) == 0)
1562 qh
->hw_info1
&= ~QH_ADDR_MASK
;
1565 /* just one way to queue requests: swap with the dummy qtd.
1566 * only hc or qh_refresh() ever modify the overlay.
1568 if (likely(qtd
!= NULL
)) {
1569 struct ehci_qtd
*dummy
;
1573 /* to avoid racing the HC, use the dummy td instead of
1574 * the first td of our list (becomes new dummy). both
1575 * tds stay deactivated until we're done, when the
1576 * HC is allowed to fetch the old dummy (4.10.2).
1578 token
= qtd
->hw_token
;
1579 qtd
->hw_token
= HALT_BIT
;
1583 dma
= dummy
->qtd_dma
;
1585 dummy
->qtd_dma
= dma
;
1587 list_del(&qtd
->qtd_list
);
1588 list_add(&dummy
->qtd_list
, qtd_list
);
1589 list_splice(qtd_list
, qh
->qtd_list
.prev
);
1591 ehci_qtd_init(qtd
, qtd
->qtd_dma
);
1594 /* hc must see the new dummy at list end */
1596 qtd
= list_entry(qh
->qtd_list
.prev
,
1597 struct ehci_qtd
, qtd_list
);
1598 qtd
->hw_next
= QTD_NEXT(dma
);
1600 /* let the hc process these next qtds */
1601 dummy
->hw_token
= (token
& ~(0x80));
1603 dummy
->hw_token
= token
;
1605 urb
->hcpriv
= qh_get(qh
);
1611 static int submit_async(struct oxu_hcd
*oxu
, struct urb
*urb
,
1612 struct list_head
*qtd_list
, gfp_t mem_flags
)
1614 struct ehci_qtd
*qtd
;
1616 unsigned long flags
;
1617 struct ehci_qh
*qh
= NULL
;
1620 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
, qtd_list
);
1621 epnum
= urb
->ep
->desc
.bEndpointAddress
;
1623 #ifdef OXU_URB_TRACE
1624 oxu_dbg(oxu
, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1625 __func__
, urb
->dev
->devpath
, urb
,
1626 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
1627 urb
->transfer_buffer_length
,
1628 qtd
, urb
->ep
->hcpriv
);
1631 spin_lock_irqsave(&oxu
->lock
, flags
);
1632 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu
)))) {
1637 qh
= qh_append_tds(oxu
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
1638 if (unlikely(qh
== NULL
)) {
1643 /* Control/bulk operations through TTs don't need scheduling,
1644 * the HC and TT handle it when the TT has a buffer ready.
1646 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
1647 qh_link_async(oxu
, qh_get(qh
));
1649 spin_unlock_irqrestore(&oxu
->lock
, flags
);
1650 if (unlikely(qh
== NULL
))
1651 qtd_list_free(oxu
, urb
, qtd_list
);
1655 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1657 static void end_unlink_async(struct oxu_hcd
*oxu
)
1659 struct ehci_qh
*qh
= oxu
->reclaim
;
1660 struct ehci_qh
*next
;
1662 timer_action_done(oxu
, TIMER_IAA_WATCHDOG
);
1664 qh
->qh_state
= QH_STATE_IDLE
;
1665 qh
->qh_next
.qh
= NULL
;
1666 qh_put(qh
); /* refcount from reclaim */
1668 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1670 oxu
->reclaim
= next
;
1671 oxu
->reclaim_ready
= 0;
1674 qh_completions(oxu
, qh
);
1676 if (!list_empty(&qh
->qtd_list
)
1677 && HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
1678 qh_link_async(oxu
, qh
);
1680 qh_put(qh
); /* refcount from async list */
1682 /* it's not free to turn the async schedule on/off; leave it
1683 * active but idle for a while once it empties.
1685 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)
1686 && oxu
->async
->qh_next
.qh
== NULL
)
1687 timer_action(oxu
, TIMER_ASYNC_OFF
);
1691 oxu
->reclaim
= NULL
;
1692 start_unlink_async(oxu
, next
);
1696 /* makes sure the async qh will become idle */
1697 /* caller must own oxu->lock */
1699 static void start_unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1701 int cmd
= readl(&oxu
->regs
->command
);
1702 struct ehci_qh
*prev
;
1705 assert_spin_locked(&oxu
->lock
);
1706 BUG_ON(oxu
->reclaim
|| (qh
->qh_state
!= QH_STATE_LINKED
1707 && qh
->qh_state
!= QH_STATE_UNLINK_WAIT
));
1710 /* stop async schedule right now? */
1711 if (unlikely(qh
== oxu
->async
)) {
1712 /* can't get here without STS_ASS set */
1713 if (oxu_to_hcd(oxu
)->state
!= HC_STATE_HALT
1715 /* ... and CMD_IAAD clear */
1716 writel(cmd
& ~CMD_ASE
, &oxu
->regs
->command
);
1718 /* handshake later, if we need to */
1719 timer_action_done(oxu
, TIMER_ASYNC_OFF
);
1724 qh
->qh_state
= QH_STATE_UNLINK
;
1725 oxu
->reclaim
= qh
= qh_get(qh
);
1728 while (prev
->qh_next
.qh
!= qh
)
1729 prev
= prev
->qh_next
.qh
;
1731 prev
->hw_next
= qh
->hw_next
;
1732 prev
->qh_next
= qh
->qh_next
;
1735 if (unlikely(oxu_to_hcd(oxu
)->state
== HC_STATE_HALT
)) {
1736 /* if (unlikely(qh->reclaim != 0))
1737 * this will recurse, probably not much
1739 end_unlink_async(oxu
);
1743 oxu
->reclaim_ready
= 0;
1745 writel(cmd
, &oxu
->regs
->command
);
1746 (void) readl(&oxu
->regs
->command
);
1747 timer_action(oxu
, TIMER_IAA_WATCHDOG
);
1750 static void scan_async(struct oxu_hcd
*oxu
)
1753 enum ehci_timer_action action
= TIMER_IO_WATCHDOG
;
1755 if (!++(oxu
->stamp
))
1757 timer_action_done(oxu
, TIMER_ASYNC_SHRINK
);
1759 qh
= oxu
->async
->qh_next
.qh
;
1760 if (likely(qh
!= NULL
)) {
1762 /* clean any finished work for this qh */
1763 if (!list_empty(&qh
->qtd_list
)
1764 && qh
->stamp
!= oxu
->stamp
) {
1767 /* unlinks could happen here; completion
1768 * reporting drops the lock. rescan using
1769 * the latest schedule, but don't rescan
1770 * qhs we already finished (no looping).
1773 qh
->stamp
= oxu
->stamp
;
1774 temp
= qh_completions(oxu
, qh
);
1780 /* unlink idle entries, reducing HC PCI usage as well
1781 * as HCD schedule-scanning costs. delay for any qh
1782 * we just scanned, there's a not-unusual case that it
1783 * doesn't stay idle for long.
1784 * (plus, avoids some kind of re-activation race.)
1786 if (list_empty(&qh
->qtd_list
)) {
1787 if (qh
->stamp
== oxu
->stamp
)
1788 action
= TIMER_ASYNC_SHRINK
;
1789 else if (!oxu
->reclaim
1790 && qh
->qh_state
== QH_STATE_LINKED
)
1791 start_unlink_async(oxu
, qh
);
1794 qh
= qh
->qh_next
.qh
;
1797 if (action
== TIMER_ASYNC_SHRINK
)
1798 timer_action(oxu
, TIMER_ASYNC_SHRINK
);
1802 * periodic_next_shadow - return "next" pointer on shadow list
1803 * @periodic: host pointer to qh/itd/sitd
1804 * @tag: hardware tag for type of this record
1806 static union ehci_shadow
*periodic_next_shadow(union ehci_shadow
*periodic
,
1812 return &periodic
->qh
->qh_next
;
1816 /* caller must hold oxu->lock */
1817 static void periodic_unlink(struct oxu_hcd
*oxu
, unsigned frame
, void *ptr
)
1819 union ehci_shadow
*prev_p
= &oxu
->pshadow
[frame
];
1820 __le32
*hw_p
= &oxu
->periodic
[frame
];
1821 union ehci_shadow here
= *prev_p
;
1823 /* find predecessor of "ptr"; hw and shadow lists are in sync */
1824 while (here
.ptr
&& here
.ptr
!= ptr
) {
1825 prev_p
= periodic_next_shadow(prev_p
, Q_NEXT_TYPE(*hw_p
));
1826 hw_p
= here
.hw_next
;
1829 /* an interrupt entry (at list end) could have been shared */
1833 /* update shadow and hardware lists ... the old "next" pointers
1834 * from ptr may still be in use, the caller updates them.
1836 *prev_p
= *periodic_next_shadow(&here
, Q_NEXT_TYPE(*hw_p
));
1837 *hw_p
= *here
.hw_next
;
1840 /* how many of the uframe's 125 usecs are allocated? */
1841 static unsigned short periodic_usecs(struct oxu_hcd
*oxu
,
1842 unsigned frame
, unsigned uframe
)
1844 __le32
*hw_p
= &oxu
->periodic
[frame
];
1845 union ehci_shadow
*q
= &oxu
->pshadow
[frame
];
1849 switch (Q_NEXT_TYPE(*hw_p
)) {
1852 /* is it in the S-mask? */
1853 if (q
->qh
->hw_info2
& cpu_to_le32(1 << uframe
))
1854 usecs
+= q
->qh
->usecs
;
1855 /* ... or C-mask? */
1856 if (q
->qh
->hw_info2
& cpu_to_le32(1 << (8 + uframe
)))
1857 usecs
+= q
->qh
->c_usecs
;
1858 hw_p
= &q
->qh
->hw_next
;
1859 q
= &q
->qh
->qh_next
;
1865 oxu_err(oxu
, "uframe %d sched overrun: %d usecs\n",
1866 frame
* 8 + uframe
, usecs
);
1871 static int enable_periodic(struct oxu_hcd
*oxu
)
1876 /* did clearing PSE did take effect yet?
1877 * takes effect only at frame boundaries...
1879 status
= handshake(oxu
, &oxu
->regs
->status
, STS_PSS
, 0, 9 * 125);
1881 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
1882 usb_hc_died(oxu_to_hcd(oxu
));
1886 cmd
= readl(&oxu
->regs
->command
) | CMD_PSE
;
1887 writel(cmd
, &oxu
->regs
->command
);
1888 /* posted write ... PSS happens later */
1889 oxu_to_hcd(oxu
)->state
= HC_STATE_RUNNING
;
1891 /* make sure ehci_work scans these */
1892 oxu
->next_uframe
= readl(&oxu
->regs
->frame_index
)
1893 % (oxu
->periodic_size
<< 3);
1897 static int disable_periodic(struct oxu_hcd
*oxu
)
1902 /* did setting PSE not take effect yet?
1903 * takes effect only at frame boundaries...
1905 status
= handshake(oxu
, &oxu
->regs
->status
, STS_PSS
, STS_PSS
, 9 * 125);
1907 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
1908 usb_hc_died(oxu_to_hcd(oxu
));
1912 cmd
= readl(&oxu
->regs
->command
) & ~CMD_PSE
;
1913 writel(cmd
, &oxu
->regs
->command
);
1914 /* posted write ... */
1916 oxu
->next_uframe
= -1;
1920 /* periodic schedule slots have iso tds (normal or split) first, then a
1921 * sparse tree for active interrupt transfers.
1923 * this just links in a qh; caller guarantees uframe masks are set right.
1924 * no FSTN support (yet; oxu 0.96+)
1926 static int qh_link_periodic(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1929 unsigned period
= qh
->period
;
1931 dev_dbg(&qh
->dev
->dev
,
1932 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1933 period
, le32_to_cpup(&qh
->hw_info2
) & (QH_CMASK
| QH_SMASK
),
1934 qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
1936 /* high bandwidth, or otherwise every microframe */
1940 for (i
= qh
->start
; i
< oxu
->periodic_size
; i
+= period
) {
1941 union ehci_shadow
*prev
= &oxu
->pshadow
[i
];
1942 __le32
*hw_p
= &oxu
->periodic
[i
];
1943 union ehci_shadow here
= *prev
;
1946 /* skip the iso nodes at list head */
1948 type
= Q_NEXT_TYPE(*hw_p
);
1949 if (type
== Q_TYPE_QH
)
1951 prev
= periodic_next_shadow(prev
, type
);
1952 hw_p
= &here
.qh
->hw_next
;
1956 /* sorting each branch by period (slow-->fast)
1957 * enables sharing interior tree nodes
1959 while (here
.ptr
&& qh
!= here
.qh
) {
1960 if (qh
->period
> here
.qh
->period
)
1962 prev
= &here
.qh
->qh_next
;
1963 hw_p
= &here
.qh
->hw_next
;
1966 /* link in this qh, unless some earlier pass did that */
1967 if (qh
!= here
.qh
) {
1970 qh
->hw_next
= *hw_p
;
1973 *hw_p
= QH_NEXT(qh
->qh_dma
);
1976 qh
->qh_state
= QH_STATE_LINKED
;
1979 /* update per-qh bandwidth for usbfs */
1980 oxu_to_hcd(oxu
)->self
.bandwidth_allocated
+= qh
->period
1981 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
1984 /* maybe enable periodic schedule processing */
1985 if (!oxu
->periodic_sched
++)
1986 return enable_periodic(oxu
);
1991 static void qh_unlink_periodic(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1997 * IF this isn't high speed
1998 * and this qh is active in the current uframe
1999 * (and overlay token SplitXstate is false?)
2001 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2004 /* high bandwidth, or otherwise part of every microframe */
2005 period
= qh
->period
;
2009 for (i
= qh
->start
; i
< oxu
->periodic_size
; i
+= period
)
2010 periodic_unlink(oxu
, i
, qh
);
2012 /* update per-qh bandwidth for usbfs */
2013 oxu_to_hcd(oxu
)->self
.bandwidth_allocated
-= qh
->period
2014 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
2017 dev_dbg(&qh
->dev
->dev
,
2018 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2020 le32_to_cpup(&qh
->hw_info2
) & (QH_CMASK
| QH_SMASK
),
2021 qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
2023 /* qh->qh_next still "live" to HC */
2024 qh
->qh_state
= QH_STATE_UNLINK
;
2025 qh
->qh_next
.ptr
= NULL
;
2028 /* maybe turn off periodic schedule */
2029 oxu
->periodic_sched
--;
2030 if (!oxu
->periodic_sched
)
2031 (void) disable_periodic(oxu
);
2034 static void intr_deschedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2038 qh_unlink_periodic(oxu
, qh
);
2040 /* simple/paranoid: always delay, expecting the HC needs to read
2041 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2042 * expect hub_wq to clean up after any CSPLITs we won't issue.
2043 * active high speed queues may need bigger delays...
2045 if (list_empty(&qh
->qtd_list
)
2046 || (cpu_to_le32(QH_CMASK
) & qh
->hw_info2
) != 0)
2049 wait
= 55; /* worst case: 3 * 1024 */
2052 qh
->qh_state
= QH_STATE_IDLE
;
2053 qh
->hw_next
= EHCI_LIST_END
;
2057 static int check_period(struct oxu_hcd
*oxu
,
2058 unsigned frame
, unsigned uframe
,
2059 unsigned period
, unsigned usecs
)
2063 /* complete split running into next frame?
2064 * given FSTN support, we could sometimes check...
2070 * 80% periodic == 100 usec/uframe available
2071 * convert "usecs we need" to "max already claimed"
2073 usecs
= 100 - usecs
;
2075 /* we "know" 2 and 4 uframe intervals were rejected; so
2076 * for period 0, check _every_ microframe in the schedule.
2078 if (unlikely(period
== 0)) {
2080 for (uframe
= 0; uframe
< 7; uframe
++) {
2081 claimed
= periodic_usecs(oxu
, frame
, uframe
);
2082 if (claimed
> usecs
)
2085 } while ((frame
+= 1) < oxu
->periodic_size
);
2087 /* just check the specified uframe, at that period */
2090 claimed
= periodic_usecs(oxu
, frame
, uframe
);
2091 if (claimed
> usecs
)
2093 } while ((frame
+= period
) < oxu
->periodic_size
);
2099 static int check_intr_schedule(struct oxu_hcd
*oxu
,
2100 unsigned frame
, unsigned uframe
,
2101 const struct ehci_qh
*qh
, __le32
*c_maskp
)
2103 int retval
= -ENOSPC
;
2105 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
2108 if (!check_period(oxu
, frame
, uframe
, qh
->period
, qh
->usecs
))
2120 /* "first fit" scheduling policy used the first time through,
2121 * or when the previous schedule slot can't be re-used.
2123 static int qh_schedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2128 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
2130 qh_refresh(oxu
, qh
);
2131 qh
->hw_next
= EHCI_LIST_END
;
2134 /* reuse the previous schedule slots, if we can */
2135 if (frame
< qh
->period
) {
2136 uframe
= ffs(le32_to_cpup(&qh
->hw_info2
) & QH_SMASK
);
2137 status
= check_intr_schedule(oxu
, frame
, --uframe
,
2145 /* else scan the schedule to find a group of slots such that all
2146 * uframes have enough periodic bandwidth available.
2149 /* "normal" case, uframing flexible except with splits */
2151 frame
= qh
->period
- 1;
2153 for (uframe
= 0; uframe
< 8; uframe
++) {
2154 status
= check_intr_schedule(oxu
,
2160 } while (status
&& frame
--);
2162 /* qh->period == 0 means every uframe */
2165 status
= check_intr_schedule(oxu
, 0, 0, qh
, &c_mask
);
2171 /* reset S-frame and (maybe) C-frame masks */
2172 qh
->hw_info2
&= cpu_to_le32(~(QH_CMASK
| QH_SMASK
));
2173 qh
->hw_info2
|= qh
->period
2174 ? cpu_to_le32(1 << uframe
)
2175 : cpu_to_le32(QH_SMASK
);
2176 qh
->hw_info2
|= c_mask
;
2178 oxu_dbg(oxu
, "reused qh %p schedule\n", qh
);
2180 /* stuff into the periodic schedule */
2181 status
= qh_link_periodic(oxu
, qh
);
2186 static int intr_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2187 struct list_head
*qtd_list
, gfp_t mem_flags
)
2190 unsigned long flags
;
2193 struct list_head empty
;
2195 /* get endpoint and transfer/schedule data */
2196 epnum
= urb
->ep
->desc
.bEndpointAddress
;
2198 spin_lock_irqsave(&oxu
->lock
, flags
);
2200 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu
)))) {
2201 status
= -ESHUTDOWN
;
2205 /* get qh and force any scheduling errors */
2206 INIT_LIST_HEAD(&empty
);
2207 qh
= qh_append_tds(oxu
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
2212 if (qh
->qh_state
== QH_STATE_IDLE
) {
2213 status
= qh_schedule(oxu
, qh
);
2218 /* then queue the urb's tds to the qh */
2219 qh
= qh_append_tds(oxu
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
2222 /* ... update usbfs periodic stats */
2223 oxu_to_hcd(oxu
)->self
.bandwidth_int_reqs
++;
2226 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2228 qtd_list_free(oxu
, urb
, qtd_list
);
2233 static inline int itd_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2236 oxu_dbg(oxu
, "iso support is missing!\n");
2240 static inline int sitd_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2243 oxu_dbg(oxu
, "split iso support is missing!\n");
2247 static void scan_periodic(struct oxu_hcd
*oxu
)
2249 unsigned frame
, clock
, now_uframe
, mod
;
2252 mod
= oxu
->periodic_size
<< 3;
2255 * When running, scan from last scan point up to "now"
2256 * else clean up by scanning everything that's left.
2257 * Touches as few pages as possible: cache-friendly.
2259 now_uframe
= oxu
->next_uframe
;
2260 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2261 clock
= readl(&oxu
->regs
->frame_index
);
2263 clock
= now_uframe
+ mod
- 1;
2267 union ehci_shadow q
, *q_p
;
2271 /* don't scan past the live uframe */
2272 frame
= now_uframe
>> 3;
2273 if (frame
== (clock
>> 3))
2274 uframes
= now_uframe
& 0x07;
2276 /* safe to scan the whole frame at once */
2282 /* scan each element in frame's queue for completions */
2283 q_p
= &oxu
->pshadow
[frame
];
2284 hw_p
= &oxu
->periodic
[frame
];
2286 type
= Q_NEXT_TYPE(*hw_p
);
2289 while (q
.ptr
!= NULL
) {
2290 union ehci_shadow temp
;
2293 live
= HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
);
2296 /* handle any completions */
2297 temp
.qh
= qh_get(q
.qh
);
2298 type
= Q_NEXT_TYPE(q
.qh
->hw_next
);
2300 modified
= qh_completions(oxu
, temp
.qh
);
2301 if (unlikely(list_empty(&temp
.qh
->qtd_list
)))
2302 intr_deschedule(oxu
, temp
.qh
);
2306 oxu_dbg(oxu
, "corrupt type %d frame %d shadow %p\n",
2307 type
, frame
, q
.ptr
);
2311 /* assume completion callbacks modify the queue */
2312 if (unlikely(modified
))
2316 /* Stop when we catch up to the HC */
2318 /* FIXME: this assumes we won't get lapped when
2319 * latencies climb; that should be rare, but...
2320 * detect it, and just go all the way around.
2321 * FLR might help detect this case, so long as latencies
2322 * don't exceed periodic_size msec (default 1.024 sec).
2325 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2327 if (now_uframe
== clock
) {
2330 if (!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2332 oxu
->next_uframe
= now_uframe
;
2333 now
= readl(&oxu
->regs
->frame_index
) % mod
;
2334 if (now_uframe
== now
)
2337 /* rescan the rest of this frame, then ... */
2346 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2347 * The firmware seems to think that powering off is a wakeup event!
2348 * This routine turns off remote wakeup and everything else, on all ports.
2350 static void ehci_turn_off_all_ports(struct oxu_hcd
*oxu
)
2352 int port
= HCS_N_PORTS(oxu
->hcs_params
);
2355 writel(PORT_RWC_BITS
, &oxu
->regs
->port_status
[port
]);
2358 static void ehci_port_power(struct oxu_hcd
*oxu
, int is_on
)
2362 if (!HCS_PPC(oxu
->hcs_params
))
2365 oxu_dbg(oxu
, "...power%s ports...\n", is_on
? "up" : "down");
2366 for (port
= HCS_N_PORTS(oxu
->hcs_params
); port
> 0; )
2367 (void) oxu_hub_control(oxu_to_hcd(oxu
),
2368 is_on
? SetPortFeature
: ClearPortFeature
,
2369 USB_PORT_FEAT_POWER
,
2374 /* Called from some interrupts, timers, and so on.
2375 * It calls driver completion functions, after dropping oxu->lock.
2377 static void ehci_work(struct oxu_hcd
*oxu
)
2379 timer_action_done(oxu
, TIMER_IO_WATCHDOG
);
2380 if (oxu
->reclaim_ready
)
2381 end_unlink_async(oxu
);
2383 /* another CPU may drop oxu->lock during a schedule scan while
2384 * it reports urb completions. this flag guards against bogus
2385 * attempts at re-entrant schedule scanning.
2391 if (oxu
->next_uframe
!= -1)
2395 /* the IO watchdog guards against hardware or driver bugs that
2396 * misplace IRQs, and should let us run completely without IRQs.
2397 * such lossage has been observed on both VT6202 and VT8235.
2399 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
) &&
2400 (oxu
->async
->qh_next
.ptr
!= NULL
||
2401 oxu
->periodic_sched
!= 0))
2402 timer_action(oxu
, TIMER_IO_WATCHDOG
);
2405 static void unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2407 /* if we need to use IAA and it's busy, defer */
2408 if (qh
->qh_state
== QH_STATE_LINKED
2410 && HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)) {
2411 struct ehci_qh
*last
;
2413 for (last
= oxu
->reclaim
;
2415 last
= last
->reclaim
)
2417 qh
->qh_state
= QH_STATE_UNLINK_WAIT
;
2420 /* bypass IAA if the hc can't care */
2421 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
) && oxu
->reclaim
)
2422 end_unlink_async(oxu
);
2424 /* something else might have unlinked the qh by now */
2425 if (qh
->qh_state
== QH_STATE_LINKED
)
2426 start_unlink_async(oxu
, qh
);
2430 * USB host controller methods
2433 static irqreturn_t
oxu210_hcd_irq(struct usb_hcd
*hcd
)
2435 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2436 u32 status
, pcd_status
= 0;
2439 spin_lock(&oxu
->lock
);
2441 status
= readl(&oxu
->regs
->status
);
2443 /* e.g. cardbus physical eject */
2444 if (status
== ~(u32
) 0) {
2445 oxu_dbg(oxu
, "device removed\n");
2450 status
&= INTR_MASK
;
2451 if (!status
|| unlikely(hcd
->state
== HC_STATE_HALT
)) {
2452 spin_unlock(&oxu
->lock
);
2456 /* clear (just) interrupts */
2457 writel(status
, &oxu
->regs
->status
);
2458 readl(&oxu
->regs
->command
); /* unblock posted write */
2461 #ifdef OXU_VERBOSE_DEBUG
2462 /* unrequested/ignored: Frame List Rollover */
2463 dbg_status(oxu
, "irq", status
);
2466 /* INT, ERR, and IAA interrupt rates can be throttled */
2468 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2469 if (likely((status
& (STS_INT
|STS_ERR
)) != 0))
2472 /* complete the unlinking of some qh [4.15.2.3] */
2473 if (status
& STS_IAA
) {
2474 oxu
->reclaim_ready
= 1;
2478 /* remote wakeup [4.3.1] */
2479 if (status
& STS_PCD
) {
2480 unsigned i
= HCS_N_PORTS(oxu
->hcs_params
);
2481 pcd_status
= status
;
2483 /* resume root hub? */
2484 if (!(readl(&oxu
->regs
->command
) & CMD_RUN
))
2485 usb_hcd_resume_root_hub(hcd
);
2488 int pstatus
= readl(&oxu
->regs
->port_status
[i
]);
2490 if (pstatus
& PORT_OWNER
)
2492 if (!(pstatus
& PORT_RESUME
)
2493 || oxu
->reset_done
[i
] != 0)
2496 /* start USB_RESUME_TIMEOUT resume signaling from this
2497 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2498 * stop that signaling.
2500 oxu
->reset_done
[i
] = jiffies
+
2501 msecs_to_jiffies(USB_RESUME_TIMEOUT
);
2502 oxu_dbg(oxu
, "port %d remote wakeup\n", i
+ 1);
2503 mod_timer(&hcd
->rh_timer
, oxu
->reset_done
[i
]);
2507 /* PCI errors [4.15.2.4] */
2508 if (unlikely((status
& STS_FATAL
) != 0)) {
2509 /* bogus "fatal" IRQs appear on some chips... why? */
2510 status
= readl(&oxu
->regs
->status
);
2511 dbg_cmd(oxu
, "fatal", readl(&oxu
->regs
->command
));
2512 dbg_status(oxu
, "fatal", status
);
2513 if (status
& STS_HALT
) {
2514 oxu_err(oxu
, "fatal error\n");
2517 writel(0, &oxu
->regs
->configured_flag
);
2519 /* generic layer kills/unlinks all urbs, then
2520 * uses oxu_stop to clean up the rest
2528 spin_unlock(&oxu
->lock
);
2529 if (pcd_status
& STS_PCD
)
2530 usb_hcd_poll_rh_status(hcd
);
2534 static irqreturn_t
oxu_irq(struct usb_hcd
*hcd
)
2536 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2537 int ret
= IRQ_HANDLED
;
2539 u32 status
= oxu_readl(hcd
->regs
, OXU_CHIPIRQSTATUS
);
2540 u32 enable
= oxu_readl(hcd
->regs
, OXU_CHIPIRQEN_SET
);
2542 /* Disable all interrupt */
2543 oxu_writel(hcd
->regs
, OXU_CHIPIRQEN_CLR
, enable
);
2545 if ((oxu
->is_otg
&& (status
& OXU_USBOTGI
)) ||
2546 (!oxu
->is_otg
&& (status
& OXU_USBSPHI
)))
2547 oxu210_hcd_irq(hcd
);
2551 /* Enable all interrupt back */
2552 oxu_writel(hcd
->regs
, OXU_CHIPIRQEN_SET
, enable
);
2557 static void oxu_watchdog(unsigned long param
)
2559 struct oxu_hcd
*oxu
= (struct oxu_hcd
*) param
;
2560 unsigned long flags
;
2562 spin_lock_irqsave(&oxu
->lock
, flags
);
2564 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2566 u32 status
= readl(&oxu
->regs
->status
);
2567 if (status
& STS_IAA
) {
2568 oxu_vdbg(oxu
, "lost IAA\n");
2569 writel(STS_IAA
, &oxu
->regs
->status
);
2570 oxu
->reclaim_ready
= 1;
2574 /* stop async processing after it's idled a bit */
2575 if (test_bit(TIMER_ASYNC_OFF
, &oxu
->actions
))
2576 start_unlink_async(oxu
, oxu
->async
);
2578 /* oxu could run by timer, without IRQs ... */
2581 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2584 /* One-time init, only for memory state.
2586 static int oxu_hcd_init(struct usb_hcd
*hcd
)
2588 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2593 spin_lock_init(&oxu
->lock
);
2595 setup_timer(&oxu
->watchdog
, oxu_watchdog
, (unsigned long)oxu
);
2598 * hw default: 1K periodic list heads, one per frame.
2599 * periodic_size can shrink by USBCMD update if hcc_params allows.
2601 oxu
->periodic_size
= DEFAULT_I_TDPS
;
2602 retval
= ehci_mem_init(oxu
, GFP_KERNEL
);
2606 /* controllers may cache some of the periodic schedule ... */
2607 hcc_params
= readl(&oxu
->caps
->hcc_params
);
2608 if (HCC_ISOC_CACHE(hcc_params
)) /* full frame cache */
2610 else /* N microframes cached */
2611 oxu
->i_thresh
= 2 + HCC_ISOC_THRES(hcc_params
);
2613 oxu
->reclaim
= NULL
;
2614 oxu
->reclaim_ready
= 0;
2615 oxu
->next_uframe
= -1;
2618 * dedicate a qh for the async ring head, since we couldn't unlink
2619 * a 'real' qh without stopping the async schedule [4.8]. use it
2620 * as the 'reclamation list head' too.
2621 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2622 * from automatically advancing to the next td after short reads.
2624 oxu
->async
->qh_next
.qh
= NULL
;
2625 oxu
->async
->hw_next
= QH_NEXT(oxu
->async
->qh_dma
);
2626 oxu
->async
->hw_info1
= cpu_to_le32(QH_HEAD
);
2627 oxu
->async
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
2628 oxu
->async
->hw_qtd_next
= EHCI_LIST_END
;
2629 oxu
->async
->qh_state
= QH_STATE_LINKED
;
2630 oxu
->async
->hw_alt_next
= QTD_NEXT(oxu
->async
->dummy
->qtd_dma
);
2632 /* clear interrupt enables, set irq latency */
2633 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
2634 log2_irq_thresh
= 0;
2635 temp
= 1 << (16 + log2_irq_thresh
);
2636 if (HCC_CANPARK(hcc_params
)) {
2637 /* HW default park == 3, on hardware that supports it (like
2638 * NVidia and ALI silicon), maximizes throughput on the async
2639 * schedule by avoiding QH fetches between transfers.
2641 * With fast usb storage devices and NForce2, "park" seems to
2642 * make problems: throughput reduction (!), data errors...
2645 park
= min(park
, (unsigned) 3);
2649 oxu_dbg(oxu
, "park %d\n", park
);
2651 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
2652 /* periodic schedule size can be smaller than default */
2654 temp
|= (EHCI_TUNE_FLS
<< 2);
2656 oxu
->command
= temp
;
2661 /* Called during probe() after chip reset completes.
2663 static int oxu_reset(struct usb_hcd
*hcd
)
2665 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2667 spin_lock_init(&oxu
->mem_lock
);
2668 INIT_LIST_HEAD(&oxu
->urb_list
);
2672 hcd
->self
.controller
->dma_mask
= NULL
;
2675 oxu
->caps
= hcd
->regs
+ OXU_OTG_CAP_OFFSET
;
2676 oxu
->regs
= hcd
->regs
+ OXU_OTG_CAP_OFFSET
+ \
2677 HC_LENGTH(readl(&oxu
->caps
->hc_capbase
));
2679 oxu
->mem
= hcd
->regs
+ OXU_SPH_MEM
;
2681 oxu
->caps
= hcd
->regs
+ OXU_SPH_CAP_OFFSET
;
2682 oxu
->regs
= hcd
->regs
+ OXU_SPH_CAP_OFFSET
+ \
2683 HC_LENGTH(readl(&oxu
->caps
->hc_capbase
));
2685 oxu
->mem
= hcd
->regs
+ OXU_OTG_MEM
;
2688 oxu
->hcs_params
= readl(&oxu
->caps
->hcs_params
);
2691 return oxu_hcd_init(hcd
);
2694 static int oxu_run(struct usb_hcd
*hcd
)
2696 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2698 u32 temp
, hcc_params
;
2700 hcd
->uses_new_polling
= 1;
2702 /* EHCI spec section 4.1 */
2703 retval
= ehci_reset(oxu
);
2705 ehci_mem_cleanup(oxu
);
2708 writel(oxu
->periodic_dma
, &oxu
->regs
->frame_list
);
2709 writel((u32
) oxu
->async
->qh_dma
, &oxu
->regs
->async_next
);
2711 /* hcc_params controls whether oxu->regs->segment must (!!!)
2712 * be used; it constrains QH/ITD/SITD and QTD locations.
2713 * pci_pool consistent memory always uses segment zero.
2714 * streaming mappings for I/O buffers, like pci_map_single(),
2715 * can return segments above 4GB, if the device allows.
2717 * NOTE: the dma mask is visible through dev->dma_mask, so
2718 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2719 * Scsi_Host.highmem_io, and so forth. It's readonly to all
2720 * host side drivers though.
2722 hcc_params
= readl(&oxu
->caps
->hcc_params
);
2723 if (HCC_64BIT_ADDR(hcc_params
))
2724 writel(0, &oxu
->regs
->segment
);
2726 oxu
->command
&= ~(CMD_LRESET
| CMD_IAAD
| CMD_PSE
|
2727 CMD_ASE
| CMD_RESET
);
2728 oxu
->command
|= CMD_RUN
;
2729 writel(oxu
->command
, &oxu
->regs
->command
);
2730 dbg_cmd(oxu
, "init", oxu
->command
);
2733 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2734 * are explicitly handed to companion controller(s), so no TT is
2735 * involved with the root hub. (Except where one is integrated,
2736 * and there's no companion controller unless maybe for USB OTG.)
2738 hcd
->state
= HC_STATE_RUNNING
;
2739 writel(FLAG_CF
, &oxu
->regs
->configured_flag
);
2740 readl(&oxu
->regs
->command
); /* unblock posted writes */
2742 temp
= HC_VERSION(readl(&oxu
->caps
->hc_capbase
));
2743 oxu_info(oxu
, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2744 ((oxu
->sbrn
& 0xf0)>>4), (oxu
->sbrn
& 0x0f),
2745 temp
>> 8, temp
& 0xff, DRIVER_VERSION
,
2746 ignore_oc
? ", overcurrent ignored" : "");
2748 writel(INTR_MASK
, &oxu
->regs
->intr_enable
); /* Turn On Interrupts */
2753 static void oxu_stop(struct usb_hcd
*hcd
)
2755 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2757 /* Turn off port power on all root hub ports. */
2758 ehci_port_power(oxu
, 0);
2760 /* no more interrupts ... */
2761 del_timer_sync(&oxu
->watchdog
);
2763 spin_lock_irq(&oxu
->lock
);
2764 if (HC_IS_RUNNING(hcd
->state
))
2768 writel(0, &oxu
->regs
->intr_enable
);
2769 spin_unlock_irq(&oxu
->lock
);
2771 /* let companion controllers work when we aren't */
2772 writel(0, &oxu
->regs
->configured_flag
);
2774 /* root hub is shut down separately (first, when possible) */
2775 spin_lock_irq(&oxu
->lock
);
2778 spin_unlock_irq(&oxu
->lock
);
2779 ehci_mem_cleanup(oxu
);
2781 dbg_status(oxu
, "oxu_stop completed", readl(&oxu
->regs
->status
));
2784 /* Kick in for silicon on any bus (not just pci, etc).
2785 * This forcibly disables dma and IRQs, helping kexec and other cases
2786 * where the next system software may expect clean state.
2788 static void oxu_shutdown(struct usb_hcd
*hcd
)
2790 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2792 (void) ehci_halt(oxu
);
2793 ehci_turn_off_all_ports(oxu
);
2795 /* make BIOS/etc use companion controller during reboot */
2796 writel(0, &oxu
->regs
->configured_flag
);
2798 /* unblock posted writes */
2799 readl(&oxu
->regs
->configured_flag
);
2802 /* Non-error returns are a promise to giveback() the urb later
2803 * we drop ownership so next owner (or urb unlink) can get it
2805 * urb + dev is in hcd.self.controller.urb_list
2806 * we're queueing TDs onto software and hardware lists
2808 * hcd-specific init for hcpriv hasn't been done yet
2810 * NOTE: control, bulk, and interrupt share the same code to append TDs
2811 * to a (possibly active) QH, and the same QH scanning code.
2813 static int __oxu_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
2816 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2817 struct list_head qtd_list
;
2819 INIT_LIST_HEAD(&qtd_list
);
2821 switch (usb_pipetype(urb
->pipe
)) {
2825 if (!qh_urb_transaction(oxu
, urb
, &qtd_list
, mem_flags
))
2827 return submit_async(oxu
, urb
, &qtd_list
, mem_flags
);
2829 case PIPE_INTERRUPT
:
2830 if (!qh_urb_transaction(oxu
, urb
, &qtd_list
, mem_flags
))
2832 return intr_submit(oxu
, urb
, &qtd_list
, mem_flags
);
2834 case PIPE_ISOCHRONOUS
:
2835 if (urb
->dev
->speed
== USB_SPEED_HIGH
)
2836 return itd_submit(oxu
, urb
, mem_flags
);
2838 return sitd_submit(oxu
, urb
, mem_flags
);
2842 /* This function is responsible for breaking URBs with big data size
2843 * into smaller size and processing small urbs in sequence.
2845 static int oxu_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
2848 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2850 int transfer_buffer_length
;
2851 void *transfer_buffer
;
2855 /* If not bulk pipe just enqueue the URB */
2856 if (!usb_pipebulk(urb
->pipe
))
2857 return __oxu_urb_enqueue(hcd
, urb
, mem_flags
);
2859 /* Otherwise we should verify the USB transfer buffer size! */
2860 transfer_buffer
= urb
->transfer_buffer
;
2861 transfer_buffer_length
= urb
->transfer_buffer_length
;
2863 num
= urb
->transfer_buffer_length
/ 4096;
2864 rem
= urb
->transfer_buffer_length
% 4096;
2868 /* If URB is smaller than 4096 bytes just enqueue it! */
2870 return __oxu_urb_enqueue(hcd
, urb
, mem_flags
);
2872 /* Ok, we have more job to do! :) */
2874 for (i
= 0; i
< num
- 1; i
++) {
2875 /* Get free micro URB poll till a free urb is received */
2878 murb
= (struct urb
*) oxu_murb_alloc(oxu
);
2883 /* Coping the urb */
2884 memcpy(murb
, urb
, sizeof(struct urb
));
2886 murb
->transfer_buffer_length
= 4096;
2887 murb
->transfer_buffer
= transfer_buffer
+ i
* 4096;
2889 /* Null pointer for the encodes that this is a micro urb */
2890 murb
->complete
= NULL
;
2892 ((struct oxu_murb
*) murb
)->main
= urb
;
2893 ((struct oxu_murb
*) murb
)->last
= 0;
2895 /* This loop is to guarantee urb to be processed when there's
2896 * not enough resources at a particular time by retrying.
2899 ret
= __oxu_urb_enqueue(hcd
, murb
, mem_flags
);
2905 /* Last urb requires special handling */
2907 /* Get free micro URB poll till a free urb is received */
2909 murb
= (struct urb
*) oxu_murb_alloc(oxu
);
2914 /* Coping the urb */
2915 memcpy(murb
, urb
, sizeof(struct urb
));
2917 murb
->transfer_buffer_length
= rem
> 0 ? rem
: 4096;
2918 murb
->transfer_buffer
= transfer_buffer
+ (num
- 1) * 4096;
2920 /* Null pointer for the encodes that this is a micro urb */
2921 murb
->complete
= NULL
;
2923 ((struct oxu_murb
*) murb
)->main
= urb
;
2924 ((struct oxu_murb
*) murb
)->last
= 1;
2927 ret
= __oxu_urb_enqueue(hcd
, murb
, mem_flags
);
2935 /* Remove from hardware lists.
2936 * Completions normally happen asynchronously
2938 static int oxu_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
2940 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2942 unsigned long flags
;
2944 spin_lock_irqsave(&oxu
->lock
, flags
);
2945 switch (usb_pipetype(urb
->pipe
)) {
2949 qh
= (struct ehci_qh
*) urb
->hcpriv
;
2952 unlink_async(oxu
, qh
);
2955 case PIPE_INTERRUPT
:
2956 qh
= (struct ehci_qh
*) urb
->hcpriv
;
2959 switch (qh
->qh_state
) {
2960 case QH_STATE_LINKED
:
2961 intr_deschedule(oxu
, qh
);
2964 qh_completions(oxu
, qh
);
2967 oxu_dbg(oxu
, "bogus qh %p state %d\n",
2972 /* reschedule QH iff another request is queued */
2973 if (!list_empty(&qh
->qtd_list
)
2974 && HC_IS_RUNNING(hcd
->state
)) {
2977 status
= qh_schedule(oxu
, qh
);
2978 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2981 /* shouldn't happen often, but ...
2982 * FIXME kill those tds' urbs
2984 dev_err(hcd
->self
.controller
,
2985 "can't reschedule qh %p, err %d\n", qh
,
2993 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2997 /* Bulk qh holds the data toggle */
2998 static void oxu_endpoint_disable(struct usb_hcd
*hcd
,
2999 struct usb_host_endpoint
*ep
)
3001 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3002 unsigned long flags
;
3003 struct ehci_qh
*qh
, *tmp
;
3005 /* ASSERT: any requests/urbs are being unlinked */
3006 /* ASSERT: nobody can be submitting urbs for this any more */
3009 spin_lock_irqsave(&oxu
->lock
, flags
);
3014 /* endpoints can be iso streams. for now, we don't
3015 * accelerate iso completions ... so spin a while.
3017 if (qh
->hw_info1
== 0) {
3018 oxu_vdbg(oxu
, "iso delay\n");
3022 if (!HC_IS_RUNNING(hcd
->state
))
3023 qh
->qh_state
= QH_STATE_IDLE
;
3024 switch (qh
->qh_state
) {
3025 case QH_STATE_LINKED
:
3026 for (tmp
= oxu
->async
->qh_next
.qh
;
3028 tmp
= tmp
->qh_next
.qh
)
3030 /* periodic qh self-unlinks on empty */
3033 unlink_async(oxu
, qh
);
3035 case QH_STATE_UNLINK
: /* wait for hw to finish? */
3037 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3038 schedule_timeout_uninterruptible(1);
3040 case QH_STATE_IDLE
: /* fully unlinked */
3041 if (list_empty(&qh
->qtd_list
)) {
3045 /* else FALL THROUGH */
3048 /* caller was supposed to have unlinked any requests;
3049 * that's not our job. just leak this memory.
3051 oxu_err(oxu
, "qh %p (#%02x) state %d%s\n",
3052 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
3053 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
3058 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3061 static int oxu_get_frame(struct usb_hcd
*hcd
)
3063 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3065 return (readl(&oxu
->regs
->frame_index
) >> 3) %
3069 /* Build "status change" packet (one or two bytes) from HC registers */
3070 static int oxu_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
3072 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3073 u32 temp
, mask
, status
= 0;
3074 int ports
, i
, retval
= 1;
3075 unsigned long flags
;
3077 /* if !PM, root hub timers won't get shut down ... */
3078 if (!HC_IS_RUNNING(hcd
->state
))
3081 /* init status to no-changes */
3083 ports
= HCS_N_PORTS(oxu
->hcs_params
);
3089 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3090 * causing massive log spam unless we completely ignore them. It
3091 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3092 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3093 * PORT_POWER; that's surprising, but maybe within-spec.
3096 mask
= PORT_CSC
| PORT_PEC
| PORT_OCC
;
3098 mask
= PORT_CSC
| PORT_PEC
;
3100 /* no hub change reports (bit 0) for now (power, ...) */
3102 /* port N changes (bit N)? */
3103 spin_lock_irqsave(&oxu
->lock
, flags
);
3104 for (i
= 0; i
< ports
; i
++) {
3105 temp
= readl(&oxu
->regs
->port_status
[i
]);
3108 * Return status information even for ports with OWNER set.
3109 * Otherwise hub_wq wouldn't see the disconnect event when a
3110 * high-speed device is switched over to the companion
3111 * controller by the user.
3114 if (!(temp
& PORT_CONNECT
))
3115 oxu
->reset_done
[i
] = 0;
3116 if ((temp
& mask
) != 0 || ((temp
& PORT_RESUME
) != 0 &&
3117 time_after_eq(jiffies
, oxu
->reset_done
[i
]))) {
3119 buf
[0] |= 1 << (i
+ 1);
3121 buf
[1] |= 1 << (i
- 7);
3125 /* FIXME autosuspend idle root hubs */
3126 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3127 return status
? retval
: 0;
3130 /* Returns the speed of a device attached to a port on the root hub. */
3131 static inline unsigned int oxu_port_speed(struct oxu_hcd
*oxu
,
3132 unsigned int portsc
)
3134 switch ((portsc
>> 26) & 3) {
3138 return USB_PORT_STAT_LOW_SPEED
;
3141 return USB_PORT_STAT_HIGH_SPEED
;
3145 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3146 static int oxu_hub_control(struct usb_hcd
*hcd
, u16 typeReq
,
3147 u16 wValue
, u16 wIndex
, char *buf
, u16 wLength
)
3149 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3150 int ports
= HCS_N_PORTS(oxu
->hcs_params
);
3151 u32 __iomem
*status_reg
= &oxu
->regs
->port_status
[wIndex
- 1];
3153 unsigned long flags
;
3158 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3159 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3160 * (track current state ourselves) ... blink for diagnostics,
3161 * power, "this is the one", etc. EHCI spec supports this.
3164 spin_lock_irqsave(&oxu
->lock
, flags
);
3166 case ClearHubFeature
:
3168 case C_HUB_LOCAL_POWER
:
3169 case C_HUB_OVER_CURRENT
:
3170 /* no hub-wide feature/status flags */
3176 case ClearPortFeature
:
3177 if (!wIndex
|| wIndex
> ports
)
3180 temp
= readl(status_reg
);
3183 * Even if OWNER is set, so the port is owned by the
3184 * companion controller, hub_wq needs to be able to clear
3185 * the port-change status bits (especially
3186 * USB_PORT_STAT_C_CONNECTION).
3190 case USB_PORT_FEAT_ENABLE
:
3191 writel(temp
& ~PORT_PE
, status_reg
);
3193 case USB_PORT_FEAT_C_ENABLE
:
3194 writel((temp
& ~PORT_RWC_BITS
) | PORT_PEC
, status_reg
);
3196 case USB_PORT_FEAT_SUSPEND
:
3197 if (temp
& PORT_RESET
)
3199 if (temp
& PORT_SUSPEND
) {
3200 if ((temp
& PORT_PE
) == 0)
3202 /* resume signaling for 20 msec */
3203 temp
&= ~(PORT_RWC_BITS
| PORT_WAKE_BITS
);
3204 writel(temp
| PORT_RESUME
, status_reg
);
3205 oxu
->reset_done
[wIndex
] = jiffies
3206 + msecs_to_jiffies(20);
3209 case USB_PORT_FEAT_C_SUSPEND
:
3210 /* we auto-clear this feature */
3212 case USB_PORT_FEAT_POWER
:
3213 if (HCS_PPC(oxu
->hcs_params
))
3214 writel(temp
& ~(PORT_RWC_BITS
| PORT_POWER
),
3217 case USB_PORT_FEAT_C_CONNECTION
:
3218 writel((temp
& ~PORT_RWC_BITS
) | PORT_CSC
, status_reg
);
3220 case USB_PORT_FEAT_C_OVER_CURRENT
:
3221 writel((temp
& ~PORT_RWC_BITS
) | PORT_OCC
, status_reg
);
3223 case USB_PORT_FEAT_C_RESET
:
3224 /* GetPortStatus clears reset */
3229 readl(&oxu
->regs
->command
); /* unblock posted write */
3231 case GetHubDescriptor
:
3232 ehci_hub_descriptor(oxu
, (struct usb_hub_descriptor
*)
3236 /* no hub-wide feature/status flags */
3240 if (!wIndex
|| wIndex
> ports
)
3244 temp
= readl(status_reg
);
3246 /* wPortChange bits */
3247 if (temp
& PORT_CSC
)
3248 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
3249 if (temp
& PORT_PEC
)
3250 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
3251 if ((temp
& PORT_OCC
) && !ignore_oc
)
3252 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
3254 /* whoever resumes must GetPortStatus to complete it!! */
3255 if (temp
& PORT_RESUME
) {
3257 /* Remote Wakeup received? */
3258 if (!oxu
->reset_done
[wIndex
]) {
3259 /* resume signaling for 20 msec */
3260 oxu
->reset_done
[wIndex
] = jiffies
3261 + msecs_to_jiffies(20);
3262 /* check the port again */
3263 mod_timer(&oxu_to_hcd(oxu
)->rh_timer
,
3264 oxu
->reset_done
[wIndex
]);
3267 /* resume completed? */
3268 else if (time_after_eq(jiffies
,
3269 oxu
->reset_done
[wIndex
])) {
3270 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
3271 oxu
->reset_done
[wIndex
] = 0;
3273 /* stop resume signaling */
3274 temp
= readl(status_reg
);
3275 writel(temp
& ~(PORT_RWC_BITS
| PORT_RESUME
),
3277 retval
= handshake(oxu
, status_reg
,
3278 PORT_RESUME
, 0, 2000 /* 2msec */);
3281 "port %d resume error %d\n",
3282 wIndex
+ 1, retval
);
3285 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
3289 /* whoever resets must GetPortStatus to complete it!! */
3290 if ((temp
& PORT_RESET
)
3291 && time_after_eq(jiffies
,
3292 oxu
->reset_done
[wIndex
])) {
3293 status
|= USB_PORT_STAT_C_RESET
<< 16;
3294 oxu
->reset_done
[wIndex
] = 0;
3296 /* force reset to complete */
3297 writel(temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
3299 /* REVISIT: some hardware needs 550+ usec to clear
3300 * this bit; seems too long to spin routinely...
3302 retval
= handshake(oxu
, status_reg
,
3303 PORT_RESET
, 0, 750);
3305 oxu_err(oxu
, "port %d reset error %d\n",
3306 wIndex
+ 1, retval
);
3310 /* see what we found out */
3311 temp
= check_reset_complete(oxu
, wIndex
, status_reg
,
3315 /* transfer dedicated ports to the companion hc */
3316 if ((temp
& PORT_CONNECT
) &&
3317 test_bit(wIndex
, &oxu
->companion_ports
)) {
3318 temp
&= ~PORT_RWC_BITS
;
3320 writel(temp
, status_reg
);
3321 oxu_dbg(oxu
, "port %d --> companion\n", wIndex
+ 1);
3322 temp
= readl(status_reg
);
3326 * Even if OWNER is set, there's no harm letting hub_wq
3327 * see the wPortStatus values (they should all be 0 except
3328 * for PORT_POWER anyway).
3331 if (temp
& PORT_CONNECT
) {
3332 status
|= USB_PORT_STAT_CONNECTION
;
3333 /* status may be from integrated TT */
3334 status
|= oxu_port_speed(oxu
, temp
);
3337 status
|= USB_PORT_STAT_ENABLE
;
3338 if (temp
& (PORT_SUSPEND
|PORT_RESUME
))
3339 status
|= USB_PORT_STAT_SUSPEND
;
3341 status
|= USB_PORT_STAT_OVERCURRENT
;
3342 if (temp
& PORT_RESET
)
3343 status
|= USB_PORT_STAT_RESET
;
3344 if (temp
& PORT_POWER
)
3345 status
|= USB_PORT_STAT_POWER
;
3347 #ifndef OXU_VERBOSE_DEBUG
3348 if (status
& ~0xffff) /* only if wPortChange is interesting */
3350 dbg_port(oxu
, "GetStatus", wIndex
+ 1, temp
);
3351 put_unaligned(cpu_to_le32(status
), (__le32
*) buf
);
3355 case C_HUB_LOCAL_POWER
:
3356 case C_HUB_OVER_CURRENT
:
3357 /* no hub-wide feature/status flags */
3363 case SetPortFeature
:
3364 selector
= wIndex
>> 8;
3366 if (!wIndex
|| wIndex
> ports
)
3369 temp
= readl(status_reg
);
3370 if (temp
& PORT_OWNER
)
3373 temp
&= ~PORT_RWC_BITS
;
3375 case USB_PORT_FEAT_SUSPEND
:
3376 if ((temp
& PORT_PE
) == 0
3377 || (temp
& PORT_RESET
) != 0)
3379 if (device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3380 temp
|= PORT_WAKE_BITS
;
3381 writel(temp
| PORT_SUSPEND
, status_reg
);
3383 case USB_PORT_FEAT_POWER
:
3384 if (HCS_PPC(oxu
->hcs_params
))
3385 writel(temp
| PORT_POWER
, status_reg
);
3387 case USB_PORT_FEAT_RESET
:
3388 if (temp
& PORT_RESUME
)
3390 /* line status bits may report this as low speed,
3391 * which can be fine if this root hub has a
3392 * transaction translator built in.
3394 oxu_vdbg(oxu
, "port %d reset\n", wIndex
+ 1);
3399 * caller must wait, then call GetPortStatus
3400 * usb 2.0 spec says 50 ms resets on root
3402 oxu
->reset_done
[wIndex
] = jiffies
3403 + msecs_to_jiffies(50);
3404 writel(temp
, status_reg
);
3407 /* For downstream facing ports (these): one hub port is put
3408 * into test mode according to USB2 11.24.2.13, then the hub
3409 * must be reset (which for root hub now means rmmod+modprobe,
3410 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3411 * about the EHCI-specific stuff.
3413 case USB_PORT_FEAT_TEST
:
3414 if (!selector
|| selector
> 5)
3418 temp
|= selector
<< 16;
3419 writel(temp
, status_reg
);
3425 readl(&oxu
->regs
->command
); /* unblock posted writes */
3430 /* "stall" on error */
3433 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3439 static int oxu_bus_suspend(struct usb_hcd
*hcd
)
3441 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3445 oxu_dbg(oxu
, "suspend root hub\n");
3447 if (time_before(jiffies
, oxu
->next_statechange
))
3450 port
= HCS_N_PORTS(oxu
->hcs_params
);
3451 spin_lock_irq(&oxu
->lock
);
3453 /* stop schedules, clean any completed work */
3454 if (HC_IS_RUNNING(hcd
->state
)) {
3456 hcd
->state
= HC_STATE_QUIESCING
;
3458 oxu
->command
= readl(&oxu
->regs
->command
);
3460 oxu
->reclaim_ready
= 1;
3463 /* Unlike other USB host controller types, EHCI doesn't have
3464 * any notion of "global" or bus-wide suspend. The driver has
3465 * to manually suspend all the active unsuspended ports, and
3466 * then manually resume them in the bus_resume() routine.
3468 oxu
->bus_suspended
= 0;
3470 u32 __iomem
*reg
= &oxu
->regs
->port_status
[port
];
3471 u32 t1
= readl(reg
) & ~PORT_RWC_BITS
;
3474 /* keep track of which ports we suspend */
3475 if ((t1
& PORT_PE
) && !(t1
& PORT_OWNER
) &&
3476 !(t1
& PORT_SUSPEND
)) {
3478 set_bit(port
, &oxu
->bus_suspended
);
3481 /* enable remote wakeup on all ports */
3482 if (device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3483 t2
|= PORT_WKOC_E
|PORT_WKDISC_E
|PORT_WKCONN_E
;
3485 t2
&= ~(PORT_WKOC_E
|PORT_WKDISC_E
|PORT_WKCONN_E
);
3488 oxu_vdbg(oxu
, "port %d, %08x -> %08x\n",
3494 /* turn off now-idle HC */
3495 del_timer_sync(&oxu
->watchdog
);
3497 hcd
->state
= HC_STATE_SUSPENDED
;
3499 /* allow remote wakeup */
3501 if (!device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3503 writel(mask
, &oxu
->regs
->intr_enable
);
3504 readl(&oxu
->regs
->intr_enable
);
3506 oxu
->next_statechange
= jiffies
+ msecs_to_jiffies(10);
3507 spin_unlock_irq(&oxu
->lock
);
3511 /* Caller has locked the root hub, and should reset/reinit on error */
3512 static int oxu_bus_resume(struct usb_hcd
*hcd
)
3514 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3518 if (time_before(jiffies
, oxu
->next_statechange
))
3520 spin_lock_irq(&oxu
->lock
);
3522 /* Ideally and we've got a real resume here, and no port's power
3523 * was lost. (For PCI, that means Vaux was maintained.) But we
3524 * could instead be restoring a swsusp snapshot -- so that BIOS was
3525 * the last user of the controller, not reset/pm hardware keeping
3526 * state we gave to it.
3528 temp
= readl(&oxu
->regs
->intr_enable
);
3529 oxu_dbg(oxu
, "resume root hub%s\n", temp
? "" : " after power loss");
3531 /* at least some APM implementations will try to deliver
3532 * IRQs right away, so delay them until we're ready.
3534 writel(0, &oxu
->regs
->intr_enable
);
3536 /* re-init operational registers */
3537 writel(0, &oxu
->regs
->segment
);
3538 writel(oxu
->periodic_dma
, &oxu
->regs
->frame_list
);
3539 writel((u32
) oxu
->async
->qh_dma
, &oxu
->regs
->async_next
);
3541 /* restore CMD_RUN, framelist size, and irq threshold */
3542 writel(oxu
->command
, &oxu
->regs
->command
);
3544 /* Some controller/firmware combinations need a delay during which
3545 * they set up the port statuses. See Bugzilla #8190. */
3548 /* manually resume the ports we suspended during bus_suspend() */
3549 i
= HCS_N_PORTS(oxu
->hcs_params
);
3551 temp
= readl(&oxu
->regs
->port_status
[i
]);
3552 temp
&= ~(PORT_RWC_BITS
3553 | PORT_WKOC_E
| PORT_WKDISC_E
| PORT_WKCONN_E
);
3554 if (test_bit(i
, &oxu
->bus_suspended
) && (temp
& PORT_SUSPEND
)) {
3555 oxu
->reset_done
[i
] = jiffies
+ msecs_to_jiffies(20);
3556 temp
|= PORT_RESUME
;
3558 writel(temp
, &oxu
->regs
->port_status
[i
]);
3560 i
= HCS_N_PORTS(oxu
->hcs_params
);
3563 temp
= readl(&oxu
->regs
->port_status
[i
]);
3564 if (test_bit(i
, &oxu
->bus_suspended
) && (temp
& PORT_SUSPEND
)) {
3565 temp
&= ~(PORT_RWC_BITS
| PORT_RESUME
);
3566 writel(temp
, &oxu
->regs
->port_status
[i
]);
3567 oxu_vdbg(oxu
, "resumed port %d\n", i
+ 1);
3570 (void) readl(&oxu
->regs
->command
);
3572 /* maybe re-activate the schedule(s) */
3574 if (oxu
->async
->qh_next
.qh
)
3576 if (oxu
->periodic_sched
)
3579 oxu
->command
|= temp
;
3580 writel(oxu
->command
, &oxu
->regs
->command
);
3583 oxu
->next_statechange
= jiffies
+ msecs_to_jiffies(5);
3584 hcd
->state
= HC_STATE_RUNNING
;
3586 /* Now we can safely re-enable irqs */
3587 writel(INTR_MASK
, &oxu
->regs
->intr_enable
);
3589 spin_unlock_irq(&oxu
->lock
);
3595 static int oxu_bus_suspend(struct usb_hcd
*hcd
)
3600 static int oxu_bus_resume(struct usb_hcd
*hcd
)
3605 #endif /* CONFIG_PM */
3607 static const struct hc_driver oxu_hc_driver
= {
3608 .description
= "oxu210hp_hcd",
3609 .product_desc
= "oxu210hp HCD",
3610 .hcd_priv_size
= sizeof(struct oxu_hcd
),
3613 * Generic hardware linkage
3616 .flags
= HCD_MEMORY
| HCD_USB2
,
3619 * Basic lifecycle operations
3624 .shutdown
= oxu_shutdown
,
3627 * Managing i/o requests and associated device resources
3629 .urb_enqueue
= oxu_urb_enqueue
,
3630 .urb_dequeue
= oxu_urb_dequeue
,
3631 .endpoint_disable
= oxu_endpoint_disable
,
3634 * Scheduling support
3636 .get_frame_number
= oxu_get_frame
,
3641 .hub_status_data
= oxu_hub_status_data
,
3642 .hub_control
= oxu_hub_control
,
3643 .bus_suspend
= oxu_bus_suspend
,
3644 .bus_resume
= oxu_bus_resume
,
3651 static void oxu_configuration(struct platform_device
*pdev
, void *base
)
3655 /* Initialize top level registers.
3658 oxu_writel(base
, OXU_HOSTIFCONFIG
, 0x0000037D);
3659 oxu_writel(base
, OXU_SOFTRESET
, OXU_SRESET
);
3660 oxu_writel(base
, OXU_HOSTIFCONFIG
, 0x0000037D);
3662 tmp
= oxu_readl(base
, OXU_PIOBURSTREADCTRL
);
3663 oxu_writel(base
, OXU_PIOBURSTREADCTRL
, tmp
| 0x0040);
3665 oxu_writel(base
, OXU_ASO
, OXU_SPHPOEN
| OXU_OVRCCURPUPDEN
|
3666 OXU_COMPARATOR
| OXU_ASO_OP
);
3668 tmp
= oxu_readl(base
, OXU_CLKCTRL_SET
);
3669 oxu_writel(base
, OXU_CLKCTRL_SET
, tmp
| OXU_SYSCLKEN
| OXU_USBOTGCLKEN
);
3671 /* Clear all top interrupt enable */
3672 oxu_writel(base
, OXU_CHIPIRQEN_CLR
, 0xff);
3674 /* Clear all top interrupt status */
3675 oxu_writel(base
, OXU_CHIPIRQSTATUS
, 0xff);
3677 /* Enable all needed top interrupt except OTG SPH core */
3678 oxu_writel(base
, OXU_CHIPIRQEN_SET
, OXU_USBSPHLPWUI
| OXU_USBOTGLPWUI
);
3681 static int oxu_verify_id(struct platform_device
*pdev
, void *base
)
3684 static const char * const bo
[] = {
3691 /* Read controller signature register to find a match */
3692 id
= oxu_readl(base
, OXU_DEVICEID
);
3693 dev_info(&pdev
->dev
, "device ID %x\n", id
);
3694 if ((id
& OXU_REV_MASK
) != (OXU_REV_2100
<< OXU_REV_SHIFT
))
3697 dev_info(&pdev
->dev
, "found device %x %s (%04x:%04x)\n",
3698 id
>> OXU_REV_SHIFT
,
3699 bo
[(id
& OXU_BO_MASK
) >> OXU_BO_SHIFT
],
3700 (id
& OXU_MAJ_REV_MASK
) >> OXU_MAJ_REV_SHIFT
,
3701 (id
& OXU_MIN_REV_MASK
) >> OXU_MIN_REV_SHIFT
);
3706 static const struct hc_driver oxu_hc_driver
;
3707 static struct usb_hcd
*oxu_create(struct platform_device
*pdev
,
3708 unsigned long memstart
, unsigned long memlen
,
3709 void *base
, int irq
, int otg
)
3711 struct device
*dev
= &pdev
->dev
;
3713 struct usb_hcd
*hcd
;
3714 struct oxu_hcd
*oxu
;
3717 /* Set endian mode and host mode */
3718 oxu_writel(base
+ (otg
? OXU_OTG_CORE_OFFSET
: OXU_SPH_CORE_OFFSET
),
3720 OXU_CM_HOST_ONLY
| OXU_ES_LITTLE
| OXU_VBPS
);
3722 hcd
= usb_create_hcd(&oxu_hc_driver
, dev
,
3723 otg
? "oxu210hp_otg" : "oxu210hp_sph");
3725 return ERR_PTR(-ENOMEM
);
3727 hcd
->rsrc_start
= memstart
;
3728 hcd
->rsrc_len
= memlen
;
3731 hcd
->state
= HC_STATE_HALT
;
3733 oxu
= hcd_to_oxu(hcd
);
3736 ret
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
3738 return ERR_PTR(ret
);
3740 device_wakeup_enable(hcd
->self
.controller
);
3744 static int oxu_init(struct platform_device
*pdev
,
3745 unsigned long memstart
, unsigned long memlen
,
3746 void *base
, int irq
)
3748 struct oxu_info
*info
= platform_get_drvdata(pdev
);
3749 struct usb_hcd
*hcd
;
3752 /* First time configuration at start up */
3753 oxu_configuration(pdev
, base
);
3755 ret
= oxu_verify_id(pdev
, base
);
3757 dev_err(&pdev
->dev
, "no devices found!\n");
3761 /* Create the OTG controller */
3762 hcd
= oxu_create(pdev
, memstart
, memlen
, base
, irq
, 1);
3764 dev_err(&pdev
->dev
, "cannot create OTG controller!\n");
3766 goto error_create_otg
;
3770 /* Create the SPH host controller */
3771 hcd
= oxu_create(pdev
, memstart
, memlen
, base
, irq
, 0);
3773 dev_err(&pdev
->dev
, "cannot create SPH controller!\n");
3775 goto error_create_sph
;
3779 oxu_writel(base
, OXU_CHIPIRQEN_SET
,
3780 oxu_readl(base
, OXU_CHIPIRQEN_SET
) | 3);
3785 usb_remove_hcd(info
->hcd
[0]);
3786 usb_put_hcd(info
->hcd
[0]);
3792 static int oxu_drv_probe(struct platform_device
*pdev
)
3794 struct resource
*res
;
3796 unsigned long memstart
, memlen
;
3798 struct oxu_info
*info
;
3804 * Get the platform resources
3806 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
3809 "no IRQ! Check %s setup!\n", dev_name(&pdev
->dev
));
3813 dev_dbg(&pdev
->dev
, "IRQ resource %d\n", irq
);
3815 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3816 base
= devm_ioremap_resource(&pdev
->dev
, res
);
3818 ret
= PTR_ERR(base
);
3821 memstart
= res
->start
;
3822 memlen
= resource_size(res
);
3824 ret
= irq_set_irq_type(irq
, IRQF_TRIGGER_FALLING
);
3826 dev_err(&pdev
->dev
, "error setting irq type\n");
3831 /* Allocate a driver data struct to hold useful info for both
3834 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct oxu_info
), GFP_KERNEL
);
3839 platform_set_drvdata(pdev
, info
);
3841 ret
= oxu_init(pdev
, memstart
, memlen
, base
, irq
);
3843 dev_dbg(&pdev
->dev
, "cannot init USB devices\n");
3847 dev_info(&pdev
->dev
, "devices enabled and running\n");
3848 platform_set_drvdata(pdev
, info
);
3853 dev_err(&pdev
->dev
, "init %s fail, %d\n", dev_name(&pdev
->dev
), ret
);
3857 static void oxu_remove(struct platform_device
*pdev
, struct usb_hcd
*hcd
)
3859 usb_remove_hcd(hcd
);
3863 static int oxu_drv_remove(struct platform_device
*pdev
)
3865 struct oxu_info
*info
= platform_get_drvdata(pdev
);
3867 oxu_remove(pdev
, info
->hcd
[0]);
3868 oxu_remove(pdev
, info
->hcd
[1]);
3873 static void oxu_drv_shutdown(struct platform_device
*pdev
)
3875 oxu_drv_remove(pdev
);
3880 static int oxu_drv_suspend(struct device
*dev
)
3882 struct platform_device
*pdev
= to_platform_device(dev
);
3883 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
3888 static int oxu_drv_resume(struct device
*dev
)
3890 struct platform_device
*pdev
= to_platform_device(dev
);
3891 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
3896 #define oxu_drv_suspend NULL
3897 #define oxu_drv_resume NULL
3900 static struct platform_driver oxu_driver
= {
3901 .probe
= oxu_drv_probe
,
3902 .remove
= oxu_drv_remove
,
3903 .shutdown
= oxu_drv_shutdown
,
3904 .suspend
= oxu_drv_suspend
,
3905 .resume
= oxu_drv_resume
,
3907 .name
= "oxu210hp-hcd",
3908 .bus
= &platform_bus_type
3912 module_platform_driver(oxu_driver
);
3914 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION
);
3915 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3916 MODULE_LICENSE("GPL");