inet: frag: enforce memory limits earlier
[linux/fpc-iii.git] / drivers / usb / host / xhci.c
blob81f25213cb415cb11d71fd593d96e3bd3a52e334
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
58 * Returns negative errno, or zero on success
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
66 u32 result;
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
82 * Disable interrupts and begin the xHCI halting process.
84 void xhci_quiesce(struct xhci_hcd *xhci)
86 u32 halted;
87 u32 cmd;
88 u32 mask;
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
101 * Force HC into halt state.
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
108 int xhci_halt(struct xhci_hcd *xhci)
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (!ret) {
117 xhci->xhc_state |= XHCI_STATE_HALTED;
118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 } else
120 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 XHCI_MAX_HALT_USEC);
122 return ret;
126 * Set the run bit and wait for the host to be running.
128 static int xhci_start(struct xhci_hcd *xhci)
130 u32 temp;
131 int ret;
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 /* clear state flags. Including dying, halted or removing */
151 xhci->xhc_state = 0;
153 return ret;
157 * Reset a halted HC.
159 * This resets pipelines, timers, counters, state machines, etc.
160 * Transactions will be terminated immediately, and operational registers
161 * will be set to their defaults.
163 int xhci_reset(struct xhci_hcd *xhci)
165 u32 command;
166 u32 state;
167 int ret, i;
169 state = readl(&xhci->op_regs->status);
170 if ((state & STS_HALT) == 0) {
171 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172 return 0;
175 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176 command = readl(&xhci->op_regs->command);
177 command |= CMD_RESET;
178 writel(command, &xhci->op_regs->command);
180 /* Existing Intel xHCI controllers require a delay of 1 mS,
181 * after setting the CMD_RESET bit, and before accessing any
182 * HC registers. This allows the HC to complete the
183 * reset operation and be ready for HC register access.
184 * Without this delay, the subsequent HC register access,
185 * may result in a system hang very rarely.
187 if (xhci->quirks & XHCI_INTEL_HOST)
188 udelay(1000);
190 ret = xhci_handshake(&xhci->op_regs->command,
191 CMD_RESET, 0, 10 * 1000 * 1000);
192 if (ret)
193 return ret;
195 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
196 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
198 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
199 "Wait for controller to be ready for doorbell rings");
201 * xHCI cannot write to any doorbells or operational registers other
202 * than status until the "Controller Not Ready" flag is cleared.
204 ret = xhci_handshake(&xhci->op_regs->status,
205 STS_CNR, 0, 10 * 1000 * 1000);
207 for (i = 0; i < 2; ++i) {
208 xhci->bus_state[i].port_c_suspend = 0;
209 xhci->bus_state[i].suspended_ports = 0;
210 xhci->bus_state[i].resuming_ports = 0;
213 return ret;
216 #ifdef CONFIG_PCI
217 static int xhci_free_msi(struct xhci_hcd *xhci)
219 int i;
221 if (!xhci->msix_entries)
222 return -EINVAL;
224 for (i = 0; i < xhci->msix_count; i++)
225 if (xhci->msix_entries[i].vector)
226 free_irq(xhci->msix_entries[i].vector,
227 xhci_to_hcd(xhci));
228 return 0;
232 * Set up MSI
234 static int xhci_setup_msi(struct xhci_hcd *xhci)
236 int ret;
237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
239 ret = pci_enable_msi(pdev);
240 if (ret) {
241 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
242 "failed to allocate MSI entry");
243 return ret;
246 ret = request_irq(pdev->irq, xhci_msi_irq,
247 0, "xhci_hcd", xhci_to_hcd(xhci));
248 if (ret) {
249 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
250 "disable MSI interrupt");
251 pci_disable_msi(pdev);
254 return ret;
258 * Free IRQs
259 * free all IRQs request
261 static void xhci_free_irq(struct xhci_hcd *xhci)
263 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
264 int ret;
266 /* return if using legacy interrupt */
267 if (xhci_to_hcd(xhci)->irq > 0)
268 return;
270 ret = xhci_free_msi(xhci);
271 if (!ret)
272 return;
273 if (pdev->irq > 0)
274 free_irq(pdev->irq, xhci_to_hcd(xhci));
276 return;
280 * Set up MSI-X
282 static int xhci_setup_msix(struct xhci_hcd *xhci)
284 int i, ret = 0;
285 struct usb_hcd *hcd = xhci_to_hcd(xhci);
286 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
289 * calculate number of msi-x vectors supported.
290 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
291 * with max number of interrupters based on the xhci HCSPARAMS1.
292 * - num_online_cpus: maximum msi-x vectors per CPUs core.
293 * Add additional 1 vector to ensure always available interrupt.
295 xhci->msix_count = min(num_online_cpus() + 1,
296 HCS_MAX_INTRS(xhci->hcs_params1));
298 xhci->msix_entries =
299 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
300 GFP_KERNEL);
301 if (!xhci->msix_entries)
302 return -ENOMEM;
304 for (i = 0; i < xhci->msix_count; i++) {
305 xhci->msix_entries[i].entry = i;
306 xhci->msix_entries[i].vector = 0;
309 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
310 if (ret) {
311 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 "Failed to enable MSI-X");
313 goto free_entries;
316 for (i = 0; i < xhci->msix_count; i++) {
317 ret = request_irq(xhci->msix_entries[i].vector,
318 xhci_msi_irq,
319 0, "xhci_hcd", xhci_to_hcd(xhci));
320 if (ret)
321 goto disable_msix;
324 hcd->msix_enabled = 1;
325 return ret;
327 disable_msix:
328 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
329 xhci_free_irq(xhci);
330 pci_disable_msix(pdev);
331 free_entries:
332 kfree(xhci->msix_entries);
333 xhci->msix_entries = NULL;
334 return ret;
337 /* Free any IRQs and disable MSI-X */
338 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
340 struct usb_hcd *hcd = xhci_to_hcd(xhci);
341 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
343 if (xhci->quirks & XHCI_PLAT)
344 return;
346 xhci_free_irq(xhci);
348 if (xhci->msix_entries) {
349 pci_disable_msix(pdev);
350 kfree(xhci->msix_entries);
351 xhci->msix_entries = NULL;
352 } else {
353 pci_disable_msi(pdev);
356 hcd->msix_enabled = 0;
357 return;
360 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
362 int i;
364 if (xhci->msix_entries) {
365 for (i = 0; i < xhci->msix_count; i++)
366 synchronize_irq(xhci->msix_entries[i].vector);
370 static int xhci_try_enable_msi(struct usb_hcd *hcd)
372 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
373 struct pci_dev *pdev;
374 int ret;
376 /* The xhci platform device has set up IRQs through usb_add_hcd. */
377 if (xhci->quirks & XHCI_PLAT)
378 return 0;
380 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
382 * Some Fresco Logic host controllers advertise MSI, but fail to
383 * generate interrupts. Don't even try to enable MSI.
385 if (xhci->quirks & XHCI_BROKEN_MSI)
386 goto legacy_irq;
388 /* unregister the legacy interrupt */
389 if (hcd->irq)
390 free_irq(hcd->irq, hcd);
391 hcd->irq = 0;
393 ret = xhci_setup_msix(xhci);
394 if (ret)
395 /* fall back to msi*/
396 ret = xhci_setup_msi(xhci);
398 if (!ret)
399 /* hcd->irq is 0, we have MSI */
400 return 0;
402 if (!pdev->irq) {
403 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
404 return -EINVAL;
407 legacy_irq:
408 if (!strlen(hcd->irq_descr))
409 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
410 hcd->driver->description, hcd->self.busnum);
412 /* fall back to legacy interrupt*/
413 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
414 hcd->irq_descr, hcd);
415 if (ret) {
416 xhci_err(xhci, "request interrupt %d failed\n",
417 pdev->irq);
418 return ret;
420 hcd->irq = pdev->irq;
421 return 0;
424 #else
426 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
428 return 0;
431 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439 #endif
441 static void compliance_mode_recovery(unsigned long arg)
443 struct xhci_hcd *xhci;
444 struct usb_hcd *hcd;
445 u32 temp;
446 int i;
448 xhci = (struct xhci_hcd *)arg;
450 for (i = 0; i < xhci->num_usb3_ports; i++) {
451 temp = readl(xhci->usb3_ports[i]);
452 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
454 * Compliance Mode Detected. Letting USB Core
455 * handle the Warm Reset
457 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458 "Compliance mode detected->port %d",
459 i + 1);
460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 "Attempting compliance mode recovery");
462 hcd = xhci->shared_hcd;
464 if (hcd->state == HC_STATE_SUSPENDED)
465 usb_hcd_resume_root_hub(hcd);
467 usb_hcd_poll_rh_status(hcd);
471 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
472 mod_timer(&xhci->comp_mode_recovery_timer,
473 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
478 * that causes ports behind that hardware to enter compliance mode sometimes.
479 * The quirk creates a timer that polls every 2 seconds the link state of
480 * each host controller's port and recovers it by issuing a Warm reset
481 * if Compliance mode is detected, otherwise the port will become "dead" (no
482 * device connections or disconnections will be detected anymore). Becasue no
483 * status event is generated when entering compliance mode (per xhci spec),
484 * this quirk is needed on systems that have the failing hardware installed.
486 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
488 xhci->port_status_u0 = 0;
489 setup_timer(&xhci->comp_mode_recovery_timer,
490 compliance_mode_recovery, (unsigned long)xhci);
491 xhci->comp_mode_recovery_timer.expires = jiffies +
492 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
494 add_timer(&xhci->comp_mode_recovery_timer);
495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 "Compliance mode recovery timer initialized");
500 * This function identifies the systems that have installed the SN65LVPE502CP
501 * USB3.0 re-driver and that need the Compliance Mode Quirk.
502 * Systems:
503 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
507 const char *dmi_product_name, *dmi_sys_vendor;
509 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511 if (!dmi_product_name || !dmi_sys_vendor)
512 return false;
514 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515 return false;
517 if (strstr(dmi_product_name, "Z420") ||
518 strstr(dmi_product_name, "Z620") ||
519 strstr(dmi_product_name, "Z820") ||
520 strstr(dmi_product_name, "Z1 Workstation"))
521 return true;
523 return false;
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
528 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
533 * Initialize memory for HCD and xHC (one-time init).
535 * Program the PAGESIZE register, initialize the device context array, create
536 * device contexts (?), set up a command ring segment (or two?), create event
537 * ring (one for now).
539 int xhci_init(struct usb_hcd *hcd)
541 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 int retval = 0;
544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545 spin_lock_init(&xhci->lock);
546 if (xhci->hci_version == 0x95 && link_quirk) {
547 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548 "QUIRK: Not clearing Link TRB chain bits.");
549 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550 } else {
551 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 "xHCI doesn't need link TRB QUIRK");
554 retval = xhci_mem_init(xhci, GFP_KERNEL);
555 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
557 /* Initializing Compliance Mode Recovery Data If Needed */
558 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560 compliance_mode_recovery_timer_init(xhci);
563 return retval;
566 /*-------------------------------------------------------------------------*/
569 static int xhci_run_finished(struct xhci_hcd *xhci)
571 if (xhci_start(xhci)) {
572 xhci_halt(xhci);
573 return -ENODEV;
575 xhci->shared_hcd->state = HC_STATE_RUNNING;
576 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
578 if (xhci->quirks & XHCI_NEC_HOST)
579 xhci_ring_cmd_db(xhci);
581 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 "Finished xhci_run for USB3 roothub");
583 return 0;
587 * Start the HC after it was halted.
589 * This function is called by the USB core when the HC driver is added.
590 * Its opposite is xhci_stop().
592 * xhci_init() must be called once before this function can be called.
593 * Reset the HC, enable device slot contexts, program DCBAAP, and
594 * set command ring pointer and event ring pointer.
596 * Setup MSI-X vectors and enable interrupts.
598 int xhci_run(struct usb_hcd *hcd)
600 u32 temp;
601 u64 temp_64;
602 int ret;
603 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
605 /* Start the xHCI host controller running only after the USB 2.0 roothub
606 * is setup.
609 hcd->uses_new_polling = 1;
610 if (!usb_hcd_is_primary_hcd(hcd))
611 return xhci_run_finished(xhci);
613 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
615 ret = xhci_try_enable_msi(hcd);
616 if (ret)
617 return ret;
619 xhci_dbg(xhci, "Command ring memory map follows:\n");
620 xhci_debug_ring(xhci, xhci->cmd_ring);
621 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622 xhci_dbg_cmd_ptrs(xhci);
624 xhci_dbg(xhci, "ERST memory map follows:\n");
625 xhci_dbg_erst(xhci, &xhci->erst);
626 xhci_dbg(xhci, "Event ring:\n");
627 xhci_debug_ring(xhci, xhci->event_ring);
628 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630 temp_64 &= ~ERST_PTR_MASK;
631 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
634 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 "// Set the interrupt modulation register");
636 temp = readl(&xhci->ir_set->irq_control);
637 temp &= ~ER_IRQ_INTERVAL_MASK;
639 * the increment interval is 8 times as much as that defined
640 * in xHCI spec on MTK's controller
642 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643 writel(temp, &xhci->ir_set->irq_control);
645 /* Set the HCD state before we enable the irqs */
646 temp = readl(&xhci->op_regs->command);
647 temp |= (CMD_EIE);
648 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 "// Enable interrupts, cmd = 0x%x.", temp);
650 writel(temp, &xhci->op_regs->command);
652 temp = readl(&xhci->ir_set->irq_pending);
653 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657 xhci_print_ir_set(xhci, 0);
659 if (xhci->quirks & XHCI_NEC_HOST) {
660 struct xhci_command *command;
661 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662 if (!command)
663 return -ENOMEM;
664 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665 TRB_TYPE(TRB_NEC_GET_FW));
667 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668 "Finished xhci_run for USB2 roothub");
669 return 0;
671 EXPORT_SYMBOL_GPL(xhci_run);
674 * Stop xHCI driver.
676 * This function is called by the USB core when the HC driver is removed.
677 * Its opposite is xhci_run().
679 * Disable device contexts, disable IRQs, and quiesce the HC.
680 * Reset the HC, finish any completed transactions, and cleanup memory.
682 void xhci_stop(struct usb_hcd *hcd)
684 u32 temp;
685 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687 mutex_lock(&xhci->mutex);
689 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
690 spin_lock_irq(&xhci->lock);
692 xhci->xhc_state |= XHCI_STATE_HALTED;
693 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694 xhci_halt(xhci);
695 xhci_reset(xhci);
697 spin_unlock_irq(&xhci->lock);
700 if (!usb_hcd_is_primary_hcd(hcd)) {
701 mutex_unlock(&xhci->mutex);
702 return;
705 xhci_cleanup_msix(xhci);
707 /* Deleting Compliance Mode Recovery Timer */
708 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
709 (!(xhci_all_ports_seen_u0(xhci)))) {
710 del_timer_sync(&xhci->comp_mode_recovery_timer);
711 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
712 "%s: compliance mode recovery timer deleted",
713 __func__);
716 if (xhci->quirks & XHCI_AMD_PLL_FIX)
717 usb_amd_dev_put();
719 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
720 "// Disabling event ring interrupts");
721 temp = readl(&xhci->op_regs->status);
722 writel(temp & ~STS_EINT, &xhci->op_regs->status);
723 temp = readl(&xhci->ir_set->irq_pending);
724 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
725 xhci_print_ir_set(xhci, 0);
727 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
728 xhci_mem_cleanup(xhci);
729 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
730 "xhci_stop completed - status = %x",
731 readl(&xhci->op_regs->status));
732 mutex_unlock(&xhci->mutex);
736 * Shutdown HC (not bus-specific)
738 * This is called when the machine is rebooting or halting. We assume that the
739 * machine will be powered off, and the HC's internal state will be reset.
740 * Don't bother to free memory.
742 * This will only ever be called with the main usb_hcd (the USB3 roothub).
744 void xhci_shutdown(struct usb_hcd *hcd)
746 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
748 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
749 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
751 spin_lock_irq(&xhci->lock);
752 xhci_halt(xhci);
753 /* Workaround for spurious wakeups at shutdown with HSW */
754 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
755 xhci_reset(xhci);
756 spin_unlock_irq(&xhci->lock);
758 xhci_cleanup_msix(xhci);
760 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 "xhci_shutdown completed - status = %x",
762 readl(&xhci->op_regs->status));
764 /* Yet another workaround for spurious wakeups at shutdown with HSW */
765 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
766 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769 #ifdef CONFIG_PM
770 static void xhci_save_registers(struct xhci_hcd *xhci)
772 xhci->s3.command = readl(&xhci->op_regs->command);
773 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
774 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
775 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
776 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
777 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
778 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
779 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
780 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783 static void xhci_restore_registers(struct xhci_hcd *xhci)
785 writel(xhci->s3.command, &xhci->op_regs->command);
786 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
787 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
788 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
789 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
790 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
791 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
792 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
793 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
798 u64 val_64;
800 /* step 2: initialize command ring buffer */
801 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
802 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
803 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
804 xhci->cmd_ring->dequeue) &
805 (u64) ~CMD_RING_RSVD_BITS) |
806 xhci->cmd_ring->cycle_state;
807 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
808 "// Setting command ring address to 0x%llx",
809 (long unsigned long) val_64);
810 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
814 * The whole command ring must be cleared to zero when we suspend the host.
816 * The host doesn't save the command ring pointer in the suspend well, so we
817 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
818 * aligned, because of the reserved bits in the command ring dequeue pointer
819 * register. Therefore, we can't just set the dequeue pointer back in the
820 * middle of the ring (TRBs are 16-byte aligned).
822 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
824 struct xhci_ring *ring;
825 struct xhci_segment *seg;
827 ring = xhci->cmd_ring;
828 seg = ring->deq_seg;
829 do {
830 memset(seg->trbs, 0,
831 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
832 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
833 cpu_to_le32(~TRB_CYCLE);
834 seg = seg->next;
835 } while (seg != ring->deq_seg);
837 /* Reset the software enqueue and dequeue pointers */
838 ring->deq_seg = ring->first_seg;
839 ring->dequeue = ring->first_seg->trbs;
840 ring->enq_seg = ring->deq_seg;
841 ring->enqueue = ring->dequeue;
843 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
845 * Ring is now zeroed, so the HW should look for change of ownership
846 * when the cycle bit is set to 1.
848 ring->cycle_state = 1;
851 * Reset the hardware dequeue pointer.
852 * Yes, this will need to be re-written after resume, but we're paranoid
853 * and want to make sure the hardware doesn't access bogus memory
854 * because, say, the BIOS or an SMI started the host without changing
855 * the command ring pointers.
857 xhci_set_cmd_ring_deq(xhci);
860 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
862 int port_index;
863 __le32 __iomem **port_array;
864 unsigned long flags;
865 u32 t1, t2;
867 spin_lock_irqsave(&xhci->lock, flags);
869 /* disble usb3 ports Wake bits*/
870 port_index = xhci->num_usb3_ports;
871 port_array = xhci->usb3_ports;
872 while (port_index--) {
873 t1 = readl(port_array[port_index]);
874 t1 = xhci_port_state_to_neutral(t1);
875 t2 = t1 & ~PORT_WAKE_BITS;
876 if (t1 != t2)
877 writel(t2, port_array[port_index]);
880 /* disble usb2 ports Wake bits*/
881 port_index = xhci->num_usb2_ports;
882 port_array = xhci->usb2_ports;
883 while (port_index--) {
884 t1 = readl(port_array[port_index]);
885 t1 = xhci_port_state_to_neutral(t1);
886 t2 = t1 & ~PORT_WAKE_BITS;
887 if (t1 != t2)
888 writel(t2, port_array[port_index]);
891 spin_unlock_irqrestore(&xhci->lock, flags);
894 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
896 __le32 __iomem **port_array;
897 int port_index;
898 u32 status;
899 u32 portsc;
901 status = readl(&xhci->op_regs->status);
902 if (status & STS_EINT)
903 return true;
905 * Checking STS_EINT is not enough as there is a lag between a change
906 * bit being set and the Port Status Change Event that it generated
907 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
910 port_index = xhci->num_usb2_ports;
911 port_array = xhci->usb2_ports;
912 while (port_index--) {
913 portsc = readl(port_array[port_index]);
914 if (portsc & PORT_CHANGE_MASK ||
915 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
916 return true;
918 port_index = xhci->num_usb3_ports;
919 port_array = xhci->usb3_ports;
920 while (port_index--) {
921 portsc = readl(port_array[port_index]);
922 if (portsc & PORT_CHANGE_MASK ||
923 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
924 return true;
926 return false;
930 * Stop HC (not bus-specific)
932 * This is called when the machine transition into S3/S4 mode.
935 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
937 int rc = 0;
938 unsigned int delay = XHCI_MAX_HALT_USEC;
939 struct usb_hcd *hcd = xhci_to_hcd(xhci);
940 u32 command;
942 if (!hcd->state)
943 return 0;
945 if (hcd->state != HC_STATE_SUSPENDED ||
946 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
947 return -EINVAL;
949 /* Clear root port wake on bits if wakeup not allowed. */
950 if (!do_wakeup)
951 xhci_disable_port_wake_on_bits(xhci);
953 /* Don't poll the roothubs on bus suspend. */
954 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
955 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
956 del_timer_sync(&hcd->rh_timer);
957 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
958 del_timer_sync(&xhci->shared_hcd->rh_timer);
960 spin_lock_irq(&xhci->lock);
961 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
962 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
963 /* step 1: stop endpoint */
964 /* skipped assuming that port suspend has done */
966 /* step 2: clear Run/Stop bit */
967 command = readl(&xhci->op_regs->command);
968 command &= ~CMD_RUN;
969 writel(command, &xhci->op_regs->command);
971 /* Some chips from Fresco Logic need an extraordinary delay */
972 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
974 if (xhci_handshake(&xhci->op_regs->status,
975 STS_HALT, STS_HALT, delay)) {
976 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
977 spin_unlock_irq(&xhci->lock);
978 return -ETIMEDOUT;
980 xhci_clear_command_ring(xhci);
982 /* step 3: save registers */
983 xhci_save_registers(xhci);
985 /* step 4: set CSS flag */
986 command = readl(&xhci->op_regs->command);
987 command |= CMD_CSS;
988 writel(command, &xhci->op_regs->command);
989 if (xhci_handshake(&xhci->op_regs->status,
990 STS_SAVE, 0, 10 * 1000)) {
991 xhci_warn(xhci, "WARN: xHC save state timeout\n");
992 spin_unlock_irq(&xhci->lock);
993 return -ETIMEDOUT;
995 spin_unlock_irq(&xhci->lock);
998 * Deleting Compliance Mode Recovery Timer because the xHCI Host
999 * is about to be suspended.
1001 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1002 (!(xhci_all_ports_seen_u0(xhci)))) {
1003 del_timer_sync(&xhci->comp_mode_recovery_timer);
1004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1005 "%s: compliance mode recovery timer deleted",
1006 __func__);
1009 /* step 5: remove core well power */
1010 /* synchronize irq when using MSI-X */
1011 xhci_msix_sync_irqs(xhci);
1013 return rc;
1015 EXPORT_SYMBOL_GPL(xhci_suspend);
1018 * start xHC (not bus-specific)
1020 * This is called when the machine transition from S3/S4 mode.
1023 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1025 u32 command, temp = 0;
1026 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1027 struct usb_hcd *secondary_hcd;
1028 int retval = 0;
1029 bool comp_timer_running = false;
1031 if (!hcd->state)
1032 return 0;
1034 /* Wait a bit if either of the roothubs need to settle from the
1035 * transition into bus suspend.
1037 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1038 time_before(jiffies,
1039 xhci->bus_state[1].next_statechange))
1040 msleep(100);
1042 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1043 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1045 spin_lock_irq(&xhci->lock);
1046 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1047 hibernated = true;
1049 if (!hibernated) {
1050 /* step 1: restore register */
1051 xhci_restore_registers(xhci);
1052 /* step 2: initialize command ring buffer */
1053 xhci_set_cmd_ring_deq(xhci);
1054 /* step 3: restore state and start state*/
1055 /* step 3: set CRS flag */
1056 command = readl(&xhci->op_regs->command);
1057 command |= CMD_CRS;
1058 writel(command, &xhci->op_regs->command);
1059 if (xhci_handshake(&xhci->op_regs->status,
1060 STS_RESTORE, 0, 10 * 1000)) {
1061 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1062 spin_unlock_irq(&xhci->lock);
1063 return -ETIMEDOUT;
1065 temp = readl(&xhci->op_regs->status);
1068 /* If restore operation fails, re-initialize the HC during resume */
1069 if ((temp & STS_SRE) || hibernated) {
1071 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1072 !(xhci_all_ports_seen_u0(xhci))) {
1073 del_timer_sync(&xhci->comp_mode_recovery_timer);
1074 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1075 "Compliance Mode Recovery Timer deleted!");
1078 /* Let the USB core know _both_ roothubs lost power. */
1079 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1080 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1082 xhci_dbg(xhci, "Stop HCD\n");
1083 xhci_halt(xhci);
1084 xhci_reset(xhci);
1085 spin_unlock_irq(&xhci->lock);
1086 xhci_cleanup_msix(xhci);
1088 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1089 temp = readl(&xhci->op_regs->status);
1090 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1091 temp = readl(&xhci->ir_set->irq_pending);
1092 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1093 xhci_print_ir_set(xhci, 0);
1095 xhci_dbg(xhci, "cleaning up memory\n");
1096 xhci_mem_cleanup(xhci);
1097 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1098 readl(&xhci->op_regs->status));
1100 /* USB core calls the PCI reinit and start functions twice:
1101 * first with the primary HCD, and then with the secondary HCD.
1102 * If we don't do the same, the host will never be started.
1104 if (!usb_hcd_is_primary_hcd(hcd))
1105 secondary_hcd = hcd;
1106 else
1107 secondary_hcd = xhci->shared_hcd;
1109 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1110 retval = xhci_init(hcd->primary_hcd);
1111 if (retval)
1112 return retval;
1113 comp_timer_running = true;
1115 xhci_dbg(xhci, "Start the primary HCD\n");
1116 retval = xhci_run(hcd->primary_hcd);
1117 if (!retval) {
1118 xhci_dbg(xhci, "Start the secondary HCD\n");
1119 retval = xhci_run(secondary_hcd);
1121 hcd->state = HC_STATE_SUSPENDED;
1122 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1123 goto done;
1126 /* step 4: set Run/Stop bit */
1127 command = readl(&xhci->op_regs->command);
1128 command |= CMD_RUN;
1129 writel(command, &xhci->op_regs->command);
1130 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1131 0, 250 * 1000);
1133 /* step 5: walk topology and initialize portsc,
1134 * portpmsc and portli
1136 /* this is done in bus_resume */
1138 /* step 6: restart each of the previously
1139 * Running endpoints by ringing their doorbells
1142 spin_unlock_irq(&xhci->lock);
1144 done:
1145 if (retval == 0) {
1146 /* Resume root hubs only when have pending events. */
1147 if (xhci_pending_portevent(xhci)) {
1148 usb_hcd_resume_root_hub(xhci->shared_hcd);
1149 usb_hcd_resume_root_hub(hcd);
1154 * If system is subject to the Quirk, Compliance Mode Timer needs to
1155 * be re-initialized Always after a system resume. Ports are subject
1156 * to suffer the Compliance Mode issue again. It doesn't matter if
1157 * ports have entered previously to U0 before system's suspension.
1159 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1160 compliance_mode_recovery_timer_init(xhci);
1162 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1163 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1165 /* Re-enable port polling. */
1166 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1167 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1168 usb_hcd_poll_rh_status(xhci->shared_hcd);
1169 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1170 usb_hcd_poll_rh_status(hcd);
1172 return retval;
1174 EXPORT_SYMBOL_GPL(xhci_resume);
1175 #endif /* CONFIG_PM */
1177 /*-------------------------------------------------------------------------*/
1180 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1181 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1182 * value to right shift 1 for the bitmask.
1184 * Index = (epnum * 2) + direction - 1,
1185 * where direction = 0 for OUT, 1 for IN.
1186 * For control endpoints, the IN index is used (OUT index is unused), so
1187 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1189 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1191 unsigned int index;
1192 if (usb_endpoint_xfer_control(desc))
1193 index = (unsigned int) (usb_endpoint_num(desc)*2);
1194 else
1195 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1196 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1197 return index;
1200 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1201 * address from the XHCI endpoint index.
1203 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1205 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1206 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1207 return direction | number;
1210 /* Find the flag for this endpoint (for use in the control context). Use the
1211 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1212 * bit 1, etc.
1214 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1216 return 1 << (xhci_get_endpoint_index(desc) + 1);
1219 /* Find the flag for this endpoint (for use in the control context). Use the
1220 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1221 * bit 1, etc.
1223 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1225 return 1 << (ep_index + 1);
1228 /* Compute the last valid endpoint context index. Basically, this is the
1229 * endpoint index plus one. For slot contexts with more than valid endpoint,
1230 * we find the most significant bit set in the added contexts flags.
1231 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1232 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1234 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1236 return fls(added_ctxs) - 1;
1239 /* Returns 1 if the arguments are OK;
1240 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1242 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1243 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1244 const char *func) {
1245 struct xhci_hcd *xhci;
1246 struct xhci_virt_device *virt_dev;
1248 if (!hcd || (check_ep && !ep) || !udev) {
1249 pr_debug("xHCI %s called with invalid args\n", func);
1250 return -EINVAL;
1252 if (!udev->parent) {
1253 pr_debug("xHCI %s called for root hub\n", func);
1254 return 0;
1257 xhci = hcd_to_xhci(hcd);
1258 if (check_virt_dev) {
1259 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1260 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1261 func);
1262 return -EINVAL;
1265 virt_dev = xhci->devs[udev->slot_id];
1266 if (virt_dev->udev != udev) {
1267 xhci_dbg(xhci, "xHCI %s called with udev and "
1268 "virt_dev does not match\n", func);
1269 return -EINVAL;
1273 if (xhci->xhc_state & XHCI_STATE_HALTED)
1274 return -ENODEV;
1276 return 1;
1279 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1280 struct usb_device *udev, struct xhci_command *command,
1281 bool ctx_change, bool must_succeed);
1284 * Full speed devices may have a max packet size greater than 8 bytes, but the
1285 * USB core doesn't know that until it reads the first 8 bytes of the
1286 * descriptor. If the usb_device's max packet size changes after that point,
1287 * we need to issue an evaluate context command and wait on it.
1289 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1290 unsigned int ep_index, struct urb *urb)
1292 struct xhci_container_ctx *out_ctx;
1293 struct xhci_input_control_ctx *ctrl_ctx;
1294 struct xhci_ep_ctx *ep_ctx;
1295 struct xhci_command *command;
1296 int max_packet_size;
1297 int hw_max_packet_size;
1298 int ret = 0;
1300 out_ctx = xhci->devs[slot_id]->out_ctx;
1301 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1302 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1303 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1304 if (hw_max_packet_size != max_packet_size) {
1305 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1306 "Max Packet Size for ep 0 changed.");
1307 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1308 "Max packet size in usb_device = %d",
1309 max_packet_size);
1310 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1311 "Max packet size in xHCI HW = %d",
1312 hw_max_packet_size);
1313 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1314 "Issuing evaluate context command.");
1316 /* Set up the input context flags for the command */
1317 /* FIXME: This won't work if a non-default control endpoint
1318 * changes max packet sizes.
1321 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1322 if (!command)
1323 return -ENOMEM;
1325 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1326 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1327 if (!ctrl_ctx) {
1328 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1329 __func__);
1330 ret = -ENOMEM;
1331 goto command_cleanup;
1333 /* Set up the modified control endpoint 0 */
1334 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1335 xhci->devs[slot_id]->out_ctx, ep_index);
1337 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1338 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1339 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1341 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1342 ctrl_ctx->drop_flags = 0;
1344 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1345 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1346 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1347 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1349 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1350 true, false);
1352 /* Clean up the input context for later use by bandwidth
1353 * functions.
1355 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1356 command_cleanup:
1357 kfree(command->completion);
1358 kfree(command);
1360 return ret;
1364 * non-error returns are a promise to giveback() the urb later
1365 * we drop ownership so next owner (or urb unlink) can get it
1367 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1369 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1370 struct xhci_td *buffer;
1371 unsigned long flags;
1372 int ret = 0;
1373 unsigned int slot_id, ep_index;
1374 struct urb_priv *urb_priv;
1375 int size, i;
1377 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1378 true, true, __func__) <= 0)
1379 return -EINVAL;
1381 slot_id = urb->dev->slot_id;
1382 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1384 if (!HCD_HW_ACCESSIBLE(hcd)) {
1385 if (!in_interrupt())
1386 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1387 ret = -ESHUTDOWN;
1388 goto exit;
1391 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1392 size = urb->number_of_packets;
1393 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1394 urb->transfer_buffer_length > 0 &&
1395 urb->transfer_flags & URB_ZERO_PACKET &&
1396 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1397 size = 2;
1398 else
1399 size = 1;
1401 urb_priv = kzalloc(sizeof(struct urb_priv) +
1402 size * sizeof(struct xhci_td *), mem_flags);
1403 if (!urb_priv)
1404 return -ENOMEM;
1406 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1407 if (!buffer) {
1408 kfree(urb_priv);
1409 return -ENOMEM;
1412 for (i = 0; i < size; i++) {
1413 urb_priv->td[i] = buffer;
1414 buffer++;
1417 urb_priv->length = size;
1418 urb_priv->td_cnt = 0;
1419 urb->hcpriv = urb_priv;
1421 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1422 /* Check to see if the max packet size for the default control
1423 * endpoint changed during FS device enumeration
1425 if (urb->dev->speed == USB_SPEED_FULL) {
1426 ret = xhci_check_maxpacket(xhci, slot_id,
1427 ep_index, urb);
1428 if (ret < 0) {
1429 xhci_urb_free_priv(urb_priv);
1430 urb->hcpriv = NULL;
1431 return ret;
1435 /* We have a spinlock and interrupts disabled, so we must pass
1436 * atomic context to this function, which may allocate memory.
1438 spin_lock_irqsave(&xhci->lock, flags);
1439 if (xhci->xhc_state & XHCI_STATE_DYING)
1440 goto dying;
1441 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1442 slot_id, ep_index);
1443 if (ret)
1444 goto free_priv;
1445 spin_unlock_irqrestore(&xhci->lock, flags);
1446 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1447 spin_lock_irqsave(&xhci->lock, flags);
1448 if (xhci->xhc_state & XHCI_STATE_DYING)
1449 goto dying;
1450 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1451 EP_GETTING_STREAMS) {
1452 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1453 "is transitioning to using streams.\n");
1454 ret = -EINVAL;
1455 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1456 EP_GETTING_NO_STREAMS) {
1457 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1458 "is transitioning to "
1459 "not having streams.\n");
1460 ret = -EINVAL;
1461 } else {
1462 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1463 slot_id, ep_index);
1465 if (ret)
1466 goto free_priv;
1467 spin_unlock_irqrestore(&xhci->lock, flags);
1468 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1469 spin_lock_irqsave(&xhci->lock, flags);
1470 if (xhci->xhc_state & XHCI_STATE_DYING)
1471 goto dying;
1472 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1473 slot_id, ep_index);
1474 if (ret)
1475 goto free_priv;
1476 spin_unlock_irqrestore(&xhci->lock, flags);
1477 } else {
1478 spin_lock_irqsave(&xhci->lock, flags);
1479 if (xhci->xhc_state & XHCI_STATE_DYING)
1480 goto dying;
1481 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1482 slot_id, ep_index);
1483 if (ret)
1484 goto free_priv;
1485 spin_unlock_irqrestore(&xhci->lock, flags);
1487 exit:
1488 return ret;
1489 dying:
1490 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1491 "non-responsive xHCI host.\n",
1492 urb->ep->desc.bEndpointAddress, urb);
1493 ret = -ESHUTDOWN;
1494 free_priv:
1495 xhci_urb_free_priv(urb_priv);
1496 urb->hcpriv = NULL;
1497 spin_unlock_irqrestore(&xhci->lock, flags);
1498 return ret;
1502 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1503 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1504 * should pick up where it left off in the TD, unless a Set Transfer Ring
1505 * Dequeue Pointer is issued.
1507 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1508 * the ring. Since the ring is a contiguous structure, they can't be physically
1509 * removed. Instead, there are two options:
1511 * 1) If the HC is in the middle of processing the URB to be canceled, we
1512 * simply move the ring's dequeue pointer past those TRBs using the Set
1513 * Transfer Ring Dequeue Pointer command. This will be the common case,
1514 * when drivers timeout on the last submitted URB and attempt to cancel.
1516 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1517 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1518 * HC will need to invalidate the any TRBs it has cached after the stop
1519 * endpoint command, as noted in the xHCI 0.95 errata.
1521 * 3) The TD may have completed by the time the Stop Endpoint Command
1522 * completes, so software needs to handle that case too.
1524 * This function should protect against the TD enqueueing code ringing the
1525 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1526 * It also needs to account for multiple cancellations on happening at the same
1527 * time for the same endpoint.
1529 * Note that this function can be called in any context, or so says
1530 * usb_hcd_unlink_urb()
1532 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1534 unsigned long flags;
1535 int ret, i;
1536 u32 temp;
1537 struct xhci_hcd *xhci;
1538 struct urb_priv *urb_priv;
1539 struct xhci_td *td;
1540 unsigned int ep_index;
1541 struct xhci_ring *ep_ring;
1542 struct xhci_virt_ep *ep;
1543 struct xhci_command *command;
1545 xhci = hcd_to_xhci(hcd);
1546 spin_lock_irqsave(&xhci->lock, flags);
1547 /* Make sure the URB hasn't completed or been unlinked already */
1548 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1549 if (ret || !urb->hcpriv)
1550 goto done;
1551 temp = readl(&xhci->op_regs->status);
1552 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1553 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1554 "HW died, freeing TD.");
1555 urb_priv = urb->hcpriv;
1556 for (i = urb_priv->td_cnt;
1557 i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1558 i++) {
1559 td = urb_priv->td[i];
1560 if (!list_empty(&td->td_list))
1561 list_del_init(&td->td_list);
1562 if (!list_empty(&td->cancelled_td_list))
1563 list_del_init(&td->cancelled_td_list);
1566 usb_hcd_unlink_urb_from_ep(hcd, urb);
1567 spin_unlock_irqrestore(&xhci->lock, flags);
1568 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1569 xhci_urb_free_priv(urb_priv);
1570 return ret;
1573 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1574 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1575 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1576 if (!ep_ring) {
1577 ret = -EINVAL;
1578 goto done;
1581 urb_priv = urb->hcpriv;
1582 i = urb_priv->td_cnt;
1583 if (i < urb_priv->length)
1584 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1585 "Cancel URB %p, dev %s, ep 0x%x, "
1586 "starting at offset 0x%llx",
1587 urb, urb->dev->devpath,
1588 urb->ep->desc.bEndpointAddress,
1589 (unsigned long long) xhci_trb_virt_to_dma(
1590 urb_priv->td[i]->start_seg,
1591 urb_priv->td[i]->first_trb));
1593 for (; i < urb_priv->length; i++) {
1594 td = urb_priv->td[i];
1595 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1598 /* Queue a stop endpoint command, but only if this is
1599 * the first cancellation to be handled.
1601 if (!(ep->ep_state & EP_HALT_PENDING)) {
1602 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1603 if (!command) {
1604 ret = -ENOMEM;
1605 goto done;
1607 ep->ep_state |= EP_HALT_PENDING;
1608 ep->stop_cmds_pending++;
1609 ep->stop_cmd_timer.expires = jiffies +
1610 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1611 add_timer(&ep->stop_cmd_timer);
1612 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1613 ep_index, 0);
1614 xhci_ring_cmd_db(xhci);
1616 done:
1617 spin_unlock_irqrestore(&xhci->lock, flags);
1618 return ret;
1621 /* Drop an endpoint from a new bandwidth configuration for this device.
1622 * Only one call to this function is allowed per endpoint before
1623 * check_bandwidth() or reset_bandwidth() must be called.
1624 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1625 * add the endpoint to the schedule with possibly new parameters denoted by a
1626 * different endpoint descriptor in usb_host_endpoint.
1627 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1628 * not allowed.
1630 * The USB core will not allow URBs to be queued to an endpoint that is being
1631 * disabled, so there's no need for mutual exclusion to protect
1632 * the xhci->devs[slot_id] structure.
1634 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1635 struct usb_host_endpoint *ep)
1637 struct xhci_hcd *xhci;
1638 struct xhci_container_ctx *in_ctx, *out_ctx;
1639 struct xhci_input_control_ctx *ctrl_ctx;
1640 unsigned int ep_index;
1641 struct xhci_ep_ctx *ep_ctx;
1642 u32 drop_flag;
1643 u32 new_add_flags, new_drop_flags;
1644 int ret;
1646 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1647 if (ret <= 0)
1648 return ret;
1649 xhci = hcd_to_xhci(hcd);
1650 if (xhci->xhc_state & XHCI_STATE_DYING)
1651 return -ENODEV;
1653 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1654 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1655 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1656 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1657 __func__, drop_flag);
1658 return 0;
1661 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1662 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1663 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1664 if (!ctrl_ctx) {
1665 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1666 __func__);
1667 return 0;
1670 ep_index = xhci_get_endpoint_index(&ep->desc);
1671 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1672 /* If the HC already knows the endpoint is disabled,
1673 * or the HCD has noted it is disabled, ignore this request
1675 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1676 cpu_to_le32(EP_STATE_DISABLED)) ||
1677 le32_to_cpu(ctrl_ctx->drop_flags) &
1678 xhci_get_endpoint_flag(&ep->desc)) {
1679 /* Do not warn when called after a usb_device_reset */
1680 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1681 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1682 __func__, ep);
1683 return 0;
1686 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1687 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1689 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1690 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1692 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1694 if (xhci->quirks & XHCI_MTK_HOST)
1695 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1697 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1698 (unsigned int) ep->desc.bEndpointAddress,
1699 udev->slot_id,
1700 (unsigned int) new_drop_flags,
1701 (unsigned int) new_add_flags);
1702 return 0;
1705 /* Add an endpoint to a new possible bandwidth configuration for this device.
1706 * Only one call to this function is allowed per endpoint before
1707 * check_bandwidth() or reset_bandwidth() must be called.
1708 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1709 * add the endpoint to the schedule with possibly new parameters denoted by a
1710 * different endpoint descriptor in usb_host_endpoint.
1711 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1712 * not allowed.
1714 * The USB core will not allow URBs to be queued to an endpoint until the
1715 * configuration or alt setting is installed in the device, so there's no need
1716 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1718 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1719 struct usb_host_endpoint *ep)
1721 struct xhci_hcd *xhci;
1722 struct xhci_container_ctx *in_ctx;
1723 unsigned int ep_index;
1724 struct xhci_input_control_ctx *ctrl_ctx;
1725 u32 added_ctxs;
1726 u32 new_add_flags, new_drop_flags;
1727 struct xhci_virt_device *virt_dev;
1728 int ret = 0;
1730 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1731 if (ret <= 0) {
1732 /* So we won't queue a reset ep command for a root hub */
1733 ep->hcpriv = NULL;
1734 return ret;
1736 xhci = hcd_to_xhci(hcd);
1737 if (xhci->xhc_state & XHCI_STATE_DYING)
1738 return -ENODEV;
1740 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1741 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1742 /* FIXME when we have to issue an evaluate endpoint command to
1743 * deal with ep0 max packet size changing once we get the
1744 * descriptors
1746 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1747 __func__, added_ctxs);
1748 return 0;
1751 virt_dev = xhci->devs[udev->slot_id];
1752 in_ctx = virt_dev->in_ctx;
1753 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1754 if (!ctrl_ctx) {
1755 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1756 __func__);
1757 return 0;
1760 ep_index = xhci_get_endpoint_index(&ep->desc);
1761 /* If this endpoint is already in use, and the upper layers are trying
1762 * to add it again without dropping it, reject the addition.
1764 if (virt_dev->eps[ep_index].ring &&
1765 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1766 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1767 "without dropping it.\n",
1768 (unsigned int) ep->desc.bEndpointAddress);
1769 return -EINVAL;
1772 /* If the HCD has already noted the endpoint is enabled,
1773 * ignore this request.
1775 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1776 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1777 __func__, ep);
1778 return 0;
1782 * Configuration and alternate setting changes must be done in
1783 * process context, not interrupt context (or so documenation
1784 * for usb_set_interface() and usb_set_configuration() claim).
1786 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1787 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1788 __func__, ep->desc.bEndpointAddress);
1789 return -ENOMEM;
1792 if (xhci->quirks & XHCI_MTK_HOST) {
1793 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1794 if (ret < 0) {
1795 xhci_free_or_cache_endpoint_ring(xhci,
1796 virt_dev, ep_index);
1797 return ret;
1801 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1802 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1804 /* If xhci_endpoint_disable() was called for this endpoint, but the
1805 * xHC hasn't been notified yet through the check_bandwidth() call,
1806 * this re-adds a new state for the endpoint from the new endpoint
1807 * descriptors. We must drop and re-add this endpoint, so we leave the
1808 * drop flags alone.
1810 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1812 /* Store the usb_device pointer for later use */
1813 ep->hcpriv = udev;
1815 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1816 (unsigned int) ep->desc.bEndpointAddress,
1817 udev->slot_id,
1818 (unsigned int) new_drop_flags,
1819 (unsigned int) new_add_flags);
1820 return 0;
1823 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1825 struct xhci_input_control_ctx *ctrl_ctx;
1826 struct xhci_ep_ctx *ep_ctx;
1827 struct xhci_slot_ctx *slot_ctx;
1828 int i;
1830 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1831 if (!ctrl_ctx) {
1832 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1833 __func__);
1834 return;
1837 /* When a device's add flag and drop flag are zero, any subsequent
1838 * configure endpoint command will leave that endpoint's state
1839 * untouched. Make sure we don't leave any old state in the input
1840 * endpoint contexts.
1842 ctrl_ctx->drop_flags = 0;
1843 ctrl_ctx->add_flags = 0;
1844 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1845 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1846 /* Endpoint 0 is always valid */
1847 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1848 for (i = 1; i < 31; ++i) {
1849 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1850 ep_ctx->ep_info = 0;
1851 ep_ctx->ep_info2 = 0;
1852 ep_ctx->deq = 0;
1853 ep_ctx->tx_info = 0;
1857 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1858 struct usb_device *udev, u32 *cmd_status)
1860 int ret;
1862 switch (*cmd_status) {
1863 case COMP_CMD_ABORT:
1864 case COMP_CMD_STOP:
1865 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1866 ret = -ETIME;
1867 break;
1868 case COMP_ENOMEM:
1869 dev_warn(&udev->dev,
1870 "Not enough host controller resources for new device state.\n");
1871 ret = -ENOMEM;
1872 /* FIXME: can we allocate more resources for the HC? */
1873 break;
1874 case COMP_BW_ERR:
1875 case COMP_2ND_BW_ERR:
1876 dev_warn(&udev->dev,
1877 "Not enough bandwidth for new device state.\n");
1878 ret = -ENOSPC;
1879 /* FIXME: can we go back to the old state? */
1880 break;
1881 case COMP_TRB_ERR:
1882 /* the HCD set up something wrong */
1883 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1884 "add flag = 1, "
1885 "and endpoint is not disabled.\n");
1886 ret = -EINVAL;
1887 break;
1888 case COMP_DEV_ERR:
1889 dev_warn(&udev->dev,
1890 "ERROR: Incompatible device for endpoint configure command.\n");
1891 ret = -ENODEV;
1892 break;
1893 case COMP_SUCCESS:
1894 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1895 "Successful Endpoint Configure command");
1896 ret = 0;
1897 break;
1898 default:
1899 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1900 *cmd_status);
1901 ret = -EINVAL;
1902 break;
1904 return ret;
1907 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1908 struct usb_device *udev, u32 *cmd_status)
1910 int ret;
1911 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1913 switch (*cmd_status) {
1914 case COMP_CMD_ABORT:
1915 case COMP_CMD_STOP:
1916 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1917 ret = -ETIME;
1918 break;
1919 case COMP_EINVAL:
1920 dev_warn(&udev->dev,
1921 "WARN: xHCI driver setup invalid evaluate context command.\n");
1922 ret = -EINVAL;
1923 break;
1924 case COMP_EBADSLT:
1925 dev_warn(&udev->dev,
1926 "WARN: slot not enabled for evaluate context command.\n");
1927 ret = -EINVAL;
1928 break;
1929 case COMP_CTX_STATE:
1930 dev_warn(&udev->dev,
1931 "WARN: invalid context state for evaluate context command.\n");
1932 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1933 ret = -EINVAL;
1934 break;
1935 case COMP_DEV_ERR:
1936 dev_warn(&udev->dev,
1937 "ERROR: Incompatible device for evaluate context command.\n");
1938 ret = -ENODEV;
1939 break;
1940 case COMP_MEL_ERR:
1941 /* Max Exit Latency too large error */
1942 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1943 ret = -EINVAL;
1944 break;
1945 case COMP_SUCCESS:
1946 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1947 "Successful evaluate context command");
1948 ret = 0;
1949 break;
1950 default:
1951 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1952 *cmd_status);
1953 ret = -EINVAL;
1954 break;
1956 return ret;
1959 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1960 struct xhci_input_control_ctx *ctrl_ctx)
1962 u32 valid_add_flags;
1963 u32 valid_drop_flags;
1965 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1966 * (bit 1). The default control endpoint is added during the Address
1967 * Device command and is never removed until the slot is disabled.
1969 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1970 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1972 /* Use hweight32 to count the number of ones in the add flags, or
1973 * number of endpoints added. Don't count endpoints that are changed
1974 * (both added and dropped).
1976 return hweight32(valid_add_flags) -
1977 hweight32(valid_add_flags & valid_drop_flags);
1980 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1981 struct xhci_input_control_ctx *ctrl_ctx)
1983 u32 valid_add_flags;
1984 u32 valid_drop_flags;
1986 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1987 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1989 return hweight32(valid_drop_flags) -
1990 hweight32(valid_add_flags & valid_drop_flags);
1994 * We need to reserve the new number of endpoints before the configure endpoint
1995 * command completes. We can't subtract the dropped endpoints from the number
1996 * of active endpoints until the command completes because we can oversubscribe
1997 * the host in this case:
1999 * - the first configure endpoint command drops more endpoints than it adds
2000 * - a second configure endpoint command that adds more endpoints is queued
2001 * - the first configure endpoint command fails, so the config is unchanged
2002 * - the second command may succeed, even though there isn't enough resources
2004 * Must be called with xhci->lock held.
2006 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2007 struct xhci_input_control_ctx *ctrl_ctx)
2009 u32 added_eps;
2011 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2012 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2013 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2014 "Not enough ep ctxs: "
2015 "%u active, need to add %u, limit is %u.",
2016 xhci->num_active_eps, added_eps,
2017 xhci->limit_active_eps);
2018 return -ENOMEM;
2020 xhci->num_active_eps += added_eps;
2021 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2022 "Adding %u ep ctxs, %u now active.", added_eps,
2023 xhci->num_active_eps);
2024 return 0;
2028 * The configure endpoint was failed by the xHC for some other reason, so we
2029 * need to revert the resources that failed configuration would have used.
2031 * Must be called with xhci->lock held.
2033 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2034 struct xhci_input_control_ctx *ctrl_ctx)
2036 u32 num_failed_eps;
2038 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2039 xhci->num_active_eps -= num_failed_eps;
2040 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2041 "Removing %u failed ep ctxs, %u now active.",
2042 num_failed_eps,
2043 xhci->num_active_eps);
2047 * Now that the command has completed, clean up the active endpoint count by
2048 * subtracting out the endpoints that were dropped (but not changed).
2050 * Must be called with xhci->lock held.
2052 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2053 struct xhci_input_control_ctx *ctrl_ctx)
2055 u32 num_dropped_eps;
2057 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2058 xhci->num_active_eps -= num_dropped_eps;
2059 if (num_dropped_eps)
2060 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2061 "Removing %u dropped ep ctxs, %u now active.",
2062 num_dropped_eps,
2063 xhci->num_active_eps);
2066 static unsigned int xhci_get_block_size(struct usb_device *udev)
2068 switch (udev->speed) {
2069 case USB_SPEED_LOW:
2070 case USB_SPEED_FULL:
2071 return FS_BLOCK;
2072 case USB_SPEED_HIGH:
2073 return HS_BLOCK;
2074 case USB_SPEED_SUPER:
2075 case USB_SPEED_SUPER_PLUS:
2076 return SS_BLOCK;
2077 case USB_SPEED_UNKNOWN:
2078 case USB_SPEED_WIRELESS:
2079 default:
2080 /* Should never happen */
2081 return 1;
2085 static unsigned int
2086 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2088 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2089 return LS_OVERHEAD;
2090 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2091 return FS_OVERHEAD;
2092 return HS_OVERHEAD;
2095 /* If we are changing a LS/FS device under a HS hub,
2096 * make sure (if we are activating a new TT) that the HS bus has enough
2097 * bandwidth for this new TT.
2099 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2100 struct xhci_virt_device *virt_dev,
2101 int old_active_eps)
2103 struct xhci_interval_bw_table *bw_table;
2104 struct xhci_tt_bw_info *tt_info;
2106 /* Find the bandwidth table for the root port this TT is attached to. */
2107 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2108 tt_info = virt_dev->tt_info;
2109 /* If this TT already had active endpoints, the bandwidth for this TT
2110 * has already been added. Removing all periodic endpoints (and thus
2111 * making the TT enactive) will only decrease the bandwidth used.
2113 if (old_active_eps)
2114 return 0;
2115 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2116 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2117 return -ENOMEM;
2118 return 0;
2120 /* Not sure why we would have no new active endpoints...
2122 * Maybe because of an Evaluate Context change for a hub update or a
2123 * control endpoint 0 max packet size change?
2124 * FIXME: skip the bandwidth calculation in that case.
2126 return 0;
2129 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2130 struct xhci_virt_device *virt_dev)
2132 unsigned int bw_reserved;
2134 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2135 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2136 return -ENOMEM;
2138 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2139 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2140 return -ENOMEM;
2142 return 0;
2146 * This algorithm is a very conservative estimate of the worst-case scheduling
2147 * scenario for any one interval. The hardware dynamically schedules the
2148 * packets, so we can't tell which microframe could be the limiting factor in
2149 * the bandwidth scheduling. This only takes into account periodic endpoints.
2151 * Obviously, we can't solve an NP complete problem to find the minimum worst
2152 * case scenario. Instead, we come up with an estimate that is no less than
2153 * the worst case bandwidth used for any one microframe, but may be an
2154 * over-estimate.
2156 * We walk the requirements for each endpoint by interval, starting with the
2157 * smallest interval, and place packets in the schedule where there is only one
2158 * possible way to schedule packets for that interval. In order to simplify
2159 * this algorithm, we record the largest max packet size for each interval, and
2160 * assume all packets will be that size.
2162 * For interval 0, we obviously must schedule all packets for each interval.
2163 * The bandwidth for interval 0 is just the amount of data to be transmitted
2164 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2165 * the number of packets).
2167 * For interval 1, we have two possible microframes to schedule those packets
2168 * in. For this algorithm, if we can schedule the same number of packets for
2169 * each possible scheduling opportunity (each microframe), we will do so. The
2170 * remaining number of packets will be saved to be transmitted in the gaps in
2171 * the next interval's scheduling sequence.
2173 * As we move those remaining packets to be scheduled with interval 2 packets,
2174 * we have to double the number of remaining packets to transmit. This is
2175 * because the intervals are actually powers of 2, and we would be transmitting
2176 * the previous interval's packets twice in this interval. We also have to be
2177 * sure that when we look at the largest max packet size for this interval, we
2178 * also look at the largest max packet size for the remaining packets and take
2179 * the greater of the two.
2181 * The algorithm continues to evenly distribute packets in each scheduling
2182 * opportunity, and push the remaining packets out, until we get to the last
2183 * interval. Then those packets and their associated overhead are just added
2184 * to the bandwidth used.
2186 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2187 struct xhci_virt_device *virt_dev,
2188 int old_active_eps)
2190 unsigned int bw_reserved;
2191 unsigned int max_bandwidth;
2192 unsigned int bw_used;
2193 unsigned int block_size;
2194 struct xhci_interval_bw_table *bw_table;
2195 unsigned int packet_size = 0;
2196 unsigned int overhead = 0;
2197 unsigned int packets_transmitted = 0;
2198 unsigned int packets_remaining = 0;
2199 unsigned int i;
2201 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2202 return xhci_check_ss_bw(xhci, virt_dev);
2204 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2205 max_bandwidth = HS_BW_LIMIT;
2206 /* Convert percent of bus BW reserved to blocks reserved */
2207 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2208 } else {
2209 max_bandwidth = FS_BW_LIMIT;
2210 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2213 bw_table = virt_dev->bw_table;
2214 /* We need to translate the max packet size and max ESIT payloads into
2215 * the units the hardware uses.
2217 block_size = xhci_get_block_size(virt_dev->udev);
2219 /* If we are manipulating a LS/FS device under a HS hub, double check
2220 * that the HS bus has enough bandwidth if we are activing a new TT.
2222 if (virt_dev->tt_info) {
2223 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2224 "Recalculating BW for rootport %u",
2225 virt_dev->real_port);
2226 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2227 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2228 "newly activated TT.\n");
2229 return -ENOMEM;
2231 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2232 "Recalculating BW for TT slot %u port %u",
2233 virt_dev->tt_info->slot_id,
2234 virt_dev->tt_info->ttport);
2235 } else {
2236 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2237 "Recalculating BW for rootport %u",
2238 virt_dev->real_port);
2241 /* Add in how much bandwidth will be used for interval zero, or the
2242 * rounded max ESIT payload + number of packets * largest overhead.
2244 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2245 bw_table->interval_bw[0].num_packets *
2246 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2248 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2249 unsigned int bw_added;
2250 unsigned int largest_mps;
2251 unsigned int interval_overhead;
2254 * How many packets could we transmit in this interval?
2255 * If packets didn't fit in the previous interval, we will need
2256 * to transmit that many packets twice within this interval.
2258 packets_remaining = 2 * packets_remaining +
2259 bw_table->interval_bw[i].num_packets;
2261 /* Find the largest max packet size of this or the previous
2262 * interval.
2264 if (list_empty(&bw_table->interval_bw[i].endpoints))
2265 largest_mps = 0;
2266 else {
2267 struct xhci_virt_ep *virt_ep;
2268 struct list_head *ep_entry;
2270 ep_entry = bw_table->interval_bw[i].endpoints.next;
2271 virt_ep = list_entry(ep_entry,
2272 struct xhci_virt_ep, bw_endpoint_list);
2273 /* Convert to blocks, rounding up */
2274 largest_mps = DIV_ROUND_UP(
2275 virt_ep->bw_info.max_packet_size,
2276 block_size);
2278 if (largest_mps > packet_size)
2279 packet_size = largest_mps;
2281 /* Use the larger overhead of this or the previous interval. */
2282 interval_overhead = xhci_get_largest_overhead(
2283 &bw_table->interval_bw[i]);
2284 if (interval_overhead > overhead)
2285 overhead = interval_overhead;
2287 /* How many packets can we evenly distribute across
2288 * (1 << (i + 1)) possible scheduling opportunities?
2290 packets_transmitted = packets_remaining >> (i + 1);
2292 /* Add in the bandwidth used for those scheduled packets */
2293 bw_added = packets_transmitted * (overhead + packet_size);
2295 /* How many packets do we have remaining to transmit? */
2296 packets_remaining = packets_remaining % (1 << (i + 1));
2298 /* What largest max packet size should those packets have? */
2299 /* If we've transmitted all packets, don't carry over the
2300 * largest packet size.
2302 if (packets_remaining == 0) {
2303 packet_size = 0;
2304 overhead = 0;
2305 } else if (packets_transmitted > 0) {
2306 /* Otherwise if we do have remaining packets, and we've
2307 * scheduled some packets in this interval, take the
2308 * largest max packet size from endpoints with this
2309 * interval.
2311 packet_size = largest_mps;
2312 overhead = interval_overhead;
2314 /* Otherwise carry over packet_size and overhead from the last
2315 * time we had a remainder.
2317 bw_used += bw_added;
2318 if (bw_used > max_bandwidth) {
2319 xhci_warn(xhci, "Not enough bandwidth. "
2320 "Proposed: %u, Max: %u\n",
2321 bw_used, max_bandwidth);
2322 return -ENOMEM;
2326 * Ok, we know we have some packets left over after even-handedly
2327 * scheduling interval 15. We don't know which microframes they will
2328 * fit into, so we over-schedule and say they will be scheduled every
2329 * microframe.
2331 if (packets_remaining > 0)
2332 bw_used += overhead + packet_size;
2334 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2335 unsigned int port_index = virt_dev->real_port - 1;
2337 /* OK, we're manipulating a HS device attached to a
2338 * root port bandwidth domain. Include the number of active TTs
2339 * in the bandwidth used.
2341 bw_used += TT_HS_OVERHEAD *
2342 xhci->rh_bw[port_index].num_active_tts;
2345 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2346 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2347 "Available: %u " "percent",
2348 bw_used, max_bandwidth, bw_reserved,
2349 (max_bandwidth - bw_used - bw_reserved) * 100 /
2350 max_bandwidth);
2352 bw_used += bw_reserved;
2353 if (bw_used > max_bandwidth) {
2354 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2355 bw_used, max_bandwidth);
2356 return -ENOMEM;
2359 bw_table->bw_used = bw_used;
2360 return 0;
2363 static bool xhci_is_async_ep(unsigned int ep_type)
2365 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2366 ep_type != ISOC_IN_EP &&
2367 ep_type != INT_IN_EP);
2370 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2372 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2375 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2377 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2379 if (ep_bw->ep_interval == 0)
2380 return SS_OVERHEAD_BURST +
2381 (ep_bw->mult * ep_bw->num_packets *
2382 (SS_OVERHEAD + mps));
2383 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2384 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2385 1 << ep_bw->ep_interval);
2389 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2390 struct xhci_bw_info *ep_bw,
2391 struct xhci_interval_bw_table *bw_table,
2392 struct usb_device *udev,
2393 struct xhci_virt_ep *virt_ep,
2394 struct xhci_tt_bw_info *tt_info)
2396 struct xhci_interval_bw *interval_bw;
2397 int normalized_interval;
2399 if (xhci_is_async_ep(ep_bw->type))
2400 return;
2402 if (udev->speed >= USB_SPEED_SUPER) {
2403 if (xhci_is_sync_in_ep(ep_bw->type))
2404 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2405 xhci_get_ss_bw_consumed(ep_bw);
2406 else
2407 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2408 xhci_get_ss_bw_consumed(ep_bw);
2409 return;
2412 /* SuperSpeed endpoints never get added to intervals in the table, so
2413 * this check is only valid for HS/FS/LS devices.
2415 if (list_empty(&virt_ep->bw_endpoint_list))
2416 return;
2417 /* For LS/FS devices, we need to translate the interval expressed in
2418 * microframes to frames.
2420 if (udev->speed == USB_SPEED_HIGH)
2421 normalized_interval = ep_bw->ep_interval;
2422 else
2423 normalized_interval = ep_bw->ep_interval - 3;
2425 if (normalized_interval == 0)
2426 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2427 interval_bw = &bw_table->interval_bw[normalized_interval];
2428 interval_bw->num_packets -= ep_bw->num_packets;
2429 switch (udev->speed) {
2430 case USB_SPEED_LOW:
2431 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2432 break;
2433 case USB_SPEED_FULL:
2434 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2435 break;
2436 case USB_SPEED_HIGH:
2437 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2438 break;
2439 case USB_SPEED_SUPER:
2440 case USB_SPEED_SUPER_PLUS:
2441 case USB_SPEED_UNKNOWN:
2442 case USB_SPEED_WIRELESS:
2443 /* Should never happen because only LS/FS/HS endpoints will get
2444 * added to the endpoint list.
2446 return;
2448 if (tt_info)
2449 tt_info->active_eps -= 1;
2450 list_del_init(&virt_ep->bw_endpoint_list);
2453 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2454 struct xhci_bw_info *ep_bw,
2455 struct xhci_interval_bw_table *bw_table,
2456 struct usb_device *udev,
2457 struct xhci_virt_ep *virt_ep,
2458 struct xhci_tt_bw_info *tt_info)
2460 struct xhci_interval_bw *interval_bw;
2461 struct xhci_virt_ep *smaller_ep;
2462 int normalized_interval;
2464 if (xhci_is_async_ep(ep_bw->type))
2465 return;
2467 if (udev->speed == USB_SPEED_SUPER) {
2468 if (xhci_is_sync_in_ep(ep_bw->type))
2469 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2470 xhci_get_ss_bw_consumed(ep_bw);
2471 else
2472 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2473 xhci_get_ss_bw_consumed(ep_bw);
2474 return;
2477 /* For LS/FS devices, we need to translate the interval expressed in
2478 * microframes to frames.
2480 if (udev->speed == USB_SPEED_HIGH)
2481 normalized_interval = ep_bw->ep_interval;
2482 else
2483 normalized_interval = ep_bw->ep_interval - 3;
2485 if (normalized_interval == 0)
2486 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2487 interval_bw = &bw_table->interval_bw[normalized_interval];
2488 interval_bw->num_packets += ep_bw->num_packets;
2489 switch (udev->speed) {
2490 case USB_SPEED_LOW:
2491 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2492 break;
2493 case USB_SPEED_FULL:
2494 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2495 break;
2496 case USB_SPEED_HIGH:
2497 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2498 break;
2499 case USB_SPEED_SUPER:
2500 case USB_SPEED_SUPER_PLUS:
2501 case USB_SPEED_UNKNOWN:
2502 case USB_SPEED_WIRELESS:
2503 /* Should never happen because only LS/FS/HS endpoints will get
2504 * added to the endpoint list.
2506 return;
2509 if (tt_info)
2510 tt_info->active_eps += 1;
2511 /* Insert the endpoint into the list, largest max packet size first. */
2512 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2513 bw_endpoint_list) {
2514 if (ep_bw->max_packet_size >=
2515 smaller_ep->bw_info.max_packet_size) {
2516 /* Add the new ep before the smaller endpoint */
2517 list_add_tail(&virt_ep->bw_endpoint_list,
2518 &smaller_ep->bw_endpoint_list);
2519 return;
2522 /* Add the new endpoint at the end of the list. */
2523 list_add_tail(&virt_ep->bw_endpoint_list,
2524 &interval_bw->endpoints);
2527 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2528 struct xhci_virt_device *virt_dev,
2529 int old_active_eps)
2531 struct xhci_root_port_bw_info *rh_bw_info;
2532 if (!virt_dev->tt_info)
2533 return;
2535 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2536 if (old_active_eps == 0 &&
2537 virt_dev->tt_info->active_eps != 0) {
2538 rh_bw_info->num_active_tts += 1;
2539 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2540 } else if (old_active_eps != 0 &&
2541 virt_dev->tt_info->active_eps == 0) {
2542 rh_bw_info->num_active_tts -= 1;
2543 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2547 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2548 struct xhci_virt_device *virt_dev,
2549 struct xhci_container_ctx *in_ctx)
2551 struct xhci_bw_info ep_bw_info[31];
2552 int i;
2553 struct xhci_input_control_ctx *ctrl_ctx;
2554 int old_active_eps = 0;
2556 if (virt_dev->tt_info)
2557 old_active_eps = virt_dev->tt_info->active_eps;
2559 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2560 if (!ctrl_ctx) {
2561 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2562 __func__);
2563 return -ENOMEM;
2566 for (i = 0; i < 31; i++) {
2567 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2568 continue;
2570 /* Make a copy of the BW info in case we need to revert this */
2571 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2572 sizeof(ep_bw_info[i]));
2573 /* Drop the endpoint from the interval table if the endpoint is
2574 * being dropped or changed.
2576 if (EP_IS_DROPPED(ctrl_ctx, i))
2577 xhci_drop_ep_from_interval_table(xhci,
2578 &virt_dev->eps[i].bw_info,
2579 virt_dev->bw_table,
2580 virt_dev->udev,
2581 &virt_dev->eps[i],
2582 virt_dev->tt_info);
2584 /* Overwrite the information stored in the endpoints' bw_info */
2585 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2586 for (i = 0; i < 31; i++) {
2587 /* Add any changed or added endpoints to the interval table */
2588 if (EP_IS_ADDED(ctrl_ctx, i))
2589 xhci_add_ep_to_interval_table(xhci,
2590 &virt_dev->eps[i].bw_info,
2591 virt_dev->bw_table,
2592 virt_dev->udev,
2593 &virt_dev->eps[i],
2594 virt_dev->tt_info);
2597 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2598 /* Ok, this fits in the bandwidth we have.
2599 * Update the number of active TTs.
2601 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2602 return 0;
2605 /* We don't have enough bandwidth for this, revert the stored info. */
2606 for (i = 0; i < 31; i++) {
2607 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2608 continue;
2610 /* Drop the new copies of any added or changed endpoints from
2611 * the interval table.
2613 if (EP_IS_ADDED(ctrl_ctx, i)) {
2614 xhci_drop_ep_from_interval_table(xhci,
2615 &virt_dev->eps[i].bw_info,
2616 virt_dev->bw_table,
2617 virt_dev->udev,
2618 &virt_dev->eps[i],
2619 virt_dev->tt_info);
2621 /* Revert the endpoint back to its old information */
2622 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2623 sizeof(ep_bw_info[i]));
2624 /* Add any changed or dropped endpoints back into the table */
2625 if (EP_IS_DROPPED(ctrl_ctx, i))
2626 xhci_add_ep_to_interval_table(xhci,
2627 &virt_dev->eps[i].bw_info,
2628 virt_dev->bw_table,
2629 virt_dev->udev,
2630 &virt_dev->eps[i],
2631 virt_dev->tt_info);
2633 return -ENOMEM;
2637 /* Issue a configure endpoint command or evaluate context command
2638 * and wait for it to finish.
2640 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2641 struct usb_device *udev,
2642 struct xhci_command *command,
2643 bool ctx_change, bool must_succeed)
2645 int ret;
2646 unsigned long flags;
2647 struct xhci_input_control_ctx *ctrl_ctx;
2648 struct xhci_virt_device *virt_dev;
2650 if (!command)
2651 return -EINVAL;
2653 spin_lock_irqsave(&xhci->lock, flags);
2654 virt_dev = xhci->devs[udev->slot_id];
2656 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2657 if (!ctrl_ctx) {
2658 spin_unlock_irqrestore(&xhci->lock, flags);
2659 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2660 __func__);
2661 return -ENOMEM;
2664 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2665 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2666 spin_unlock_irqrestore(&xhci->lock, flags);
2667 xhci_warn(xhci, "Not enough host resources, "
2668 "active endpoint contexts = %u\n",
2669 xhci->num_active_eps);
2670 return -ENOMEM;
2672 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2673 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2674 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2675 xhci_free_host_resources(xhci, ctrl_ctx);
2676 spin_unlock_irqrestore(&xhci->lock, flags);
2677 xhci_warn(xhci, "Not enough bandwidth\n");
2678 return -ENOMEM;
2681 if (!ctx_change)
2682 ret = xhci_queue_configure_endpoint(xhci, command,
2683 command->in_ctx->dma,
2684 udev->slot_id, must_succeed);
2685 else
2686 ret = xhci_queue_evaluate_context(xhci, command,
2687 command->in_ctx->dma,
2688 udev->slot_id, must_succeed);
2689 if (ret < 0) {
2690 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2691 xhci_free_host_resources(xhci, ctrl_ctx);
2692 spin_unlock_irqrestore(&xhci->lock, flags);
2693 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2694 "FIXME allocate a new ring segment");
2695 return -ENOMEM;
2697 xhci_ring_cmd_db(xhci);
2698 spin_unlock_irqrestore(&xhci->lock, flags);
2700 /* Wait for the configure endpoint command to complete */
2701 wait_for_completion(command->completion);
2703 if (!ctx_change)
2704 ret = xhci_configure_endpoint_result(xhci, udev,
2705 &command->status);
2706 else
2707 ret = xhci_evaluate_context_result(xhci, udev,
2708 &command->status);
2710 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2711 spin_lock_irqsave(&xhci->lock, flags);
2712 /* If the command failed, remove the reserved resources.
2713 * Otherwise, clean up the estimate to include dropped eps.
2715 if (ret)
2716 xhci_free_host_resources(xhci, ctrl_ctx);
2717 else
2718 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2719 spin_unlock_irqrestore(&xhci->lock, flags);
2721 return ret;
2724 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2725 struct xhci_virt_device *vdev, int i)
2727 struct xhci_virt_ep *ep = &vdev->eps[i];
2729 if (ep->ep_state & EP_HAS_STREAMS) {
2730 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2731 xhci_get_endpoint_address(i));
2732 xhci_free_stream_info(xhci, ep->stream_info);
2733 ep->stream_info = NULL;
2734 ep->ep_state &= ~EP_HAS_STREAMS;
2738 /* Called after one or more calls to xhci_add_endpoint() or
2739 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2740 * to call xhci_reset_bandwidth().
2742 * Since we are in the middle of changing either configuration or
2743 * installing a new alt setting, the USB core won't allow URBs to be
2744 * enqueued for any endpoint on the old config or interface. Nothing
2745 * else should be touching the xhci->devs[slot_id] structure, so we
2746 * don't need to take the xhci->lock for manipulating that.
2748 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2750 int i;
2751 int ret = 0;
2752 struct xhci_hcd *xhci;
2753 struct xhci_virt_device *virt_dev;
2754 struct xhci_input_control_ctx *ctrl_ctx;
2755 struct xhci_slot_ctx *slot_ctx;
2756 struct xhci_command *command;
2758 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2759 if (ret <= 0)
2760 return ret;
2761 xhci = hcd_to_xhci(hcd);
2762 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2763 (xhci->xhc_state & XHCI_STATE_REMOVING))
2764 return -ENODEV;
2766 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2767 virt_dev = xhci->devs[udev->slot_id];
2769 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2770 if (!command)
2771 return -ENOMEM;
2773 command->in_ctx = virt_dev->in_ctx;
2775 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2776 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2777 if (!ctrl_ctx) {
2778 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2779 __func__);
2780 ret = -ENOMEM;
2781 goto command_cleanup;
2783 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2784 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2785 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2787 /* Don't issue the command if there's no endpoints to update. */
2788 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2789 ctrl_ctx->drop_flags == 0) {
2790 ret = 0;
2791 goto command_cleanup;
2793 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2794 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2795 for (i = 31; i >= 1; i--) {
2796 __le32 le32 = cpu_to_le32(BIT(i));
2798 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2799 || (ctrl_ctx->add_flags & le32) || i == 1) {
2800 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2801 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2802 break;
2805 xhci_dbg(xhci, "New Input Control Context:\n");
2806 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2807 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2809 ret = xhci_configure_endpoint(xhci, udev, command,
2810 false, false);
2811 if (ret)
2812 /* Callee should call reset_bandwidth() */
2813 goto command_cleanup;
2815 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2816 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2817 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2819 /* Free any rings that were dropped, but not changed. */
2820 for (i = 1; i < 31; ++i) {
2821 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2822 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2823 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2824 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2827 xhci_zero_in_ctx(xhci, virt_dev);
2829 * Install any rings for completely new endpoints or changed endpoints,
2830 * and free or cache any old rings from changed endpoints.
2832 for (i = 1; i < 31; ++i) {
2833 if (!virt_dev->eps[i].new_ring)
2834 continue;
2835 /* Only cache or free the old ring if it exists.
2836 * It may not if this is the first add of an endpoint.
2838 if (virt_dev->eps[i].ring) {
2839 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2841 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2842 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2843 virt_dev->eps[i].new_ring = NULL;
2845 command_cleanup:
2846 kfree(command->completion);
2847 kfree(command);
2849 return ret;
2852 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2854 struct xhci_hcd *xhci;
2855 struct xhci_virt_device *virt_dev;
2856 int i, ret;
2858 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2859 if (ret <= 0)
2860 return;
2861 xhci = hcd_to_xhci(hcd);
2863 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2864 virt_dev = xhci->devs[udev->slot_id];
2865 /* Free any rings allocated for added endpoints */
2866 for (i = 0; i < 31; ++i) {
2867 if (virt_dev->eps[i].new_ring) {
2868 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2869 virt_dev->eps[i].new_ring = NULL;
2872 xhci_zero_in_ctx(xhci, virt_dev);
2875 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2876 struct xhci_container_ctx *in_ctx,
2877 struct xhci_container_ctx *out_ctx,
2878 struct xhci_input_control_ctx *ctrl_ctx,
2879 u32 add_flags, u32 drop_flags)
2881 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2882 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2883 xhci_slot_copy(xhci, in_ctx, out_ctx);
2884 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2886 xhci_dbg(xhci, "Input Context:\n");
2887 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2890 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2891 unsigned int slot_id, unsigned int ep_index,
2892 struct xhci_dequeue_state *deq_state)
2894 struct xhci_input_control_ctx *ctrl_ctx;
2895 struct xhci_container_ctx *in_ctx;
2896 struct xhci_ep_ctx *ep_ctx;
2897 u32 added_ctxs;
2898 dma_addr_t addr;
2900 in_ctx = xhci->devs[slot_id]->in_ctx;
2901 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2902 if (!ctrl_ctx) {
2903 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2904 __func__);
2905 return;
2908 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2909 xhci->devs[slot_id]->out_ctx, ep_index);
2910 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2911 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2912 deq_state->new_deq_ptr);
2913 if (addr == 0) {
2914 xhci_warn(xhci, "WARN Cannot submit config ep after "
2915 "reset ep command\n");
2916 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2917 deq_state->new_deq_seg,
2918 deq_state->new_deq_ptr);
2919 return;
2921 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2923 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2924 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2925 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2926 added_ctxs, added_ctxs);
2929 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2930 unsigned int ep_index, struct xhci_td *td)
2932 struct xhci_dequeue_state deq_state;
2933 struct xhci_virt_ep *ep;
2934 struct usb_device *udev = td->urb->dev;
2936 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2937 "Cleaning up stalled endpoint ring");
2938 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2939 /* We need to move the HW's dequeue pointer past this TD,
2940 * or it will attempt to resend it on the next doorbell ring.
2942 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2943 ep_index, ep->stopped_stream, td, &deq_state);
2945 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2946 return;
2948 /* HW with the reset endpoint quirk will use the saved dequeue state to
2949 * issue a configure endpoint command later.
2951 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2952 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2953 "Queueing new dequeue state");
2954 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2955 ep_index, ep->stopped_stream, &deq_state);
2956 } else {
2957 /* Better hope no one uses the input context between now and the
2958 * reset endpoint completion!
2959 * XXX: No idea how this hardware will react when stream rings
2960 * are enabled.
2962 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2963 "Setting up input context for "
2964 "configure endpoint command");
2965 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2966 ep_index, &deq_state);
2970 /* Called when clearing halted device. The core should have sent the control
2971 * message to clear the device halt condition. The host side of the halt should
2972 * already be cleared with a reset endpoint command issued when the STALL tx
2973 * event was received.
2975 * Context: in_interrupt
2978 void xhci_endpoint_reset(struct usb_hcd *hcd,
2979 struct usb_host_endpoint *ep)
2981 struct xhci_hcd *xhci;
2983 xhci = hcd_to_xhci(hcd);
2986 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2987 * The Reset Endpoint Command may only be issued to endpoints in the
2988 * Halted state. If software wishes reset the Data Toggle or Sequence
2989 * Number of an endpoint that isn't in the Halted state, then software
2990 * may issue a Configure Endpoint Command with the Drop and Add bits set
2991 * for the target endpoint. that is in the Stopped state.
2994 /* For now just print debug to follow the situation */
2995 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2996 ep->desc.bEndpointAddress);
2999 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3000 struct usb_device *udev, struct usb_host_endpoint *ep,
3001 unsigned int slot_id)
3003 int ret;
3004 unsigned int ep_index;
3005 unsigned int ep_state;
3007 if (!ep)
3008 return -EINVAL;
3009 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3010 if (ret <= 0)
3011 return -EINVAL;
3012 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3013 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3014 " descriptor for ep 0x%x does not support streams\n",
3015 ep->desc.bEndpointAddress);
3016 return -EINVAL;
3019 ep_index = xhci_get_endpoint_index(&ep->desc);
3020 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3021 if (ep_state & EP_HAS_STREAMS ||
3022 ep_state & EP_GETTING_STREAMS) {
3023 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3024 "already has streams set up.\n",
3025 ep->desc.bEndpointAddress);
3026 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3027 "dynamic stream context array reallocation.\n");
3028 return -EINVAL;
3030 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3031 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3032 "endpoint 0x%x; URBs are pending.\n",
3033 ep->desc.bEndpointAddress);
3034 return -EINVAL;
3036 return 0;
3039 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3040 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3042 unsigned int max_streams;
3044 /* The stream context array size must be a power of two */
3045 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3047 * Find out how many primary stream array entries the host controller
3048 * supports. Later we may use secondary stream arrays (similar to 2nd
3049 * level page entries), but that's an optional feature for xHCI host
3050 * controllers. xHCs must support at least 4 stream IDs.
3052 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3053 if (*num_stream_ctxs > max_streams) {
3054 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3055 max_streams);
3056 *num_stream_ctxs = max_streams;
3057 *num_streams = max_streams;
3061 /* Returns an error code if one of the endpoint already has streams.
3062 * This does not change any data structures, it only checks and gathers
3063 * information.
3065 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3066 struct usb_device *udev,
3067 struct usb_host_endpoint **eps, unsigned int num_eps,
3068 unsigned int *num_streams, u32 *changed_ep_bitmask)
3070 unsigned int max_streams;
3071 unsigned int endpoint_flag;
3072 int i;
3073 int ret;
3075 for (i = 0; i < num_eps; i++) {
3076 ret = xhci_check_streams_endpoint(xhci, udev,
3077 eps[i], udev->slot_id);
3078 if (ret < 0)
3079 return ret;
3081 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3082 if (max_streams < (*num_streams - 1)) {
3083 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3084 eps[i]->desc.bEndpointAddress,
3085 max_streams);
3086 *num_streams = max_streams+1;
3089 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3090 if (*changed_ep_bitmask & endpoint_flag)
3091 return -EINVAL;
3092 *changed_ep_bitmask |= endpoint_flag;
3094 return 0;
3097 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3098 struct usb_device *udev,
3099 struct usb_host_endpoint **eps, unsigned int num_eps)
3101 u32 changed_ep_bitmask = 0;
3102 unsigned int slot_id;
3103 unsigned int ep_index;
3104 unsigned int ep_state;
3105 int i;
3107 slot_id = udev->slot_id;
3108 if (!xhci->devs[slot_id])
3109 return 0;
3111 for (i = 0; i < num_eps; i++) {
3112 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3113 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3114 /* Are streams already being freed for the endpoint? */
3115 if (ep_state & EP_GETTING_NO_STREAMS) {
3116 xhci_warn(xhci, "WARN Can't disable streams for "
3117 "endpoint 0x%x, "
3118 "streams are being disabled already\n",
3119 eps[i]->desc.bEndpointAddress);
3120 return 0;
3122 /* Are there actually any streams to free? */
3123 if (!(ep_state & EP_HAS_STREAMS) &&
3124 !(ep_state & EP_GETTING_STREAMS)) {
3125 xhci_warn(xhci, "WARN Can't disable streams for "
3126 "endpoint 0x%x, "
3127 "streams are already disabled!\n",
3128 eps[i]->desc.bEndpointAddress);
3129 xhci_warn(xhci, "WARN xhci_free_streams() called "
3130 "with non-streams endpoint\n");
3131 return 0;
3133 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3135 return changed_ep_bitmask;
3139 * The USB device drivers use this function (through the HCD interface in USB
3140 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3141 * coordinate mass storage command queueing across multiple endpoints (basically
3142 * a stream ID == a task ID).
3144 * Setting up streams involves allocating the same size stream context array
3145 * for each endpoint and issuing a configure endpoint command for all endpoints.
3147 * Don't allow the call to succeed if one endpoint only supports one stream
3148 * (which means it doesn't support streams at all).
3150 * Drivers may get less stream IDs than they asked for, if the host controller
3151 * hardware or endpoints claim they can't support the number of requested
3152 * stream IDs.
3154 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3155 struct usb_host_endpoint **eps, unsigned int num_eps,
3156 unsigned int num_streams, gfp_t mem_flags)
3158 int i, ret;
3159 struct xhci_hcd *xhci;
3160 struct xhci_virt_device *vdev;
3161 struct xhci_command *config_cmd;
3162 struct xhci_input_control_ctx *ctrl_ctx;
3163 unsigned int ep_index;
3164 unsigned int num_stream_ctxs;
3165 unsigned int max_packet;
3166 unsigned long flags;
3167 u32 changed_ep_bitmask = 0;
3169 if (!eps)
3170 return -EINVAL;
3172 /* Add one to the number of streams requested to account for
3173 * stream 0 that is reserved for xHCI usage.
3175 num_streams += 1;
3176 xhci = hcd_to_xhci(hcd);
3177 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3178 num_streams);
3180 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3181 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3182 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3183 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3184 return -ENOSYS;
3187 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3188 if (!config_cmd) {
3189 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3190 return -ENOMEM;
3192 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3193 if (!ctrl_ctx) {
3194 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3195 __func__);
3196 xhci_free_command(xhci, config_cmd);
3197 return -ENOMEM;
3200 /* Check to make sure all endpoints are not already configured for
3201 * streams. While we're at it, find the maximum number of streams that
3202 * all the endpoints will support and check for duplicate endpoints.
3204 spin_lock_irqsave(&xhci->lock, flags);
3205 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3206 num_eps, &num_streams, &changed_ep_bitmask);
3207 if (ret < 0) {
3208 xhci_free_command(xhci, config_cmd);
3209 spin_unlock_irqrestore(&xhci->lock, flags);
3210 return ret;
3212 if (num_streams <= 1) {
3213 xhci_warn(xhci, "WARN: endpoints can't handle "
3214 "more than one stream.\n");
3215 xhci_free_command(xhci, config_cmd);
3216 spin_unlock_irqrestore(&xhci->lock, flags);
3217 return -EINVAL;
3219 vdev = xhci->devs[udev->slot_id];
3220 /* Mark each endpoint as being in transition, so
3221 * xhci_urb_enqueue() will reject all URBs.
3223 for (i = 0; i < num_eps; i++) {
3224 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3225 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3227 spin_unlock_irqrestore(&xhci->lock, flags);
3229 /* Setup internal data structures and allocate HW data structures for
3230 * streams (but don't install the HW structures in the input context
3231 * until we're sure all memory allocation succeeded).
3233 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3234 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3235 num_stream_ctxs, num_streams);
3237 for (i = 0; i < num_eps; i++) {
3238 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3240 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3241 num_stream_ctxs,
3242 num_streams,
3243 max_packet, mem_flags);
3244 if (!vdev->eps[ep_index].stream_info)
3245 goto cleanup;
3246 /* Set maxPstreams in endpoint context and update deq ptr to
3247 * point to stream context array. FIXME
3251 /* Set up the input context for a configure endpoint command. */
3252 for (i = 0; i < num_eps; i++) {
3253 struct xhci_ep_ctx *ep_ctx;
3255 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3256 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3258 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3259 vdev->out_ctx, ep_index);
3260 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3261 vdev->eps[ep_index].stream_info);
3263 /* Tell the HW to drop its old copy of the endpoint context info
3264 * and add the updated copy from the input context.
3266 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3267 vdev->out_ctx, ctrl_ctx,
3268 changed_ep_bitmask, changed_ep_bitmask);
3270 /* Issue and wait for the configure endpoint command */
3271 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3272 false, false);
3274 /* xHC rejected the configure endpoint command for some reason, so we
3275 * leave the old ring intact and free our internal streams data
3276 * structure.
3278 if (ret < 0)
3279 goto cleanup;
3281 spin_lock_irqsave(&xhci->lock, flags);
3282 for (i = 0; i < num_eps; i++) {
3283 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3284 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3285 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3286 udev->slot_id, ep_index);
3287 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3289 xhci_free_command(xhci, config_cmd);
3290 spin_unlock_irqrestore(&xhci->lock, flags);
3292 /* Subtract 1 for stream 0, which drivers can't use */
3293 return num_streams - 1;
3295 cleanup:
3296 /* If it didn't work, free the streams! */
3297 for (i = 0; i < num_eps; i++) {
3298 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3299 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3300 vdev->eps[ep_index].stream_info = NULL;
3301 /* FIXME Unset maxPstreams in endpoint context and
3302 * update deq ptr to point to normal string ring.
3304 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3305 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3306 xhci_endpoint_zero(xhci, vdev, eps[i]);
3308 xhci_free_command(xhci, config_cmd);
3309 return -ENOMEM;
3312 /* Transition the endpoint from using streams to being a "normal" endpoint
3313 * without streams.
3315 * Modify the endpoint context state, submit a configure endpoint command,
3316 * and free all endpoint rings for streams if that completes successfully.
3318 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3319 struct usb_host_endpoint **eps, unsigned int num_eps,
3320 gfp_t mem_flags)
3322 int i, ret;
3323 struct xhci_hcd *xhci;
3324 struct xhci_virt_device *vdev;
3325 struct xhci_command *command;
3326 struct xhci_input_control_ctx *ctrl_ctx;
3327 unsigned int ep_index;
3328 unsigned long flags;
3329 u32 changed_ep_bitmask;
3331 xhci = hcd_to_xhci(hcd);
3332 vdev = xhci->devs[udev->slot_id];
3334 /* Set up a configure endpoint command to remove the streams rings */
3335 spin_lock_irqsave(&xhci->lock, flags);
3336 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3337 udev, eps, num_eps);
3338 if (changed_ep_bitmask == 0) {
3339 spin_unlock_irqrestore(&xhci->lock, flags);
3340 return -EINVAL;
3343 /* Use the xhci_command structure from the first endpoint. We may have
3344 * allocated too many, but the driver may call xhci_free_streams() for
3345 * each endpoint it grouped into one call to xhci_alloc_streams().
3347 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3348 command = vdev->eps[ep_index].stream_info->free_streams_command;
3349 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3350 if (!ctrl_ctx) {
3351 spin_unlock_irqrestore(&xhci->lock, flags);
3352 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3353 __func__);
3354 return -EINVAL;
3357 for (i = 0; i < num_eps; i++) {
3358 struct xhci_ep_ctx *ep_ctx;
3360 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3361 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3362 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3363 EP_GETTING_NO_STREAMS;
3365 xhci_endpoint_copy(xhci, command->in_ctx,
3366 vdev->out_ctx, ep_index);
3367 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3368 &vdev->eps[ep_index]);
3370 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3371 vdev->out_ctx, ctrl_ctx,
3372 changed_ep_bitmask, changed_ep_bitmask);
3373 spin_unlock_irqrestore(&xhci->lock, flags);
3375 /* Issue and wait for the configure endpoint command,
3376 * which must succeed.
3378 ret = xhci_configure_endpoint(xhci, udev, command,
3379 false, true);
3381 /* xHC rejected the configure endpoint command for some reason, so we
3382 * leave the streams rings intact.
3384 if (ret < 0)
3385 return ret;
3387 spin_lock_irqsave(&xhci->lock, flags);
3388 for (i = 0; i < num_eps; i++) {
3389 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3390 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3391 vdev->eps[ep_index].stream_info = NULL;
3392 /* FIXME Unset maxPstreams in endpoint context and
3393 * update deq ptr to point to normal string ring.
3395 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3396 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3398 spin_unlock_irqrestore(&xhci->lock, flags);
3400 return 0;
3404 * Deletes endpoint resources for endpoints that were active before a Reset
3405 * Device command, or a Disable Slot command. The Reset Device command leaves
3406 * the control endpoint intact, whereas the Disable Slot command deletes it.
3408 * Must be called with xhci->lock held.
3410 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3411 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3413 int i;
3414 unsigned int num_dropped_eps = 0;
3415 unsigned int drop_flags = 0;
3417 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3418 if (virt_dev->eps[i].ring) {
3419 drop_flags |= 1 << i;
3420 num_dropped_eps++;
3423 xhci->num_active_eps -= num_dropped_eps;
3424 if (num_dropped_eps)
3425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3426 "Dropped %u ep ctxs, flags = 0x%x, "
3427 "%u now active.",
3428 num_dropped_eps, drop_flags,
3429 xhci->num_active_eps);
3433 * This submits a Reset Device Command, which will set the device state to 0,
3434 * set the device address to 0, and disable all the endpoints except the default
3435 * control endpoint. The USB core should come back and call
3436 * xhci_address_device(), and then re-set up the configuration. If this is
3437 * called because of a usb_reset_and_verify_device(), then the old alternate
3438 * settings will be re-installed through the normal bandwidth allocation
3439 * functions.
3441 * Wait for the Reset Device command to finish. Remove all structures
3442 * associated with the endpoints that were disabled. Clear the input device
3443 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3445 * If the virt_dev to be reset does not exist or does not match the udev,
3446 * it means the device is lost, possibly due to the xHC restore error and
3447 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3448 * re-allocate the device.
3450 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3452 int ret, i;
3453 unsigned long flags;
3454 struct xhci_hcd *xhci;
3455 unsigned int slot_id;
3456 struct xhci_virt_device *virt_dev;
3457 struct xhci_command *reset_device_cmd;
3458 int last_freed_endpoint;
3459 struct xhci_slot_ctx *slot_ctx;
3460 int old_active_eps = 0;
3462 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3463 if (ret <= 0)
3464 return ret;
3465 xhci = hcd_to_xhci(hcd);
3466 slot_id = udev->slot_id;
3467 virt_dev = xhci->devs[slot_id];
3468 if (!virt_dev) {
3469 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3470 "not exist. Re-allocate the device\n", slot_id);
3471 ret = xhci_alloc_dev(hcd, udev);
3472 if (ret == 1)
3473 return 0;
3474 else
3475 return -EINVAL;
3478 if (virt_dev->tt_info)
3479 old_active_eps = virt_dev->tt_info->active_eps;
3481 if (virt_dev->udev != udev) {
3482 /* If the virt_dev and the udev does not match, this virt_dev
3483 * may belong to another udev.
3484 * Re-allocate the device.
3486 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3487 "not match the udev. Re-allocate the device\n",
3488 slot_id);
3489 ret = xhci_alloc_dev(hcd, udev);
3490 if (ret == 1)
3491 return 0;
3492 else
3493 return -EINVAL;
3496 /* If device is not setup, there is no point in resetting it */
3497 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3498 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3499 SLOT_STATE_DISABLED)
3500 return 0;
3502 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3503 /* Allocate the command structure that holds the struct completion.
3504 * Assume we're in process context, since the normal device reset
3505 * process has to wait for the device anyway. Storage devices are
3506 * reset as part of error handling, so use GFP_NOIO instead of
3507 * GFP_KERNEL.
3509 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3510 if (!reset_device_cmd) {
3511 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3512 return -ENOMEM;
3515 /* Attempt to submit the Reset Device command to the command ring */
3516 spin_lock_irqsave(&xhci->lock, flags);
3518 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3519 if (ret) {
3520 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3521 spin_unlock_irqrestore(&xhci->lock, flags);
3522 goto command_cleanup;
3524 xhci_ring_cmd_db(xhci);
3525 spin_unlock_irqrestore(&xhci->lock, flags);
3527 /* Wait for the Reset Device command to finish */
3528 wait_for_completion(reset_device_cmd->completion);
3530 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3531 * unless we tried to reset a slot ID that wasn't enabled,
3532 * or the device wasn't in the addressed or configured state.
3534 ret = reset_device_cmd->status;
3535 switch (ret) {
3536 case COMP_CMD_ABORT:
3537 case COMP_CMD_STOP:
3538 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3539 ret = -ETIME;
3540 goto command_cleanup;
3541 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3542 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3543 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3544 slot_id,
3545 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3546 xhci_dbg(xhci, "Not freeing device rings.\n");
3547 /* Don't treat this as an error. May change my mind later. */
3548 ret = 0;
3549 goto command_cleanup;
3550 case COMP_SUCCESS:
3551 xhci_dbg(xhci, "Successful reset device command.\n");
3552 break;
3553 default:
3554 if (xhci_is_vendor_info_code(xhci, ret))
3555 break;
3556 xhci_warn(xhci, "Unknown completion code %u for "
3557 "reset device command.\n", ret);
3558 ret = -EINVAL;
3559 goto command_cleanup;
3562 /* Free up host controller endpoint resources */
3563 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3564 spin_lock_irqsave(&xhci->lock, flags);
3565 /* Don't delete the default control endpoint resources */
3566 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3567 spin_unlock_irqrestore(&xhci->lock, flags);
3570 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3571 last_freed_endpoint = 1;
3572 for (i = 1; i < 31; ++i) {
3573 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3575 if (ep->ep_state & EP_HAS_STREAMS) {
3576 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3577 xhci_get_endpoint_address(i));
3578 xhci_free_stream_info(xhci, ep->stream_info);
3579 ep->stream_info = NULL;
3580 ep->ep_state &= ~EP_HAS_STREAMS;
3583 if (ep->ring) {
3584 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3585 last_freed_endpoint = i;
3587 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3588 xhci_drop_ep_from_interval_table(xhci,
3589 &virt_dev->eps[i].bw_info,
3590 virt_dev->bw_table,
3591 udev,
3592 &virt_dev->eps[i],
3593 virt_dev->tt_info);
3594 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3596 /* If necessary, update the number of active TTs on this root port */
3597 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3599 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3600 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3601 ret = 0;
3603 command_cleanup:
3604 xhci_free_command(xhci, reset_device_cmd);
3605 return ret;
3609 * At this point, the struct usb_device is about to go away, the device has
3610 * disconnected, and all traffic has been stopped and the endpoints have been
3611 * disabled. Free any HC data structures associated with that device.
3613 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3615 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3616 struct xhci_virt_device *virt_dev;
3617 unsigned long flags;
3618 u32 state;
3619 int i, ret;
3620 struct xhci_command *command;
3622 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3623 if (!command)
3624 return;
3626 #ifndef CONFIG_USB_DEFAULT_PERSIST
3628 * We called pm_runtime_get_noresume when the device was attached.
3629 * Decrement the counter here to allow controller to runtime suspend
3630 * if no devices remain.
3632 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3633 pm_runtime_put_noidle(hcd->self.controller);
3634 #endif
3636 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3637 /* If the host is halted due to driver unload, we still need to free the
3638 * device.
3640 if (ret <= 0 && ret != -ENODEV) {
3641 kfree(command);
3642 return;
3645 virt_dev = xhci->devs[udev->slot_id];
3647 /* Stop any wayward timer functions (which may grab the lock) */
3648 for (i = 0; i < 31; ++i) {
3649 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3650 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3653 spin_lock_irqsave(&xhci->lock, flags);
3654 /* Don't disable the slot if the host controller is dead. */
3655 state = readl(&xhci->op_regs->status);
3656 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3657 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3658 xhci_free_virt_device(xhci, udev->slot_id);
3659 spin_unlock_irqrestore(&xhci->lock, flags);
3660 kfree(command);
3661 return;
3664 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3665 udev->slot_id)) {
3666 spin_unlock_irqrestore(&xhci->lock, flags);
3667 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3668 return;
3670 xhci_ring_cmd_db(xhci);
3671 spin_unlock_irqrestore(&xhci->lock, flags);
3674 * Event command completion handler will free any data structures
3675 * associated with the slot. XXX Can free sleep?
3680 * Checks if we have enough host controller resources for the default control
3681 * endpoint.
3683 * Must be called with xhci->lock held.
3685 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3687 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3688 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3689 "Not enough ep ctxs: "
3690 "%u active, need to add 1, limit is %u.",
3691 xhci->num_active_eps, xhci->limit_active_eps);
3692 return -ENOMEM;
3694 xhci->num_active_eps += 1;
3695 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3696 "Adding 1 ep ctx, %u now active.",
3697 xhci->num_active_eps);
3698 return 0;
3703 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3704 * timed out, or allocating memory failed. Returns 1 on success.
3706 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3708 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3709 unsigned long flags;
3710 int ret, slot_id;
3711 struct xhci_command *command;
3713 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3714 if (!command)
3715 return 0;
3717 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3718 mutex_lock(&xhci->mutex);
3719 spin_lock_irqsave(&xhci->lock, flags);
3720 command->completion = &xhci->addr_dev;
3721 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3722 if (ret) {
3723 spin_unlock_irqrestore(&xhci->lock, flags);
3724 mutex_unlock(&xhci->mutex);
3725 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3726 kfree(command);
3727 return 0;
3729 xhci_ring_cmd_db(xhci);
3730 spin_unlock_irqrestore(&xhci->lock, flags);
3732 wait_for_completion(command->completion);
3733 slot_id = xhci->slot_id;
3734 mutex_unlock(&xhci->mutex);
3736 if (!slot_id || command->status != COMP_SUCCESS) {
3737 xhci_err(xhci, "Error while assigning device slot ID\n");
3738 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3739 HCS_MAX_SLOTS(
3740 readl(&xhci->cap_regs->hcs_params1)));
3741 kfree(command);
3742 return 0;
3745 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3746 spin_lock_irqsave(&xhci->lock, flags);
3747 ret = xhci_reserve_host_control_ep_resources(xhci);
3748 if (ret) {
3749 spin_unlock_irqrestore(&xhci->lock, flags);
3750 xhci_warn(xhci, "Not enough host resources, "
3751 "active endpoint contexts = %u\n",
3752 xhci->num_active_eps);
3753 goto disable_slot;
3755 spin_unlock_irqrestore(&xhci->lock, flags);
3757 /* Use GFP_NOIO, since this function can be called from
3758 * xhci_discover_or_reset_device(), which may be called as part of
3759 * mass storage driver error handling.
3761 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3762 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3763 goto disable_slot;
3765 udev->slot_id = slot_id;
3767 #ifndef CONFIG_USB_DEFAULT_PERSIST
3769 * If resetting upon resume, we can't put the controller into runtime
3770 * suspend if there is a device attached.
3772 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3773 pm_runtime_get_noresume(hcd->self.controller);
3774 #endif
3777 kfree(command);
3778 /* Is this a LS or FS device under a HS hub? */
3779 /* Hub or peripherial? */
3780 return 1;
3782 disable_slot:
3783 /* Disable slot, if we can do it without mem alloc */
3784 spin_lock_irqsave(&xhci->lock, flags);
3785 command->completion = NULL;
3786 command->status = 0;
3787 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3788 udev->slot_id))
3789 xhci_ring_cmd_db(xhci);
3790 spin_unlock_irqrestore(&xhci->lock, flags);
3791 return 0;
3795 * Issue an Address Device command and optionally send a corresponding
3796 * SetAddress request to the device.
3798 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3799 enum xhci_setup_dev setup)
3801 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3802 unsigned long flags;
3803 struct xhci_virt_device *virt_dev;
3804 int ret = 0;
3805 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3806 struct xhci_slot_ctx *slot_ctx;
3807 struct xhci_input_control_ctx *ctrl_ctx;
3808 u64 temp_64;
3809 struct xhci_command *command = NULL;
3811 mutex_lock(&xhci->mutex);
3813 if (xhci->xhc_state) { /* dying, removing or halted */
3814 ret = -ESHUTDOWN;
3815 goto out;
3818 if (!udev->slot_id) {
3819 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3820 "Bad Slot ID %d", udev->slot_id);
3821 ret = -EINVAL;
3822 goto out;
3825 virt_dev = xhci->devs[udev->slot_id];
3827 if (WARN_ON(!virt_dev)) {
3829 * In plug/unplug torture test with an NEC controller,
3830 * a zero-dereference was observed once due to virt_dev = 0.
3831 * Print useful debug rather than crash if it is observed again!
3833 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3834 udev->slot_id);
3835 ret = -EINVAL;
3836 goto out;
3839 if (setup == SETUP_CONTEXT_ONLY) {
3840 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3841 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3842 SLOT_STATE_DEFAULT) {
3843 xhci_dbg(xhci, "Slot already in default state\n");
3844 goto out;
3848 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3849 if (!command) {
3850 ret = -ENOMEM;
3851 goto out;
3854 command->in_ctx = virt_dev->in_ctx;
3855 command->completion = &xhci->addr_dev;
3857 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3858 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3859 if (!ctrl_ctx) {
3860 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3861 __func__);
3862 ret = -EINVAL;
3863 goto out;
3866 * If this is the first Set Address since device plug-in or
3867 * virt_device realloaction after a resume with an xHCI power loss,
3868 * then set up the slot context.
3870 if (!slot_ctx->dev_info)
3871 xhci_setup_addressable_virt_dev(xhci, udev);
3872 /* Otherwise, update the control endpoint ring enqueue pointer. */
3873 else
3874 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3875 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3876 ctrl_ctx->drop_flags = 0;
3878 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3879 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3880 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3881 le32_to_cpu(slot_ctx->dev_info) >> 27);
3883 spin_lock_irqsave(&xhci->lock, flags);
3884 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3885 udev->slot_id, setup);
3886 if (ret) {
3887 spin_unlock_irqrestore(&xhci->lock, flags);
3888 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3889 "FIXME: allocate a command ring segment");
3890 goto out;
3892 xhci_ring_cmd_db(xhci);
3893 spin_unlock_irqrestore(&xhci->lock, flags);
3895 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3896 wait_for_completion(command->completion);
3898 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3899 * the SetAddress() "recovery interval" required by USB and aborting the
3900 * command on a timeout.
3902 switch (command->status) {
3903 case COMP_CMD_ABORT:
3904 case COMP_CMD_STOP:
3905 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3906 ret = -ETIME;
3907 break;
3908 case COMP_CTX_STATE:
3909 case COMP_EBADSLT:
3910 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3911 act, udev->slot_id);
3912 ret = -EINVAL;
3913 break;
3914 case COMP_TX_ERR:
3915 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3916 ret = -EPROTO;
3917 break;
3918 case COMP_DEV_ERR:
3919 dev_warn(&udev->dev,
3920 "ERROR: Incompatible device for setup %s command\n", act);
3921 ret = -ENODEV;
3922 break;
3923 case COMP_SUCCESS:
3924 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3925 "Successful setup %s command", act);
3926 break;
3927 default:
3928 xhci_err(xhci,
3929 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3930 act, command->status);
3931 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3932 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3933 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3934 ret = -EINVAL;
3935 break;
3937 if (ret)
3938 goto out;
3939 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3940 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3941 "Op regs DCBAA ptr = %#016llx", temp_64);
3942 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3943 "Slot ID %d dcbaa entry @%p = %#016llx",
3944 udev->slot_id,
3945 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3946 (unsigned long long)
3947 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3948 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3949 "Output Context DMA address = %#08llx",
3950 (unsigned long long)virt_dev->out_ctx->dma);
3951 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3952 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3953 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3954 le32_to_cpu(slot_ctx->dev_info) >> 27);
3955 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3956 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3958 * USB core uses address 1 for the roothubs, so we add one to the
3959 * address given back to us by the HC.
3961 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3962 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3963 le32_to_cpu(slot_ctx->dev_info) >> 27);
3964 /* Zero the input context control for later use */
3965 ctrl_ctx->add_flags = 0;
3966 ctrl_ctx->drop_flags = 0;
3968 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3969 "Internal device address = %d",
3970 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3971 out:
3972 mutex_unlock(&xhci->mutex);
3973 kfree(command);
3974 return ret;
3977 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3979 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3982 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3984 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3988 * Transfer the port index into real index in the HW port status
3989 * registers. Caculate offset between the port's PORTSC register
3990 * and port status base. Divide the number of per port register
3991 * to get the real index. The raw port number bases 1.
3993 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3995 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3996 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3997 __le32 __iomem *addr;
3998 int raw_port;
4000 if (hcd->speed < HCD_USB3)
4001 addr = xhci->usb2_ports[port1 - 1];
4002 else
4003 addr = xhci->usb3_ports[port1 - 1];
4005 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4006 return raw_port;
4010 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4011 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4013 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4014 struct usb_device *udev, u16 max_exit_latency)
4016 struct xhci_virt_device *virt_dev;
4017 struct xhci_command *command;
4018 struct xhci_input_control_ctx *ctrl_ctx;
4019 struct xhci_slot_ctx *slot_ctx;
4020 unsigned long flags;
4021 int ret;
4023 spin_lock_irqsave(&xhci->lock, flags);
4025 virt_dev = xhci->devs[udev->slot_id];
4028 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4029 * xHC was re-initialized. Exit latency will be set later after
4030 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4033 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4034 spin_unlock_irqrestore(&xhci->lock, flags);
4035 return 0;
4038 /* Attempt to issue an Evaluate Context command to change the MEL. */
4039 command = xhci->lpm_command;
4040 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4041 if (!ctrl_ctx) {
4042 spin_unlock_irqrestore(&xhci->lock, flags);
4043 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4044 __func__);
4045 return -ENOMEM;
4048 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4049 spin_unlock_irqrestore(&xhci->lock, flags);
4051 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4052 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4053 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4054 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4055 slot_ctx->dev_state = 0;
4057 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4058 "Set up evaluate context for LPM MEL change.");
4059 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4060 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4062 /* Issue and wait for the evaluate context command. */
4063 ret = xhci_configure_endpoint(xhci, udev, command,
4064 true, true);
4065 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4066 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4068 if (!ret) {
4069 spin_lock_irqsave(&xhci->lock, flags);
4070 virt_dev->current_mel = max_exit_latency;
4071 spin_unlock_irqrestore(&xhci->lock, flags);
4073 return ret;
4076 #ifdef CONFIG_PM
4078 /* BESL to HIRD Encoding array for USB2 LPM */
4079 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4080 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4082 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4083 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4084 struct usb_device *udev)
4086 int u2del, besl, besl_host;
4087 int besl_device = 0;
4088 u32 field;
4090 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4091 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4093 if (field & USB_BESL_SUPPORT) {
4094 for (besl_host = 0; besl_host < 16; besl_host++) {
4095 if (xhci_besl_encoding[besl_host] >= u2del)
4096 break;
4098 /* Use baseline BESL value as default */
4099 if (field & USB_BESL_BASELINE_VALID)
4100 besl_device = USB_GET_BESL_BASELINE(field);
4101 else if (field & USB_BESL_DEEP_VALID)
4102 besl_device = USB_GET_BESL_DEEP(field);
4103 } else {
4104 if (u2del <= 50)
4105 besl_host = 0;
4106 else
4107 besl_host = (u2del - 51) / 75 + 1;
4110 besl = besl_host + besl_device;
4111 if (besl > 15)
4112 besl = 15;
4114 return besl;
4117 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4118 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4120 u32 field;
4121 int l1;
4122 int besld = 0;
4123 int hirdm = 0;
4125 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4127 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4128 l1 = udev->l1_params.timeout / 256;
4130 /* device has preferred BESLD */
4131 if (field & USB_BESL_DEEP_VALID) {
4132 besld = USB_GET_BESL_DEEP(field);
4133 hirdm = 1;
4136 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4139 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4140 struct usb_device *udev, int enable)
4142 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4143 __le32 __iomem **port_array;
4144 __le32 __iomem *pm_addr, *hlpm_addr;
4145 u32 pm_val, hlpm_val, field;
4146 unsigned int port_num;
4147 unsigned long flags;
4148 int hird, exit_latency;
4149 int ret;
4151 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4152 !udev->lpm_capable)
4153 return -EPERM;
4155 if (!udev->parent || udev->parent->parent ||
4156 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4157 return -EPERM;
4159 if (udev->usb2_hw_lpm_capable != 1)
4160 return -EPERM;
4162 spin_lock_irqsave(&xhci->lock, flags);
4164 port_array = xhci->usb2_ports;
4165 port_num = udev->portnum - 1;
4166 pm_addr = port_array[port_num] + PORTPMSC;
4167 pm_val = readl(pm_addr);
4168 hlpm_addr = port_array[port_num] + PORTHLPMC;
4169 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4171 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4172 enable ? "enable" : "disable", port_num + 1);
4174 if (enable) {
4175 /* Host supports BESL timeout instead of HIRD */
4176 if (udev->usb2_hw_lpm_besl_capable) {
4177 /* if device doesn't have a preferred BESL value use a
4178 * default one which works with mixed HIRD and BESL
4179 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4181 if ((field & USB_BESL_SUPPORT) &&
4182 (field & USB_BESL_BASELINE_VALID))
4183 hird = USB_GET_BESL_BASELINE(field);
4184 else
4185 hird = udev->l1_params.besl;
4187 exit_latency = xhci_besl_encoding[hird];
4188 spin_unlock_irqrestore(&xhci->lock, flags);
4190 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4191 * input context for link powermanagement evaluate
4192 * context commands. It is protected by hcd->bandwidth
4193 * mutex and is shared by all devices. We need to set
4194 * the max ext latency in USB 2 BESL LPM as well, so
4195 * use the same mutex and xhci_change_max_exit_latency()
4197 mutex_lock(hcd->bandwidth_mutex);
4198 ret = xhci_change_max_exit_latency(xhci, udev,
4199 exit_latency);
4200 mutex_unlock(hcd->bandwidth_mutex);
4202 if (ret < 0)
4203 return ret;
4204 spin_lock_irqsave(&xhci->lock, flags);
4206 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4207 writel(hlpm_val, hlpm_addr);
4208 /* flush write */
4209 readl(hlpm_addr);
4210 } else {
4211 hird = xhci_calculate_hird_besl(xhci, udev);
4214 pm_val &= ~PORT_HIRD_MASK;
4215 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4216 writel(pm_val, pm_addr);
4217 pm_val = readl(pm_addr);
4218 pm_val |= PORT_HLE;
4219 writel(pm_val, pm_addr);
4220 /* flush write */
4221 readl(pm_addr);
4222 } else {
4223 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4224 writel(pm_val, pm_addr);
4225 /* flush write */
4226 readl(pm_addr);
4227 if (udev->usb2_hw_lpm_besl_capable) {
4228 spin_unlock_irqrestore(&xhci->lock, flags);
4229 mutex_lock(hcd->bandwidth_mutex);
4230 xhci_change_max_exit_latency(xhci, udev, 0);
4231 mutex_unlock(hcd->bandwidth_mutex);
4232 return 0;
4236 spin_unlock_irqrestore(&xhci->lock, flags);
4237 return 0;
4240 /* check if a usb2 port supports a given extened capability protocol
4241 * only USB2 ports extended protocol capability values are cached.
4242 * Return 1 if capability is supported
4244 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4245 unsigned capability)
4247 u32 port_offset, port_count;
4248 int i;
4250 for (i = 0; i < xhci->num_ext_caps; i++) {
4251 if (xhci->ext_caps[i] & capability) {
4252 /* port offsets starts at 1 */
4253 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4254 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4255 if (port >= port_offset &&
4256 port < port_offset + port_count)
4257 return 1;
4260 return 0;
4263 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4265 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4266 int portnum = udev->portnum - 1;
4268 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4269 !udev->lpm_capable)
4270 return 0;
4272 /* we only support lpm for non-hub device connected to root hub yet */
4273 if (!udev->parent || udev->parent->parent ||
4274 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4275 return 0;
4277 if (xhci->hw_lpm_support == 1 &&
4278 xhci_check_usb2_port_capability(
4279 xhci, portnum, XHCI_HLC)) {
4280 udev->usb2_hw_lpm_capable = 1;
4281 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4282 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4283 if (xhci_check_usb2_port_capability(xhci, portnum,
4284 XHCI_BLC))
4285 udev->usb2_hw_lpm_besl_capable = 1;
4288 return 0;
4291 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4293 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4294 static unsigned long long xhci_service_interval_to_ns(
4295 struct usb_endpoint_descriptor *desc)
4297 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4300 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4301 enum usb3_link_state state)
4303 unsigned long long sel;
4304 unsigned long long pel;
4305 unsigned int max_sel_pel;
4306 char *state_name;
4308 switch (state) {
4309 case USB3_LPM_U1:
4310 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4311 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4312 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4313 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4314 state_name = "U1";
4315 break;
4316 case USB3_LPM_U2:
4317 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4318 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4319 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4320 state_name = "U2";
4321 break;
4322 default:
4323 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4324 __func__);
4325 return USB3_LPM_DISABLED;
4328 if (sel <= max_sel_pel && pel <= max_sel_pel)
4329 return USB3_LPM_DEVICE_INITIATED;
4331 if (sel > max_sel_pel)
4332 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4333 "due to long SEL %llu ms\n",
4334 state_name, sel);
4335 else
4336 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4337 "due to long PEL %llu ms\n",
4338 state_name, pel);
4339 return USB3_LPM_DISABLED;
4342 /* The U1 timeout should be the maximum of the following values:
4343 * - For control endpoints, U1 system exit latency (SEL) * 3
4344 * - For bulk endpoints, U1 SEL * 5
4345 * - For interrupt endpoints:
4346 * - Notification EPs, U1 SEL * 3
4347 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4348 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4350 static unsigned long long xhci_calculate_intel_u1_timeout(
4351 struct usb_device *udev,
4352 struct usb_endpoint_descriptor *desc)
4354 unsigned long long timeout_ns;
4355 int ep_type;
4356 int intr_type;
4358 ep_type = usb_endpoint_type(desc);
4359 switch (ep_type) {
4360 case USB_ENDPOINT_XFER_CONTROL:
4361 timeout_ns = udev->u1_params.sel * 3;
4362 break;
4363 case USB_ENDPOINT_XFER_BULK:
4364 timeout_ns = udev->u1_params.sel * 5;
4365 break;
4366 case USB_ENDPOINT_XFER_INT:
4367 intr_type = usb_endpoint_interrupt_type(desc);
4368 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4369 timeout_ns = udev->u1_params.sel * 3;
4370 break;
4372 /* Otherwise the calculation is the same as isoc eps */
4373 case USB_ENDPOINT_XFER_ISOC:
4374 timeout_ns = xhci_service_interval_to_ns(desc);
4375 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4376 if (timeout_ns < udev->u1_params.sel * 2)
4377 timeout_ns = udev->u1_params.sel * 2;
4378 break;
4379 default:
4380 return 0;
4383 return timeout_ns;
4386 /* Returns the hub-encoded U1 timeout value. */
4387 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4388 struct usb_device *udev,
4389 struct usb_endpoint_descriptor *desc)
4391 unsigned long long timeout_ns;
4393 if (xhci->quirks & XHCI_INTEL_HOST)
4394 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4395 else
4396 timeout_ns = udev->u1_params.sel;
4398 /* The U1 timeout is encoded in 1us intervals.
4399 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4401 if (timeout_ns == USB3_LPM_DISABLED)
4402 timeout_ns = 1;
4403 else
4404 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4406 /* If the necessary timeout value is bigger than what we can set in the
4407 * USB 3.0 hub, we have to disable hub-initiated U1.
4409 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4410 return timeout_ns;
4411 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4412 "due to long timeout %llu ms\n", timeout_ns);
4413 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4416 /* The U2 timeout should be the maximum of:
4417 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4418 * - largest bInterval of any active periodic endpoint (to avoid going
4419 * into lower power link states between intervals).
4420 * - the U2 Exit Latency of the device
4422 static unsigned long long xhci_calculate_intel_u2_timeout(
4423 struct usb_device *udev,
4424 struct usb_endpoint_descriptor *desc)
4426 unsigned long long timeout_ns;
4427 unsigned long long u2_del_ns;
4429 timeout_ns = 10 * 1000 * 1000;
4431 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4432 (xhci_service_interval_to_ns(desc) > timeout_ns))
4433 timeout_ns = xhci_service_interval_to_ns(desc);
4435 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4436 if (u2_del_ns > timeout_ns)
4437 timeout_ns = u2_del_ns;
4439 return timeout_ns;
4442 /* Returns the hub-encoded U2 timeout value. */
4443 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4444 struct usb_device *udev,
4445 struct usb_endpoint_descriptor *desc)
4447 unsigned long long timeout_ns;
4449 if (xhci->quirks & XHCI_INTEL_HOST)
4450 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4451 else
4452 timeout_ns = udev->u2_params.sel;
4454 /* The U2 timeout is encoded in 256us intervals */
4455 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4456 /* If the necessary timeout value is bigger than what we can set in the
4457 * USB 3.0 hub, we have to disable hub-initiated U2.
4459 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4460 return timeout_ns;
4461 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4462 "due to long timeout %llu ms\n", timeout_ns);
4463 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4466 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4467 struct usb_device *udev,
4468 struct usb_endpoint_descriptor *desc,
4469 enum usb3_link_state state,
4470 u16 *timeout)
4472 if (state == USB3_LPM_U1)
4473 return xhci_calculate_u1_timeout(xhci, udev, desc);
4474 else if (state == USB3_LPM_U2)
4475 return xhci_calculate_u2_timeout(xhci, udev, desc);
4477 return USB3_LPM_DISABLED;
4480 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4481 struct usb_device *udev,
4482 struct usb_endpoint_descriptor *desc,
4483 enum usb3_link_state state,
4484 u16 *timeout)
4486 u16 alt_timeout;
4488 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4489 desc, state, timeout);
4491 /* If we found we can't enable hub-initiated LPM, or
4492 * the U1 or U2 exit latency was too high to allow
4493 * device-initiated LPM as well, just stop searching.
4495 if (alt_timeout == USB3_LPM_DISABLED ||
4496 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4497 *timeout = alt_timeout;
4498 return -E2BIG;
4500 if (alt_timeout > *timeout)
4501 *timeout = alt_timeout;
4502 return 0;
4505 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4506 struct usb_device *udev,
4507 struct usb_host_interface *alt,
4508 enum usb3_link_state state,
4509 u16 *timeout)
4511 int j;
4513 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4514 if (xhci_update_timeout_for_endpoint(xhci, udev,
4515 &alt->endpoint[j].desc, state, timeout))
4516 return -E2BIG;
4517 continue;
4519 return 0;
4522 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4523 enum usb3_link_state state)
4525 struct usb_device *parent;
4526 unsigned int num_hubs;
4528 if (state == USB3_LPM_U2)
4529 return 0;
4531 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4532 for (parent = udev->parent, num_hubs = 0; parent->parent;
4533 parent = parent->parent)
4534 num_hubs++;
4536 if (num_hubs < 2)
4537 return 0;
4539 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4540 " below second-tier hub.\n");
4541 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4542 "to decrease power consumption.\n");
4543 return -E2BIG;
4546 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4547 struct usb_device *udev,
4548 enum usb3_link_state state)
4550 if (xhci->quirks & XHCI_INTEL_HOST)
4551 return xhci_check_intel_tier_policy(udev, state);
4552 else
4553 return 0;
4556 /* Returns the U1 or U2 timeout that should be enabled.
4557 * If the tier check or timeout setting functions return with a non-zero exit
4558 * code, that means the timeout value has been finalized and we shouldn't look
4559 * at any more endpoints.
4561 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4562 struct usb_device *udev, enum usb3_link_state state)
4564 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4565 struct usb_host_config *config;
4566 char *state_name;
4567 int i;
4568 u16 timeout = USB3_LPM_DISABLED;
4570 if (state == USB3_LPM_U1)
4571 state_name = "U1";
4572 else if (state == USB3_LPM_U2)
4573 state_name = "U2";
4574 else {
4575 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4576 state);
4577 return timeout;
4580 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4581 return timeout;
4583 /* Gather some information about the currently installed configuration
4584 * and alternate interface settings.
4586 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4587 state, &timeout))
4588 return timeout;
4590 config = udev->actconfig;
4591 if (!config)
4592 return timeout;
4594 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4595 struct usb_driver *driver;
4596 struct usb_interface *intf = config->interface[i];
4598 if (!intf)
4599 continue;
4601 /* Check if any currently bound drivers want hub-initiated LPM
4602 * disabled.
4604 if (intf->dev.driver) {
4605 driver = to_usb_driver(intf->dev.driver);
4606 if (driver && driver->disable_hub_initiated_lpm) {
4607 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4608 "at request of driver %s\n",
4609 state_name, driver->name);
4610 return xhci_get_timeout_no_hub_lpm(udev, state);
4614 /* Not sure how this could happen... */
4615 if (!intf->cur_altsetting)
4616 continue;
4618 if (xhci_update_timeout_for_interface(xhci, udev,
4619 intf->cur_altsetting,
4620 state, &timeout))
4621 return timeout;
4623 return timeout;
4626 static int calculate_max_exit_latency(struct usb_device *udev,
4627 enum usb3_link_state state_changed,
4628 u16 hub_encoded_timeout)
4630 unsigned long long u1_mel_us = 0;
4631 unsigned long long u2_mel_us = 0;
4632 unsigned long long mel_us = 0;
4633 bool disabling_u1;
4634 bool disabling_u2;
4635 bool enabling_u1;
4636 bool enabling_u2;
4638 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4639 hub_encoded_timeout == USB3_LPM_DISABLED);
4640 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4641 hub_encoded_timeout == USB3_LPM_DISABLED);
4643 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4644 hub_encoded_timeout != USB3_LPM_DISABLED);
4645 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4646 hub_encoded_timeout != USB3_LPM_DISABLED);
4648 /* If U1 was already enabled and we're not disabling it,
4649 * or we're going to enable U1, account for the U1 max exit latency.
4651 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4652 enabling_u1)
4653 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4654 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4655 enabling_u2)
4656 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4658 if (u1_mel_us > u2_mel_us)
4659 mel_us = u1_mel_us;
4660 else
4661 mel_us = u2_mel_us;
4662 /* xHCI host controller max exit latency field is only 16 bits wide. */
4663 if (mel_us > MAX_EXIT) {
4664 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4665 "is too big.\n", mel_us);
4666 return -E2BIG;
4668 return mel_us;
4671 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4672 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4673 struct usb_device *udev, enum usb3_link_state state)
4675 struct xhci_hcd *xhci;
4676 u16 hub_encoded_timeout;
4677 int mel;
4678 int ret;
4680 xhci = hcd_to_xhci(hcd);
4681 /* The LPM timeout values are pretty host-controller specific, so don't
4682 * enable hub-initiated timeouts unless the vendor has provided
4683 * information about their timeout algorithm.
4685 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4686 !xhci->devs[udev->slot_id])
4687 return USB3_LPM_DISABLED;
4689 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4690 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4691 if (mel < 0) {
4692 /* Max Exit Latency is too big, disable LPM. */
4693 hub_encoded_timeout = USB3_LPM_DISABLED;
4694 mel = 0;
4697 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4698 if (ret)
4699 return ret;
4700 return hub_encoded_timeout;
4703 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4704 struct usb_device *udev, enum usb3_link_state state)
4706 struct xhci_hcd *xhci;
4707 u16 mel;
4709 xhci = hcd_to_xhci(hcd);
4710 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4711 !xhci->devs[udev->slot_id])
4712 return 0;
4714 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4715 return xhci_change_max_exit_latency(xhci, udev, mel);
4717 #else /* CONFIG_PM */
4719 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4720 struct usb_device *udev, int enable)
4722 return 0;
4725 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4727 return 0;
4730 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4731 struct usb_device *udev, enum usb3_link_state state)
4733 return USB3_LPM_DISABLED;
4736 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4737 struct usb_device *udev, enum usb3_link_state state)
4739 return 0;
4741 #endif /* CONFIG_PM */
4743 /*-------------------------------------------------------------------------*/
4745 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4746 * internal data structures for the device.
4748 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4749 struct usb_tt *tt, gfp_t mem_flags)
4751 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4752 struct xhci_virt_device *vdev;
4753 struct xhci_command *config_cmd;
4754 struct xhci_input_control_ctx *ctrl_ctx;
4755 struct xhci_slot_ctx *slot_ctx;
4756 unsigned long flags;
4757 unsigned think_time;
4758 int ret;
4760 /* Ignore root hubs */
4761 if (!hdev->parent)
4762 return 0;
4764 vdev = xhci->devs[hdev->slot_id];
4765 if (!vdev) {
4766 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4767 return -EINVAL;
4769 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4770 if (!config_cmd) {
4771 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4772 return -ENOMEM;
4774 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4775 if (!ctrl_ctx) {
4776 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4777 __func__);
4778 xhci_free_command(xhci, config_cmd);
4779 return -ENOMEM;
4782 spin_lock_irqsave(&xhci->lock, flags);
4783 if (hdev->speed == USB_SPEED_HIGH &&
4784 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4785 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4786 xhci_free_command(xhci, config_cmd);
4787 spin_unlock_irqrestore(&xhci->lock, flags);
4788 return -ENOMEM;
4791 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4792 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4793 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4794 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4796 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4797 * but it may be already set to 1 when setup an xHCI virtual
4798 * device, so clear it anyway.
4800 if (tt->multi)
4801 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4802 else if (hdev->speed == USB_SPEED_FULL)
4803 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4805 if (xhci->hci_version > 0x95) {
4806 xhci_dbg(xhci, "xHCI version %x needs hub "
4807 "TT think time and number of ports\n",
4808 (unsigned int) xhci->hci_version);
4809 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4810 /* Set TT think time - convert from ns to FS bit times.
4811 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4812 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4814 * xHCI 1.0: this field shall be 0 if the device is not a
4815 * High-spped hub.
4817 think_time = tt->think_time;
4818 if (think_time != 0)
4819 think_time = (think_time / 666) - 1;
4820 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4821 slot_ctx->tt_info |=
4822 cpu_to_le32(TT_THINK_TIME(think_time));
4823 } else {
4824 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4825 "TT think time or number of ports\n",
4826 (unsigned int) xhci->hci_version);
4828 slot_ctx->dev_state = 0;
4829 spin_unlock_irqrestore(&xhci->lock, flags);
4831 xhci_dbg(xhci, "Set up %s for hub device.\n",
4832 (xhci->hci_version > 0x95) ?
4833 "configure endpoint" : "evaluate context");
4834 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4835 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4837 /* Issue and wait for the configure endpoint or
4838 * evaluate context command.
4840 if (xhci->hci_version > 0x95)
4841 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4842 false, false);
4843 else
4844 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4845 true, false);
4847 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4848 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4850 xhci_free_command(xhci, config_cmd);
4851 return ret;
4854 int xhci_get_frame(struct usb_hcd *hcd)
4856 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4857 /* EHCI mods by the periodic size. Why? */
4858 return readl(&xhci->run_regs->microframe_index) >> 3;
4861 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4863 struct xhci_hcd *xhci;
4864 struct device *dev = hcd->self.controller;
4865 int retval;
4867 /* Accept arbitrarily long scatter-gather lists */
4868 hcd->self.sg_tablesize = ~0;
4870 /* support to build packet from discontinuous buffers */
4871 hcd->self.no_sg_constraint = 1;
4873 /* XHCI controllers don't stop the ep queue on short packets :| */
4874 hcd->self.no_stop_on_short = 1;
4876 xhci = hcd_to_xhci(hcd);
4878 if (usb_hcd_is_primary_hcd(hcd)) {
4879 xhci->main_hcd = hcd;
4880 /* Mark the first roothub as being USB 2.0.
4881 * The xHCI driver will register the USB 3.0 roothub.
4883 hcd->speed = HCD_USB2;
4884 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4886 * USB 2.0 roothub under xHCI has an integrated TT,
4887 * (rate matching hub) as opposed to having an OHCI/UHCI
4888 * companion controller.
4890 hcd->has_tt = 1;
4891 } else {
4892 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4893 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4894 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4895 hcd->speed = HCD_USB31;
4896 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4898 /* xHCI private pointer was set in xhci_pci_probe for the second
4899 * registered roothub.
4901 return 0;
4904 mutex_init(&xhci->mutex);
4905 xhci->cap_regs = hcd->regs;
4906 xhci->op_regs = hcd->regs +
4907 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4908 xhci->run_regs = hcd->regs +
4909 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4910 /* Cache read-only capability registers */
4911 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4912 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4913 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4914 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4915 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4916 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4917 if (xhci->hci_version > 0x100)
4918 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4919 xhci_print_registers(xhci);
4921 xhci->quirks |= quirks;
4923 get_quirks(dev, xhci);
4925 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4926 * success event after a short transfer. This quirk will ignore such
4927 * spurious event.
4929 if (xhci->hci_version > 0x96)
4930 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4932 /* Make sure the HC is halted. */
4933 retval = xhci_halt(xhci);
4934 if (retval)
4935 return retval;
4937 xhci_dbg(xhci, "Resetting HCD\n");
4938 /* Reset the internal HC memory state and registers. */
4939 retval = xhci_reset(xhci);
4940 if (retval)
4941 return retval;
4942 xhci_dbg(xhci, "Reset complete\n");
4945 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4946 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4947 * address memory pointers actually. So, this driver clears the AC64
4948 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4949 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4951 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4952 xhci->hcc_params &= ~BIT(0);
4954 /* Set dma_mask and coherent_dma_mask to 64-bits,
4955 * if xHC supports 64-bit addressing */
4956 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4957 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4958 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4959 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4960 } else {
4962 * This is to avoid error in cases where a 32-bit USB
4963 * controller is used on a 64-bit capable system.
4965 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4966 if (retval)
4967 return retval;
4968 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4969 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4972 xhci_dbg(xhci, "Calling HCD init\n");
4973 /* Initialize HCD and host controller data structures. */
4974 retval = xhci_init(hcd);
4975 if (retval)
4976 return retval;
4977 xhci_dbg(xhci, "Called HCD init\n");
4979 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4980 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4982 return 0;
4984 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4986 static const struct hc_driver xhci_hc_driver = {
4987 .description = "xhci-hcd",
4988 .product_desc = "xHCI Host Controller",
4989 .hcd_priv_size = sizeof(struct xhci_hcd),
4992 * generic hardware linkage
4994 .irq = xhci_irq,
4995 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4998 * basic lifecycle operations
5000 .reset = NULL, /* set in xhci_init_driver() */
5001 .start = xhci_run,
5002 .stop = xhci_stop,
5003 .shutdown = xhci_shutdown,
5006 * managing i/o requests and associated device resources
5008 .urb_enqueue = xhci_urb_enqueue,
5009 .urb_dequeue = xhci_urb_dequeue,
5010 .alloc_dev = xhci_alloc_dev,
5011 .free_dev = xhci_free_dev,
5012 .alloc_streams = xhci_alloc_streams,
5013 .free_streams = xhci_free_streams,
5014 .add_endpoint = xhci_add_endpoint,
5015 .drop_endpoint = xhci_drop_endpoint,
5016 .endpoint_reset = xhci_endpoint_reset,
5017 .check_bandwidth = xhci_check_bandwidth,
5018 .reset_bandwidth = xhci_reset_bandwidth,
5019 .address_device = xhci_address_device,
5020 .enable_device = xhci_enable_device,
5021 .update_hub_device = xhci_update_hub_device,
5022 .reset_device = xhci_discover_or_reset_device,
5025 * scheduling support
5027 .get_frame_number = xhci_get_frame,
5030 * root hub support
5032 .hub_control = xhci_hub_control,
5033 .hub_status_data = xhci_hub_status_data,
5034 .bus_suspend = xhci_bus_suspend,
5035 .bus_resume = xhci_bus_resume,
5038 * call back when device connected and addressed
5040 .update_device = xhci_update_device,
5041 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5042 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5043 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5044 .find_raw_port_number = xhci_find_raw_port_number,
5047 void xhci_init_driver(struct hc_driver *drv,
5048 const struct xhci_driver_overrides *over)
5050 BUG_ON(!over);
5052 /* Copy the generic table to drv then apply the overrides */
5053 *drv = xhci_hc_driver;
5055 if (over) {
5056 drv->hcd_priv_size += over->extra_priv_size;
5057 if (over->reset)
5058 drv->reset = over->reset;
5059 if (over->start)
5060 drv->start = over->start;
5063 EXPORT_SYMBOL_GPL(xhci_init_driver);
5065 MODULE_DESCRIPTION(DRIVER_DESC);
5066 MODULE_AUTHOR(DRIVER_AUTHOR);
5067 MODULE_LICENSE("GPL");
5069 static int __init xhci_hcd_init(void)
5072 * Check the compiler generated sizes of structures that must be laid
5073 * out in specific ways for hardware access.
5075 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5076 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5077 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5078 /* xhci_device_control has eight fields, and also
5079 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5081 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5082 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5083 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5084 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5085 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5086 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5087 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5089 if (usb_disabled())
5090 return -ENODEV;
5092 return 0;
5096 * If an init function is provided, an exit function must also be provided
5097 * to allow module unload.
5099 static void __exit xhci_hcd_fini(void) { }
5101 module_init(xhci_hcd_init);
5102 module_exit(xhci_hcd_fini);