inet: frag: enforce memory limits earlier
[linux/fpc-iii.git] / fs / aio.c
blobb1170a7affe2a163ac1fefa5f2e8576d7c3d1479
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
47 #include "internal.h"
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx __rcu *table[];
76 struct kioctx_cpu {
77 unsigned reqs_available;
80 struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
85 struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
89 struct percpu_ref reqs;
91 unsigned long user_id;
93 struct __percpu kioctx_cpu *cpu;
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
99 unsigned req_batch;
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
107 unsigned max_reqs;
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
112 unsigned long mmap_base;
113 unsigned long mmap_size;
115 struct page **ring_pages;
116 long nr_pages;
118 struct rcu_head free_rcu;
119 struct work_struct free_work; /* see free_ioctx() */
122 * signals when all in-flight requests are done
124 struct ctx_rq_wait *rq_wait;
126 struct {
128 * This counts the number of available slots in the ringbuffer,
129 * so we avoid overflowing it: it's decremented (if positive)
130 * when allocating a kiocb and incremented when the resulting
131 * io_event is pulled off the ringbuffer.
133 * We batch accesses to it with a percpu version.
135 atomic_t reqs_available;
136 } ____cacheline_aligned_in_smp;
138 struct {
139 spinlock_t ctx_lock;
140 struct list_head active_reqs; /* used for cancellation */
141 } ____cacheline_aligned_in_smp;
143 struct {
144 struct mutex ring_lock;
145 wait_queue_head_t wait;
146 } ____cacheline_aligned_in_smp;
148 struct {
149 unsigned tail;
150 unsigned completed_events;
151 spinlock_t completion_lock;
152 } ____cacheline_aligned_in_smp;
154 struct page *internal_pages[AIO_RING_PAGES];
155 struct file *aio_ring_file;
157 unsigned id;
161 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
162 * cancelled or completed (this makes a certain amount of sense because
163 * successful cancellation - io_cancel() - does deliver the completion to
164 * userspace).
166 * And since most things don't implement kiocb cancellation and we'd really like
167 * kiocb completion to be lockless when possible, we use ki_cancel to
168 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
169 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
171 #define KIOCB_CANCELLED ((void *) (~0ULL))
173 struct aio_kiocb {
174 struct kiocb common;
176 struct kioctx *ki_ctx;
177 kiocb_cancel_fn *ki_cancel;
179 struct iocb __user *ki_user_iocb; /* user's aiocb */
180 __u64 ki_user_data; /* user's data for completion */
182 struct list_head ki_list; /* the aio core uses this
183 * for cancellation */
186 * If the aio_resfd field of the userspace iocb is not zero,
187 * this is the underlying eventfd context to deliver events to.
189 struct eventfd_ctx *ki_eventfd;
192 /*------ sysctl variables----*/
193 static DEFINE_SPINLOCK(aio_nr_lock);
194 unsigned long aio_nr; /* current system wide number of aio requests */
195 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
196 /*----end sysctl variables---*/
198 static struct kmem_cache *kiocb_cachep;
199 static struct kmem_cache *kioctx_cachep;
201 static struct vfsmount *aio_mnt;
203 static const struct file_operations aio_ring_fops;
204 static const struct address_space_operations aio_ctx_aops;
206 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
208 struct qstr this = QSTR_INIT("[aio]", 5);
209 struct file *file;
210 struct path path;
211 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
212 if (IS_ERR(inode))
213 return ERR_CAST(inode);
215 inode->i_mapping->a_ops = &aio_ctx_aops;
216 inode->i_mapping->private_data = ctx;
217 inode->i_size = PAGE_SIZE * nr_pages;
219 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
220 if (!path.dentry) {
221 iput(inode);
222 return ERR_PTR(-ENOMEM);
224 path.mnt = mntget(aio_mnt);
226 d_instantiate(path.dentry, inode);
227 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
228 if (IS_ERR(file)) {
229 path_put(&path);
230 return file;
233 file->f_flags = O_RDWR;
234 return file;
237 static struct dentry *aio_mount(struct file_system_type *fs_type,
238 int flags, const char *dev_name, void *data)
240 static const struct dentry_operations ops = {
241 .d_dname = simple_dname,
243 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
244 AIO_RING_MAGIC);
246 if (!IS_ERR(root))
247 root->d_sb->s_iflags |= SB_I_NOEXEC;
248 return root;
251 /* aio_setup
252 * Creates the slab caches used by the aio routines, panic on
253 * failure as this is done early during the boot sequence.
255 static int __init aio_setup(void)
257 static struct file_system_type aio_fs = {
258 .name = "aio",
259 .mount = aio_mount,
260 .kill_sb = kill_anon_super,
262 aio_mnt = kern_mount(&aio_fs);
263 if (IS_ERR(aio_mnt))
264 panic("Failed to create aio fs mount.");
266 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
269 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
271 return 0;
273 __initcall(aio_setup);
275 static void put_aio_ring_file(struct kioctx *ctx)
277 struct file *aio_ring_file = ctx->aio_ring_file;
278 struct address_space *i_mapping;
280 if (aio_ring_file) {
281 truncate_setsize(aio_ring_file->f_inode, 0);
283 /* Prevent further access to the kioctx from migratepages */
284 i_mapping = aio_ring_file->f_inode->i_mapping;
285 spin_lock(&i_mapping->private_lock);
286 i_mapping->private_data = NULL;
287 ctx->aio_ring_file = NULL;
288 spin_unlock(&i_mapping->private_lock);
290 fput(aio_ring_file);
294 static void aio_free_ring(struct kioctx *ctx)
296 int i;
298 /* Disconnect the kiotx from the ring file. This prevents future
299 * accesses to the kioctx from page migration.
301 put_aio_ring_file(ctx);
303 for (i = 0; i < ctx->nr_pages; i++) {
304 struct page *page;
305 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
306 page_count(ctx->ring_pages[i]));
307 page = ctx->ring_pages[i];
308 if (!page)
309 continue;
310 ctx->ring_pages[i] = NULL;
311 put_page(page);
314 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
315 kfree(ctx->ring_pages);
316 ctx->ring_pages = NULL;
320 static int aio_ring_mremap(struct vm_area_struct *vma)
322 struct file *file = vma->vm_file;
323 struct mm_struct *mm = vma->vm_mm;
324 struct kioctx_table *table;
325 int i, res = -EINVAL;
327 spin_lock(&mm->ioctx_lock);
328 rcu_read_lock();
329 table = rcu_dereference(mm->ioctx_table);
330 for (i = 0; i < table->nr; i++) {
331 struct kioctx *ctx;
333 ctx = rcu_dereference(table->table[i]);
334 if (ctx && ctx->aio_ring_file == file) {
335 if (!atomic_read(&ctx->dead)) {
336 ctx->user_id = ctx->mmap_base = vma->vm_start;
337 res = 0;
339 break;
343 rcu_read_unlock();
344 spin_unlock(&mm->ioctx_lock);
345 return res;
348 static const struct vm_operations_struct aio_ring_vm_ops = {
349 .mremap = aio_ring_mremap,
350 #if IS_ENABLED(CONFIG_MMU)
351 .fault = filemap_fault,
352 .map_pages = filemap_map_pages,
353 .page_mkwrite = filemap_page_mkwrite,
354 #endif
357 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
359 vma->vm_flags |= VM_DONTEXPAND;
360 vma->vm_ops = &aio_ring_vm_ops;
361 return 0;
364 static const struct file_operations aio_ring_fops = {
365 .mmap = aio_ring_mmap,
368 #if IS_ENABLED(CONFIG_MIGRATION)
369 static int aio_migratepage(struct address_space *mapping, struct page *new,
370 struct page *old, enum migrate_mode mode)
372 struct kioctx *ctx;
373 unsigned long flags;
374 pgoff_t idx;
375 int rc;
377 rc = 0;
379 /* mapping->private_lock here protects against the kioctx teardown. */
380 spin_lock(&mapping->private_lock);
381 ctx = mapping->private_data;
382 if (!ctx) {
383 rc = -EINVAL;
384 goto out;
387 /* The ring_lock mutex. The prevents aio_read_events() from writing
388 * to the ring's head, and prevents page migration from mucking in
389 * a partially initialized kiotx.
391 if (!mutex_trylock(&ctx->ring_lock)) {
392 rc = -EAGAIN;
393 goto out;
396 idx = old->index;
397 if (idx < (pgoff_t)ctx->nr_pages) {
398 /* Make sure the old page hasn't already been changed */
399 if (ctx->ring_pages[idx] != old)
400 rc = -EAGAIN;
401 } else
402 rc = -EINVAL;
404 if (rc != 0)
405 goto out_unlock;
407 /* Writeback must be complete */
408 BUG_ON(PageWriteback(old));
409 get_page(new);
411 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
412 if (rc != MIGRATEPAGE_SUCCESS) {
413 put_page(new);
414 goto out_unlock;
417 /* Take completion_lock to prevent other writes to the ring buffer
418 * while the old page is copied to the new. This prevents new
419 * events from being lost.
421 spin_lock_irqsave(&ctx->completion_lock, flags);
422 migrate_page_copy(new, old);
423 BUG_ON(ctx->ring_pages[idx] != old);
424 ctx->ring_pages[idx] = new;
425 spin_unlock_irqrestore(&ctx->completion_lock, flags);
427 /* The old page is no longer accessible. */
428 put_page(old);
430 out_unlock:
431 mutex_unlock(&ctx->ring_lock);
432 out:
433 spin_unlock(&mapping->private_lock);
434 return rc;
436 #endif
438 static const struct address_space_operations aio_ctx_aops = {
439 .set_page_dirty = __set_page_dirty_no_writeback,
440 #if IS_ENABLED(CONFIG_MIGRATION)
441 .migratepage = aio_migratepage,
442 #endif
445 static int aio_setup_ring(struct kioctx *ctx)
447 struct aio_ring *ring;
448 unsigned nr_events = ctx->max_reqs;
449 struct mm_struct *mm = current->mm;
450 unsigned long size, unused;
451 int nr_pages;
452 int i;
453 struct file *file;
455 /* Compensate for the ring buffer's head/tail overlap entry */
456 nr_events += 2; /* 1 is required, 2 for good luck */
458 size = sizeof(struct aio_ring);
459 size += sizeof(struct io_event) * nr_events;
461 nr_pages = PFN_UP(size);
462 if (nr_pages < 0)
463 return -EINVAL;
465 file = aio_private_file(ctx, nr_pages);
466 if (IS_ERR(file)) {
467 ctx->aio_ring_file = NULL;
468 return -ENOMEM;
471 ctx->aio_ring_file = file;
472 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
473 / sizeof(struct io_event);
475 ctx->ring_pages = ctx->internal_pages;
476 if (nr_pages > AIO_RING_PAGES) {
477 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
478 GFP_KERNEL);
479 if (!ctx->ring_pages) {
480 put_aio_ring_file(ctx);
481 return -ENOMEM;
485 for (i = 0; i < nr_pages; i++) {
486 struct page *page;
487 page = find_or_create_page(file->f_inode->i_mapping,
488 i, GFP_HIGHUSER | __GFP_ZERO);
489 if (!page)
490 break;
491 pr_debug("pid(%d) page[%d]->count=%d\n",
492 current->pid, i, page_count(page));
493 SetPageUptodate(page);
494 unlock_page(page);
496 ctx->ring_pages[i] = page;
498 ctx->nr_pages = i;
500 if (unlikely(i != nr_pages)) {
501 aio_free_ring(ctx);
502 return -ENOMEM;
505 ctx->mmap_size = nr_pages * PAGE_SIZE;
506 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
508 if (down_write_killable(&mm->mmap_sem)) {
509 ctx->mmap_size = 0;
510 aio_free_ring(ctx);
511 return -EINTR;
514 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
515 PROT_READ | PROT_WRITE,
516 MAP_SHARED, 0, &unused);
517 up_write(&mm->mmap_sem);
518 if (IS_ERR((void *)ctx->mmap_base)) {
519 ctx->mmap_size = 0;
520 aio_free_ring(ctx);
521 return -ENOMEM;
524 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
526 ctx->user_id = ctx->mmap_base;
527 ctx->nr_events = nr_events; /* trusted copy */
529 ring = kmap_atomic(ctx->ring_pages[0]);
530 ring->nr = nr_events; /* user copy */
531 ring->id = ~0U;
532 ring->head = ring->tail = 0;
533 ring->magic = AIO_RING_MAGIC;
534 ring->compat_features = AIO_RING_COMPAT_FEATURES;
535 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
536 ring->header_length = sizeof(struct aio_ring);
537 kunmap_atomic(ring);
538 flush_dcache_page(ctx->ring_pages[0]);
540 return 0;
543 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
544 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
545 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
547 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
549 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
550 struct kioctx *ctx = req->ki_ctx;
551 unsigned long flags;
553 spin_lock_irqsave(&ctx->ctx_lock, flags);
555 if (!req->ki_list.next)
556 list_add(&req->ki_list, &ctx->active_reqs);
558 req->ki_cancel = cancel;
560 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
562 EXPORT_SYMBOL(kiocb_set_cancel_fn);
564 static int kiocb_cancel(struct aio_kiocb *kiocb)
566 kiocb_cancel_fn *old, *cancel;
569 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
570 * actually has a cancel function, hence the cmpxchg()
573 cancel = ACCESS_ONCE(kiocb->ki_cancel);
574 do {
575 if (!cancel || cancel == KIOCB_CANCELLED)
576 return -EINVAL;
578 old = cancel;
579 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
580 } while (cancel != old);
582 return cancel(&kiocb->common);
586 * free_ioctx() should be RCU delayed to synchronize against the RCU
587 * protected lookup_ioctx() and also needs process context to call
588 * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
589 * ->free_work.
591 static void free_ioctx(struct work_struct *work)
593 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
595 pr_debug("freeing %p\n", ctx);
597 aio_free_ring(ctx);
598 free_percpu(ctx->cpu);
599 percpu_ref_exit(&ctx->reqs);
600 percpu_ref_exit(&ctx->users);
601 kmem_cache_free(kioctx_cachep, ctx);
604 static void free_ioctx_rcufn(struct rcu_head *head)
606 struct kioctx *ctx = container_of(head, struct kioctx, free_rcu);
608 INIT_WORK(&ctx->free_work, free_ioctx);
609 schedule_work(&ctx->free_work);
612 static void free_ioctx_reqs(struct percpu_ref *ref)
614 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
616 /* At this point we know that there are no any in-flight requests */
617 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
618 complete(&ctx->rq_wait->comp);
620 /* Synchronize against RCU protected table->table[] dereferences */
621 call_rcu(&ctx->free_rcu, free_ioctx_rcufn);
625 * When this function runs, the kioctx has been removed from the "hash table"
626 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
627 * now it's safe to cancel any that need to be.
629 static void free_ioctx_users(struct percpu_ref *ref)
631 struct kioctx *ctx = container_of(ref, struct kioctx, users);
632 struct aio_kiocb *req;
634 spin_lock_irq(&ctx->ctx_lock);
636 while (!list_empty(&ctx->active_reqs)) {
637 req = list_first_entry(&ctx->active_reqs,
638 struct aio_kiocb, ki_list);
639 kiocb_cancel(req);
640 list_del_init(&req->ki_list);
643 spin_unlock_irq(&ctx->ctx_lock);
645 percpu_ref_kill(&ctx->reqs);
646 percpu_ref_put(&ctx->reqs);
649 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
651 unsigned i, new_nr;
652 struct kioctx_table *table, *old;
653 struct aio_ring *ring;
655 spin_lock(&mm->ioctx_lock);
656 table = rcu_dereference_raw(mm->ioctx_table);
658 while (1) {
659 if (table)
660 for (i = 0; i < table->nr; i++)
661 if (!rcu_access_pointer(table->table[i])) {
662 ctx->id = i;
663 rcu_assign_pointer(table->table[i], ctx);
664 spin_unlock(&mm->ioctx_lock);
666 /* While kioctx setup is in progress,
667 * we are protected from page migration
668 * changes ring_pages by ->ring_lock.
670 ring = kmap_atomic(ctx->ring_pages[0]);
671 ring->id = ctx->id;
672 kunmap_atomic(ring);
673 return 0;
676 new_nr = (table ? table->nr : 1) * 4;
677 spin_unlock(&mm->ioctx_lock);
679 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
680 new_nr, GFP_KERNEL);
681 if (!table)
682 return -ENOMEM;
684 table->nr = new_nr;
686 spin_lock(&mm->ioctx_lock);
687 old = rcu_dereference_raw(mm->ioctx_table);
689 if (!old) {
690 rcu_assign_pointer(mm->ioctx_table, table);
691 } else if (table->nr > old->nr) {
692 memcpy(table->table, old->table,
693 old->nr * sizeof(struct kioctx *));
695 rcu_assign_pointer(mm->ioctx_table, table);
696 kfree_rcu(old, rcu);
697 } else {
698 kfree(table);
699 table = old;
704 static void aio_nr_sub(unsigned nr)
706 spin_lock(&aio_nr_lock);
707 if (WARN_ON(aio_nr - nr > aio_nr))
708 aio_nr = 0;
709 else
710 aio_nr -= nr;
711 spin_unlock(&aio_nr_lock);
714 /* ioctx_alloc
715 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
717 static struct kioctx *ioctx_alloc(unsigned nr_events)
719 struct mm_struct *mm = current->mm;
720 struct kioctx *ctx;
721 int err = -ENOMEM;
724 * We keep track of the number of available ringbuffer slots, to prevent
725 * overflow (reqs_available), and we also use percpu counters for this.
727 * So since up to half the slots might be on other cpu's percpu counters
728 * and unavailable, double nr_events so userspace sees what they
729 * expected: additionally, we move req_batch slots to/from percpu
730 * counters at a time, so make sure that isn't 0:
732 nr_events = max(nr_events, num_possible_cpus() * 4);
733 nr_events *= 2;
735 /* Prevent overflows */
736 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
737 pr_debug("ENOMEM: nr_events too high\n");
738 return ERR_PTR(-EINVAL);
741 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
742 return ERR_PTR(-EAGAIN);
744 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
745 if (!ctx)
746 return ERR_PTR(-ENOMEM);
748 ctx->max_reqs = nr_events;
750 spin_lock_init(&ctx->ctx_lock);
751 spin_lock_init(&ctx->completion_lock);
752 mutex_init(&ctx->ring_lock);
753 /* Protect against page migration throughout kiotx setup by keeping
754 * the ring_lock mutex held until setup is complete. */
755 mutex_lock(&ctx->ring_lock);
756 init_waitqueue_head(&ctx->wait);
758 INIT_LIST_HEAD(&ctx->active_reqs);
760 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
761 goto err;
763 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
764 goto err;
766 ctx->cpu = alloc_percpu(struct kioctx_cpu);
767 if (!ctx->cpu)
768 goto err;
770 err = aio_setup_ring(ctx);
771 if (err < 0)
772 goto err;
774 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
775 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
776 if (ctx->req_batch < 1)
777 ctx->req_batch = 1;
779 /* limit the number of system wide aios */
780 spin_lock(&aio_nr_lock);
781 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
782 aio_nr + nr_events < aio_nr) {
783 spin_unlock(&aio_nr_lock);
784 err = -EAGAIN;
785 goto err_ctx;
787 aio_nr += ctx->max_reqs;
788 spin_unlock(&aio_nr_lock);
790 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
791 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
793 err = ioctx_add_table(ctx, mm);
794 if (err)
795 goto err_cleanup;
797 /* Release the ring_lock mutex now that all setup is complete. */
798 mutex_unlock(&ctx->ring_lock);
800 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
801 ctx, ctx->user_id, mm, ctx->nr_events);
802 return ctx;
804 err_cleanup:
805 aio_nr_sub(ctx->max_reqs);
806 err_ctx:
807 atomic_set(&ctx->dead, 1);
808 if (ctx->mmap_size)
809 vm_munmap(ctx->mmap_base, ctx->mmap_size);
810 aio_free_ring(ctx);
811 err:
812 mutex_unlock(&ctx->ring_lock);
813 free_percpu(ctx->cpu);
814 percpu_ref_exit(&ctx->reqs);
815 percpu_ref_exit(&ctx->users);
816 kmem_cache_free(kioctx_cachep, ctx);
817 pr_debug("error allocating ioctx %d\n", err);
818 return ERR_PTR(err);
821 /* kill_ioctx
822 * Cancels all outstanding aio requests on an aio context. Used
823 * when the processes owning a context have all exited to encourage
824 * the rapid destruction of the kioctx.
826 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
827 struct ctx_rq_wait *wait)
829 struct kioctx_table *table;
831 spin_lock(&mm->ioctx_lock);
832 if (atomic_xchg(&ctx->dead, 1)) {
833 spin_unlock(&mm->ioctx_lock);
834 return -EINVAL;
837 table = rcu_dereference_raw(mm->ioctx_table);
838 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
839 RCU_INIT_POINTER(table->table[ctx->id], NULL);
840 spin_unlock(&mm->ioctx_lock);
842 /* free_ioctx_reqs() will do the necessary RCU synchronization */
843 wake_up_all(&ctx->wait);
846 * It'd be more correct to do this in free_ioctx(), after all
847 * the outstanding kiocbs have finished - but by then io_destroy
848 * has already returned, so io_setup() could potentially return
849 * -EAGAIN with no ioctxs actually in use (as far as userspace
850 * could tell).
852 aio_nr_sub(ctx->max_reqs);
854 if (ctx->mmap_size)
855 vm_munmap(ctx->mmap_base, ctx->mmap_size);
857 ctx->rq_wait = wait;
858 percpu_ref_kill(&ctx->users);
859 return 0;
863 * exit_aio: called when the last user of mm goes away. At this point, there is
864 * no way for any new requests to be submited or any of the io_* syscalls to be
865 * called on the context.
867 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
868 * them.
870 void exit_aio(struct mm_struct *mm)
872 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
873 struct ctx_rq_wait wait;
874 int i, skipped;
876 if (!table)
877 return;
879 atomic_set(&wait.count, table->nr);
880 init_completion(&wait.comp);
882 skipped = 0;
883 for (i = 0; i < table->nr; ++i) {
884 struct kioctx *ctx =
885 rcu_dereference_protected(table->table[i], true);
887 if (!ctx) {
888 skipped++;
889 continue;
893 * We don't need to bother with munmap() here - exit_mmap(mm)
894 * is coming and it'll unmap everything. And we simply can't,
895 * this is not necessarily our ->mm.
896 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
897 * that it needs to unmap the area, just set it to 0.
899 ctx->mmap_size = 0;
900 kill_ioctx(mm, ctx, &wait);
903 if (!atomic_sub_and_test(skipped, &wait.count)) {
904 /* Wait until all IO for the context are done. */
905 wait_for_completion(&wait.comp);
908 RCU_INIT_POINTER(mm->ioctx_table, NULL);
909 kfree(table);
912 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
914 struct kioctx_cpu *kcpu;
915 unsigned long flags;
917 local_irq_save(flags);
918 kcpu = this_cpu_ptr(ctx->cpu);
919 kcpu->reqs_available += nr;
921 while (kcpu->reqs_available >= ctx->req_batch * 2) {
922 kcpu->reqs_available -= ctx->req_batch;
923 atomic_add(ctx->req_batch, &ctx->reqs_available);
926 local_irq_restore(flags);
929 static bool get_reqs_available(struct kioctx *ctx)
931 struct kioctx_cpu *kcpu;
932 bool ret = false;
933 unsigned long flags;
935 local_irq_save(flags);
936 kcpu = this_cpu_ptr(ctx->cpu);
937 if (!kcpu->reqs_available) {
938 int old, avail = atomic_read(&ctx->reqs_available);
940 do {
941 if (avail < ctx->req_batch)
942 goto out;
944 old = avail;
945 avail = atomic_cmpxchg(&ctx->reqs_available,
946 avail, avail - ctx->req_batch);
947 } while (avail != old);
949 kcpu->reqs_available += ctx->req_batch;
952 ret = true;
953 kcpu->reqs_available--;
954 out:
955 local_irq_restore(flags);
956 return ret;
959 /* refill_reqs_available
960 * Updates the reqs_available reference counts used for tracking the
961 * number of free slots in the completion ring. This can be called
962 * from aio_complete() (to optimistically update reqs_available) or
963 * from aio_get_req() (the we're out of events case). It must be
964 * called holding ctx->completion_lock.
966 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
967 unsigned tail)
969 unsigned events_in_ring, completed;
971 /* Clamp head since userland can write to it. */
972 head %= ctx->nr_events;
973 if (head <= tail)
974 events_in_ring = tail - head;
975 else
976 events_in_ring = ctx->nr_events - (head - tail);
978 completed = ctx->completed_events;
979 if (events_in_ring < completed)
980 completed -= events_in_ring;
981 else
982 completed = 0;
984 if (!completed)
985 return;
987 ctx->completed_events -= completed;
988 put_reqs_available(ctx, completed);
991 /* user_refill_reqs_available
992 * Called to refill reqs_available when aio_get_req() encounters an
993 * out of space in the completion ring.
995 static void user_refill_reqs_available(struct kioctx *ctx)
997 spin_lock_irq(&ctx->completion_lock);
998 if (ctx->completed_events) {
999 struct aio_ring *ring;
1000 unsigned head;
1002 /* Access of ring->head may race with aio_read_events_ring()
1003 * here, but that's okay since whether we read the old version
1004 * or the new version, and either will be valid. The important
1005 * part is that head cannot pass tail since we prevent
1006 * aio_complete() from updating tail by holding
1007 * ctx->completion_lock. Even if head is invalid, the check
1008 * against ctx->completed_events below will make sure we do the
1009 * safe/right thing.
1011 ring = kmap_atomic(ctx->ring_pages[0]);
1012 head = ring->head;
1013 kunmap_atomic(ring);
1015 refill_reqs_available(ctx, head, ctx->tail);
1018 spin_unlock_irq(&ctx->completion_lock);
1021 /* aio_get_req
1022 * Allocate a slot for an aio request.
1023 * Returns NULL if no requests are free.
1025 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027 struct aio_kiocb *req;
1029 if (!get_reqs_available(ctx)) {
1030 user_refill_reqs_available(ctx);
1031 if (!get_reqs_available(ctx))
1032 return NULL;
1035 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1036 if (unlikely(!req))
1037 goto out_put;
1039 percpu_ref_get(&ctx->reqs);
1041 req->ki_ctx = ctx;
1042 return req;
1043 out_put:
1044 put_reqs_available(ctx, 1);
1045 return NULL;
1048 static void kiocb_free(struct aio_kiocb *req)
1050 if (req->common.ki_filp)
1051 fput(req->common.ki_filp);
1052 if (req->ki_eventfd != NULL)
1053 eventfd_ctx_put(req->ki_eventfd);
1054 kmem_cache_free(kiocb_cachep, req);
1057 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1059 struct aio_ring __user *ring = (void __user *)ctx_id;
1060 struct mm_struct *mm = current->mm;
1061 struct kioctx *ctx, *ret = NULL;
1062 struct kioctx_table *table;
1063 unsigned id;
1065 if (get_user(id, &ring->id))
1066 return NULL;
1068 rcu_read_lock();
1069 table = rcu_dereference(mm->ioctx_table);
1071 if (!table || id >= table->nr)
1072 goto out;
1074 ctx = rcu_dereference(table->table[id]);
1075 if (ctx && ctx->user_id == ctx_id) {
1076 if (percpu_ref_tryget_live(&ctx->users))
1077 ret = ctx;
1079 out:
1080 rcu_read_unlock();
1081 return ret;
1084 /* aio_complete
1085 * Called when the io request on the given iocb is complete.
1087 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1089 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1090 struct kioctx *ctx = iocb->ki_ctx;
1091 struct aio_ring *ring;
1092 struct io_event *ev_page, *event;
1093 unsigned tail, pos, head;
1094 unsigned long flags;
1096 if (kiocb->ki_flags & IOCB_WRITE) {
1097 struct file *file = kiocb->ki_filp;
1100 * Tell lockdep we inherited freeze protection from submission
1101 * thread.
1103 if (S_ISREG(file_inode(file)->i_mode))
1104 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1105 file_end_write(file);
1109 * Special case handling for sync iocbs:
1110 * - events go directly into the iocb for fast handling
1111 * - the sync task with the iocb in its stack holds the single iocb
1112 * ref, no other paths have a way to get another ref
1113 * - the sync task helpfully left a reference to itself in the iocb
1115 BUG_ON(is_sync_kiocb(kiocb));
1117 if (iocb->ki_list.next) {
1118 unsigned long flags;
1120 spin_lock_irqsave(&ctx->ctx_lock, flags);
1121 list_del(&iocb->ki_list);
1122 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1126 * Add a completion event to the ring buffer. Must be done holding
1127 * ctx->completion_lock to prevent other code from messing with the tail
1128 * pointer since we might be called from irq context.
1130 spin_lock_irqsave(&ctx->completion_lock, flags);
1132 tail = ctx->tail;
1133 pos = tail + AIO_EVENTS_OFFSET;
1135 if (++tail >= ctx->nr_events)
1136 tail = 0;
1138 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1139 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1141 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1142 event->data = iocb->ki_user_data;
1143 event->res = res;
1144 event->res2 = res2;
1146 kunmap_atomic(ev_page);
1147 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1149 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1150 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1151 res, res2);
1153 /* after flagging the request as done, we
1154 * must never even look at it again
1156 smp_wmb(); /* make event visible before updating tail */
1158 ctx->tail = tail;
1160 ring = kmap_atomic(ctx->ring_pages[0]);
1161 head = ring->head;
1162 ring->tail = tail;
1163 kunmap_atomic(ring);
1164 flush_dcache_page(ctx->ring_pages[0]);
1166 ctx->completed_events++;
1167 if (ctx->completed_events > 1)
1168 refill_reqs_available(ctx, head, tail);
1169 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1171 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1174 * Check if the user asked us to deliver the result through an
1175 * eventfd. The eventfd_signal() function is safe to be called
1176 * from IRQ context.
1178 if (iocb->ki_eventfd != NULL)
1179 eventfd_signal(iocb->ki_eventfd, 1);
1181 /* everything turned out well, dispose of the aiocb. */
1182 kiocb_free(iocb);
1185 * We have to order our ring_info tail store above and test
1186 * of the wait list below outside the wait lock. This is
1187 * like in wake_up_bit() where clearing a bit has to be
1188 * ordered with the unlocked test.
1190 smp_mb();
1192 if (waitqueue_active(&ctx->wait))
1193 wake_up(&ctx->wait);
1195 percpu_ref_put(&ctx->reqs);
1198 /* aio_read_events_ring
1199 * Pull an event off of the ioctx's event ring. Returns the number of
1200 * events fetched
1202 static long aio_read_events_ring(struct kioctx *ctx,
1203 struct io_event __user *event, long nr)
1205 struct aio_ring *ring;
1206 unsigned head, tail, pos;
1207 long ret = 0;
1208 int copy_ret;
1211 * The mutex can block and wake us up and that will cause
1212 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1213 * and repeat. This should be rare enough that it doesn't cause
1214 * peformance issues. See the comment in read_events() for more detail.
1216 sched_annotate_sleep();
1217 mutex_lock(&ctx->ring_lock);
1219 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1220 ring = kmap_atomic(ctx->ring_pages[0]);
1221 head = ring->head;
1222 tail = ring->tail;
1223 kunmap_atomic(ring);
1226 * Ensure that once we've read the current tail pointer, that
1227 * we also see the events that were stored up to the tail.
1229 smp_rmb();
1231 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1233 if (head == tail)
1234 goto out;
1236 head %= ctx->nr_events;
1237 tail %= ctx->nr_events;
1239 while (ret < nr) {
1240 long avail;
1241 struct io_event *ev;
1242 struct page *page;
1244 avail = (head <= tail ? tail : ctx->nr_events) - head;
1245 if (head == tail)
1246 break;
1248 avail = min(avail, nr - ret);
1249 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1250 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1252 pos = head + AIO_EVENTS_OFFSET;
1253 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1254 pos %= AIO_EVENTS_PER_PAGE;
1256 ev = kmap(page);
1257 copy_ret = copy_to_user(event + ret, ev + pos,
1258 sizeof(*ev) * avail);
1259 kunmap(page);
1261 if (unlikely(copy_ret)) {
1262 ret = -EFAULT;
1263 goto out;
1266 ret += avail;
1267 head += avail;
1268 head %= ctx->nr_events;
1271 ring = kmap_atomic(ctx->ring_pages[0]);
1272 ring->head = head;
1273 kunmap_atomic(ring);
1274 flush_dcache_page(ctx->ring_pages[0]);
1276 pr_debug("%li h%u t%u\n", ret, head, tail);
1277 out:
1278 mutex_unlock(&ctx->ring_lock);
1280 return ret;
1283 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1284 struct io_event __user *event, long *i)
1286 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1288 if (ret > 0)
1289 *i += ret;
1291 if (unlikely(atomic_read(&ctx->dead)))
1292 ret = -EINVAL;
1294 if (!*i)
1295 *i = ret;
1297 return ret < 0 || *i >= min_nr;
1300 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1301 struct io_event __user *event,
1302 struct timespec __user *timeout)
1304 ktime_t until = { .tv64 = KTIME_MAX };
1305 long ret = 0;
1307 if (timeout) {
1308 struct timespec ts;
1310 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1311 return -EFAULT;
1313 until = timespec_to_ktime(ts);
1317 * Note that aio_read_events() is being called as the conditional - i.e.
1318 * we're calling it after prepare_to_wait() has set task state to
1319 * TASK_INTERRUPTIBLE.
1321 * But aio_read_events() can block, and if it blocks it's going to flip
1322 * the task state back to TASK_RUNNING.
1324 * This should be ok, provided it doesn't flip the state back to
1325 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1326 * will only happen if the mutex_lock() call blocks, and we then find
1327 * the ringbuffer empty. So in practice we should be ok, but it's
1328 * something to be aware of when touching this code.
1330 if (until.tv64 == 0)
1331 aio_read_events(ctx, min_nr, nr, event, &ret);
1332 else
1333 wait_event_interruptible_hrtimeout(ctx->wait,
1334 aio_read_events(ctx, min_nr, nr, event, &ret),
1335 until);
1337 if (!ret && signal_pending(current))
1338 ret = -EINTR;
1340 return ret;
1343 /* sys_io_setup:
1344 * Create an aio_context capable of receiving at least nr_events.
1345 * ctxp must not point to an aio_context that already exists, and
1346 * must be initialized to 0 prior to the call. On successful
1347 * creation of the aio_context, *ctxp is filled in with the resulting
1348 * handle. May fail with -EINVAL if *ctxp is not initialized,
1349 * if the specified nr_events exceeds internal limits. May fail
1350 * with -EAGAIN if the specified nr_events exceeds the user's limit
1351 * of available events. May fail with -ENOMEM if insufficient kernel
1352 * resources are available. May fail with -EFAULT if an invalid
1353 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1354 * implemented.
1356 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1358 struct kioctx *ioctx = NULL;
1359 unsigned long ctx;
1360 long ret;
1362 ret = get_user(ctx, ctxp);
1363 if (unlikely(ret))
1364 goto out;
1366 ret = -EINVAL;
1367 if (unlikely(ctx || nr_events == 0)) {
1368 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1369 ctx, nr_events);
1370 goto out;
1373 ioctx = ioctx_alloc(nr_events);
1374 ret = PTR_ERR(ioctx);
1375 if (!IS_ERR(ioctx)) {
1376 ret = put_user(ioctx->user_id, ctxp);
1377 if (ret)
1378 kill_ioctx(current->mm, ioctx, NULL);
1379 percpu_ref_put(&ioctx->users);
1382 out:
1383 return ret;
1386 /* sys_io_destroy:
1387 * Destroy the aio_context specified. May cancel any outstanding
1388 * AIOs and block on completion. Will fail with -ENOSYS if not
1389 * implemented. May fail with -EINVAL if the context pointed to
1390 * is invalid.
1392 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1394 struct kioctx *ioctx = lookup_ioctx(ctx);
1395 if (likely(NULL != ioctx)) {
1396 struct ctx_rq_wait wait;
1397 int ret;
1399 init_completion(&wait.comp);
1400 atomic_set(&wait.count, 1);
1402 /* Pass requests_done to kill_ioctx() where it can be set
1403 * in a thread-safe way. If we try to set it here then we have
1404 * a race condition if two io_destroy() called simultaneously.
1406 ret = kill_ioctx(current->mm, ioctx, &wait);
1407 percpu_ref_put(&ioctx->users);
1409 /* Wait until all IO for the context are done. Otherwise kernel
1410 * keep using user-space buffers even if user thinks the context
1411 * is destroyed.
1413 if (!ret)
1414 wait_for_completion(&wait.comp);
1416 return ret;
1418 pr_debug("EINVAL: invalid context id\n");
1419 return -EINVAL;
1422 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1423 bool vectored, bool compat, struct iov_iter *iter)
1425 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1426 size_t len = iocb->aio_nbytes;
1428 if (!vectored) {
1429 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1430 *iovec = NULL;
1431 return ret;
1433 #ifdef CONFIG_COMPAT
1434 if (compat)
1435 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1436 iter);
1437 #endif
1438 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1441 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1443 switch (ret) {
1444 case -EIOCBQUEUED:
1445 return ret;
1446 case -ERESTARTSYS:
1447 case -ERESTARTNOINTR:
1448 case -ERESTARTNOHAND:
1449 case -ERESTART_RESTARTBLOCK:
1451 * There's no easy way to restart the syscall since other AIO's
1452 * may be already running. Just fail this IO with EINTR.
1454 ret = -EINTR;
1455 /*FALLTHRU*/
1456 default:
1457 aio_complete(req, ret, 0);
1458 return 0;
1462 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1463 bool compat)
1465 struct file *file = req->ki_filp;
1466 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1467 struct iov_iter iter;
1468 ssize_t ret;
1470 if (unlikely(!(file->f_mode & FMODE_READ)))
1471 return -EBADF;
1472 if (unlikely(!file->f_op->read_iter))
1473 return -EINVAL;
1475 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1476 if (ret)
1477 return ret;
1478 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1479 if (!ret)
1480 ret = aio_ret(req, file->f_op->read_iter(req, &iter));
1481 kfree(iovec);
1482 return ret;
1485 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1486 bool compat)
1488 struct file *file = req->ki_filp;
1489 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1490 struct iov_iter iter;
1491 ssize_t ret;
1493 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1494 return -EBADF;
1495 if (unlikely(!file->f_op->write_iter))
1496 return -EINVAL;
1498 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1499 if (ret)
1500 return ret;
1501 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1502 if (!ret) {
1503 req->ki_flags |= IOCB_WRITE;
1504 file_start_write(file);
1505 ret = aio_ret(req, file->f_op->write_iter(req, &iter));
1507 * We release freeze protection in aio_complete(). Fool lockdep
1508 * by telling it the lock got released so that it doesn't
1509 * complain about held lock when we return to userspace.
1511 if (S_ISREG(file_inode(file)->i_mode))
1512 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1514 kfree(iovec);
1515 return ret;
1518 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1519 struct iocb *iocb, bool compat)
1521 struct aio_kiocb *req;
1522 struct file *file;
1523 ssize_t ret;
1525 /* enforce forwards compatibility on users */
1526 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1527 pr_debug("EINVAL: reserve field set\n");
1528 return -EINVAL;
1531 /* prevent overflows */
1532 if (unlikely(
1533 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1534 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1535 ((ssize_t)iocb->aio_nbytes < 0)
1536 )) {
1537 pr_debug("EINVAL: overflow check\n");
1538 return -EINVAL;
1541 req = aio_get_req(ctx);
1542 if (unlikely(!req))
1543 return -EAGAIN;
1545 req->common.ki_filp = file = fget(iocb->aio_fildes);
1546 if (unlikely(!req->common.ki_filp)) {
1547 ret = -EBADF;
1548 goto out_put_req;
1550 req->common.ki_pos = iocb->aio_offset;
1551 req->common.ki_complete = aio_complete;
1552 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1554 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1556 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1557 * instance of the file* now. The file descriptor must be
1558 * an eventfd() fd, and will be signaled for each completed
1559 * event using the eventfd_signal() function.
1561 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1562 if (IS_ERR(req->ki_eventfd)) {
1563 ret = PTR_ERR(req->ki_eventfd);
1564 req->ki_eventfd = NULL;
1565 goto out_put_req;
1568 req->common.ki_flags |= IOCB_EVENTFD;
1571 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1572 if (unlikely(ret)) {
1573 pr_debug("EFAULT: aio_key\n");
1574 goto out_put_req;
1577 req->ki_user_iocb = user_iocb;
1578 req->ki_user_data = iocb->aio_data;
1580 get_file(file);
1581 switch (iocb->aio_lio_opcode) {
1582 case IOCB_CMD_PREAD:
1583 ret = aio_read(&req->common, iocb, false, compat);
1584 break;
1585 case IOCB_CMD_PWRITE:
1586 ret = aio_write(&req->common, iocb, false, compat);
1587 break;
1588 case IOCB_CMD_PREADV:
1589 ret = aio_read(&req->common, iocb, true, compat);
1590 break;
1591 case IOCB_CMD_PWRITEV:
1592 ret = aio_write(&req->common, iocb, true, compat);
1593 break;
1594 default:
1595 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1596 ret = -EINVAL;
1597 break;
1599 fput(file);
1601 if (ret && ret != -EIOCBQUEUED)
1602 goto out_put_req;
1603 return 0;
1604 out_put_req:
1605 put_reqs_available(ctx, 1);
1606 percpu_ref_put(&ctx->reqs);
1607 kiocb_free(req);
1608 return ret;
1611 long do_io_submit(aio_context_t ctx_id, long nr,
1612 struct iocb __user *__user *iocbpp, bool compat)
1614 struct kioctx *ctx;
1615 long ret = 0;
1616 int i = 0;
1617 struct blk_plug plug;
1619 if (unlikely(nr < 0))
1620 return -EINVAL;
1622 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1623 nr = LONG_MAX/sizeof(*iocbpp);
1625 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1626 return -EFAULT;
1628 ctx = lookup_ioctx(ctx_id);
1629 if (unlikely(!ctx)) {
1630 pr_debug("EINVAL: invalid context id\n");
1631 return -EINVAL;
1634 blk_start_plug(&plug);
1637 * AKPM: should this return a partial result if some of the IOs were
1638 * successfully submitted?
1640 for (i=0; i<nr; i++) {
1641 struct iocb __user *user_iocb;
1642 struct iocb tmp;
1644 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1645 ret = -EFAULT;
1646 break;
1649 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1650 ret = -EFAULT;
1651 break;
1654 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1655 if (ret)
1656 break;
1658 blk_finish_plug(&plug);
1660 percpu_ref_put(&ctx->users);
1661 return i ? i : ret;
1664 /* sys_io_submit:
1665 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1666 * the number of iocbs queued. May return -EINVAL if the aio_context
1667 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1668 * *iocbpp[0] is not properly initialized, if the operation specified
1669 * is invalid for the file descriptor in the iocb. May fail with
1670 * -EFAULT if any of the data structures point to invalid data. May
1671 * fail with -EBADF if the file descriptor specified in the first
1672 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1673 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1674 * fail with -ENOSYS if not implemented.
1676 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1677 struct iocb __user * __user *, iocbpp)
1679 return do_io_submit(ctx_id, nr, iocbpp, 0);
1682 /* lookup_kiocb
1683 * Finds a given iocb for cancellation.
1685 static struct aio_kiocb *
1686 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1688 struct aio_kiocb *kiocb;
1690 assert_spin_locked(&ctx->ctx_lock);
1692 if (key != KIOCB_KEY)
1693 return NULL;
1695 /* TODO: use a hash or array, this sucks. */
1696 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1697 if (kiocb->ki_user_iocb == iocb)
1698 return kiocb;
1700 return NULL;
1703 /* sys_io_cancel:
1704 * Attempts to cancel an iocb previously passed to io_submit. If
1705 * the operation is successfully cancelled, the resulting event is
1706 * copied into the memory pointed to by result without being placed
1707 * into the completion queue and 0 is returned. May fail with
1708 * -EFAULT if any of the data structures pointed to are invalid.
1709 * May fail with -EINVAL if aio_context specified by ctx_id is
1710 * invalid. May fail with -EAGAIN if the iocb specified was not
1711 * cancelled. Will fail with -ENOSYS if not implemented.
1713 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1714 struct io_event __user *, result)
1716 struct kioctx *ctx;
1717 struct aio_kiocb *kiocb;
1718 u32 key;
1719 int ret;
1721 ret = get_user(key, &iocb->aio_key);
1722 if (unlikely(ret))
1723 return -EFAULT;
1725 ctx = lookup_ioctx(ctx_id);
1726 if (unlikely(!ctx))
1727 return -EINVAL;
1729 spin_lock_irq(&ctx->ctx_lock);
1731 kiocb = lookup_kiocb(ctx, iocb, key);
1732 if (kiocb)
1733 ret = kiocb_cancel(kiocb);
1734 else
1735 ret = -EINVAL;
1737 spin_unlock_irq(&ctx->ctx_lock);
1739 if (!ret) {
1741 * The result argument is no longer used - the io_event is
1742 * always delivered via the ring buffer. -EINPROGRESS indicates
1743 * cancellation is progress:
1745 ret = -EINPROGRESS;
1748 percpu_ref_put(&ctx->users);
1750 return ret;
1753 /* io_getevents:
1754 * Attempts to read at least min_nr events and up to nr events from
1755 * the completion queue for the aio_context specified by ctx_id. If
1756 * it succeeds, the number of read events is returned. May fail with
1757 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1758 * out of range, if timeout is out of range. May fail with -EFAULT
1759 * if any of the memory specified is invalid. May return 0 or
1760 * < min_nr if the timeout specified by timeout has elapsed
1761 * before sufficient events are available, where timeout == NULL
1762 * specifies an infinite timeout. Note that the timeout pointed to by
1763 * timeout is relative. Will fail with -ENOSYS if not implemented.
1765 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1766 long, min_nr,
1767 long, nr,
1768 struct io_event __user *, events,
1769 struct timespec __user *, timeout)
1771 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1772 long ret = -EINVAL;
1774 if (likely(ioctx)) {
1775 if (likely(min_nr <= nr && min_nr >= 0))
1776 ret = read_events(ioctx, min_nr, nr, events, timeout);
1777 percpu_ref_put(&ioctx->users);
1779 return ret;