2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
50 #include <asm/uaccess.h>
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly
;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug
);
57 module_param_named(jbd2_debug
, jbd2_journal_enable_debug
, ushort
, 0644);
58 MODULE_PARM_DESC(jbd2_debug
, "Debugging level for jbd2");
61 EXPORT_SYMBOL(jbd2_journal_extend
);
62 EXPORT_SYMBOL(jbd2_journal_stop
);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates
);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates
);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access
);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access
);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access
);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers
);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata
);
70 EXPORT_SYMBOL(jbd2_journal_forget
);
72 EXPORT_SYMBOL(journal_sync_buffer
);
74 EXPORT_SYMBOL(jbd2_journal_flush
);
75 EXPORT_SYMBOL(jbd2_journal_revoke
);
77 EXPORT_SYMBOL(jbd2_journal_init_dev
);
78 EXPORT_SYMBOL(jbd2_journal_init_inode
);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features
);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features
);
81 EXPORT_SYMBOL(jbd2_journal_set_features
);
82 EXPORT_SYMBOL(jbd2_journal_load
);
83 EXPORT_SYMBOL(jbd2_journal_destroy
);
84 EXPORT_SYMBOL(jbd2_journal_abort
);
85 EXPORT_SYMBOL(jbd2_journal_errno
);
86 EXPORT_SYMBOL(jbd2_journal_ack_err
);
87 EXPORT_SYMBOL(jbd2_journal_clear_err
);
88 EXPORT_SYMBOL(jbd2_log_wait_commit
);
89 EXPORT_SYMBOL(jbd2_log_start_commit
);
90 EXPORT_SYMBOL(jbd2_journal_start_commit
);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested
);
92 EXPORT_SYMBOL(jbd2_journal_wipe
);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page
);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage
);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers
);
96 EXPORT_SYMBOL(jbd2_journal_force_commit
);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write
);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait
);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode
);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode
);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate
);
102 EXPORT_SYMBOL(jbd2_inode_cache
);
104 static void __journal_abort_soft (journal_t
*journal
, int errno
);
105 static int jbd2_journal_create_slab(size_t slab_size
);
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level
, const char *file
, const char *func
,
109 unsigned int line
, const char *fmt
, ...)
111 struct va_format vaf
;
114 if (level
> jbd2_journal_enable_debug
)
119 printk(KERN_DEBUG
"%s: (%s, %u): %pV\n", file
, func
, line
, &vaf
);
122 EXPORT_SYMBOL(__jbd2_debug
);
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t
*j
, journal_superblock_t
*sb
)
128 if (!jbd2_journal_has_csum_v2or3_feature(j
))
131 return sb
->s_checksum_type
== JBD2_CRC32C_CHKSUM
;
134 static __be32
jbd2_superblock_csum(journal_t
*j
, journal_superblock_t
*sb
)
139 old_csum
= sb
->s_checksum
;
141 csum
= jbd2_chksum(j
, ~0, (char *)sb
, sizeof(journal_superblock_t
));
142 sb
->s_checksum
= old_csum
;
144 return cpu_to_be32(csum
);
147 static int jbd2_superblock_csum_verify(journal_t
*j
, journal_superblock_t
*sb
)
149 if (!jbd2_journal_has_csum_v2or3(j
))
152 return sb
->s_checksum
== jbd2_superblock_csum(j
, sb
);
155 static void jbd2_superblock_csum_set(journal_t
*j
, journal_superblock_t
*sb
)
157 if (!jbd2_journal_has_csum_v2or3(j
))
160 sb
->s_checksum
= jbd2_superblock_csum(j
, sb
);
164 * Helper function used to manage commit timeouts
167 static void commit_timeout(unsigned long __data
)
169 struct task_struct
* p
= (struct task_struct
*) __data
;
175 * kjournald2: The main thread function used to manage a logging device
178 * This kernel thread is responsible for two things:
180 * 1) COMMIT: Every so often we need to commit the current state of the
181 * filesystem to disk. The journal thread is responsible for writing
182 * all of the metadata buffers to disk.
184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185 * of the data in that part of the log has been rewritten elsewhere on
186 * the disk. Flushing these old buffers to reclaim space in the log is
187 * known as checkpointing, and this thread is responsible for that job.
190 static int kjournald2(void *arg
)
192 journal_t
*journal
= arg
;
193 transaction_t
*transaction
;
196 * Set up an interval timer which can be used to trigger a commit wakeup
197 * after the commit interval expires
199 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
200 (unsigned long)current
);
204 /* Record that the journal thread is running */
205 journal
->j_task
= current
;
206 wake_up(&journal
->j_wait_done_commit
);
209 * And now, wait forever for commit wakeup events.
211 write_lock(&journal
->j_state_lock
);
214 if (journal
->j_flags
& JBD2_UNMOUNT
)
217 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 journal
->j_commit_sequence
, journal
->j_commit_request
);
220 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
221 jbd_debug(1, "OK, requests differ\n");
222 write_unlock(&journal
->j_state_lock
);
223 del_timer_sync(&journal
->j_commit_timer
);
224 jbd2_journal_commit_transaction(journal
);
225 write_lock(&journal
->j_state_lock
);
229 wake_up(&journal
->j_wait_done_commit
);
230 if (freezing(current
)) {
232 * The simpler the better. Flushing journal isn't a
233 * good idea, because that depends on threads that may
234 * be already stopped.
236 jbd_debug(1, "Now suspending kjournald2\n");
237 write_unlock(&journal
->j_state_lock
);
239 write_lock(&journal
->j_state_lock
);
242 * We assume on resume that commits are already there,
246 int should_sleep
= 1;
248 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
250 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
252 transaction
= journal
->j_running_transaction
;
253 if (transaction
&& time_after_eq(jiffies
,
254 transaction
->t_expires
))
256 if (journal
->j_flags
& JBD2_UNMOUNT
)
259 write_unlock(&journal
->j_state_lock
);
261 write_lock(&journal
->j_state_lock
);
263 finish_wait(&journal
->j_wait_commit
, &wait
);
266 jbd_debug(1, "kjournald2 wakes\n");
269 * Were we woken up by a commit wakeup event?
271 transaction
= journal
->j_running_transaction
;
272 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
273 journal
->j_commit_request
= transaction
->t_tid
;
274 jbd_debug(1, "woke because of timeout\n");
279 del_timer_sync(&journal
->j_commit_timer
);
280 journal
->j_task
= NULL
;
281 wake_up(&journal
->j_wait_done_commit
);
282 jbd_debug(1, "Journal thread exiting.\n");
283 write_unlock(&journal
->j_state_lock
);
287 static int jbd2_journal_start_thread(journal_t
*journal
)
289 struct task_struct
*t
;
291 t
= kthread_run(kjournald2
, journal
, "jbd2/%s",
296 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
300 static void journal_kill_thread(journal_t
*journal
)
302 write_lock(&journal
->j_state_lock
);
303 journal
->j_flags
|= JBD2_UNMOUNT
;
305 while (journal
->j_task
) {
306 write_unlock(&journal
->j_state_lock
);
307 wake_up(&journal
->j_wait_commit
);
308 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== NULL
);
309 write_lock(&journal
->j_state_lock
);
311 write_unlock(&journal
->j_state_lock
);
315 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
317 * Writes a metadata buffer to a given disk block. The actual IO is not
318 * performed but a new buffer_head is constructed which labels the data
319 * to be written with the correct destination disk block.
321 * Any magic-number escaping which needs to be done will cause a
322 * copy-out here. If the buffer happens to start with the
323 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324 * magic number is only written to the log for descripter blocks. In
325 * this case, we copy the data and replace the first word with 0, and we
326 * return a result code which indicates that this buffer needs to be
327 * marked as an escaped buffer in the corresponding log descriptor
328 * block. The missing word can then be restored when the block is read
331 * If the source buffer has already been modified by a new transaction
332 * since we took the last commit snapshot, we use the frozen copy of
333 * that data for IO. If we end up using the existing buffer_head's data
334 * for the write, then we have to make sure nobody modifies it while the
335 * IO is in progress. do_get_write_access() handles this.
337 * The function returns a pointer to the buffer_head to be used for IO.
345 * Bit 0 set == escape performed on the data
346 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
349 int jbd2_journal_write_metadata_buffer(transaction_t
*transaction
,
350 struct journal_head
*jh_in
,
351 struct buffer_head
**bh_out
,
354 int need_copy_out
= 0;
355 int done_copy_out
= 0;
358 struct buffer_head
*new_bh
;
359 struct page
*new_page
;
360 unsigned int new_offset
;
361 struct buffer_head
*bh_in
= jh2bh(jh_in
);
362 journal_t
*journal
= transaction
->t_journal
;
365 * The buffer really shouldn't be locked: only the current committing
366 * transaction is allowed to write it, so nobody else is allowed
369 * akpm: except if we're journalling data, and write() output is
370 * also part of a shared mapping, and another thread has
371 * decided to launch a writepage() against this buffer.
373 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
375 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
377 /* keep subsequent assertions sane */
378 atomic_set(&new_bh
->b_count
, 1);
380 jbd_lock_bh_state(bh_in
);
383 * If a new transaction has already done a buffer copy-out, then
384 * we use that version of the data for the commit.
386 if (jh_in
->b_frozen_data
) {
388 new_page
= virt_to_page(jh_in
->b_frozen_data
);
389 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
391 new_page
= jh2bh(jh_in
)->b_page
;
392 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
395 mapped_data
= kmap_atomic(new_page
);
397 * Fire data frozen trigger if data already wasn't frozen. Do this
398 * before checking for escaping, as the trigger may modify the magic
399 * offset. If a copy-out happens afterwards, it will have the correct
400 * data in the buffer.
403 jbd2_buffer_frozen_trigger(jh_in
, mapped_data
+ new_offset
,
409 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
410 cpu_to_be32(JBD2_MAGIC_NUMBER
)) {
414 kunmap_atomic(mapped_data
);
417 * Do we need to do a data copy?
419 if (need_copy_out
&& !done_copy_out
) {
422 jbd_unlock_bh_state(bh_in
);
423 tmp
= jbd2_alloc(bh_in
->b_size
, GFP_NOFS
);
428 jbd_lock_bh_state(bh_in
);
429 if (jh_in
->b_frozen_data
) {
430 jbd2_free(tmp
, bh_in
->b_size
);
434 jh_in
->b_frozen_data
= tmp
;
435 mapped_data
= kmap_atomic(new_page
);
436 memcpy(tmp
, mapped_data
+ new_offset
, bh_in
->b_size
);
437 kunmap_atomic(mapped_data
);
439 new_page
= virt_to_page(tmp
);
440 new_offset
= offset_in_page(tmp
);
444 * This isn't strictly necessary, as we're using frozen
445 * data for the escaping, but it keeps consistency with
446 * b_frozen_data usage.
448 jh_in
->b_frozen_triggers
= jh_in
->b_triggers
;
452 * Did we need to do an escaping? Now we've done all the
453 * copying, we can finally do so.
456 mapped_data
= kmap_atomic(new_page
);
457 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
458 kunmap_atomic(mapped_data
);
461 set_bh_page(new_bh
, new_page
, new_offset
);
462 new_bh
->b_size
= bh_in
->b_size
;
463 new_bh
->b_bdev
= journal
->j_dev
;
464 new_bh
->b_blocknr
= blocknr
;
465 new_bh
->b_private
= bh_in
;
466 set_buffer_mapped(new_bh
);
467 set_buffer_dirty(new_bh
);
472 * The to-be-written buffer needs to get moved to the io queue,
473 * and the original buffer whose contents we are shadowing or
474 * copying is moved to the transaction's shadow queue.
476 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
477 spin_lock(&journal
->j_list_lock
);
478 __jbd2_journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
479 spin_unlock(&journal
->j_list_lock
);
480 set_buffer_shadow(bh_in
);
481 jbd_unlock_bh_state(bh_in
);
483 return do_escape
| (done_copy_out
<< 1);
487 * Allocation code for the journal file. Manage the space left in the
488 * journal, so that we can begin checkpointing when appropriate.
492 * Called with j_state_lock locked for writing.
493 * Returns true if a transaction commit was started.
495 int __jbd2_log_start_commit(journal_t
*journal
, tid_t target
)
497 /* Return if the txn has already requested to be committed */
498 if (journal
->j_commit_request
== target
)
502 * The only transaction we can possibly wait upon is the
503 * currently running transaction (if it exists). Otherwise,
504 * the target tid must be an old one.
506 if (journal
->j_running_transaction
&&
507 journal
->j_running_transaction
->t_tid
== target
) {
509 * We want a new commit: OK, mark the request and wakeup the
510 * commit thread. We do _not_ do the commit ourselves.
513 journal
->j_commit_request
= target
;
514 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 journal
->j_commit_request
,
516 journal
->j_commit_sequence
);
517 journal
->j_running_transaction
->t_requested
= jiffies
;
518 wake_up(&journal
->j_wait_commit
);
520 } else if (!tid_geq(journal
->j_commit_request
, target
))
521 /* This should never happen, but if it does, preserve
522 the evidence before kjournald goes into a loop and
523 increments j_commit_sequence beyond all recognition. */
524 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 journal
->j_commit_request
,
526 journal
->j_commit_sequence
,
527 target
, journal
->j_running_transaction
?
528 journal
->j_running_transaction
->t_tid
: 0);
532 int jbd2_log_start_commit(journal_t
*journal
, tid_t tid
)
536 write_lock(&journal
->j_state_lock
);
537 ret
= __jbd2_log_start_commit(journal
, tid
);
538 write_unlock(&journal
->j_state_lock
);
543 * Force and wait any uncommitted transactions. We can only force the running
544 * transaction if we don't have an active handle, otherwise, we will deadlock.
545 * Returns: <0 in case of error,
546 * 0 if nothing to commit,
547 * 1 if transaction was successfully committed.
549 static int __jbd2_journal_force_commit(journal_t
*journal
)
551 transaction_t
*transaction
= NULL
;
553 int need_to_start
= 0, ret
= 0;
555 read_lock(&journal
->j_state_lock
);
556 if (journal
->j_running_transaction
&& !current
->journal_info
) {
557 transaction
= journal
->j_running_transaction
;
558 if (!tid_geq(journal
->j_commit_request
, transaction
->t_tid
))
560 } else if (journal
->j_committing_transaction
)
561 transaction
= journal
->j_committing_transaction
;
564 /* Nothing to commit */
565 read_unlock(&journal
->j_state_lock
);
568 tid
= transaction
->t_tid
;
569 read_unlock(&journal
->j_state_lock
);
571 jbd2_log_start_commit(journal
, tid
);
572 ret
= jbd2_log_wait_commit(journal
, tid
);
580 * Force and wait upon a commit if the calling process is not within
581 * transaction. This is used for forcing out undo-protected data which contains
582 * bitmaps, when the fs is running out of space.
584 * @journal: journal to force
585 * Returns true if progress was made.
587 int jbd2_journal_force_commit_nested(journal_t
*journal
)
591 ret
= __jbd2_journal_force_commit(journal
);
596 * int journal_force_commit() - force any uncommitted transactions
597 * @journal: journal to force
599 * Caller want unconditional commit. We can only force the running transaction
600 * if we don't have an active handle, otherwise, we will deadlock.
602 int jbd2_journal_force_commit(journal_t
*journal
)
606 J_ASSERT(!current
->journal_info
);
607 ret
= __jbd2_journal_force_commit(journal
);
614 * Start a commit of the current running transaction (if any). Returns true
615 * if a transaction is going to be committed (or is currently already
616 * committing), and fills its tid in at *ptid
618 int jbd2_journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
622 write_lock(&journal
->j_state_lock
);
623 if (journal
->j_running_transaction
) {
624 tid_t tid
= journal
->j_running_transaction
->t_tid
;
626 __jbd2_log_start_commit(journal
, tid
);
627 /* There's a running transaction and we've just made sure
628 * it's commit has been scheduled. */
632 } else if (journal
->j_committing_transaction
) {
634 * If commit has been started, then we have to wait for
635 * completion of that transaction.
638 *ptid
= journal
->j_committing_transaction
->t_tid
;
641 write_unlock(&journal
->j_state_lock
);
646 * Return 1 if a given transaction has not yet sent barrier request
647 * connected with a transaction commit. If 0 is returned, transaction
648 * may or may not have sent the barrier. Used to avoid sending barrier
649 * twice in common cases.
651 int jbd2_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
654 transaction_t
*commit_trans
;
656 if (!(journal
->j_flags
& JBD2_BARRIER
))
658 read_lock(&journal
->j_state_lock
);
659 /* Transaction already committed? */
660 if (tid_geq(journal
->j_commit_sequence
, tid
))
662 commit_trans
= journal
->j_committing_transaction
;
663 if (!commit_trans
|| commit_trans
->t_tid
!= tid
) {
668 * Transaction is being committed and we already proceeded to
669 * submitting a flush to fs partition?
671 if (journal
->j_fs_dev
!= journal
->j_dev
) {
672 if (!commit_trans
->t_need_data_flush
||
673 commit_trans
->t_state
>= T_COMMIT_DFLUSH
)
676 if (commit_trans
->t_state
>= T_COMMIT_JFLUSH
)
681 read_unlock(&journal
->j_state_lock
);
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier
);
687 * Wait for a specified commit to complete.
688 * The caller may not hold the journal lock.
690 int jbd2_log_wait_commit(journal_t
*journal
, tid_t tid
)
694 read_lock(&journal
->j_state_lock
);
695 #ifdef CONFIG_PROVE_LOCKING
697 * Some callers make sure transaction is already committing and in that
698 * case we cannot block on open handles anymore. So don't warn in that
701 if (tid_gt(tid
, journal
->j_commit_sequence
) &&
702 (!journal
->j_committing_transaction
||
703 journal
->j_committing_transaction
->t_tid
!= tid
)) {
704 read_unlock(&journal
->j_state_lock
);
705 jbd2_might_wait_for_commit(journal
);
706 read_lock(&journal
->j_state_lock
);
709 #ifdef CONFIG_JBD2_DEBUG
710 if (!tid_geq(journal
->j_commit_request
, tid
)) {
712 "%s: error: j_commit_request=%d, tid=%d\n",
713 __func__
, journal
->j_commit_request
, tid
);
716 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
717 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
718 tid
, journal
->j_commit_sequence
);
719 read_unlock(&journal
->j_state_lock
);
720 wake_up(&journal
->j_wait_commit
);
721 wait_event(journal
->j_wait_done_commit
,
722 !tid_gt(tid
, journal
->j_commit_sequence
));
723 read_lock(&journal
->j_state_lock
);
725 read_unlock(&journal
->j_state_lock
);
727 if (unlikely(is_journal_aborted(journal
)))
733 * When this function returns the transaction corresponding to tid
734 * will be completed. If the transaction has currently running, start
735 * committing that transaction before waiting for it to complete. If
736 * the transaction id is stale, it is by definition already completed,
737 * so just return SUCCESS.
739 int jbd2_complete_transaction(journal_t
*journal
, tid_t tid
)
741 int need_to_wait
= 1;
743 read_lock(&journal
->j_state_lock
);
744 if (journal
->j_running_transaction
&&
745 journal
->j_running_transaction
->t_tid
== tid
) {
746 if (journal
->j_commit_request
!= tid
) {
747 /* transaction not yet started, so request it */
748 read_unlock(&journal
->j_state_lock
);
749 jbd2_log_start_commit(journal
, tid
);
752 } else if (!(journal
->j_committing_transaction
&&
753 journal
->j_committing_transaction
->t_tid
== tid
))
755 read_unlock(&journal
->j_state_lock
);
759 return jbd2_log_wait_commit(journal
, tid
);
761 EXPORT_SYMBOL(jbd2_complete_transaction
);
764 * Log buffer allocation routines:
767 int jbd2_journal_next_log_block(journal_t
*journal
, unsigned long long *retp
)
769 unsigned long blocknr
;
771 write_lock(&journal
->j_state_lock
);
772 J_ASSERT(journal
->j_free
> 1);
774 blocknr
= journal
->j_head
;
777 if (journal
->j_head
== journal
->j_last
)
778 journal
->j_head
= journal
->j_first
;
779 write_unlock(&journal
->j_state_lock
);
780 return jbd2_journal_bmap(journal
, blocknr
, retp
);
784 * Conversion of logical to physical block numbers for the journal
786 * On external journals the journal blocks are identity-mapped, so
787 * this is a no-op. If needed, we can use j_blk_offset - everything is
790 int jbd2_journal_bmap(journal_t
*journal
, unsigned long blocknr
,
791 unsigned long long *retp
)
794 unsigned long long ret
;
796 if (journal
->j_inode
) {
797 ret
= bmap(journal
->j_inode
, blocknr
);
801 printk(KERN_ALERT
"%s: journal block not found "
802 "at offset %lu on %s\n",
803 __func__
, blocknr
, journal
->j_devname
);
805 __journal_abort_soft(journal
, err
);
808 *retp
= blocknr
; /* +journal->j_blk_offset */
814 * We play buffer_head aliasing tricks to write data/metadata blocks to
815 * the journal without copying their contents, but for journal
816 * descriptor blocks we do need to generate bona fide buffers.
818 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
819 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
820 * But we don't bother doing that, so there will be coherency problems with
821 * mmaps of blockdevs which hold live JBD-controlled filesystems.
824 jbd2_journal_get_descriptor_buffer(transaction_t
*transaction
, int type
)
826 journal_t
*journal
= transaction
->t_journal
;
827 struct buffer_head
*bh
;
828 unsigned long long blocknr
;
829 journal_header_t
*header
;
832 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
837 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
841 memset(bh
->b_data
, 0, journal
->j_blocksize
);
842 header
= (journal_header_t
*)bh
->b_data
;
843 header
->h_magic
= cpu_to_be32(JBD2_MAGIC_NUMBER
);
844 header
->h_blocktype
= cpu_to_be32(type
);
845 header
->h_sequence
= cpu_to_be32(transaction
->t_tid
);
846 set_buffer_uptodate(bh
);
848 BUFFER_TRACE(bh
, "return this buffer");
852 void jbd2_descriptor_block_csum_set(journal_t
*j
, struct buffer_head
*bh
)
854 struct jbd2_journal_block_tail
*tail
;
857 if (!jbd2_journal_has_csum_v2or3(j
))
860 tail
= (struct jbd2_journal_block_tail
*)(bh
->b_data
+ j
->j_blocksize
-
861 sizeof(struct jbd2_journal_block_tail
));
862 tail
->t_checksum
= 0;
863 csum
= jbd2_chksum(j
, j
->j_csum_seed
, bh
->b_data
, j
->j_blocksize
);
864 tail
->t_checksum
= cpu_to_be32(csum
);
868 * Return tid of the oldest transaction in the journal and block in the journal
869 * where the transaction starts.
871 * If the journal is now empty, return which will be the next transaction ID
872 * we will write and where will that transaction start.
874 * The return value is 0 if journal tail cannot be pushed any further, 1 if
877 int jbd2_journal_get_log_tail(journal_t
*journal
, tid_t
*tid
,
878 unsigned long *block
)
880 transaction_t
*transaction
;
883 read_lock(&journal
->j_state_lock
);
884 spin_lock(&journal
->j_list_lock
);
885 transaction
= journal
->j_checkpoint_transactions
;
887 *tid
= transaction
->t_tid
;
888 *block
= transaction
->t_log_start
;
889 } else if ((transaction
= journal
->j_committing_transaction
) != NULL
) {
890 *tid
= transaction
->t_tid
;
891 *block
= transaction
->t_log_start
;
892 } else if ((transaction
= journal
->j_running_transaction
) != NULL
) {
893 *tid
= transaction
->t_tid
;
894 *block
= journal
->j_head
;
896 *tid
= journal
->j_transaction_sequence
;
897 *block
= journal
->j_head
;
899 ret
= tid_gt(*tid
, journal
->j_tail_sequence
);
900 spin_unlock(&journal
->j_list_lock
);
901 read_unlock(&journal
->j_state_lock
);
907 * Update information in journal structure and in on disk journal superblock
908 * about log tail. This function does not check whether information passed in
909 * really pushes log tail further. It's responsibility of the caller to make
910 * sure provided log tail information is valid (e.g. by holding
911 * j_checkpoint_mutex all the time between computing log tail and calling this
912 * function as is the case with jbd2_cleanup_journal_tail()).
914 * Requires j_checkpoint_mutex
916 int __jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
921 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
924 * We cannot afford for write to remain in drive's caches since as
925 * soon as we update j_tail, next transaction can start reusing journal
926 * space and if we lose sb update during power failure we'd replay
927 * old transaction with possibly newly overwritten data.
929 ret
= jbd2_journal_update_sb_log_tail(journal
, tid
, block
, WRITE_FUA
);
933 write_lock(&journal
->j_state_lock
);
934 freed
= block
- journal
->j_tail
;
935 if (block
< journal
->j_tail
)
936 freed
+= journal
->j_last
- journal
->j_first
;
938 trace_jbd2_update_log_tail(journal
, tid
, block
, freed
);
940 "Cleaning journal tail from %d to %d (offset %lu), "
942 journal
->j_tail_sequence
, tid
, block
, freed
);
944 journal
->j_free
+= freed
;
945 journal
->j_tail_sequence
= tid
;
946 journal
->j_tail
= block
;
947 write_unlock(&journal
->j_state_lock
);
954 * This is a variation of __jbd2_update_log_tail which checks for validity of
955 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
956 * with other threads updating log tail.
958 void jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
960 mutex_lock(&journal
->j_checkpoint_mutex
);
961 if (tid_gt(tid
, journal
->j_tail_sequence
))
962 __jbd2_update_log_tail(journal
, tid
, block
);
963 mutex_unlock(&journal
->j_checkpoint_mutex
);
966 struct jbd2_stats_proc_session
{
968 struct transaction_stats_s
*stats
;
973 static void *jbd2_seq_info_start(struct seq_file
*seq
, loff_t
*pos
)
975 return *pos
? NULL
: SEQ_START_TOKEN
;
978 static void *jbd2_seq_info_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
983 static int jbd2_seq_info_show(struct seq_file
*seq
, void *v
)
985 struct jbd2_stats_proc_session
*s
= seq
->private;
987 if (v
!= SEQ_START_TOKEN
)
989 seq_printf(seq
, "%lu transactions (%lu requested), "
990 "each up to %u blocks\n",
991 s
->stats
->ts_tid
, s
->stats
->ts_requested
,
992 s
->journal
->j_max_transaction_buffers
);
993 if (s
->stats
->ts_tid
== 0)
995 seq_printf(seq
, "average: \n %ums waiting for transaction\n",
996 jiffies_to_msecs(s
->stats
->run
.rs_wait
/ s
->stats
->ts_tid
));
997 seq_printf(seq
, " %ums request delay\n",
998 (s
->stats
->ts_requested
== 0) ? 0 :
999 jiffies_to_msecs(s
->stats
->run
.rs_request_delay
/
1000 s
->stats
->ts_requested
));
1001 seq_printf(seq
, " %ums running transaction\n",
1002 jiffies_to_msecs(s
->stats
->run
.rs_running
/ s
->stats
->ts_tid
));
1003 seq_printf(seq
, " %ums transaction was being locked\n",
1004 jiffies_to_msecs(s
->stats
->run
.rs_locked
/ s
->stats
->ts_tid
));
1005 seq_printf(seq
, " %ums flushing data (in ordered mode)\n",
1006 jiffies_to_msecs(s
->stats
->run
.rs_flushing
/ s
->stats
->ts_tid
));
1007 seq_printf(seq
, " %ums logging transaction\n",
1008 jiffies_to_msecs(s
->stats
->run
.rs_logging
/ s
->stats
->ts_tid
));
1009 seq_printf(seq
, " %lluus average transaction commit time\n",
1010 div_u64(s
->journal
->j_average_commit_time
, 1000));
1011 seq_printf(seq
, " %lu handles per transaction\n",
1012 s
->stats
->run
.rs_handle_count
/ s
->stats
->ts_tid
);
1013 seq_printf(seq
, " %lu blocks per transaction\n",
1014 s
->stats
->run
.rs_blocks
/ s
->stats
->ts_tid
);
1015 seq_printf(seq
, " %lu logged blocks per transaction\n",
1016 s
->stats
->run
.rs_blocks_logged
/ s
->stats
->ts_tid
);
1020 static void jbd2_seq_info_stop(struct seq_file
*seq
, void *v
)
1024 static const struct seq_operations jbd2_seq_info_ops
= {
1025 .start
= jbd2_seq_info_start
,
1026 .next
= jbd2_seq_info_next
,
1027 .stop
= jbd2_seq_info_stop
,
1028 .show
= jbd2_seq_info_show
,
1031 static int jbd2_seq_info_open(struct inode
*inode
, struct file
*file
)
1033 journal_t
*journal
= PDE_DATA(inode
);
1034 struct jbd2_stats_proc_session
*s
;
1037 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1040 size
= sizeof(struct transaction_stats_s
);
1041 s
->stats
= kmalloc(size
, GFP_KERNEL
);
1042 if (s
->stats
== NULL
) {
1046 spin_lock(&journal
->j_history_lock
);
1047 memcpy(s
->stats
, &journal
->j_stats
, size
);
1048 s
->journal
= journal
;
1049 spin_unlock(&journal
->j_history_lock
);
1051 rc
= seq_open(file
, &jbd2_seq_info_ops
);
1053 struct seq_file
*m
= file
->private_data
;
1063 static int jbd2_seq_info_release(struct inode
*inode
, struct file
*file
)
1065 struct seq_file
*seq
= file
->private_data
;
1066 struct jbd2_stats_proc_session
*s
= seq
->private;
1069 return seq_release(inode
, file
);
1072 static const struct file_operations jbd2_seq_info_fops
= {
1073 .owner
= THIS_MODULE
,
1074 .open
= jbd2_seq_info_open
,
1076 .llseek
= seq_lseek
,
1077 .release
= jbd2_seq_info_release
,
1080 static struct proc_dir_entry
*proc_jbd2_stats
;
1082 static void jbd2_stats_proc_init(journal_t
*journal
)
1084 journal
->j_proc_entry
= proc_mkdir(journal
->j_devname
, proc_jbd2_stats
);
1085 if (journal
->j_proc_entry
) {
1086 proc_create_data("info", S_IRUGO
, journal
->j_proc_entry
,
1087 &jbd2_seq_info_fops
, journal
);
1091 static void jbd2_stats_proc_exit(journal_t
*journal
)
1093 remove_proc_entry("info", journal
->j_proc_entry
);
1094 remove_proc_entry(journal
->j_devname
, proc_jbd2_stats
);
1098 * Management for journal control blocks: functions to create and
1099 * destroy journal_t structures, and to initialise and read existing
1100 * journal blocks from disk. */
1102 /* First: create and setup a journal_t object in memory. We initialise
1103 * very few fields yet: that has to wait until we have created the
1104 * journal structures from from scratch, or loaded them from disk. */
1106 static journal_t
*journal_init_common(struct block_device
*bdev
,
1107 struct block_device
*fs_dev
,
1108 unsigned long long start
, int len
, int blocksize
)
1110 static struct lock_class_key jbd2_trans_commit_key
;
1113 struct buffer_head
*bh
;
1116 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
1120 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
1121 init_waitqueue_head(&journal
->j_wait_done_commit
);
1122 init_waitqueue_head(&journal
->j_wait_commit
);
1123 init_waitqueue_head(&journal
->j_wait_updates
);
1124 init_waitqueue_head(&journal
->j_wait_reserved
);
1125 mutex_init(&journal
->j_barrier
);
1126 mutex_init(&journal
->j_checkpoint_mutex
);
1127 spin_lock_init(&journal
->j_revoke_lock
);
1128 spin_lock_init(&journal
->j_list_lock
);
1129 rwlock_init(&journal
->j_state_lock
);
1131 journal
->j_commit_interval
= (HZ
* JBD2_DEFAULT_MAX_COMMIT_AGE
);
1132 journal
->j_min_batch_time
= 0;
1133 journal
->j_max_batch_time
= 15000; /* 15ms */
1134 atomic_set(&journal
->j_reserved_credits
, 0);
1136 /* The journal is marked for error until we succeed with recovery! */
1137 journal
->j_flags
= JBD2_ABORT
;
1139 /* Set up a default-sized revoke table for the new mount. */
1140 err
= jbd2_journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
1144 spin_lock_init(&journal
->j_history_lock
);
1146 lockdep_init_map(&journal
->j_trans_commit_map
, "jbd2_handle",
1147 &jbd2_trans_commit_key
, 0);
1149 /* journal descriptor can store up to n blocks -bzzz */
1150 journal
->j_blocksize
= blocksize
;
1151 journal
->j_dev
= bdev
;
1152 journal
->j_fs_dev
= fs_dev
;
1153 journal
->j_blk_offset
= start
;
1154 journal
->j_maxlen
= len
;
1155 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1156 journal
->j_wbufsize
= n
;
1157 journal
->j_wbuf
= kmalloc_array(n
, sizeof(struct buffer_head
*),
1159 if (!journal
->j_wbuf
)
1162 bh
= getblk_unmovable(journal
->j_dev
, start
, journal
->j_blocksize
);
1164 pr_err("%s: Cannot get buffer for journal superblock\n",
1168 journal
->j_sb_buffer
= bh
;
1169 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1174 kfree(journal
->j_wbuf
);
1175 jbd2_journal_destroy_revoke(journal
);
1180 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1182 * Create a journal structure assigned some fixed set of disk blocks to
1183 * the journal. We don't actually touch those disk blocks yet, but we
1184 * need to set up all of the mapping information to tell the journaling
1185 * system where the journal blocks are.
1190 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1191 * @bdev: Block device on which to create the journal
1192 * @fs_dev: Device which hold journalled filesystem for this journal.
1193 * @start: Block nr Start of journal.
1194 * @len: Length of the journal in blocks.
1195 * @blocksize: blocksize of journalling device
1197 * Returns: a newly created journal_t *
1199 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1200 * range of blocks on an arbitrary block device.
1203 journal_t
*jbd2_journal_init_dev(struct block_device
*bdev
,
1204 struct block_device
*fs_dev
,
1205 unsigned long long start
, int len
, int blocksize
)
1209 journal
= journal_init_common(bdev
, fs_dev
, start
, len
, blocksize
);
1213 bdevname(journal
->j_dev
, journal
->j_devname
);
1214 strreplace(journal
->j_devname
, '/', '!');
1215 jbd2_stats_proc_init(journal
);
1221 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1222 * @inode: An inode to create the journal in
1224 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1225 * the journal. The inode must exist already, must support bmap() and
1226 * must have all data blocks preallocated.
1228 journal_t
*jbd2_journal_init_inode(struct inode
*inode
)
1232 unsigned long long blocknr
;
1234 blocknr
= bmap(inode
, 0);
1236 pr_err("%s: Cannot locate journal superblock\n",
1241 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1242 inode
->i_sb
->s_id
, inode
->i_ino
, (long long) inode
->i_size
,
1243 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
1245 journal
= journal_init_common(inode
->i_sb
->s_bdev
, inode
->i_sb
->s_bdev
,
1246 blocknr
, inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
,
1247 inode
->i_sb
->s_blocksize
);
1251 journal
->j_inode
= inode
;
1252 bdevname(journal
->j_dev
, journal
->j_devname
);
1253 p
= strreplace(journal
->j_devname
, '/', '!');
1254 sprintf(p
, "-%lu", journal
->j_inode
->i_ino
);
1255 jbd2_stats_proc_init(journal
);
1261 * If the journal init or create aborts, we need to mark the journal
1262 * superblock as being NULL to prevent the journal destroy from writing
1263 * back a bogus superblock.
1265 static void journal_fail_superblock (journal_t
*journal
)
1267 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1269 journal
->j_sb_buffer
= NULL
;
1273 * Given a journal_t structure, initialise the various fields for
1274 * startup of a new journaling session. We use this both when creating
1275 * a journal, and after recovering an old journal to reset it for
1279 static int journal_reset(journal_t
*journal
)
1281 journal_superblock_t
*sb
= journal
->j_superblock
;
1282 unsigned long long first
, last
;
1284 first
= be32_to_cpu(sb
->s_first
);
1285 last
= be32_to_cpu(sb
->s_maxlen
);
1286 if (first
+ JBD2_MIN_JOURNAL_BLOCKS
> last
+ 1) {
1287 printk(KERN_ERR
"JBD2: Journal too short (blocks %llu-%llu).\n",
1289 journal_fail_superblock(journal
);
1293 journal
->j_first
= first
;
1294 journal
->j_last
= last
;
1296 journal
->j_head
= first
;
1297 journal
->j_tail
= first
;
1298 journal
->j_free
= last
- first
;
1300 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
1301 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
1302 journal
->j_commit_request
= journal
->j_commit_sequence
;
1304 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
1307 * As a special case, if the on-disk copy is already marked as needing
1308 * no recovery (s_start == 0), then we can safely defer the superblock
1309 * update until the next commit by setting JBD2_FLUSHED. This avoids
1310 * attempting a write to a potential-readonly device.
1312 if (sb
->s_start
== 0) {
1313 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1314 "(start %ld, seq %d, errno %d)\n",
1315 journal
->j_tail
, journal
->j_tail_sequence
,
1317 journal
->j_flags
|= JBD2_FLUSHED
;
1319 /* Lock here to make assertions happy... */
1320 mutex_lock(&journal
->j_checkpoint_mutex
);
1322 * Update log tail information. We use WRITE_FUA since new
1323 * transaction will start reusing journal space and so we
1324 * must make sure information about current log tail is on
1327 jbd2_journal_update_sb_log_tail(journal
,
1328 journal
->j_tail_sequence
,
1331 mutex_unlock(&journal
->j_checkpoint_mutex
);
1333 return jbd2_journal_start_thread(journal
);
1336 static int jbd2_write_superblock(journal_t
*journal
, int write_flags
)
1338 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1339 journal_superblock_t
*sb
= journal
->j_superblock
;
1342 trace_jbd2_write_superblock(journal
, write_flags
);
1343 if (!(journal
->j_flags
& JBD2_BARRIER
))
1344 write_flags
&= ~(REQ_FUA
| REQ_PREFLUSH
);
1346 if (buffer_write_io_error(bh
)) {
1348 * Oh, dear. A previous attempt to write the journal
1349 * superblock failed. This could happen because the
1350 * USB device was yanked out. Or it could happen to
1351 * be a transient write error and maybe the block will
1352 * be remapped. Nothing we can do but to retry the
1353 * write and hope for the best.
1355 printk(KERN_ERR
"JBD2: previous I/O error detected "
1356 "for journal superblock update for %s.\n",
1357 journal
->j_devname
);
1358 clear_buffer_write_io_error(bh
);
1359 set_buffer_uptodate(bh
);
1361 jbd2_superblock_csum_set(journal
, sb
);
1363 bh
->b_end_io
= end_buffer_write_sync
;
1364 ret
= submit_bh(REQ_OP_WRITE
, write_flags
, bh
);
1366 if (buffer_write_io_error(bh
)) {
1367 clear_buffer_write_io_error(bh
);
1368 set_buffer_uptodate(bh
);
1372 printk(KERN_ERR
"JBD2: Error %d detected when updating "
1373 "journal superblock for %s.\n", ret
,
1374 journal
->j_devname
);
1375 jbd2_journal_abort(journal
, ret
);
1382 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1383 * @journal: The journal to update.
1384 * @tail_tid: TID of the new transaction at the tail of the log
1385 * @tail_block: The first block of the transaction at the tail of the log
1386 * @write_op: With which operation should we write the journal sb
1388 * Update a journal's superblock information about log tail and write it to
1389 * disk, waiting for the IO to complete.
1391 int jbd2_journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1392 unsigned long tail_block
, int write_op
)
1394 journal_superblock_t
*sb
= journal
->j_superblock
;
1397 if (is_journal_aborted(journal
))
1400 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1401 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1402 tail_block
, tail_tid
);
1404 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1405 sb
->s_start
= cpu_to_be32(tail_block
);
1407 ret
= jbd2_write_superblock(journal
, write_op
);
1411 /* Log is no longer empty */
1412 write_lock(&journal
->j_state_lock
);
1413 WARN_ON(!sb
->s_sequence
);
1414 journal
->j_flags
&= ~JBD2_FLUSHED
;
1415 write_unlock(&journal
->j_state_lock
);
1422 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1423 * @journal: The journal to update.
1424 * @write_op: With which operation should we write the journal sb
1426 * Update a journal's dynamic superblock fields to show that journal is empty.
1427 * Write updated superblock to disk waiting for IO to complete.
1429 static void jbd2_mark_journal_empty(journal_t
*journal
, int write_op
)
1431 journal_superblock_t
*sb
= journal
->j_superblock
;
1433 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1434 read_lock(&journal
->j_state_lock
);
1435 /* Is it already empty? */
1436 if (sb
->s_start
== 0) {
1437 read_unlock(&journal
->j_state_lock
);
1440 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1441 journal
->j_tail_sequence
);
1443 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1444 sb
->s_start
= cpu_to_be32(0);
1445 read_unlock(&journal
->j_state_lock
);
1447 jbd2_write_superblock(journal
, write_op
);
1449 /* Log is no longer empty */
1450 write_lock(&journal
->j_state_lock
);
1451 journal
->j_flags
|= JBD2_FLUSHED
;
1452 write_unlock(&journal
->j_state_lock
);
1457 * jbd2_journal_update_sb_errno() - Update error in the journal.
1458 * @journal: The journal to update.
1460 * Update a journal's errno. Write updated superblock to disk waiting for IO
1463 void jbd2_journal_update_sb_errno(journal_t
*journal
)
1465 journal_superblock_t
*sb
= journal
->j_superblock
;
1467 read_lock(&journal
->j_state_lock
);
1468 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1470 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1471 read_unlock(&journal
->j_state_lock
);
1473 jbd2_write_superblock(journal
, WRITE_FUA
);
1475 EXPORT_SYMBOL(jbd2_journal_update_sb_errno
);
1478 * Read the superblock for a given journal, performing initial
1479 * validation of the format.
1481 static int journal_get_superblock(journal_t
*journal
)
1483 struct buffer_head
*bh
;
1484 journal_superblock_t
*sb
;
1487 bh
= journal
->j_sb_buffer
;
1489 J_ASSERT(bh
!= NULL
);
1490 if (!buffer_uptodate(bh
)) {
1491 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
1493 if (!buffer_uptodate(bh
)) {
1495 "JBD2: IO error reading journal superblock\n");
1500 if (buffer_verified(bh
))
1503 sb
= journal
->j_superblock
;
1507 if (sb
->s_header
.h_magic
!= cpu_to_be32(JBD2_MAGIC_NUMBER
) ||
1508 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1509 printk(KERN_WARNING
"JBD2: no valid journal superblock found\n");
1513 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1514 case JBD2_SUPERBLOCK_V1
:
1515 journal
->j_format_version
= 1;
1517 case JBD2_SUPERBLOCK_V2
:
1518 journal
->j_format_version
= 2;
1521 printk(KERN_WARNING
"JBD2: unrecognised superblock format ID\n");
1525 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1526 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1527 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1528 printk(KERN_WARNING
"JBD2: journal file too short\n");
1532 if (be32_to_cpu(sb
->s_first
) == 0 ||
1533 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1535 "JBD2: Invalid start block of journal: %u\n",
1536 be32_to_cpu(sb
->s_first
));
1540 if (jbd2_has_feature_csum2(journal
) &&
1541 jbd2_has_feature_csum3(journal
)) {
1542 /* Can't have checksum v2 and v3 at the same time! */
1543 printk(KERN_ERR
"JBD2: Can't enable checksumming v2 and v3 "
1544 "at the same time!\n");
1548 if (jbd2_journal_has_csum_v2or3_feature(journal
) &&
1549 jbd2_has_feature_checksum(journal
)) {
1550 /* Can't have checksum v1 and v2 on at the same time! */
1551 printk(KERN_ERR
"JBD2: Can't enable checksumming v1 and v2/3 "
1552 "at the same time!\n");
1556 if (!jbd2_verify_csum_type(journal
, sb
)) {
1557 printk(KERN_ERR
"JBD2: Unknown checksum type\n");
1561 /* Load the checksum driver */
1562 if (jbd2_journal_has_csum_v2or3_feature(journal
)) {
1563 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c", 0, 0);
1564 if (IS_ERR(journal
->j_chksum_driver
)) {
1565 printk(KERN_ERR
"JBD2: Cannot load crc32c driver.\n");
1566 err
= PTR_ERR(journal
->j_chksum_driver
);
1567 journal
->j_chksum_driver
= NULL
;
1572 /* Check superblock checksum */
1573 if (!jbd2_superblock_csum_verify(journal
, sb
)) {
1574 printk(KERN_ERR
"JBD2: journal checksum error\n");
1579 /* Precompute checksum seed for all metadata */
1580 if (jbd2_journal_has_csum_v2or3(journal
))
1581 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0, sb
->s_uuid
,
1582 sizeof(sb
->s_uuid
));
1584 set_buffer_verified(bh
);
1589 journal_fail_superblock(journal
);
1594 * Load the on-disk journal superblock and read the key fields into the
1598 static int load_superblock(journal_t
*journal
)
1601 journal_superblock_t
*sb
;
1603 err
= journal_get_superblock(journal
);
1607 sb
= journal
->j_superblock
;
1609 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1610 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1611 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1612 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1613 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1620 * int jbd2_journal_load() - Read journal from disk.
1621 * @journal: Journal to act on.
1623 * Given a journal_t structure which tells us which disk blocks contain
1624 * a journal, read the journal from disk to initialise the in-memory
1627 int jbd2_journal_load(journal_t
*journal
)
1630 journal_superblock_t
*sb
;
1632 err
= load_superblock(journal
);
1636 sb
= journal
->j_superblock
;
1637 /* If this is a V2 superblock, then we have to check the
1638 * features flags on it. */
1640 if (journal
->j_format_version
>= 2) {
1641 if ((sb
->s_feature_ro_compat
&
1642 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES
)) ||
1643 (sb
->s_feature_incompat
&
1644 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES
))) {
1646 "JBD2: Unrecognised features on journal\n");
1652 * Create a slab for this blocksize
1654 err
= jbd2_journal_create_slab(be32_to_cpu(sb
->s_blocksize
));
1658 /* Let the recovery code check whether it needs to recover any
1659 * data from the journal. */
1660 if (jbd2_journal_recover(journal
))
1661 goto recovery_error
;
1663 if (journal
->j_failed_commit
) {
1664 printk(KERN_ERR
"JBD2: journal transaction %u on %s "
1665 "is corrupt.\n", journal
->j_failed_commit
,
1666 journal
->j_devname
);
1667 return -EFSCORRUPTED
;
1670 /* OK, we've finished with the dynamic journal bits:
1671 * reinitialise the dynamic contents of the superblock in memory
1672 * and reset them on disk. */
1673 if (journal_reset(journal
))
1674 goto recovery_error
;
1676 journal
->j_flags
&= ~JBD2_ABORT
;
1677 journal
->j_flags
|= JBD2_LOADED
;
1681 printk(KERN_WARNING
"JBD2: recovery failed\n");
1686 * void jbd2_journal_destroy() - Release a journal_t structure.
1687 * @journal: Journal to act on.
1689 * Release a journal_t structure once it is no longer in use by the
1691 * Return <0 if we couldn't clean up the journal.
1693 int jbd2_journal_destroy(journal_t
*journal
)
1697 /* Wait for the commit thread to wake up and die. */
1698 journal_kill_thread(journal
);
1700 /* Force a final log commit */
1701 if (journal
->j_running_transaction
)
1702 jbd2_journal_commit_transaction(journal
);
1704 /* Force any old transactions to disk */
1706 /* Totally anal locking here... */
1707 spin_lock(&journal
->j_list_lock
);
1708 while (journal
->j_checkpoint_transactions
!= NULL
) {
1709 spin_unlock(&journal
->j_list_lock
);
1710 mutex_lock(&journal
->j_checkpoint_mutex
);
1711 err
= jbd2_log_do_checkpoint(journal
);
1712 mutex_unlock(&journal
->j_checkpoint_mutex
);
1714 * If checkpointing failed, just free the buffers to avoid
1718 jbd2_journal_destroy_checkpoint(journal
);
1719 spin_lock(&journal
->j_list_lock
);
1722 spin_lock(&journal
->j_list_lock
);
1725 J_ASSERT(journal
->j_running_transaction
== NULL
);
1726 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1727 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1728 spin_unlock(&journal
->j_list_lock
);
1730 if (journal
->j_sb_buffer
) {
1731 if (!is_journal_aborted(journal
)) {
1732 mutex_lock(&journal
->j_checkpoint_mutex
);
1734 write_lock(&journal
->j_state_lock
);
1735 journal
->j_tail_sequence
=
1736 ++journal
->j_transaction_sequence
;
1737 write_unlock(&journal
->j_state_lock
);
1739 jbd2_mark_journal_empty(journal
, WRITE_FLUSH_FUA
);
1740 mutex_unlock(&journal
->j_checkpoint_mutex
);
1743 brelse(journal
->j_sb_buffer
);
1746 if (journal
->j_proc_entry
)
1747 jbd2_stats_proc_exit(journal
);
1748 iput(journal
->j_inode
);
1749 if (journal
->j_revoke
)
1750 jbd2_journal_destroy_revoke(journal
);
1751 if (journal
->j_chksum_driver
)
1752 crypto_free_shash(journal
->j_chksum_driver
);
1753 kfree(journal
->j_wbuf
);
1761 *int jbd2_journal_check_used_features () - Check if features specified are used.
1762 * @journal: Journal to check.
1763 * @compat: bitmask of compatible features
1764 * @ro: bitmask of features that force read-only mount
1765 * @incompat: bitmask of incompatible features
1767 * Check whether the journal uses all of a given set of
1768 * features. Return true (non-zero) if it does.
1771 int jbd2_journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1772 unsigned long ro
, unsigned long incompat
)
1774 journal_superblock_t
*sb
;
1776 if (!compat
&& !ro
&& !incompat
)
1778 /* Load journal superblock if it is not loaded yet. */
1779 if (journal
->j_format_version
== 0 &&
1780 journal_get_superblock(journal
) != 0)
1782 if (journal
->j_format_version
== 1)
1785 sb
= journal
->j_superblock
;
1787 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1788 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1789 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1796 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1797 * @journal: Journal to check.
1798 * @compat: bitmask of compatible features
1799 * @ro: bitmask of features that force read-only mount
1800 * @incompat: bitmask of incompatible features
1802 * Check whether the journaling code supports the use of
1803 * all of a given set of features on this journal. Return true
1804 * (non-zero) if it can. */
1806 int jbd2_journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1807 unsigned long ro
, unsigned long incompat
)
1809 if (!compat
&& !ro
&& !incompat
)
1812 /* We can support any known requested features iff the
1813 * superblock is in version 2. Otherwise we fail to support any
1814 * extended sb features. */
1816 if (journal
->j_format_version
!= 2)
1819 if ((compat
& JBD2_KNOWN_COMPAT_FEATURES
) == compat
&&
1820 (ro
& JBD2_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1821 (incompat
& JBD2_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1828 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1829 * @journal: Journal to act on.
1830 * @compat: bitmask of compatible features
1831 * @ro: bitmask of features that force read-only mount
1832 * @incompat: bitmask of incompatible features
1834 * Mark a given journal feature as present on the
1835 * superblock. Returns true if the requested features could be set.
1839 int jbd2_journal_set_features (journal_t
*journal
, unsigned long compat
,
1840 unsigned long ro
, unsigned long incompat
)
1842 #define INCOMPAT_FEATURE_ON(f) \
1843 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1844 #define COMPAT_FEATURE_ON(f) \
1845 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1846 journal_superblock_t
*sb
;
1848 if (jbd2_journal_check_used_features(journal
, compat
, ro
, incompat
))
1851 if (!jbd2_journal_check_available_features(journal
, compat
, ro
, incompat
))
1854 /* If enabling v2 checksums, turn on v3 instead */
1855 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V2
) {
1856 incompat
&= ~JBD2_FEATURE_INCOMPAT_CSUM_V2
;
1857 incompat
|= JBD2_FEATURE_INCOMPAT_CSUM_V3
;
1860 /* Asking for checksumming v3 and v1? Only give them v3. */
1861 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V3
&&
1862 compat
& JBD2_FEATURE_COMPAT_CHECKSUM
)
1863 compat
&= ~JBD2_FEATURE_COMPAT_CHECKSUM
;
1865 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1866 compat
, ro
, incompat
);
1868 sb
= journal
->j_superblock
;
1870 /* If enabling v3 checksums, update superblock */
1871 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1872 sb
->s_checksum_type
= JBD2_CRC32C_CHKSUM
;
1873 sb
->s_feature_compat
&=
1874 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM
);
1876 /* Load the checksum driver */
1877 if (journal
->j_chksum_driver
== NULL
) {
1878 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c",
1880 if (IS_ERR(journal
->j_chksum_driver
)) {
1881 printk(KERN_ERR
"JBD2: Cannot load crc32c "
1883 journal
->j_chksum_driver
= NULL
;
1887 /* Precompute checksum seed for all metadata */
1888 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0,
1890 sizeof(sb
->s_uuid
));
1894 /* If enabling v1 checksums, downgrade superblock */
1895 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM
))
1896 sb
->s_feature_incompat
&=
1897 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2
|
1898 JBD2_FEATURE_INCOMPAT_CSUM_V3
);
1900 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1901 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1902 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1905 #undef COMPAT_FEATURE_ON
1906 #undef INCOMPAT_FEATURE_ON
1910 * jbd2_journal_clear_features () - Clear a given journal feature in the
1912 * @journal: Journal to act on.
1913 * @compat: bitmask of compatible features
1914 * @ro: bitmask of features that force read-only mount
1915 * @incompat: bitmask of incompatible features
1917 * Clear a given journal feature as present on the
1920 void jbd2_journal_clear_features(journal_t
*journal
, unsigned long compat
,
1921 unsigned long ro
, unsigned long incompat
)
1923 journal_superblock_t
*sb
;
1925 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1926 compat
, ro
, incompat
);
1928 sb
= journal
->j_superblock
;
1930 sb
->s_feature_compat
&= ~cpu_to_be32(compat
);
1931 sb
->s_feature_ro_compat
&= ~cpu_to_be32(ro
);
1932 sb
->s_feature_incompat
&= ~cpu_to_be32(incompat
);
1934 EXPORT_SYMBOL(jbd2_journal_clear_features
);
1937 * int jbd2_journal_flush () - Flush journal
1938 * @journal: Journal to act on.
1940 * Flush all data for a given journal to disk and empty the journal.
1941 * Filesystems can use this when remounting readonly to ensure that
1942 * recovery does not need to happen on remount.
1945 int jbd2_journal_flush(journal_t
*journal
)
1948 transaction_t
*transaction
= NULL
;
1950 write_lock(&journal
->j_state_lock
);
1952 /* Force everything buffered to the log... */
1953 if (journal
->j_running_transaction
) {
1954 transaction
= journal
->j_running_transaction
;
1955 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1956 } else if (journal
->j_committing_transaction
)
1957 transaction
= journal
->j_committing_transaction
;
1959 /* Wait for the log commit to complete... */
1961 tid_t tid
= transaction
->t_tid
;
1963 write_unlock(&journal
->j_state_lock
);
1964 jbd2_log_wait_commit(journal
, tid
);
1966 write_unlock(&journal
->j_state_lock
);
1969 /* ...and flush everything in the log out to disk. */
1970 spin_lock(&journal
->j_list_lock
);
1971 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1972 spin_unlock(&journal
->j_list_lock
);
1973 mutex_lock(&journal
->j_checkpoint_mutex
);
1974 err
= jbd2_log_do_checkpoint(journal
);
1975 mutex_unlock(&journal
->j_checkpoint_mutex
);
1976 spin_lock(&journal
->j_list_lock
);
1978 spin_unlock(&journal
->j_list_lock
);
1980 if (is_journal_aborted(journal
))
1983 mutex_lock(&journal
->j_checkpoint_mutex
);
1985 err
= jbd2_cleanup_journal_tail(journal
);
1987 mutex_unlock(&journal
->j_checkpoint_mutex
);
1993 /* Finally, mark the journal as really needing no recovery.
1994 * This sets s_start==0 in the underlying superblock, which is
1995 * the magic code for a fully-recovered superblock. Any future
1996 * commits of data to the journal will restore the current
1998 jbd2_mark_journal_empty(journal
, WRITE_FUA
);
1999 mutex_unlock(&journal
->j_checkpoint_mutex
);
2000 write_lock(&journal
->j_state_lock
);
2001 J_ASSERT(!journal
->j_running_transaction
);
2002 J_ASSERT(!journal
->j_committing_transaction
);
2003 J_ASSERT(!journal
->j_checkpoint_transactions
);
2004 J_ASSERT(journal
->j_head
== journal
->j_tail
);
2005 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
2006 write_unlock(&journal
->j_state_lock
);
2012 * int jbd2_journal_wipe() - Wipe journal contents
2013 * @journal: Journal to act on.
2014 * @write: flag (see below)
2016 * Wipe out all of the contents of a journal, safely. This will produce
2017 * a warning if the journal contains any valid recovery information.
2018 * Must be called between journal_init_*() and jbd2_journal_load().
2020 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2021 * we merely suppress recovery.
2024 int jbd2_journal_wipe(journal_t
*journal
, int write
)
2028 J_ASSERT (!(journal
->j_flags
& JBD2_LOADED
));
2030 err
= load_superblock(journal
);
2034 if (!journal
->j_tail
)
2037 printk(KERN_WARNING
"JBD2: %s recovery information on journal\n",
2038 write
? "Clearing" : "Ignoring");
2040 err
= jbd2_journal_skip_recovery(journal
);
2042 /* Lock to make assertions happy... */
2043 mutex_lock(&journal
->j_checkpoint_mutex
);
2044 jbd2_mark_journal_empty(journal
, WRITE_FUA
);
2045 mutex_unlock(&journal
->j_checkpoint_mutex
);
2053 * Journal abort has very specific semantics, which we describe
2054 * for journal abort.
2056 * Two internal functions, which provide abort to the jbd layer
2061 * Quick version for internal journal use (doesn't lock the journal).
2062 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2063 * and don't attempt to make any other journal updates.
2065 void __jbd2_journal_abort_hard(journal_t
*journal
)
2067 transaction_t
*transaction
;
2069 if (journal
->j_flags
& JBD2_ABORT
)
2072 printk(KERN_ERR
"Aborting journal on device %s.\n",
2073 journal
->j_devname
);
2075 write_lock(&journal
->j_state_lock
);
2076 journal
->j_flags
|= JBD2_ABORT
;
2077 transaction
= journal
->j_running_transaction
;
2079 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
2080 write_unlock(&journal
->j_state_lock
);
2083 /* Soft abort: record the abort error status in the journal superblock,
2084 * but don't do any other IO. */
2085 static void __journal_abort_soft (journal_t
*journal
, int errno
)
2087 if (journal
->j_flags
& JBD2_ABORT
)
2090 if (!journal
->j_errno
)
2091 journal
->j_errno
= errno
;
2093 __jbd2_journal_abort_hard(journal
);
2096 jbd2_journal_update_sb_errno(journal
);
2097 write_lock(&journal
->j_state_lock
);
2098 journal
->j_flags
|= JBD2_REC_ERR
;
2099 write_unlock(&journal
->j_state_lock
);
2104 * void jbd2_journal_abort () - Shutdown the journal immediately.
2105 * @journal: the journal to shutdown.
2106 * @errno: an error number to record in the journal indicating
2107 * the reason for the shutdown.
2109 * Perform a complete, immediate shutdown of the ENTIRE
2110 * journal (not of a single transaction). This operation cannot be
2111 * undone without closing and reopening the journal.
2113 * The jbd2_journal_abort function is intended to support higher level error
2114 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2117 * Journal abort has very specific semantics. Any existing dirty,
2118 * unjournaled buffers in the main filesystem will still be written to
2119 * disk by bdflush, but the journaling mechanism will be suspended
2120 * immediately and no further transaction commits will be honoured.
2122 * Any dirty, journaled buffers will be written back to disk without
2123 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2124 * filesystem, but we _do_ attempt to leave as much data as possible
2125 * behind for fsck to use for cleanup.
2127 * Any attempt to get a new transaction handle on a journal which is in
2128 * ABORT state will just result in an -EROFS error return. A
2129 * jbd2_journal_stop on an existing handle will return -EIO if we have
2130 * entered abort state during the update.
2132 * Recursive transactions are not disturbed by journal abort until the
2133 * final jbd2_journal_stop, which will receive the -EIO error.
2135 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2136 * which will be recorded (if possible) in the journal superblock. This
2137 * allows a client to record failure conditions in the middle of a
2138 * transaction without having to complete the transaction to record the
2139 * failure to disk. ext3_error, for example, now uses this
2142 * Errors which originate from within the journaling layer will NOT
2143 * supply an errno; a null errno implies that absolutely no further
2144 * writes are done to the journal (unless there are any already in
2149 void jbd2_journal_abort(journal_t
*journal
, int errno
)
2151 __journal_abort_soft(journal
, errno
);
2155 * int jbd2_journal_errno () - returns the journal's error state.
2156 * @journal: journal to examine.
2158 * This is the errno number set with jbd2_journal_abort(), the last
2159 * time the journal was mounted - if the journal was stopped
2160 * without calling abort this will be 0.
2162 * If the journal has been aborted on this mount time -EROFS will
2165 int jbd2_journal_errno(journal_t
*journal
)
2169 read_lock(&journal
->j_state_lock
);
2170 if (journal
->j_flags
& JBD2_ABORT
)
2173 err
= journal
->j_errno
;
2174 read_unlock(&journal
->j_state_lock
);
2179 * int jbd2_journal_clear_err () - clears the journal's error state
2180 * @journal: journal to act on.
2182 * An error must be cleared or acked to take a FS out of readonly
2185 int jbd2_journal_clear_err(journal_t
*journal
)
2189 write_lock(&journal
->j_state_lock
);
2190 if (journal
->j_flags
& JBD2_ABORT
)
2193 journal
->j_errno
= 0;
2194 write_unlock(&journal
->j_state_lock
);
2199 * void jbd2_journal_ack_err() - Ack journal err.
2200 * @journal: journal to act on.
2202 * An error must be cleared or acked to take a FS out of readonly
2205 void jbd2_journal_ack_err(journal_t
*journal
)
2207 write_lock(&journal
->j_state_lock
);
2208 if (journal
->j_errno
)
2209 journal
->j_flags
|= JBD2_ACK_ERR
;
2210 write_unlock(&journal
->j_state_lock
);
2213 int jbd2_journal_blocks_per_page(struct inode
*inode
)
2215 return 1 << (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2219 * helper functions to deal with 32 or 64bit block numbers.
2221 size_t journal_tag_bytes(journal_t
*journal
)
2225 if (jbd2_has_feature_csum3(journal
))
2226 return sizeof(journal_block_tag3_t
);
2228 sz
= sizeof(journal_block_tag_t
);
2230 if (jbd2_has_feature_csum2(journal
))
2231 sz
+= sizeof(__u16
);
2233 if (jbd2_has_feature_64bit(journal
))
2236 return sz
- sizeof(__u32
);
2240 * JBD memory management
2242 * These functions are used to allocate block-sized chunks of memory
2243 * used for making copies of buffer_head data. Very often it will be
2244 * page-sized chunks of data, but sometimes it will be in
2245 * sub-page-size chunks. (For example, 16k pages on Power systems
2246 * with a 4k block file system.) For blocks smaller than a page, we
2247 * use a SLAB allocator. There are slab caches for each block size,
2248 * which are allocated at mount time, if necessary, and we only free
2249 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2250 * this reason we don't need to a mutex to protect access to
2251 * jbd2_slab[] allocating or releasing memory; only in
2252 * jbd2_journal_create_slab().
2254 #define JBD2_MAX_SLABS 8
2255 static struct kmem_cache
*jbd2_slab
[JBD2_MAX_SLABS
];
2257 static const char *jbd2_slab_names
[JBD2_MAX_SLABS
] = {
2258 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2259 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2263 static void jbd2_journal_destroy_slabs(void)
2267 for (i
= 0; i
< JBD2_MAX_SLABS
; i
++) {
2269 kmem_cache_destroy(jbd2_slab
[i
]);
2270 jbd2_slab
[i
] = NULL
;
2274 static int jbd2_journal_create_slab(size_t size
)
2276 static DEFINE_MUTEX(jbd2_slab_create_mutex
);
2277 int i
= order_base_2(size
) - 10;
2280 if (size
== PAGE_SIZE
)
2283 if (i
>= JBD2_MAX_SLABS
)
2286 if (unlikely(i
< 0))
2288 mutex_lock(&jbd2_slab_create_mutex
);
2290 mutex_unlock(&jbd2_slab_create_mutex
);
2291 return 0; /* Already created */
2294 slab_size
= 1 << (i
+10);
2295 jbd2_slab
[i
] = kmem_cache_create(jbd2_slab_names
[i
], slab_size
,
2296 slab_size
, 0, NULL
);
2297 mutex_unlock(&jbd2_slab_create_mutex
);
2298 if (!jbd2_slab
[i
]) {
2299 printk(KERN_EMERG
"JBD2: no memory for jbd2_slab cache\n");
2305 static struct kmem_cache
*get_slab(size_t size
)
2307 int i
= order_base_2(size
) - 10;
2309 BUG_ON(i
>= JBD2_MAX_SLABS
);
2310 if (unlikely(i
< 0))
2312 BUG_ON(jbd2_slab
[i
] == NULL
);
2313 return jbd2_slab
[i
];
2316 void *jbd2_alloc(size_t size
, gfp_t flags
)
2320 BUG_ON(size
& (size
-1)); /* Must be a power of 2 */
2322 if (size
< PAGE_SIZE
)
2323 ptr
= kmem_cache_alloc(get_slab(size
), flags
);
2325 ptr
= (void *)__get_free_pages(flags
, get_order(size
));
2327 /* Check alignment; SLUB has gotten this wrong in the past,
2328 * and this can lead to user data corruption! */
2329 BUG_ON(((unsigned long) ptr
) & (size
-1));
2334 void jbd2_free(void *ptr
, size_t size
)
2336 if (size
< PAGE_SIZE
)
2337 kmem_cache_free(get_slab(size
), ptr
);
2339 free_pages((unsigned long)ptr
, get_order(size
));
2343 * Journal_head storage management
2345 static struct kmem_cache
*jbd2_journal_head_cache
;
2346 #ifdef CONFIG_JBD2_DEBUG
2347 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
2350 static int jbd2_journal_init_journal_head_cache(void)
2354 J_ASSERT(jbd2_journal_head_cache
== NULL
);
2355 jbd2_journal_head_cache
= kmem_cache_create("jbd2_journal_head",
2356 sizeof(struct journal_head
),
2358 SLAB_TEMPORARY
| SLAB_DESTROY_BY_RCU
,
2361 if (!jbd2_journal_head_cache
) {
2363 printk(KERN_EMERG
"JBD2: no memory for journal_head cache\n");
2368 static void jbd2_journal_destroy_journal_head_cache(void)
2370 if (jbd2_journal_head_cache
) {
2371 kmem_cache_destroy(jbd2_journal_head_cache
);
2372 jbd2_journal_head_cache
= NULL
;
2377 * journal_head splicing and dicing
2379 static struct journal_head
*journal_alloc_journal_head(void)
2381 struct journal_head
*ret
;
2383 #ifdef CONFIG_JBD2_DEBUG
2384 atomic_inc(&nr_journal_heads
);
2386 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
, GFP_NOFS
);
2388 jbd_debug(1, "out of memory for journal_head\n");
2389 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__
);
2390 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
,
2391 GFP_NOFS
| __GFP_NOFAIL
);
2396 static void journal_free_journal_head(struct journal_head
*jh
)
2398 #ifdef CONFIG_JBD2_DEBUG
2399 atomic_dec(&nr_journal_heads
);
2400 memset(jh
, JBD2_POISON_FREE
, sizeof(*jh
));
2402 kmem_cache_free(jbd2_journal_head_cache
, jh
);
2406 * A journal_head is attached to a buffer_head whenever JBD has an
2407 * interest in the buffer.
2409 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2410 * is set. This bit is tested in core kernel code where we need to take
2411 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2414 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2416 * When a buffer has its BH_JBD bit set it is immune from being released by
2417 * core kernel code, mainly via ->b_count.
2419 * A journal_head is detached from its buffer_head when the journal_head's
2420 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2421 * transaction (b_cp_transaction) hold their references to b_jcount.
2423 * Various places in the kernel want to attach a journal_head to a buffer_head
2424 * _before_ attaching the journal_head to a transaction. To protect the
2425 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2426 * journal_head's b_jcount refcount by one. The caller must call
2427 * jbd2_journal_put_journal_head() to undo this.
2429 * So the typical usage would be:
2431 * (Attach a journal_head if needed. Increments b_jcount)
2432 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2434 * (Get another reference for transaction)
2435 * jbd2_journal_grab_journal_head(bh);
2436 * jh->b_transaction = xxx;
2437 * (Put original reference)
2438 * jbd2_journal_put_journal_head(jh);
2442 * Give a buffer_head a journal_head.
2446 struct journal_head
*jbd2_journal_add_journal_head(struct buffer_head
*bh
)
2448 struct journal_head
*jh
;
2449 struct journal_head
*new_jh
= NULL
;
2452 if (!buffer_jbd(bh
))
2453 new_jh
= journal_alloc_journal_head();
2455 jbd_lock_bh_journal_head(bh
);
2456 if (buffer_jbd(bh
)) {
2460 (atomic_read(&bh
->b_count
) > 0) ||
2461 (bh
->b_page
&& bh
->b_page
->mapping
));
2464 jbd_unlock_bh_journal_head(bh
);
2469 new_jh
= NULL
; /* We consumed it */
2474 BUFFER_TRACE(bh
, "added journal_head");
2477 jbd_unlock_bh_journal_head(bh
);
2479 journal_free_journal_head(new_jh
);
2480 return bh
->b_private
;
2484 * Grab a ref against this buffer_head's journal_head. If it ended up not
2485 * having a journal_head, return NULL
2487 struct journal_head
*jbd2_journal_grab_journal_head(struct buffer_head
*bh
)
2489 struct journal_head
*jh
= NULL
;
2491 jbd_lock_bh_journal_head(bh
);
2492 if (buffer_jbd(bh
)) {
2496 jbd_unlock_bh_journal_head(bh
);
2500 static void __journal_remove_journal_head(struct buffer_head
*bh
)
2502 struct journal_head
*jh
= bh2jh(bh
);
2504 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
2505 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
2506 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
2507 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
2508 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
2509 J_ASSERT_BH(bh
, buffer_jbd(bh
));
2510 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
2511 BUFFER_TRACE(bh
, "remove journal_head");
2512 if (jh
->b_frozen_data
) {
2513 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
2514 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
2516 if (jh
->b_committed_data
) {
2517 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
2518 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
2520 bh
->b_private
= NULL
;
2521 jh
->b_bh
= NULL
; /* debug, really */
2522 clear_buffer_jbd(bh
);
2523 journal_free_journal_head(jh
);
2527 * Drop a reference on the passed journal_head. If it fell to zero then
2528 * release the journal_head from the buffer_head.
2530 void jbd2_journal_put_journal_head(struct journal_head
*jh
)
2532 struct buffer_head
*bh
= jh2bh(jh
);
2534 jbd_lock_bh_journal_head(bh
);
2535 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2537 if (!jh
->b_jcount
) {
2538 __journal_remove_journal_head(bh
);
2539 jbd_unlock_bh_journal_head(bh
);
2542 jbd_unlock_bh_journal_head(bh
);
2546 * Initialize jbd inode head
2548 void jbd2_journal_init_jbd_inode(struct jbd2_inode
*jinode
, struct inode
*inode
)
2550 jinode
->i_transaction
= NULL
;
2551 jinode
->i_next_transaction
= NULL
;
2552 jinode
->i_vfs_inode
= inode
;
2553 jinode
->i_flags
= 0;
2554 INIT_LIST_HEAD(&jinode
->i_list
);
2558 * Function to be called before we start removing inode from memory (i.e.,
2559 * clear_inode() is a fine place to be called from). It removes inode from
2560 * transaction's lists.
2562 void jbd2_journal_release_jbd_inode(journal_t
*journal
,
2563 struct jbd2_inode
*jinode
)
2568 spin_lock(&journal
->j_list_lock
);
2569 /* Is commit writing out inode - we have to wait */
2570 if (jinode
->i_flags
& JI_COMMIT_RUNNING
) {
2571 wait_queue_head_t
*wq
;
2572 DEFINE_WAIT_BIT(wait
, &jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2573 wq
= bit_waitqueue(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2574 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2575 spin_unlock(&journal
->j_list_lock
);
2577 finish_wait(wq
, &wait
.wait
);
2581 if (jinode
->i_transaction
) {
2582 list_del(&jinode
->i_list
);
2583 jinode
->i_transaction
= NULL
;
2585 spin_unlock(&journal
->j_list_lock
);
2589 #ifdef CONFIG_PROC_FS
2591 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2593 static void __init
jbd2_create_jbd_stats_proc_entry(void)
2595 proc_jbd2_stats
= proc_mkdir(JBD2_STATS_PROC_NAME
, NULL
);
2598 static void __exit
jbd2_remove_jbd_stats_proc_entry(void)
2600 if (proc_jbd2_stats
)
2601 remove_proc_entry(JBD2_STATS_PROC_NAME
, NULL
);
2606 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2607 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2611 struct kmem_cache
*jbd2_handle_cache
, *jbd2_inode_cache
;
2613 static int __init
jbd2_journal_init_handle_cache(void)
2615 jbd2_handle_cache
= KMEM_CACHE(jbd2_journal_handle
, SLAB_TEMPORARY
);
2616 if (jbd2_handle_cache
== NULL
) {
2617 printk(KERN_EMERG
"JBD2: failed to create handle cache\n");
2620 jbd2_inode_cache
= KMEM_CACHE(jbd2_inode
, 0);
2621 if (jbd2_inode_cache
== NULL
) {
2622 printk(KERN_EMERG
"JBD2: failed to create inode cache\n");
2623 kmem_cache_destroy(jbd2_handle_cache
);
2629 static void jbd2_journal_destroy_handle_cache(void)
2631 if (jbd2_handle_cache
)
2632 kmem_cache_destroy(jbd2_handle_cache
);
2633 if (jbd2_inode_cache
)
2634 kmem_cache_destroy(jbd2_inode_cache
);
2639 * Module startup and shutdown
2642 static int __init
journal_init_caches(void)
2646 ret
= jbd2_journal_init_revoke_caches();
2648 ret
= jbd2_journal_init_journal_head_cache();
2650 ret
= jbd2_journal_init_handle_cache();
2652 ret
= jbd2_journal_init_transaction_cache();
2656 static void jbd2_journal_destroy_caches(void)
2658 jbd2_journal_destroy_revoke_caches();
2659 jbd2_journal_destroy_journal_head_cache();
2660 jbd2_journal_destroy_handle_cache();
2661 jbd2_journal_destroy_transaction_cache();
2662 jbd2_journal_destroy_slabs();
2665 static int __init
journal_init(void)
2669 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2671 ret
= journal_init_caches();
2673 jbd2_create_jbd_stats_proc_entry();
2675 jbd2_journal_destroy_caches();
2680 static void __exit
journal_exit(void)
2682 #ifdef CONFIG_JBD2_DEBUG
2683 int n
= atomic_read(&nr_journal_heads
);
2685 printk(KERN_ERR
"JBD2: leaked %d journal_heads!\n", n
);
2687 jbd2_remove_jbd_stats_proc_entry();
2688 jbd2_journal_destroy_caches();
2691 MODULE_LICENSE("GPL");
2692 module_init(journal_init
);
2693 module_exit(journal_exit
);