4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly
= 100000;
33 static unsigned int m_hash_mask __read_mostly
;
34 static unsigned int m_hash_shift __read_mostly
;
35 static unsigned int mp_hash_mask __read_mostly
;
36 static unsigned int mp_hash_shift __read_mostly
;
38 static __initdata
unsigned long mhash_entries
;
39 static int __init
set_mhash_entries(char *str
)
43 mhash_entries
= simple_strtoul(str
, &str
, 0);
46 __setup("mhash_entries=", set_mhash_entries
);
48 static __initdata
unsigned long mphash_entries
;
49 static int __init
set_mphash_entries(char *str
)
53 mphash_entries
= simple_strtoul(str
, &str
, 0);
56 __setup("mphash_entries=", set_mphash_entries
);
59 static DEFINE_IDA(mnt_id_ida
);
60 static DEFINE_IDA(mnt_group_ida
);
61 static DEFINE_SPINLOCK(mnt_id_lock
);
62 static int mnt_id_start
= 0;
63 static int mnt_group_start
= 1;
65 static struct hlist_head
*mount_hashtable __read_mostly
;
66 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
67 static struct kmem_cache
*mnt_cache __read_mostly
;
68 static DECLARE_RWSEM(namespace_sem
);
71 struct kobject
*fs_kobj
;
72 EXPORT_SYMBOL_GPL(fs_kobj
);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
84 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
86 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
87 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
88 tmp
= tmp
+ (tmp
>> m_hash_shift
);
89 return &mount_hashtable
[tmp
& m_hash_mask
];
92 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
94 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
95 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
96 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount
*mnt
)
108 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
109 spin_lock(&mnt_id_lock
);
110 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
112 mnt_id_start
= mnt
->mnt_id
+ 1;
113 spin_unlock(&mnt_id_lock
);
120 static void mnt_free_id(struct mount
*mnt
)
122 int id
= mnt
->mnt_id
;
123 spin_lock(&mnt_id_lock
);
124 ida_remove(&mnt_id_ida
, id
);
125 if (mnt_id_start
> id
)
127 spin_unlock(&mnt_id_lock
);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount
*mnt
)
139 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
142 res
= ida_get_new_above(&mnt_group_ida
,
146 mnt_group_start
= mnt
->mnt_group_id
+ 1;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount
*mnt
)
156 int id
= mnt
->mnt_group_id
;
157 ida_remove(&mnt_group_ida
, id
);
158 if (mnt_group_start
> id
)
159 mnt_group_start
= id
;
160 mnt
->mnt_group_id
= 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount
*mnt
, int n
)
169 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount
*mnt
)
183 unsigned int count
= 0;
186 for_each_possible_cpu(cpu
) {
187 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
192 return mnt
->mnt_count
;
196 static void drop_mountpoint(struct fs_pin
*p
)
198 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
199 dput(m
->mnt_ex_mountpoint
);
204 static struct mount
*alloc_vfsmnt(const char *name
)
206 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
210 err
= mnt_alloc_id(mnt
);
215 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
216 if (!mnt
->mnt_devname
)
221 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
223 goto out_free_devname
;
225 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
228 mnt
->mnt_writers
= 0;
231 INIT_HLIST_NODE(&mnt
->mnt_hash
);
232 INIT_LIST_HEAD(&mnt
->mnt_child
);
233 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
234 INIT_LIST_HEAD(&mnt
->mnt_list
);
235 INIT_LIST_HEAD(&mnt
->mnt_expire
);
236 INIT_LIST_HEAD(&mnt
->mnt_share
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
238 INIT_LIST_HEAD(&mnt
->mnt_slave
);
239 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
240 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
241 #ifdef CONFIG_FSNOTIFY
242 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
244 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
250 kfree_const(mnt
->mnt_devname
);
255 kmem_cache_free(mnt_cache
, mnt
);
260 * Most r/o checks on a fs are for operations that take
261 * discrete amounts of time, like a write() or unlink().
262 * We must keep track of when those operations start
263 * (for permission checks) and when they end, so that
264 * we can determine when writes are able to occur to
268 * __mnt_is_readonly: check whether a mount is read-only
269 * @mnt: the mount to check for its write status
271 * This shouldn't be used directly ouside of the VFS.
272 * It does not guarantee that the filesystem will stay
273 * r/w, just that it is right *now*. This can not and
274 * should not be used in place of IS_RDONLY(inode).
275 * mnt_want/drop_write() will _keep_ the filesystem
278 int __mnt_is_readonly(struct vfsmount
*mnt
)
280 if (mnt
->mnt_flags
& MNT_READONLY
)
282 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
286 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
288 static inline void mnt_inc_writers(struct mount
*mnt
)
291 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
297 static inline void mnt_dec_writers(struct mount
*mnt
)
300 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
306 static unsigned int mnt_get_writers(struct mount
*mnt
)
309 unsigned int count
= 0;
312 for_each_possible_cpu(cpu
) {
313 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
318 return mnt
->mnt_writers
;
322 static int mnt_is_readonly(struct vfsmount
*mnt
)
324 if (mnt
->mnt_sb
->s_readonly_remount
)
326 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
328 return __mnt_is_readonly(mnt
);
332 * Most r/o & frozen checks on a fs are for operations that take discrete
333 * amounts of time, like a write() or unlink(). We must keep track of when
334 * those operations start (for permission checks) and when they end, so that we
335 * can determine when writes are able to occur to a filesystem.
338 * __mnt_want_write - get write access to a mount without freeze protection
339 * @m: the mount on which to take a write
341 * This tells the low-level filesystem that a write is about to be performed to
342 * it, and makes sure that writes are allowed (mnt it read-write) before
343 * returning success. This operation does not protect against filesystem being
344 * frozen. When the write operation is finished, __mnt_drop_write() must be
345 * called. This is effectively a refcount.
347 int __mnt_want_write(struct vfsmount
*m
)
349 struct mount
*mnt
= real_mount(m
);
353 mnt_inc_writers(mnt
);
355 * The store to mnt_inc_writers must be visible before we pass
356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 * incremented count after it has set MNT_WRITE_HOLD.
360 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
363 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
364 * be set to match its requirements. So we must not load that until
365 * MNT_WRITE_HOLD is cleared.
368 if (mnt_is_readonly(m
)) {
369 mnt_dec_writers(mnt
);
378 * mnt_want_write - get write access to a mount
379 * @m: the mount on which to take a write
381 * This tells the low-level filesystem that a write is about to be performed to
382 * it, and makes sure that writes are allowed (mount is read-write, filesystem
383 * is not frozen) before returning success. When the write operation is
384 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 int mnt_want_write(struct vfsmount
*m
)
390 sb_start_write(m
->mnt_sb
);
391 ret
= __mnt_want_write(m
);
393 sb_end_write(m
->mnt_sb
);
396 EXPORT_SYMBOL_GPL(mnt_want_write
);
399 * mnt_clone_write - get write access to a mount
400 * @mnt: the mount on which to take a write
402 * This is effectively like mnt_want_write, except
403 * it must only be used to take an extra write reference
404 * on a mountpoint that we already know has a write reference
405 * on it. This allows some optimisation.
407 * After finished, mnt_drop_write must be called as usual to
408 * drop the reference.
410 int mnt_clone_write(struct vfsmount
*mnt
)
412 /* superblock may be r/o */
413 if (__mnt_is_readonly(mnt
))
416 mnt_inc_writers(real_mount(mnt
));
420 EXPORT_SYMBOL_GPL(mnt_clone_write
);
423 * __mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
426 * This is like __mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
429 int __mnt_want_write_file(struct file
*file
)
431 if (!(file
->f_mode
& FMODE_WRITER
))
432 return __mnt_want_write(file
->f_path
.mnt
);
434 return mnt_clone_write(file
->f_path
.mnt
);
438 * mnt_want_write_file - get write access to a file's mount
439 * @file: the file who's mount on which to take a write
441 * This is like mnt_want_write, but it takes a file and can
442 * do some optimisations if the file is open for write already
444 int mnt_want_write_file(struct file
*file
)
448 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
449 ret
= __mnt_want_write_file(file
);
451 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
454 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
457 * __mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
460 * Tells the low-level filesystem that we are done
461 * performing writes to it. Must be matched with
462 * __mnt_want_write() call above.
464 void __mnt_drop_write(struct vfsmount
*mnt
)
467 mnt_dec_writers(real_mount(mnt
));
472 * mnt_drop_write - give up write access to a mount
473 * @mnt: the mount on which to give up write access
475 * Tells the low-level filesystem that we are done performing writes to it and
476 * also allows filesystem to be frozen again. Must be matched with
477 * mnt_want_write() call above.
479 void mnt_drop_write(struct vfsmount
*mnt
)
481 __mnt_drop_write(mnt
);
482 sb_end_write(mnt
->mnt_sb
);
484 EXPORT_SYMBOL_GPL(mnt_drop_write
);
486 void __mnt_drop_write_file(struct file
*file
)
488 __mnt_drop_write(file
->f_path
.mnt
);
491 void mnt_drop_write_file(struct file
*file
)
493 mnt_drop_write(file
->f_path
.mnt
);
495 EXPORT_SYMBOL(mnt_drop_write_file
);
497 static int mnt_make_readonly(struct mount
*mnt
)
502 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
504 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
505 * should be visible before we do.
510 * With writers on hold, if this value is zero, then there are
511 * definitely no active writers (although held writers may subsequently
512 * increment the count, they'll have to wait, and decrement it after
513 * seeing MNT_READONLY).
515 * It is OK to have counter incremented on one CPU and decremented on
516 * another: the sum will add up correctly. The danger would be when we
517 * sum up each counter, if we read a counter before it is incremented,
518 * but then read another CPU's count which it has been subsequently
519 * decremented from -- we would see more decrements than we should.
520 * MNT_WRITE_HOLD protects against this scenario, because
521 * mnt_want_write first increments count, then smp_mb, then spins on
522 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
523 * we're counting up here.
525 if (mnt_get_writers(mnt
) > 0)
528 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
530 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
531 * that become unheld will see MNT_READONLY.
534 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
539 static void __mnt_unmake_readonly(struct mount
*mnt
)
542 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
546 int sb_prepare_remount_readonly(struct super_block
*sb
)
551 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
552 if (atomic_long_read(&sb
->s_remove_count
))
556 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
557 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
558 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
560 if (mnt_get_writers(mnt
) > 0) {
566 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
570 sb
->s_readonly_remount
= 1;
573 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
574 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
575 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
582 static void free_vfsmnt(struct mount
*mnt
)
584 kfree_const(mnt
->mnt_devname
);
586 free_percpu(mnt
->mnt_pcp
);
588 kmem_cache_free(mnt_cache
, mnt
);
591 static void delayed_free_vfsmnt(struct rcu_head
*head
)
593 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
596 /* call under rcu_read_lock */
597 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
600 if (read_seqretry(&mount_lock
, seq
))
604 mnt
= real_mount(bastard
);
605 mnt_add_count(mnt
, 1);
606 if (likely(!read_seqretry(&mount_lock
, seq
)))
608 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
609 mnt_add_count(mnt
, -1);
615 /* call under rcu_read_lock */
616 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
618 int res
= __legitimize_mnt(bastard
, seq
);
621 if (unlikely(res
< 0)) {
630 * find the first mount at @dentry on vfsmount @mnt.
631 * call under rcu_read_lock()
633 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
635 struct hlist_head
*head
= m_hash(mnt
, dentry
);
638 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
639 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
645 * lookup_mnt - Return the first child mount mounted at path
647 * "First" means first mounted chronologically. If you create the
650 * mount /dev/sda1 /mnt
651 * mount /dev/sda2 /mnt
652 * mount /dev/sda3 /mnt
654 * Then lookup_mnt() on the base /mnt dentry in the root mount will
655 * return successively the root dentry and vfsmount of /dev/sda1, then
656 * /dev/sda2, then /dev/sda3, then NULL.
658 * lookup_mnt takes a reference to the found vfsmount.
660 struct vfsmount
*lookup_mnt(struct path
*path
)
662 struct mount
*child_mnt
;
668 seq
= read_seqbegin(&mount_lock
);
669 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
670 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
671 } while (!legitimize_mnt(m
, seq
));
677 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
678 * current mount namespace.
680 * The common case is dentries are not mountpoints at all and that
681 * test is handled inline. For the slow case when we are actually
682 * dealing with a mountpoint of some kind, walk through all of the
683 * mounts in the current mount namespace and test to see if the dentry
686 * The mount_hashtable is not usable in the context because we
687 * need to identify all mounts that may be in the current mount
688 * namespace not just a mount that happens to have some specified
691 bool __is_local_mountpoint(struct dentry
*dentry
)
693 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
695 bool is_covered
= false;
697 if (!d_mountpoint(dentry
))
700 down_read(&namespace_sem
);
701 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
702 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
706 up_read(&namespace_sem
);
711 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
713 struct hlist_head
*chain
= mp_hash(dentry
);
714 struct mountpoint
*mp
;
716 hlist_for_each_entry(mp
, chain
, m_hash
) {
717 if (mp
->m_dentry
== dentry
) {
718 /* might be worth a WARN_ON() */
719 if (d_unlinked(dentry
))
720 return ERR_PTR(-ENOENT
);
728 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
730 struct mountpoint
*mp
, *new = NULL
;
733 if (d_mountpoint(dentry
)) {
735 read_seqlock_excl(&mount_lock
);
736 mp
= lookup_mountpoint(dentry
);
737 read_sequnlock_excl(&mount_lock
);
743 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
745 return ERR_PTR(-ENOMEM
);
748 /* Exactly one processes may set d_mounted */
749 ret
= d_set_mounted(dentry
);
751 /* Someone else set d_mounted? */
755 /* The dentry is not available as a mountpoint? */
760 /* Add the new mountpoint to the hash table */
761 read_seqlock_excl(&mount_lock
);
762 new->m_dentry
= dentry
;
764 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
765 INIT_HLIST_HEAD(&new->m_list
);
766 read_sequnlock_excl(&mount_lock
);
775 static void put_mountpoint(struct mountpoint
*mp
)
777 if (!--mp
->m_count
) {
778 struct dentry
*dentry
= mp
->m_dentry
;
779 BUG_ON(!hlist_empty(&mp
->m_list
));
780 spin_lock(&dentry
->d_lock
);
781 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
782 spin_unlock(&dentry
->d_lock
);
783 hlist_del(&mp
->m_hash
);
788 static inline int check_mnt(struct mount
*mnt
)
790 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
794 * vfsmount lock must be held for write
796 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
800 wake_up_interruptible(&ns
->poll
);
805 * vfsmount lock must be held for write
807 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
809 if (ns
&& ns
->event
!= event
) {
811 wake_up_interruptible(&ns
->poll
);
816 * vfsmount lock must be held for write
818 static void unhash_mnt(struct mount
*mnt
)
820 mnt
->mnt_parent
= mnt
;
821 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
822 list_del_init(&mnt
->mnt_child
);
823 hlist_del_init_rcu(&mnt
->mnt_hash
);
824 hlist_del_init(&mnt
->mnt_mp_list
);
825 put_mountpoint(mnt
->mnt_mp
);
830 * vfsmount lock must be held for write
832 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
834 old_path
->dentry
= mnt
->mnt_mountpoint
;
835 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
840 * vfsmount lock must be held for write
842 static void umount_mnt(struct mount
*mnt
)
844 /* old mountpoint will be dropped when we can do that */
845 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
850 * vfsmount lock must be held for write
852 void mnt_set_mountpoint(struct mount
*mnt
,
853 struct mountpoint
*mp
,
854 struct mount
*child_mnt
)
857 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
858 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
859 child_mnt
->mnt_parent
= mnt
;
860 child_mnt
->mnt_mp
= mp
;
861 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
864 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
866 hlist_add_head_rcu(&mnt
->mnt_hash
,
867 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
868 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
872 * vfsmount lock must be held for write
874 static void attach_mnt(struct mount
*mnt
,
875 struct mount
*parent
,
876 struct mountpoint
*mp
)
878 mnt_set_mountpoint(parent
, mp
, mnt
);
879 __attach_mnt(mnt
, parent
);
882 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
884 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
885 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
886 struct mount
*old_parent
= mnt
->mnt_parent
;
888 list_del_init(&mnt
->mnt_child
);
889 hlist_del_init(&mnt
->mnt_mp_list
);
890 hlist_del_init_rcu(&mnt
->mnt_hash
);
892 attach_mnt(mnt
, parent
, mp
);
894 put_mountpoint(old_mp
);
897 * Safely avoid even the suggestion this code might sleep or
898 * lock the mount hash by taking advantage of the knowledge that
899 * mnt_change_mountpoint will not release the final reference
902 * During mounting, the mount passed in as the parent mount will
903 * continue to use the old mountpoint and during unmounting, the
904 * old mountpoint will continue to exist until namespace_unlock,
905 * which happens well after mnt_change_mountpoint.
907 spin_lock(&old_mountpoint
->d_lock
);
908 old_mountpoint
->d_lockref
.count
--;
909 spin_unlock(&old_mountpoint
->d_lock
);
911 mnt_add_count(old_parent
, -1);
915 * vfsmount lock must be held for write
917 static void commit_tree(struct mount
*mnt
)
919 struct mount
*parent
= mnt
->mnt_parent
;
922 struct mnt_namespace
*n
= parent
->mnt_ns
;
924 BUG_ON(parent
== mnt
);
926 list_add_tail(&head
, &mnt
->mnt_list
);
927 list_for_each_entry(m
, &head
, mnt_list
)
930 list_splice(&head
, n
->list
.prev
);
932 n
->mounts
+= n
->pending_mounts
;
933 n
->pending_mounts
= 0;
935 __attach_mnt(mnt
, parent
);
936 touch_mnt_namespace(n
);
939 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
941 struct list_head
*next
= p
->mnt_mounts
.next
;
942 if (next
== &p
->mnt_mounts
) {
946 next
= p
->mnt_child
.next
;
947 if (next
!= &p
->mnt_parent
->mnt_mounts
)
952 return list_entry(next
, struct mount
, mnt_child
);
955 static struct mount
*skip_mnt_tree(struct mount
*p
)
957 struct list_head
*prev
= p
->mnt_mounts
.prev
;
958 while (prev
!= &p
->mnt_mounts
) {
959 p
= list_entry(prev
, struct mount
, mnt_child
);
960 prev
= p
->mnt_mounts
.prev
;
966 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
972 return ERR_PTR(-ENODEV
);
974 mnt
= alloc_vfsmnt(name
);
976 return ERR_PTR(-ENOMEM
);
978 if (flags
& MS_KERNMOUNT
)
979 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
981 root
= mount_fs(type
, flags
, name
, data
);
985 return ERR_CAST(root
);
988 mnt
->mnt
.mnt_root
= root
;
989 mnt
->mnt
.mnt_sb
= root
->d_sb
;
990 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
991 mnt
->mnt_parent
= mnt
;
993 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
997 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
1000 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
1001 const char *name
, void *data
)
1003 /* Until it is worked out how to pass the user namespace
1004 * through from the parent mount to the submount don't support
1005 * unprivileged mounts with submounts.
1007 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
1008 return ERR_PTR(-EPERM
);
1010 return vfs_kern_mount(type
, MS_SUBMOUNT
, name
, data
);
1012 EXPORT_SYMBOL_GPL(vfs_submount
);
1014 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1017 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1021 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1023 return ERR_PTR(-ENOMEM
);
1025 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1026 mnt
->mnt_group_id
= 0; /* not a peer of original */
1028 mnt
->mnt_group_id
= old
->mnt_group_id
;
1030 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1031 err
= mnt_alloc_group_id(mnt
);
1036 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
;
1037 mnt
->mnt
.mnt_flags
&= ~(MNT_WRITE_HOLD
|MNT_MARKED
|MNT_INTERNAL
);
1038 /* Don't allow unprivileged users to change mount flags */
1039 if (flag
& CL_UNPRIVILEGED
) {
1040 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1042 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1043 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1045 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1046 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1048 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1049 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1051 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1052 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1055 /* Don't allow unprivileged users to reveal what is under a mount */
1056 if ((flag
& CL_UNPRIVILEGED
) &&
1057 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1058 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1060 atomic_inc(&sb
->s_active
);
1061 mnt
->mnt
.mnt_sb
= sb
;
1062 mnt
->mnt
.mnt_root
= dget(root
);
1063 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1064 mnt
->mnt_parent
= mnt
;
1066 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1067 unlock_mount_hash();
1069 if ((flag
& CL_SLAVE
) ||
1070 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1071 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1072 mnt
->mnt_master
= old
;
1073 CLEAR_MNT_SHARED(mnt
);
1074 } else if (!(flag
& CL_PRIVATE
)) {
1075 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1076 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1077 if (IS_MNT_SLAVE(old
))
1078 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1079 mnt
->mnt_master
= old
->mnt_master
;
1081 if (flag
& CL_MAKE_SHARED
)
1082 set_mnt_shared(mnt
);
1084 /* stick the duplicate mount on the same expiry list
1085 * as the original if that was on one */
1086 if (flag
& CL_EXPIRE
) {
1087 if (!list_empty(&old
->mnt_expire
))
1088 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1096 return ERR_PTR(err
);
1099 static void cleanup_mnt(struct mount
*mnt
)
1102 * This probably indicates that somebody messed
1103 * up a mnt_want/drop_write() pair. If this
1104 * happens, the filesystem was probably unable
1105 * to make r/w->r/o transitions.
1108 * The locking used to deal with mnt_count decrement provides barriers,
1109 * so mnt_get_writers() below is safe.
1111 WARN_ON(mnt_get_writers(mnt
));
1112 if (unlikely(mnt
->mnt_pins
.first
))
1114 fsnotify_vfsmount_delete(&mnt
->mnt
);
1115 dput(mnt
->mnt
.mnt_root
);
1116 deactivate_super(mnt
->mnt
.mnt_sb
);
1118 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1121 static void __cleanup_mnt(struct rcu_head
*head
)
1123 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1126 static LLIST_HEAD(delayed_mntput_list
);
1127 static void delayed_mntput(struct work_struct
*unused
)
1129 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1130 struct llist_node
*next
;
1132 for (; node
; node
= next
) {
1133 next
= llist_next(node
);
1134 cleanup_mnt(llist_entry(node
, struct mount
, mnt_llist
));
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1139 static void mntput_no_expire(struct mount
*mnt
)
1142 mnt_add_count(mnt
, -1);
1143 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
1148 if (mnt_get_count(mnt
)) {
1150 unlock_mount_hash();
1153 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1155 unlock_mount_hash();
1158 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1161 list_del(&mnt
->mnt_instance
);
1163 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1164 struct mount
*p
, *tmp
;
1165 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1169 unlock_mount_hash();
1171 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1172 struct task_struct
*task
= current
;
1173 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1174 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1175 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1178 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1179 schedule_delayed_work(&delayed_mntput_work
, 1);
1185 void mntput(struct vfsmount
*mnt
)
1188 struct mount
*m
= real_mount(mnt
);
1189 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1190 if (unlikely(m
->mnt_expiry_mark
))
1191 m
->mnt_expiry_mark
= 0;
1192 mntput_no_expire(m
);
1195 EXPORT_SYMBOL(mntput
);
1197 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1200 mnt_add_count(real_mount(mnt
), 1);
1203 EXPORT_SYMBOL(mntget
);
1205 struct vfsmount
*mnt_clone_internal(struct path
*path
)
1208 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1211 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1215 static inline void mangle(struct seq_file
*m
, const char *s
)
1217 seq_escape(m
, s
, " \t\n\\");
1221 * Simple .show_options callback for filesystems which don't want to
1222 * implement more complex mount option showing.
1224 * See also save_mount_options().
1226 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1228 const char *options
;
1231 options
= rcu_dereference(root
->d_sb
->s_options
);
1233 if (options
!= NULL
&& options
[0]) {
1241 EXPORT_SYMBOL(generic_show_options
);
1244 * If filesystem uses generic_show_options(), this function should be
1245 * called from the fill_super() callback.
1247 * The .remount_fs callback usually needs to be handled in a special
1248 * way, to make sure, that previous options are not overwritten if the
1251 * Also note, that if the filesystem's .remount_fs function doesn't
1252 * reset all options to their default value, but changes only newly
1253 * given options, then the displayed options will not reflect reality
1256 void save_mount_options(struct super_block
*sb
, char *options
)
1258 BUG_ON(sb
->s_options
);
1259 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1261 EXPORT_SYMBOL(save_mount_options
);
1263 void replace_mount_options(struct super_block
*sb
, char *options
)
1265 char *old
= sb
->s_options
;
1266 rcu_assign_pointer(sb
->s_options
, options
);
1272 EXPORT_SYMBOL(replace_mount_options
);
1274 #ifdef CONFIG_PROC_FS
1275 /* iterator; we want it to have access to namespace_sem, thus here... */
1276 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1278 struct proc_mounts
*p
= m
->private;
1280 down_read(&namespace_sem
);
1281 if (p
->cached_event
== p
->ns
->event
) {
1282 void *v
= p
->cached_mount
;
1283 if (*pos
== p
->cached_index
)
1285 if (*pos
== p
->cached_index
+ 1) {
1286 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1287 return p
->cached_mount
= v
;
1291 p
->cached_event
= p
->ns
->event
;
1292 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1293 p
->cached_index
= *pos
;
1294 return p
->cached_mount
;
1297 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1299 struct proc_mounts
*p
= m
->private;
1301 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1302 p
->cached_index
= *pos
;
1303 return p
->cached_mount
;
1306 static void m_stop(struct seq_file
*m
, void *v
)
1308 up_read(&namespace_sem
);
1311 static int m_show(struct seq_file
*m
, void *v
)
1313 struct proc_mounts
*p
= m
->private;
1314 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1315 return p
->show(m
, &r
->mnt
);
1318 const struct seq_operations mounts_op
= {
1324 #endif /* CONFIG_PROC_FS */
1327 * may_umount_tree - check if a mount tree is busy
1328 * @mnt: root of mount tree
1330 * This is called to check if a tree of mounts has any
1331 * open files, pwds, chroots or sub mounts that are
1334 int may_umount_tree(struct vfsmount
*m
)
1336 struct mount
*mnt
= real_mount(m
);
1337 int actual_refs
= 0;
1338 int minimum_refs
= 0;
1342 /* write lock needed for mnt_get_count */
1344 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1345 actual_refs
+= mnt_get_count(p
);
1348 unlock_mount_hash();
1350 if (actual_refs
> minimum_refs
)
1356 EXPORT_SYMBOL(may_umount_tree
);
1359 * may_umount - check if a mount point is busy
1360 * @mnt: root of mount
1362 * This is called to check if a mount point has any
1363 * open files, pwds, chroots or sub mounts. If the
1364 * mount has sub mounts this will return busy
1365 * regardless of whether the sub mounts are busy.
1367 * Doesn't take quota and stuff into account. IOW, in some cases it will
1368 * give false negatives. The main reason why it's here is that we need
1369 * a non-destructive way to look for easily umountable filesystems.
1371 int may_umount(struct vfsmount
*mnt
)
1374 down_read(&namespace_sem
);
1376 if (propagate_mount_busy(real_mount(mnt
), 2))
1378 unlock_mount_hash();
1379 up_read(&namespace_sem
);
1383 EXPORT_SYMBOL(may_umount
);
1385 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1387 static void namespace_unlock(void)
1389 struct hlist_head head
;
1391 hlist_move_list(&unmounted
, &head
);
1393 up_write(&namespace_sem
);
1395 if (likely(hlist_empty(&head
)))
1400 group_pin_kill(&head
);
1403 static inline void namespace_lock(void)
1405 down_write(&namespace_sem
);
1408 enum umount_tree_flags
{
1410 UMOUNT_PROPAGATE
= 2,
1411 UMOUNT_CONNECTED
= 4,
1414 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1416 /* Leaving mounts connected is only valid for lazy umounts */
1417 if (how
& UMOUNT_SYNC
)
1420 /* A mount without a parent has nothing to be connected to */
1421 if (!mnt_has_parent(mnt
))
1424 /* Because the reference counting rules change when mounts are
1425 * unmounted and connected, umounted mounts may not be
1426 * connected to mounted mounts.
1428 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1431 /* Has it been requested that the mount remain connected? */
1432 if (how
& UMOUNT_CONNECTED
)
1435 /* Is the mount locked such that it needs to remain connected? */
1436 if (IS_MNT_LOCKED(mnt
))
1439 /* By default disconnect the mount */
1444 * mount_lock must be held
1445 * namespace_sem must be held for write
1447 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1449 LIST_HEAD(tmp_list
);
1452 if (how
& UMOUNT_PROPAGATE
)
1453 propagate_mount_unlock(mnt
);
1455 /* Gather the mounts to umount */
1456 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1457 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1458 list_move(&p
->mnt_list
, &tmp_list
);
1461 /* Hide the mounts from mnt_mounts */
1462 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1463 list_del_init(&p
->mnt_child
);
1466 /* Add propogated mounts to the tmp_list */
1467 if (how
& UMOUNT_PROPAGATE
)
1468 propagate_umount(&tmp_list
);
1470 while (!list_empty(&tmp_list
)) {
1471 struct mnt_namespace
*ns
;
1473 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1474 list_del_init(&p
->mnt_expire
);
1475 list_del_init(&p
->mnt_list
);
1479 __touch_mnt_namespace(ns
);
1482 if (how
& UMOUNT_SYNC
)
1483 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1485 disconnect
= disconnect_mount(p
, how
);
1487 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1488 disconnect
? &unmounted
: NULL
);
1489 if (mnt_has_parent(p
)) {
1490 mnt_add_count(p
->mnt_parent
, -1);
1492 /* Don't forget about p */
1493 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1498 change_mnt_propagation(p
, MS_PRIVATE
);
1502 static void shrink_submounts(struct mount
*mnt
);
1504 static int do_umount(struct mount
*mnt
, int flags
)
1506 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1509 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1514 * Allow userspace to request a mountpoint be expired rather than
1515 * unmounting unconditionally. Unmount only happens if:
1516 * (1) the mark is already set (the mark is cleared by mntput())
1517 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1519 if (flags
& MNT_EXPIRE
) {
1520 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1521 flags
& (MNT_FORCE
| MNT_DETACH
))
1525 * probably don't strictly need the lock here if we examined
1526 * all race cases, but it's a slowpath.
1529 if (mnt_get_count(mnt
) != 2) {
1530 unlock_mount_hash();
1533 unlock_mount_hash();
1535 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1540 * If we may have to abort operations to get out of this
1541 * mount, and they will themselves hold resources we must
1542 * allow the fs to do things. In the Unix tradition of
1543 * 'Gee thats tricky lets do it in userspace' the umount_begin
1544 * might fail to complete on the first run through as other tasks
1545 * must return, and the like. Thats for the mount program to worry
1546 * about for the moment.
1549 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1550 sb
->s_op
->umount_begin(sb
);
1554 * No sense to grab the lock for this test, but test itself looks
1555 * somewhat bogus. Suggestions for better replacement?
1556 * Ho-hum... In principle, we might treat that as umount + switch
1557 * to rootfs. GC would eventually take care of the old vfsmount.
1558 * Actually it makes sense, especially if rootfs would contain a
1559 * /reboot - static binary that would close all descriptors and
1560 * call reboot(9). Then init(8) could umount root and exec /reboot.
1562 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1564 * Special case for "unmounting" root ...
1565 * we just try to remount it readonly.
1567 if (!capable(CAP_SYS_ADMIN
))
1569 down_write(&sb
->s_umount
);
1570 if (!(sb
->s_flags
& MS_RDONLY
))
1571 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1572 up_write(&sb
->s_umount
);
1580 if (flags
& MNT_DETACH
) {
1581 if (!list_empty(&mnt
->mnt_list
))
1582 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1585 shrink_submounts(mnt
);
1587 if (!propagate_mount_busy(mnt
, 2)) {
1588 if (!list_empty(&mnt
->mnt_list
))
1589 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1593 unlock_mount_hash();
1599 * __detach_mounts - lazily unmount all mounts on the specified dentry
1601 * During unlink, rmdir, and d_drop it is possible to loose the path
1602 * to an existing mountpoint, and wind up leaking the mount.
1603 * detach_mounts allows lazily unmounting those mounts instead of
1606 * The caller may hold dentry->d_inode->i_mutex.
1608 void __detach_mounts(struct dentry
*dentry
)
1610 struct mountpoint
*mp
;
1615 mp
= lookup_mountpoint(dentry
);
1616 if (IS_ERR_OR_NULL(mp
))
1620 while (!hlist_empty(&mp
->m_list
)) {
1621 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1622 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1623 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1626 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1630 unlock_mount_hash();
1635 * Is the caller allowed to modify his namespace?
1637 static inline bool may_mount(void)
1639 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1642 static inline bool may_mandlock(void)
1644 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1647 return capable(CAP_SYS_ADMIN
);
1651 * Now umount can handle mount points as well as block devices.
1652 * This is important for filesystems which use unnamed block devices.
1654 * We now support a flag for forced unmount like the other 'big iron'
1655 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1658 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1663 int lookup_flags
= 0;
1665 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1671 if (!(flags
& UMOUNT_NOFOLLOW
))
1672 lookup_flags
|= LOOKUP_FOLLOW
;
1674 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1677 mnt
= real_mount(path
.mnt
);
1679 if (path
.dentry
!= path
.mnt
->mnt_root
)
1681 if (!check_mnt(mnt
))
1683 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1686 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1689 retval
= do_umount(mnt
, flags
);
1691 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1693 mntput_no_expire(mnt
);
1698 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1701 * The 2.0 compatible umount. No flags.
1703 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1705 return sys_umount(name
, 0);
1710 static bool is_mnt_ns_file(struct dentry
*dentry
)
1712 /* Is this a proxy for a mount namespace? */
1713 return dentry
->d_op
== &ns_dentry_operations
&&
1714 dentry
->d_fsdata
== &mntns_operations
;
1717 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1719 return container_of(ns
, struct mnt_namespace
, ns
);
1722 static bool mnt_ns_loop(struct dentry
*dentry
)
1724 /* Could bind mounting the mount namespace inode cause a
1725 * mount namespace loop?
1727 struct mnt_namespace
*mnt_ns
;
1728 if (!is_mnt_ns_file(dentry
))
1731 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1732 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1735 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1738 struct mount
*res
, *p
, *q
, *r
, *parent
;
1740 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1741 return ERR_PTR(-EINVAL
);
1743 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1744 return ERR_PTR(-EINVAL
);
1746 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1750 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1753 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1755 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1758 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1759 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1760 IS_MNT_UNBINDABLE(s
)) {
1761 s
= skip_mnt_tree(s
);
1764 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1765 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1766 s
= skip_mnt_tree(s
);
1769 while (p
!= s
->mnt_parent
) {
1775 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1779 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1780 attach_mnt(q
, parent
, p
->mnt_mp
);
1781 unlock_mount_hash();
1788 umount_tree(res
, UMOUNT_SYNC
);
1789 unlock_mount_hash();
1794 /* Caller should check returned pointer for errors */
1796 struct vfsmount
*collect_mounts(struct path
*path
)
1800 if (!check_mnt(real_mount(path
->mnt
)))
1801 tree
= ERR_PTR(-EINVAL
);
1803 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1804 CL_COPY_ALL
| CL_PRIVATE
);
1807 return ERR_CAST(tree
);
1811 void drop_collected_mounts(struct vfsmount
*mnt
)
1815 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1816 unlock_mount_hash();
1821 * clone_private_mount - create a private clone of a path
1823 * This creates a new vfsmount, which will be the clone of @path. The new will
1824 * not be attached anywhere in the namespace and will be private (i.e. changes
1825 * to the originating mount won't be propagated into this).
1827 * Release with mntput().
1829 struct vfsmount
*clone_private_mount(struct path
*path
)
1831 struct mount
*old_mnt
= real_mount(path
->mnt
);
1832 struct mount
*new_mnt
;
1834 if (IS_MNT_UNBINDABLE(old_mnt
))
1835 return ERR_PTR(-EINVAL
);
1837 down_read(&namespace_sem
);
1838 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1839 up_read(&namespace_sem
);
1840 if (IS_ERR(new_mnt
))
1841 return ERR_CAST(new_mnt
);
1843 return &new_mnt
->mnt
;
1845 EXPORT_SYMBOL_GPL(clone_private_mount
);
1847 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1848 struct vfsmount
*root
)
1851 int res
= f(root
, arg
);
1854 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1855 res
= f(&mnt
->mnt
, arg
);
1862 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1866 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1867 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1868 mnt_release_group_id(p
);
1872 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1876 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1877 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1878 int err
= mnt_alloc_group_id(p
);
1880 cleanup_group_ids(mnt
, p
);
1889 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1891 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1892 unsigned int mounts
= 0, old
, pending
, sum
;
1895 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1899 pending
= ns
->pending_mounts
;
1900 sum
= old
+ pending
;
1904 (mounts
> (max
- sum
)))
1907 ns
->pending_mounts
= pending
+ mounts
;
1912 * @source_mnt : mount tree to be attached
1913 * @nd : place the mount tree @source_mnt is attached
1914 * @parent_nd : if non-null, detach the source_mnt from its parent and
1915 * store the parent mount and mountpoint dentry.
1916 * (done when source_mnt is moved)
1918 * NOTE: in the table below explains the semantics when a source mount
1919 * of a given type is attached to a destination mount of a given type.
1920 * ---------------------------------------------------------------------------
1921 * | BIND MOUNT OPERATION |
1922 * |**************************************************************************
1923 * | source-->| shared | private | slave | unbindable |
1927 * |**************************************************************************
1928 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1930 * |non-shared| shared (+) | private | slave (*) | invalid |
1931 * ***************************************************************************
1932 * A bind operation clones the source mount and mounts the clone on the
1933 * destination mount.
1935 * (++) the cloned mount is propagated to all the mounts in the propagation
1936 * tree of the destination mount and the cloned mount is added to
1937 * the peer group of the source mount.
1938 * (+) the cloned mount is created under the destination mount and is marked
1939 * as shared. The cloned mount is added to the peer group of the source
1941 * (+++) the mount is propagated to all the mounts in the propagation tree
1942 * of the destination mount and the cloned mount is made slave
1943 * of the same master as that of the source mount. The cloned mount
1944 * is marked as 'shared and slave'.
1945 * (*) the cloned mount is made a slave of the same master as that of the
1948 * ---------------------------------------------------------------------------
1949 * | MOVE MOUNT OPERATION |
1950 * |**************************************************************************
1951 * | source-->| shared | private | slave | unbindable |
1955 * |**************************************************************************
1956 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1958 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1959 * ***************************************************************************
1961 * (+) the mount is moved to the destination. And is then propagated to
1962 * all the mounts in the propagation tree of the destination mount.
1963 * (+*) the mount is moved to the destination.
1964 * (+++) the mount is moved to the destination and is then propagated to
1965 * all the mounts belonging to the destination mount's propagation tree.
1966 * the mount is marked as 'shared and slave'.
1967 * (*) the mount continues to be a slave at the new location.
1969 * if the source mount is a tree, the operations explained above is
1970 * applied to each mount in the tree.
1971 * Must be called without spinlocks held, since this function can sleep
1974 static int attach_recursive_mnt(struct mount
*source_mnt
,
1975 struct mount
*dest_mnt
,
1976 struct mountpoint
*dest_mp
,
1977 struct path
*parent_path
)
1979 HLIST_HEAD(tree_list
);
1980 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
1981 struct mountpoint
*smp
;
1982 struct mount
*child
, *p
;
1983 struct hlist_node
*n
;
1986 /* Preallocate a mountpoint in case the new mounts need
1987 * to be tucked under other mounts.
1989 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
1991 return PTR_ERR(smp
);
1993 /* Is there space to add these mounts to the mount namespace? */
1995 err
= count_mounts(ns
, source_mnt
);
2000 if (IS_MNT_SHARED(dest_mnt
)) {
2001 err
= invent_group_ids(source_mnt
, true);
2004 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
2007 goto out_cleanup_ids
;
2008 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
2014 detach_mnt(source_mnt
, parent_path
);
2015 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
2016 touch_mnt_namespace(source_mnt
->mnt_ns
);
2018 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2019 commit_tree(source_mnt
);
2022 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2024 hlist_del_init(&child
->mnt_hash
);
2025 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2026 child
->mnt_mountpoint
);
2028 mnt_change_mountpoint(child
, smp
, q
);
2031 put_mountpoint(smp
);
2032 unlock_mount_hash();
2037 while (!hlist_empty(&tree_list
)) {
2038 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2039 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2040 umount_tree(child
, UMOUNT_SYNC
);
2042 unlock_mount_hash();
2043 cleanup_group_ids(source_mnt
, NULL
);
2045 ns
->pending_mounts
= 0;
2047 read_seqlock_excl(&mount_lock
);
2048 put_mountpoint(smp
);
2049 read_sequnlock_excl(&mount_lock
);
2054 static struct mountpoint
*lock_mount(struct path
*path
)
2056 struct vfsmount
*mnt
;
2057 struct dentry
*dentry
= path
->dentry
;
2059 inode_lock(dentry
->d_inode
);
2060 if (unlikely(cant_mount(dentry
))) {
2061 inode_unlock(dentry
->d_inode
);
2062 return ERR_PTR(-ENOENT
);
2065 mnt
= lookup_mnt(path
);
2067 struct mountpoint
*mp
= get_mountpoint(dentry
);
2070 inode_unlock(dentry
->d_inode
);
2076 inode_unlock(path
->dentry
->d_inode
);
2079 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2083 static void unlock_mount(struct mountpoint
*where
)
2085 struct dentry
*dentry
= where
->m_dentry
;
2087 read_seqlock_excl(&mount_lock
);
2088 put_mountpoint(where
);
2089 read_sequnlock_excl(&mount_lock
);
2092 inode_unlock(dentry
->d_inode
);
2095 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2097 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
2100 if (d_is_dir(mp
->m_dentry
) !=
2101 d_is_dir(mnt
->mnt
.mnt_root
))
2104 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2108 * Sanity check the flags to change_mnt_propagation.
2111 static int flags_to_propagation_type(int flags
)
2113 int type
= flags
& ~(MS_REC
| MS_SILENT
);
2115 /* Fail if any non-propagation flags are set */
2116 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2118 /* Only one propagation flag should be set */
2119 if (!is_power_of_2(type
))
2125 * recursively change the type of the mountpoint.
2127 static int do_change_type(struct path
*path
, int flag
)
2130 struct mount
*mnt
= real_mount(path
->mnt
);
2131 int recurse
= flag
& MS_REC
;
2135 if (path
->dentry
!= path
->mnt
->mnt_root
)
2138 type
= flags_to_propagation_type(flag
);
2143 if (type
== MS_SHARED
) {
2144 err
= invent_group_ids(mnt
, recurse
);
2150 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2151 change_mnt_propagation(m
, type
);
2152 unlock_mount_hash();
2159 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2161 struct mount
*child
;
2162 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2163 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2166 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2173 * do loopback mount.
2175 static int do_loopback(struct path
*path
, const char *old_name
,
2178 struct path old_path
;
2179 struct mount
*mnt
= NULL
, *old
, *parent
;
2180 struct mountpoint
*mp
;
2182 if (!old_name
|| !*old_name
)
2184 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2189 if (mnt_ns_loop(old_path
.dentry
))
2192 mp
= lock_mount(path
);
2197 old
= real_mount(old_path
.mnt
);
2198 parent
= real_mount(path
->mnt
);
2201 if (IS_MNT_UNBINDABLE(old
))
2204 if (!check_mnt(parent
))
2207 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2210 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2214 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2216 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2223 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2225 err
= graft_tree(mnt
, parent
, mp
);
2228 umount_tree(mnt
, UMOUNT_SYNC
);
2229 unlock_mount_hash();
2234 path_put(&old_path
);
2238 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2241 int readonly_request
= 0;
2243 if (ms_flags
& MS_RDONLY
)
2244 readonly_request
= 1;
2245 if (readonly_request
== __mnt_is_readonly(mnt
))
2248 if (readonly_request
)
2249 error
= mnt_make_readonly(real_mount(mnt
));
2251 __mnt_unmake_readonly(real_mount(mnt
));
2256 * change filesystem flags. dir should be a physical root of filesystem.
2257 * If you've mounted a non-root directory somewhere and want to do remount
2258 * on it - tough luck.
2260 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
2264 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2265 struct mount
*mnt
= real_mount(path
->mnt
);
2267 if (!check_mnt(mnt
))
2270 if (path
->dentry
!= path
->mnt
->mnt_root
)
2273 /* Don't allow changing of locked mnt flags.
2275 * No locks need to be held here while testing the various
2276 * MNT_LOCK flags because those flags can never be cleared
2277 * once they are set.
2279 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2280 !(mnt_flags
& MNT_READONLY
)) {
2283 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2284 !(mnt_flags
& MNT_NODEV
)) {
2287 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2288 !(mnt_flags
& MNT_NOSUID
)) {
2291 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2292 !(mnt_flags
& MNT_NOEXEC
)) {
2295 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2296 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2300 err
= security_sb_remount(sb
, data
);
2304 down_write(&sb
->s_umount
);
2305 if (flags
& MS_BIND
)
2306 err
= change_mount_flags(path
->mnt
, flags
);
2307 else if (!capable(CAP_SYS_ADMIN
))
2310 err
= do_remount_sb(sb
, flags
, data
, 0);
2313 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2314 mnt
->mnt
.mnt_flags
= mnt_flags
;
2315 touch_mnt_namespace(mnt
->mnt_ns
);
2316 unlock_mount_hash();
2318 up_write(&sb
->s_umount
);
2322 static inline int tree_contains_unbindable(struct mount
*mnt
)
2325 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2326 if (IS_MNT_UNBINDABLE(p
))
2332 static int do_move_mount(struct path
*path
, const char *old_name
)
2334 struct path old_path
, parent_path
;
2337 struct mountpoint
*mp
;
2339 if (!old_name
|| !*old_name
)
2341 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2345 mp
= lock_mount(path
);
2350 old
= real_mount(old_path
.mnt
);
2351 p
= real_mount(path
->mnt
);
2354 if (!check_mnt(p
) || !check_mnt(old
))
2357 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2361 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2364 if (!mnt_has_parent(old
))
2367 if (d_is_dir(path
->dentry
) !=
2368 d_is_dir(old_path
.dentry
))
2371 * Don't move a mount residing in a shared parent.
2373 if (IS_MNT_SHARED(old
->mnt_parent
))
2376 * Don't move a mount tree containing unbindable mounts to a destination
2377 * mount which is shared.
2379 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2382 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2386 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2390 /* if the mount is moved, it should no longer be expire
2392 list_del_init(&old
->mnt_expire
);
2397 path_put(&parent_path
);
2398 path_put(&old_path
);
2402 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2405 const char *subtype
= strchr(fstype
, '.');
2414 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2416 if (!mnt
->mnt_sb
->s_subtype
)
2422 return ERR_PTR(err
);
2426 * add a mount into a namespace's mount tree
2428 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2430 struct mountpoint
*mp
;
2431 struct mount
*parent
;
2434 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2436 mp
= lock_mount(path
);
2440 parent
= real_mount(path
->mnt
);
2442 if (unlikely(!check_mnt(parent
))) {
2443 /* that's acceptable only for automounts done in private ns */
2444 if (!(mnt_flags
& MNT_SHRINKABLE
))
2446 /* ... and for those we'd better have mountpoint still alive */
2447 if (!parent
->mnt_ns
)
2451 /* Refuse the same filesystem on the same mount point */
2453 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2454 path
->mnt
->mnt_root
== path
->dentry
)
2458 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2461 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2462 err
= graft_tree(newmnt
, parent
, mp
);
2469 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2472 * create a new mount for userspace and request it to be added into the
2475 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2476 int mnt_flags
, const char *name
, void *data
)
2478 struct file_system_type
*type
;
2479 struct vfsmount
*mnt
;
2485 type
= get_fs_type(fstype
);
2489 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2490 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2491 !mnt
->mnt_sb
->s_subtype
)
2492 mnt
= fs_set_subtype(mnt
, fstype
);
2494 put_filesystem(type
);
2496 return PTR_ERR(mnt
);
2498 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2503 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2509 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2511 struct mount
*mnt
= real_mount(m
);
2513 /* The new mount record should have at least 2 refs to prevent it being
2514 * expired before we get a chance to add it
2516 BUG_ON(mnt_get_count(mnt
) < 2);
2518 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2519 m
->mnt_root
== path
->dentry
) {
2524 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2528 /* remove m from any expiration list it may be on */
2529 if (!list_empty(&mnt
->mnt_expire
)) {
2531 list_del_init(&mnt
->mnt_expire
);
2540 * mnt_set_expiry - Put a mount on an expiration list
2541 * @mnt: The mount to list.
2542 * @expiry_list: The list to add the mount to.
2544 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2548 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2552 EXPORT_SYMBOL(mnt_set_expiry
);
2555 * process a list of expirable mountpoints with the intent of discarding any
2556 * mountpoints that aren't in use and haven't been touched since last we came
2559 void mark_mounts_for_expiry(struct list_head
*mounts
)
2561 struct mount
*mnt
, *next
;
2562 LIST_HEAD(graveyard
);
2564 if (list_empty(mounts
))
2570 /* extract from the expiration list every vfsmount that matches the
2571 * following criteria:
2572 * - only referenced by its parent vfsmount
2573 * - still marked for expiry (marked on the last call here; marks are
2574 * cleared by mntput())
2576 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2577 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2578 propagate_mount_busy(mnt
, 1))
2580 list_move(&mnt
->mnt_expire
, &graveyard
);
2582 while (!list_empty(&graveyard
)) {
2583 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2584 touch_mnt_namespace(mnt
->mnt_ns
);
2585 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2587 unlock_mount_hash();
2591 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2594 * Ripoff of 'select_parent()'
2596 * search the list of submounts for a given mountpoint, and move any
2597 * shrinkable submounts to the 'graveyard' list.
2599 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2601 struct mount
*this_parent
= parent
;
2602 struct list_head
*next
;
2606 next
= this_parent
->mnt_mounts
.next
;
2608 while (next
!= &this_parent
->mnt_mounts
) {
2609 struct list_head
*tmp
= next
;
2610 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2613 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2616 * Descend a level if the d_mounts list is non-empty.
2618 if (!list_empty(&mnt
->mnt_mounts
)) {
2623 if (!propagate_mount_busy(mnt
, 1)) {
2624 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2629 * All done at this level ... ascend and resume the search
2631 if (this_parent
!= parent
) {
2632 next
= this_parent
->mnt_child
.next
;
2633 this_parent
= this_parent
->mnt_parent
;
2640 * process a list of expirable mountpoints with the intent of discarding any
2641 * submounts of a specific parent mountpoint
2643 * mount_lock must be held for write
2645 static void shrink_submounts(struct mount
*mnt
)
2647 LIST_HEAD(graveyard
);
2650 /* extract submounts of 'mountpoint' from the expiration list */
2651 while (select_submounts(mnt
, &graveyard
)) {
2652 while (!list_empty(&graveyard
)) {
2653 m
= list_first_entry(&graveyard
, struct mount
,
2655 touch_mnt_namespace(m
->mnt_ns
);
2656 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2662 * Some copy_from_user() implementations do not return the exact number of
2663 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2664 * Note that this function differs from copy_from_user() in that it will oops
2665 * on bad values of `to', rather than returning a short copy.
2667 static long exact_copy_from_user(void *to
, const void __user
* from
,
2671 const char __user
*f
= from
;
2674 if (!access_ok(VERIFY_READ
, from
, n
))
2678 if (__get_user(c
, f
)) {
2689 void *copy_mount_options(const void __user
* data
)
2698 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2700 return ERR_PTR(-ENOMEM
);
2702 /* We only care that *some* data at the address the user
2703 * gave us is valid. Just in case, we'll zero
2704 * the remainder of the page.
2706 /* copy_from_user cannot cross TASK_SIZE ! */
2707 size
= TASK_SIZE
- (unsigned long)data
;
2708 if (size
> PAGE_SIZE
)
2711 i
= size
- exact_copy_from_user(copy
, data
, size
);
2714 return ERR_PTR(-EFAULT
);
2717 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2721 char *copy_mount_string(const void __user
*data
)
2723 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2727 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2728 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2730 * data is a (void *) that can point to any structure up to
2731 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2732 * information (or be NULL).
2734 * Pre-0.97 versions of mount() didn't have a flags word.
2735 * When the flags word was introduced its top half was required
2736 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2737 * Therefore, if this magic number is present, it carries no information
2738 * and must be discarded.
2740 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2741 const char *type_page
, unsigned long flags
, void *data_page
)
2748 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2749 flags
&= ~MS_MGC_MSK
;
2751 /* Basic sanity checks */
2753 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2755 /* ... and get the mountpoint */
2756 retval
= user_path(dir_name
, &path
);
2760 retval
= security_sb_mount(dev_name
, &path
,
2761 type_page
, flags
, data_page
);
2762 if (!retval
&& !may_mount())
2764 if (!retval
&& (flags
& MS_MANDLOCK
) && !may_mandlock())
2769 /* Default to relatime unless overriden */
2770 if (!(flags
& MS_NOATIME
))
2771 mnt_flags
|= MNT_RELATIME
;
2773 /* Separate the per-mountpoint flags */
2774 if (flags
& MS_NOSUID
)
2775 mnt_flags
|= MNT_NOSUID
;
2776 if (flags
& MS_NODEV
)
2777 mnt_flags
|= MNT_NODEV
;
2778 if (flags
& MS_NOEXEC
)
2779 mnt_flags
|= MNT_NOEXEC
;
2780 if (flags
& MS_NOATIME
)
2781 mnt_flags
|= MNT_NOATIME
;
2782 if (flags
& MS_NODIRATIME
)
2783 mnt_flags
|= MNT_NODIRATIME
;
2784 if (flags
& MS_STRICTATIME
)
2785 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2786 if (flags
& MS_RDONLY
)
2787 mnt_flags
|= MNT_READONLY
;
2789 /* The default atime for remount is preservation */
2790 if ((flags
& MS_REMOUNT
) &&
2791 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2792 MS_STRICTATIME
)) == 0)) {
2793 mnt_flags
&= ~MNT_ATIME_MASK
;
2794 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2797 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2798 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2799 MS_STRICTATIME
| MS_NOREMOTELOCK
| MS_SUBMOUNT
);
2801 if (flags
& MS_REMOUNT
)
2802 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2804 else if (flags
& MS_BIND
)
2805 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2806 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2807 retval
= do_change_type(&path
, flags
);
2808 else if (flags
& MS_MOVE
)
2809 retval
= do_move_mount(&path
, dev_name
);
2811 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2812 dev_name
, data_page
);
2818 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2820 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2823 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2825 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2828 static void free_mnt_ns(struct mnt_namespace
*ns
)
2830 ns_free_inum(&ns
->ns
);
2831 dec_mnt_namespaces(ns
->ucounts
);
2832 put_user_ns(ns
->user_ns
);
2837 * Assign a sequence number so we can detect when we attempt to bind
2838 * mount a reference to an older mount namespace into the current
2839 * mount namespace, preventing reference counting loops. A 64bit
2840 * number incrementing at 10Ghz will take 12,427 years to wrap which
2841 * is effectively never, so we can ignore the possibility.
2843 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2845 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2847 struct mnt_namespace
*new_ns
;
2848 struct ucounts
*ucounts
;
2851 ucounts
= inc_mnt_namespaces(user_ns
);
2853 return ERR_PTR(-ENOSPC
);
2855 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2857 dec_mnt_namespaces(ucounts
);
2858 return ERR_PTR(-ENOMEM
);
2860 ret
= ns_alloc_inum(&new_ns
->ns
);
2863 dec_mnt_namespaces(ucounts
);
2864 return ERR_PTR(ret
);
2866 new_ns
->ns
.ops
= &mntns_operations
;
2867 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2868 atomic_set(&new_ns
->count
, 1);
2869 new_ns
->root
= NULL
;
2870 INIT_LIST_HEAD(&new_ns
->list
);
2871 init_waitqueue_head(&new_ns
->poll
);
2873 new_ns
->user_ns
= get_user_ns(user_ns
);
2874 new_ns
->ucounts
= ucounts
;
2876 new_ns
->pending_mounts
= 0;
2881 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2882 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2884 struct mnt_namespace
*new_ns
;
2885 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2886 struct mount
*p
, *q
;
2893 if (likely(!(flags
& CLONE_NEWNS
))) {
2900 new_ns
= alloc_mnt_ns(user_ns
);
2905 /* First pass: copy the tree topology */
2906 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2907 if (user_ns
!= ns
->user_ns
)
2908 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2909 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2912 free_mnt_ns(new_ns
);
2913 return ERR_CAST(new);
2916 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2919 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2920 * as belonging to new namespace. We have already acquired a private
2921 * fs_struct, so tsk->fs->lock is not needed.
2929 if (&p
->mnt
== new_fs
->root
.mnt
) {
2930 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2933 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2934 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2938 p
= next_mnt(p
, old
);
2939 q
= next_mnt(q
, new);
2942 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2943 p
= next_mnt(p
, old
);
2956 * create_mnt_ns - creates a private namespace and adds a root filesystem
2957 * @mnt: pointer to the new root filesystem mountpoint
2959 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2961 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2962 if (!IS_ERR(new_ns
)) {
2963 struct mount
*mnt
= real_mount(m
);
2964 mnt
->mnt_ns
= new_ns
;
2967 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2974 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2976 struct mnt_namespace
*ns
;
2977 struct super_block
*s
;
2981 ns
= create_mnt_ns(mnt
);
2983 return ERR_CAST(ns
);
2985 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2986 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2991 return ERR_PTR(err
);
2993 /* trade a vfsmount reference for active sb one */
2994 s
= path
.mnt
->mnt_sb
;
2995 atomic_inc(&s
->s_active
);
2997 /* lock the sucker */
2998 down_write(&s
->s_umount
);
2999 /* ... and return the root of (sub)tree on it */
3002 EXPORT_SYMBOL(mount_subtree
);
3004 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3005 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3012 kernel_type
= copy_mount_string(type
);
3013 ret
= PTR_ERR(kernel_type
);
3014 if (IS_ERR(kernel_type
))
3017 kernel_dev
= copy_mount_string(dev_name
);
3018 ret
= PTR_ERR(kernel_dev
);
3019 if (IS_ERR(kernel_dev
))
3022 options
= copy_mount_options(data
);
3023 ret
= PTR_ERR(options
);
3024 if (IS_ERR(options
))
3027 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3039 * Return true if path is reachable from root
3041 * namespace_sem or mount_lock is held
3043 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3044 const struct path
*root
)
3046 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3047 dentry
= mnt
->mnt_mountpoint
;
3048 mnt
= mnt
->mnt_parent
;
3050 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3053 bool path_is_under(struct path
*path1
, struct path
*path2
)
3056 read_seqlock_excl(&mount_lock
);
3057 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3058 read_sequnlock_excl(&mount_lock
);
3061 EXPORT_SYMBOL(path_is_under
);
3064 * pivot_root Semantics:
3065 * Moves the root file system of the current process to the directory put_old,
3066 * makes new_root as the new root file system of the current process, and sets
3067 * root/cwd of all processes which had them on the current root to new_root.
3070 * The new_root and put_old must be directories, and must not be on the
3071 * same file system as the current process root. The put_old must be
3072 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3073 * pointed to by put_old must yield the same directory as new_root. No other
3074 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3076 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3077 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3078 * in this situation.
3081 * - we don't move root/cwd if they are not at the root (reason: if something
3082 * cared enough to change them, it's probably wrong to force them elsewhere)
3083 * - it's okay to pick a root that isn't the root of a file system, e.g.
3084 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3085 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3088 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3089 const char __user
*, put_old
)
3091 struct path
new, old
, parent_path
, root_parent
, root
;
3092 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3093 struct mountpoint
*old_mp
, *root_mp
;
3099 error
= user_path_dir(new_root
, &new);
3103 error
= user_path_dir(put_old
, &old
);
3107 error
= security_sb_pivotroot(&old
, &new);
3111 get_fs_root(current
->fs
, &root
);
3112 old_mp
= lock_mount(&old
);
3113 error
= PTR_ERR(old_mp
);
3118 new_mnt
= real_mount(new.mnt
);
3119 root_mnt
= real_mount(root
.mnt
);
3120 old_mnt
= real_mount(old
.mnt
);
3121 if (IS_MNT_SHARED(old_mnt
) ||
3122 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3123 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3125 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3127 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3130 if (d_unlinked(new.dentry
))
3133 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3134 goto out4
; /* loop, on the same file system */
3136 if (root
.mnt
->mnt_root
!= root
.dentry
)
3137 goto out4
; /* not a mountpoint */
3138 if (!mnt_has_parent(root_mnt
))
3139 goto out4
; /* not attached */
3140 root_mp
= root_mnt
->mnt_mp
;
3141 if (new.mnt
->mnt_root
!= new.dentry
)
3142 goto out4
; /* not a mountpoint */
3143 if (!mnt_has_parent(new_mnt
))
3144 goto out4
; /* not attached */
3145 /* make sure we can reach put_old from new_root */
3146 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3148 /* make certain new is below the root */
3149 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3151 root_mp
->m_count
++; /* pin it so it won't go away */
3153 detach_mnt(new_mnt
, &parent_path
);
3154 detach_mnt(root_mnt
, &root_parent
);
3155 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3156 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3157 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3159 /* mount old root on put_old */
3160 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3161 /* mount new_root on / */
3162 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3163 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3164 /* A moved mount should not expire automatically */
3165 list_del_init(&new_mnt
->mnt_expire
);
3166 put_mountpoint(root_mp
);
3167 unlock_mount_hash();
3168 chroot_fs_refs(&root
, &new);
3171 unlock_mount(old_mp
);
3173 path_put(&root_parent
);
3174 path_put(&parent_path
);
3186 static void __init
init_mount_tree(void)
3188 struct vfsmount
*mnt
;
3189 struct mnt_namespace
*ns
;
3191 struct file_system_type
*type
;
3193 type
= get_fs_type("rootfs");
3195 panic("Can't find rootfs type");
3196 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3197 put_filesystem(type
);
3199 panic("Can't create rootfs");
3201 ns
= create_mnt_ns(mnt
);
3203 panic("Can't allocate initial namespace");
3205 init_task
.nsproxy
->mnt_ns
= ns
;
3209 root
.dentry
= mnt
->mnt_root
;
3210 mnt
->mnt_flags
|= MNT_LOCKED
;
3212 set_fs_pwd(current
->fs
, &root
);
3213 set_fs_root(current
->fs
, &root
);
3216 void __init
mnt_init(void)
3221 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3222 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3224 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3225 sizeof(struct hlist_head
),
3228 &m_hash_shift
, &m_hash_mask
, 0, 0);
3229 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3230 sizeof(struct hlist_head
),
3233 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3235 if (!mount_hashtable
|| !mountpoint_hashtable
)
3236 panic("Failed to allocate mount hash table\n");
3238 for (u
= 0; u
<= m_hash_mask
; u
++)
3239 INIT_HLIST_HEAD(&mount_hashtable
[u
]);
3240 for (u
= 0; u
<= mp_hash_mask
; u
++)
3241 INIT_HLIST_HEAD(&mountpoint_hashtable
[u
]);
3247 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3249 fs_kobj
= kobject_create_and_add("fs", NULL
);
3251 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3256 void put_mnt_ns(struct mnt_namespace
*ns
)
3258 if (!atomic_dec_and_test(&ns
->count
))
3260 drop_collected_mounts(&ns
->root
->mnt
);
3264 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3266 struct vfsmount
*mnt
;
3267 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
3270 * it is a longterm mount, don't release mnt until
3271 * we unmount before file sys is unregistered
3273 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3277 EXPORT_SYMBOL_GPL(kern_mount_data
);
3279 void kern_unmount(struct vfsmount
*mnt
)
3281 /* release long term mount so mount point can be released */
3282 if (!IS_ERR_OR_NULL(mnt
)) {
3283 real_mount(mnt
)->mnt_ns
= NULL
;
3284 synchronize_rcu(); /* yecchhh... */
3288 EXPORT_SYMBOL(kern_unmount
);
3290 bool our_mnt(struct vfsmount
*mnt
)
3292 return check_mnt(real_mount(mnt
));
3295 bool current_chrooted(void)
3297 /* Does the current process have a non-standard root */
3298 struct path ns_root
;
3299 struct path fs_root
;
3302 /* Find the namespace root */
3303 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3304 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3306 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3309 get_fs_root(current
->fs
, &fs_root
);
3311 chrooted
= !path_equal(&fs_root
, &ns_root
);
3319 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3322 int new_flags
= *new_mnt_flags
;
3324 bool visible
= false;
3326 down_read(&namespace_sem
);
3327 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3328 struct mount
*child
;
3331 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3334 /* This mount is not fully visible if it's root directory
3335 * is not the root directory of the filesystem.
3337 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3340 /* A local view of the mount flags */
3341 mnt_flags
= mnt
->mnt
.mnt_flags
;
3343 /* Don't miss readonly hidden in the superblock flags */
3344 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_RDONLY
)
3345 mnt_flags
|= MNT_LOCK_READONLY
;
3347 /* Verify the mount flags are equal to or more permissive
3348 * than the proposed new mount.
3350 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3351 !(new_flags
& MNT_READONLY
))
3353 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3354 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3357 /* This mount is not fully visible if there are any
3358 * locked child mounts that cover anything except for
3359 * empty directories.
3361 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3362 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3363 /* Only worry about locked mounts */
3364 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3366 /* Is the directory permanetly empty? */
3367 if (!is_empty_dir_inode(inode
))
3370 /* Preserve the locked attributes */
3371 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3378 up_read(&namespace_sem
);
3382 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3384 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3385 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3386 unsigned long s_iflags
;
3388 if (ns
->user_ns
== &init_user_ns
)
3391 /* Can this filesystem be too revealing? */
3392 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3393 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3396 if ((s_iflags
& required_iflags
) != required_iflags
) {
3397 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3402 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3405 bool mnt_may_suid(struct vfsmount
*mnt
)
3408 * Foreign mounts (accessed via fchdir or through /proc
3409 * symlinks) are always treated as if they are nosuid. This
3410 * prevents namespaces from trusting potentially unsafe
3411 * suid/sgid bits, file caps, or security labels that originate
3412 * in other namespaces.
3414 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3415 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3418 static struct ns_common
*mntns_get(struct task_struct
*task
)
3420 struct ns_common
*ns
= NULL
;
3421 struct nsproxy
*nsproxy
;
3424 nsproxy
= task
->nsproxy
;
3426 ns
= &nsproxy
->mnt_ns
->ns
;
3427 get_mnt_ns(to_mnt_ns(ns
));
3434 static void mntns_put(struct ns_common
*ns
)
3436 put_mnt_ns(to_mnt_ns(ns
));
3439 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3441 struct fs_struct
*fs
= current
->fs
;
3442 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
);
3445 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3446 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3447 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3454 put_mnt_ns(nsproxy
->mnt_ns
);
3455 nsproxy
->mnt_ns
= mnt_ns
;
3458 root
.mnt
= &mnt_ns
->root
->mnt
;
3459 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
3461 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
3464 /* Update the pwd and root */
3465 set_fs_pwd(fs
, &root
);
3466 set_fs_root(fs
, &root
);
3472 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3474 return to_mnt_ns(ns
)->user_ns
;
3477 const struct proc_ns_operations mntns_operations
= {
3479 .type
= CLONE_NEWNS
,
3482 .install
= mntns_install
,
3483 .owner
= mntns_owner
,