inet: frag: enforce memory limits earlier
[linux/fpc-iii.git] / fs / namespace.c
blob6c873b330a936ca664f8718a25c9a590a3089b7a
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
46 __setup("mhash_entries=", set_mhash_entries);
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
56 __setup("mphash_entries=", set_mphash_entries);
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount *mnt)
105 int res;
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
117 return res;
120 static void mnt_free_id(struct mount *mnt)
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount *mnt)
137 int res;
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
148 return res;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount *mnt)
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount *mnt)
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
196 static void drop_mountpoint(struct fs_pin *p)
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
204 static struct mount *alloc_vfsmnt(const char *name)
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 INIT_LIST_HEAD(&mnt->mnt_umounting);
241 #ifdef CONFIG_FSNOTIFY
242 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
243 #endif
244 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 return mnt;
248 #ifdef CONFIG_SMP
249 out_free_devname:
250 kfree_const(mnt->mnt_devname);
251 #endif
252 out_free_id:
253 mnt_free_id(mnt);
254 out_free_cache:
255 kmem_cache_free(mnt_cache, mnt);
256 return NULL;
260 * Most r/o checks on a fs are for operations that take
261 * discrete amounts of time, like a write() or unlink().
262 * We must keep track of when those operations start
263 * (for permission checks) and when they end, so that
264 * we can determine when writes are able to occur to
265 * a filesystem.
268 * __mnt_is_readonly: check whether a mount is read-only
269 * @mnt: the mount to check for its write status
271 * This shouldn't be used directly ouside of the VFS.
272 * It does not guarantee that the filesystem will stay
273 * r/w, just that it is right *now*. This can not and
274 * should not be used in place of IS_RDONLY(inode).
275 * mnt_want/drop_write() will _keep_ the filesystem
276 * r/w.
278 int __mnt_is_readonly(struct vfsmount *mnt)
280 if (mnt->mnt_flags & MNT_READONLY)
281 return 1;
282 if (mnt->mnt_sb->s_flags & MS_RDONLY)
283 return 1;
284 return 0;
286 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
288 static inline void mnt_inc_writers(struct mount *mnt)
290 #ifdef CONFIG_SMP
291 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
292 #else
293 mnt->mnt_writers++;
294 #endif
297 static inline void mnt_dec_writers(struct mount *mnt)
299 #ifdef CONFIG_SMP
300 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
301 #else
302 mnt->mnt_writers--;
303 #endif
306 static unsigned int mnt_get_writers(struct mount *mnt)
308 #ifdef CONFIG_SMP
309 unsigned int count = 0;
310 int cpu;
312 for_each_possible_cpu(cpu) {
313 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
316 return count;
317 #else
318 return mnt->mnt_writers;
319 #endif
322 static int mnt_is_readonly(struct vfsmount *mnt)
324 if (mnt->mnt_sb->s_readonly_remount)
325 return 1;
326 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
327 smp_rmb();
328 return __mnt_is_readonly(mnt);
332 * Most r/o & frozen checks on a fs are for operations that take discrete
333 * amounts of time, like a write() or unlink(). We must keep track of when
334 * those operations start (for permission checks) and when they end, so that we
335 * can determine when writes are able to occur to a filesystem.
338 * __mnt_want_write - get write access to a mount without freeze protection
339 * @m: the mount on which to take a write
341 * This tells the low-level filesystem that a write is about to be performed to
342 * it, and makes sure that writes are allowed (mnt it read-write) before
343 * returning success. This operation does not protect against filesystem being
344 * frozen. When the write operation is finished, __mnt_drop_write() must be
345 * called. This is effectively a refcount.
347 int __mnt_want_write(struct vfsmount *m)
349 struct mount *mnt = real_mount(m);
350 int ret = 0;
352 preempt_disable();
353 mnt_inc_writers(mnt);
355 * The store to mnt_inc_writers must be visible before we pass
356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 * incremented count after it has set MNT_WRITE_HOLD.
359 smp_mb();
360 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
361 cpu_relax();
363 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
364 * be set to match its requirements. So we must not load that until
365 * MNT_WRITE_HOLD is cleared.
367 smp_rmb();
368 if (mnt_is_readonly(m)) {
369 mnt_dec_writers(mnt);
370 ret = -EROFS;
372 preempt_enable();
374 return ret;
378 * mnt_want_write - get write access to a mount
379 * @m: the mount on which to take a write
381 * This tells the low-level filesystem that a write is about to be performed to
382 * it, and makes sure that writes are allowed (mount is read-write, filesystem
383 * is not frozen) before returning success. When the write operation is
384 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 int mnt_want_write(struct vfsmount *m)
388 int ret;
390 sb_start_write(m->mnt_sb);
391 ret = __mnt_want_write(m);
392 if (ret)
393 sb_end_write(m->mnt_sb);
394 return ret;
396 EXPORT_SYMBOL_GPL(mnt_want_write);
399 * mnt_clone_write - get write access to a mount
400 * @mnt: the mount on which to take a write
402 * This is effectively like mnt_want_write, except
403 * it must only be used to take an extra write reference
404 * on a mountpoint that we already know has a write reference
405 * on it. This allows some optimisation.
407 * After finished, mnt_drop_write must be called as usual to
408 * drop the reference.
410 int mnt_clone_write(struct vfsmount *mnt)
412 /* superblock may be r/o */
413 if (__mnt_is_readonly(mnt))
414 return -EROFS;
415 preempt_disable();
416 mnt_inc_writers(real_mount(mnt));
417 preempt_enable();
418 return 0;
420 EXPORT_SYMBOL_GPL(mnt_clone_write);
423 * __mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
426 * This is like __mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
429 int __mnt_want_write_file(struct file *file)
431 if (!(file->f_mode & FMODE_WRITER))
432 return __mnt_want_write(file->f_path.mnt);
433 else
434 return mnt_clone_write(file->f_path.mnt);
438 * mnt_want_write_file - get write access to a file's mount
439 * @file: the file who's mount on which to take a write
441 * This is like mnt_want_write, but it takes a file and can
442 * do some optimisations if the file is open for write already
444 int mnt_want_write_file(struct file *file)
446 int ret;
448 sb_start_write(file->f_path.mnt->mnt_sb);
449 ret = __mnt_want_write_file(file);
450 if (ret)
451 sb_end_write(file->f_path.mnt->mnt_sb);
452 return ret;
454 EXPORT_SYMBOL_GPL(mnt_want_write_file);
457 * __mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
460 * Tells the low-level filesystem that we are done
461 * performing writes to it. Must be matched with
462 * __mnt_want_write() call above.
464 void __mnt_drop_write(struct vfsmount *mnt)
466 preempt_disable();
467 mnt_dec_writers(real_mount(mnt));
468 preempt_enable();
472 * mnt_drop_write - give up write access to a mount
473 * @mnt: the mount on which to give up write access
475 * Tells the low-level filesystem that we are done performing writes to it and
476 * also allows filesystem to be frozen again. Must be matched with
477 * mnt_want_write() call above.
479 void mnt_drop_write(struct vfsmount *mnt)
481 __mnt_drop_write(mnt);
482 sb_end_write(mnt->mnt_sb);
484 EXPORT_SYMBOL_GPL(mnt_drop_write);
486 void __mnt_drop_write_file(struct file *file)
488 __mnt_drop_write(file->f_path.mnt);
491 void mnt_drop_write_file(struct file *file)
493 mnt_drop_write(file->f_path.mnt);
495 EXPORT_SYMBOL(mnt_drop_write_file);
497 static int mnt_make_readonly(struct mount *mnt)
499 int ret = 0;
501 lock_mount_hash();
502 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
505 * should be visible before we do.
507 smp_mb();
510 * With writers on hold, if this value is zero, then there are
511 * definitely no active writers (although held writers may subsequently
512 * increment the count, they'll have to wait, and decrement it after
513 * seeing MNT_READONLY).
515 * It is OK to have counter incremented on one CPU and decremented on
516 * another: the sum will add up correctly. The danger would be when we
517 * sum up each counter, if we read a counter before it is incremented,
518 * but then read another CPU's count which it has been subsequently
519 * decremented from -- we would see more decrements than we should.
520 * MNT_WRITE_HOLD protects against this scenario, because
521 * mnt_want_write first increments count, then smp_mb, then spins on
522 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
523 * we're counting up here.
525 if (mnt_get_writers(mnt) > 0)
526 ret = -EBUSY;
527 else
528 mnt->mnt.mnt_flags |= MNT_READONLY;
530 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
531 * that become unheld will see MNT_READONLY.
533 smp_wmb();
534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 unlock_mount_hash();
536 return ret;
539 static void __mnt_unmake_readonly(struct mount *mnt)
541 lock_mount_hash();
542 mnt->mnt.mnt_flags &= ~MNT_READONLY;
543 unlock_mount_hash();
546 int sb_prepare_remount_readonly(struct super_block *sb)
548 struct mount *mnt;
549 int err = 0;
551 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
552 if (atomic_long_read(&sb->s_remove_count))
553 return -EBUSY;
555 lock_mount_hash();
556 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
557 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 smp_mb();
560 if (mnt_get_writers(mnt) > 0) {
561 err = -EBUSY;
562 break;
566 if (!err && atomic_long_read(&sb->s_remove_count))
567 err = -EBUSY;
569 if (!err) {
570 sb->s_readonly_remount = 1;
571 smp_wmb();
573 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
574 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
575 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 unlock_mount_hash();
579 return err;
582 static void free_vfsmnt(struct mount *mnt)
584 kfree_const(mnt->mnt_devname);
585 #ifdef CONFIG_SMP
586 free_percpu(mnt->mnt_pcp);
587 #endif
588 kmem_cache_free(mnt_cache, mnt);
591 static void delayed_free_vfsmnt(struct rcu_head *head)
593 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
596 /* call under rcu_read_lock */
597 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
599 struct mount *mnt;
600 if (read_seqretry(&mount_lock, seq))
601 return 1;
602 if (bastard == NULL)
603 return 0;
604 mnt = real_mount(bastard);
605 mnt_add_count(mnt, 1);
606 if (likely(!read_seqretry(&mount_lock, seq)))
607 return 0;
608 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
609 mnt_add_count(mnt, -1);
610 return 1;
612 return -1;
615 /* call under rcu_read_lock */
616 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
618 int res = __legitimize_mnt(bastard, seq);
619 if (likely(!res))
620 return true;
621 if (unlikely(res < 0)) {
622 rcu_read_unlock();
623 mntput(bastard);
624 rcu_read_lock();
626 return false;
630 * find the first mount at @dentry on vfsmount @mnt.
631 * call under rcu_read_lock()
633 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
635 struct hlist_head *head = m_hash(mnt, dentry);
636 struct mount *p;
638 hlist_for_each_entry_rcu(p, head, mnt_hash)
639 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
640 return p;
641 return NULL;
645 * lookup_mnt - Return the first child mount mounted at path
647 * "First" means first mounted chronologically. If you create the
648 * following mounts:
650 * mount /dev/sda1 /mnt
651 * mount /dev/sda2 /mnt
652 * mount /dev/sda3 /mnt
654 * Then lookup_mnt() on the base /mnt dentry in the root mount will
655 * return successively the root dentry and vfsmount of /dev/sda1, then
656 * /dev/sda2, then /dev/sda3, then NULL.
658 * lookup_mnt takes a reference to the found vfsmount.
660 struct vfsmount *lookup_mnt(struct path *path)
662 struct mount *child_mnt;
663 struct vfsmount *m;
664 unsigned seq;
666 rcu_read_lock();
667 do {
668 seq = read_seqbegin(&mount_lock);
669 child_mnt = __lookup_mnt(path->mnt, path->dentry);
670 m = child_mnt ? &child_mnt->mnt : NULL;
671 } while (!legitimize_mnt(m, seq));
672 rcu_read_unlock();
673 return m;
677 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
678 * current mount namespace.
680 * The common case is dentries are not mountpoints at all and that
681 * test is handled inline. For the slow case when we are actually
682 * dealing with a mountpoint of some kind, walk through all of the
683 * mounts in the current mount namespace and test to see if the dentry
684 * is a mountpoint.
686 * The mount_hashtable is not usable in the context because we
687 * need to identify all mounts that may be in the current mount
688 * namespace not just a mount that happens to have some specified
689 * parent mount.
691 bool __is_local_mountpoint(struct dentry *dentry)
693 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
694 struct mount *mnt;
695 bool is_covered = false;
697 if (!d_mountpoint(dentry))
698 goto out;
700 down_read(&namespace_sem);
701 list_for_each_entry(mnt, &ns->list, mnt_list) {
702 is_covered = (mnt->mnt_mountpoint == dentry);
703 if (is_covered)
704 break;
706 up_read(&namespace_sem);
707 out:
708 return is_covered;
711 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
713 struct hlist_head *chain = mp_hash(dentry);
714 struct mountpoint *mp;
716 hlist_for_each_entry(mp, chain, m_hash) {
717 if (mp->m_dentry == dentry) {
718 /* might be worth a WARN_ON() */
719 if (d_unlinked(dentry))
720 return ERR_PTR(-ENOENT);
721 mp->m_count++;
722 return mp;
725 return NULL;
728 static struct mountpoint *get_mountpoint(struct dentry *dentry)
730 struct mountpoint *mp, *new = NULL;
731 int ret;
733 if (d_mountpoint(dentry)) {
734 mountpoint:
735 read_seqlock_excl(&mount_lock);
736 mp = lookup_mountpoint(dentry);
737 read_sequnlock_excl(&mount_lock);
738 if (mp)
739 goto done;
742 if (!new)
743 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
744 if (!new)
745 return ERR_PTR(-ENOMEM);
748 /* Exactly one processes may set d_mounted */
749 ret = d_set_mounted(dentry);
751 /* Someone else set d_mounted? */
752 if (ret == -EBUSY)
753 goto mountpoint;
755 /* The dentry is not available as a mountpoint? */
756 mp = ERR_PTR(ret);
757 if (ret)
758 goto done;
760 /* Add the new mountpoint to the hash table */
761 read_seqlock_excl(&mount_lock);
762 new->m_dentry = dentry;
763 new->m_count = 1;
764 hlist_add_head(&new->m_hash, mp_hash(dentry));
765 INIT_HLIST_HEAD(&new->m_list);
766 read_sequnlock_excl(&mount_lock);
768 mp = new;
769 new = NULL;
770 done:
771 kfree(new);
772 return mp;
775 static void put_mountpoint(struct mountpoint *mp)
777 if (!--mp->m_count) {
778 struct dentry *dentry = mp->m_dentry;
779 BUG_ON(!hlist_empty(&mp->m_list));
780 spin_lock(&dentry->d_lock);
781 dentry->d_flags &= ~DCACHE_MOUNTED;
782 spin_unlock(&dentry->d_lock);
783 hlist_del(&mp->m_hash);
784 kfree(mp);
788 static inline int check_mnt(struct mount *mnt)
790 return mnt->mnt_ns == current->nsproxy->mnt_ns;
794 * vfsmount lock must be held for write
796 static void touch_mnt_namespace(struct mnt_namespace *ns)
798 if (ns) {
799 ns->event = ++event;
800 wake_up_interruptible(&ns->poll);
805 * vfsmount lock must be held for write
807 static void __touch_mnt_namespace(struct mnt_namespace *ns)
809 if (ns && ns->event != event) {
810 ns->event = event;
811 wake_up_interruptible(&ns->poll);
816 * vfsmount lock must be held for write
818 static void unhash_mnt(struct mount *mnt)
820 mnt->mnt_parent = mnt;
821 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
822 list_del_init(&mnt->mnt_child);
823 hlist_del_init_rcu(&mnt->mnt_hash);
824 hlist_del_init(&mnt->mnt_mp_list);
825 put_mountpoint(mnt->mnt_mp);
826 mnt->mnt_mp = NULL;
830 * vfsmount lock must be held for write
832 static void detach_mnt(struct mount *mnt, struct path *old_path)
834 old_path->dentry = mnt->mnt_mountpoint;
835 old_path->mnt = &mnt->mnt_parent->mnt;
836 unhash_mnt(mnt);
840 * vfsmount lock must be held for write
842 static void umount_mnt(struct mount *mnt)
844 /* old mountpoint will be dropped when we can do that */
845 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
846 unhash_mnt(mnt);
850 * vfsmount lock must be held for write
852 void mnt_set_mountpoint(struct mount *mnt,
853 struct mountpoint *mp,
854 struct mount *child_mnt)
856 mp->m_count++;
857 mnt_add_count(mnt, 1); /* essentially, that's mntget */
858 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
859 child_mnt->mnt_parent = mnt;
860 child_mnt->mnt_mp = mp;
861 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
864 static void __attach_mnt(struct mount *mnt, struct mount *parent)
866 hlist_add_head_rcu(&mnt->mnt_hash,
867 m_hash(&parent->mnt, mnt->mnt_mountpoint));
868 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
872 * vfsmount lock must be held for write
874 static void attach_mnt(struct mount *mnt,
875 struct mount *parent,
876 struct mountpoint *mp)
878 mnt_set_mountpoint(parent, mp, mnt);
879 __attach_mnt(mnt, parent);
882 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
884 struct mountpoint *old_mp = mnt->mnt_mp;
885 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
886 struct mount *old_parent = mnt->mnt_parent;
888 list_del_init(&mnt->mnt_child);
889 hlist_del_init(&mnt->mnt_mp_list);
890 hlist_del_init_rcu(&mnt->mnt_hash);
892 attach_mnt(mnt, parent, mp);
894 put_mountpoint(old_mp);
897 * Safely avoid even the suggestion this code might sleep or
898 * lock the mount hash by taking advantage of the knowledge that
899 * mnt_change_mountpoint will not release the final reference
900 * to a mountpoint.
902 * During mounting, the mount passed in as the parent mount will
903 * continue to use the old mountpoint and during unmounting, the
904 * old mountpoint will continue to exist until namespace_unlock,
905 * which happens well after mnt_change_mountpoint.
907 spin_lock(&old_mountpoint->d_lock);
908 old_mountpoint->d_lockref.count--;
909 spin_unlock(&old_mountpoint->d_lock);
911 mnt_add_count(old_parent, -1);
915 * vfsmount lock must be held for write
917 static void commit_tree(struct mount *mnt)
919 struct mount *parent = mnt->mnt_parent;
920 struct mount *m;
921 LIST_HEAD(head);
922 struct mnt_namespace *n = parent->mnt_ns;
924 BUG_ON(parent == mnt);
926 list_add_tail(&head, &mnt->mnt_list);
927 list_for_each_entry(m, &head, mnt_list)
928 m->mnt_ns = n;
930 list_splice(&head, n->list.prev);
932 n->mounts += n->pending_mounts;
933 n->pending_mounts = 0;
935 __attach_mnt(mnt, parent);
936 touch_mnt_namespace(n);
939 static struct mount *next_mnt(struct mount *p, struct mount *root)
941 struct list_head *next = p->mnt_mounts.next;
942 if (next == &p->mnt_mounts) {
943 while (1) {
944 if (p == root)
945 return NULL;
946 next = p->mnt_child.next;
947 if (next != &p->mnt_parent->mnt_mounts)
948 break;
949 p = p->mnt_parent;
952 return list_entry(next, struct mount, mnt_child);
955 static struct mount *skip_mnt_tree(struct mount *p)
957 struct list_head *prev = p->mnt_mounts.prev;
958 while (prev != &p->mnt_mounts) {
959 p = list_entry(prev, struct mount, mnt_child);
960 prev = p->mnt_mounts.prev;
962 return p;
965 struct vfsmount *
966 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
968 struct mount *mnt;
969 struct dentry *root;
971 if (!type)
972 return ERR_PTR(-ENODEV);
974 mnt = alloc_vfsmnt(name);
975 if (!mnt)
976 return ERR_PTR(-ENOMEM);
978 if (flags & MS_KERNMOUNT)
979 mnt->mnt.mnt_flags = MNT_INTERNAL;
981 root = mount_fs(type, flags, name, data);
982 if (IS_ERR(root)) {
983 mnt_free_id(mnt);
984 free_vfsmnt(mnt);
985 return ERR_CAST(root);
988 mnt->mnt.mnt_root = root;
989 mnt->mnt.mnt_sb = root->d_sb;
990 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
991 mnt->mnt_parent = mnt;
992 lock_mount_hash();
993 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
994 unlock_mount_hash();
995 return &mnt->mnt;
997 EXPORT_SYMBOL_GPL(vfs_kern_mount);
999 struct vfsmount *
1000 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1001 const char *name, void *data)
1003 /* Until it is worked out how to pass the user namespace
1004 * through from the parent mount to the submount don't support
1005 * unprivileged mounts with submounts.
1007 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1008 return ERR_PTR(-EPERM);
1010 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1012 EXPORT_SYMBOL_GPL(vfs_submount);
1014 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1015 int flag)
1017 struct super_block *sb = old->mnt.mnt_sb;
1018 struct mount *mnt;
1019 int err;
1021 mnt = alloc_vfsmnt(old->mnt_devname);
1022 if (!mnt)
1023 return ERR_PTR(-ENOMEM);
1025 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1026 mnt->mnt_group_id = 0; /* not a peer of original */
1027 else
1028 mnt->mnt_group_id = old->mnt_group_id;
1030 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1031 err = mnt_alloc_group_id(mnt);
1032 if (err)
1033 goto out_free;
1036 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1037 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1038 /* Don't allow unprivileged users to change mount flags */
1039 if (flag & CL_UNPRIVILEGED) {
1040 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1042 if (mnt->mnt.mnt_flags & MNT_READONLY)
1043 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1045 if (mnt->mnt.mnt_flags & MNT_NODEV)
1046 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1048 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1049 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1051 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1052 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1055 /* Don't allow unprivileged users to reveal what is under a mount */
1056 if ((flag & CL_UNPRIVILEGED) &&
1057 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1058 mnt->mnt.mnt_flags |= MNT_LOCKED;
1060 atomic_inc(&sb->s_active);
1061 mnt->mnt.mnt_sb = sb;
1062 mnt->mnt.mnt_root = dget(root);
1063 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1064 mnt->mnt_parent = mnt;
1065 lock_mount_hash();
1066 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1067 unlock_mount_hash();
1069 if ((flag & CL_SLAVE) ||
1070 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1071 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1072 mnt->mnt_master = old;
1073 CLEAR_MNT_SHARED(mnt);
1074 } else if (!(flag & CL_PRIVATE)) {
1075 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1076 list_add(&mnt->mnt_share, &old->mnt_share);
1077 if (IS_MNT_SLAVE(old))
1078 list_add(&mnt->mnt_slave, &old->mnt_slave);
1079 mnt->mnt_master = old->mnt_master;
1081 if (flag & CL_MAKE_SHARED)
1082 set_mnt_shared(mnt);
1084 /* stick the duplicate mount on the same expiry list
1085 * as the original if that was on one */
1086 if (flag & CL_EXPIRE) {
1087 if (!list_empty(&old->mnt_expire))
1088 list_add(&mnt->mnt_expire, &old->mnt_expire);
1091 return mnt;
1093 out_free:
1094 mnt_free_id(mnt);
1095 free_vfsmnt(mnt);
1096 return ERR_PTR(err);
1099 static void cleanup_mnt(struct mount *mnt)
1102 * This probably indicates that somebody messed
1103 * up a mnt_want/drop_write() pair. If this
1104 * happens, the filesystem was probably unable
1105 * to make r/w->r/o transitions.
1108 * The locking used to deal with mnt_count decrement provides barriers,
1109 * so mnt_get_writers() below is safe.
1111 WARN_ON(mnt_get_writers(mnt));
1112 if (unlikely(mnt->mnt_pins.first))
1113 mnt_pin_kill(mnt);
1114 fsnotify_vfsmount_delete(&mnt->mnt);
1115 dput(mnt->mnt.mnt_root);
1116 deactivate_super(mnt->mnt.mnt_sb);
1117 mnt_free_id(mnt);
1118 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1121 static void __cleanup_mnt(struct rcu_head *head)
1123 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1126 static LLIST_HEAD(delayed_mntput_list);
1127 static void delayed_mntput(struct work_struct *unused)
1129 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1130 struct llist_node *next;
1132 for (; node; node = next) {
1133 next = llist_next(node);
1134 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1139 static void mntput_no_expire(struct mount *mnt)
1141 rcu_read_lock();
1142 mnt_add_count(mnt, -1);
1143 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1144 rcu_read_unlock();
1145 return;
1147 lock_mount_hash();
1148 if (mnt_get_count(mnt)) {
1149 rcu_read_unlock();
1150 unlock_mount_hash();
1151 return;
1153 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1154 rcu_read_unlock();
1155 unlock_mount_hash();
1156 return;
1158 mnt->mnt.mnt_flags |= MNT_DOOMED;
1159 rcu_read_unlock();
1161 list_del(&mnt->mnt_instance);
1163 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1164 struct mount *p, *tmp;
1165 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1166 umount_mnt(p);
1169 unlock_mount_hash();
1171 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1172 struct task_struct *task = current;
1173 if (likely(!(task->flags & PF_KTHREAD))) {
1174 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1175 if (!task_work_add(task, &mnt->mnt_rcu, true))
1176 return;
1178 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1179 schedule_delayed_work(&delayed_mntput_work, 1);
1180 return;
1182 cleanup_mnt(mnt);
1185 void mntput(struct vfsmount *mnt)
1187 if (mnt) {
1188 struct mount *m = real_mount(mnt);
1189 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1190 if (unlikely(m->mnt_expiry_mark))
1191 m->mnt_expiry_mark = 0;
1192 mntput_no_expire(m);
1195 EXPORT_SYMBOL(mntput);
1197 struct vfsmount *mntget(struct vfsmount *mnt)
1199 if (mnt)
1200 mnt_add_count(real_mount(mnt), 1);
1201 return mnt;
1203 EXPORT_SYMBOL(mntget);
1205 struct vfsmount *mnt_clone_internal(struct path *path)
1207 struct mount *p;
1208 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1209 if (IS_ERR(p))
1210 return ERR_CAST(p);
1211 p->mnt.mnt_flags |= MNT_INTERNAL;
1212 return &p->mnt;
1215 static inline void mangle(struct seq_file *m, const char *s)
1217 seq_escape(m, s, " \t\n\\");
1221 * Simple .show_options callback for filesystems which don't want to
1222 * implement more complex mount option showing.
1224 * See also save_mount_options().
1226 int generic_show_options(struct seq_file *m, struct dentry *root)
1228 const char *options;
1230 rcu_read_lock();
1231 options = rcu_dereference(root->d_sb->s_options);
1233 if (options != NULL && options[0]) {
1234 seq_putc(m, ',');
1235 mangle(m, options);
1237 rcu_read_unlock();
1239 return 0;
1241 EXPORT_SYMBOL(generic_show_options);
1244 * If filesystem uses generic_show_options(), this function should be
1245 * called from the fill_super() callback.
1247 * The .remount_fs callback usually needs to be handled in a special
1248 * way, to make sure, that previous options are not overwritten if the
1249 * remount fails.
1251 * Also note, that if the filesystem's .remount_fs function doesn't
1252 * reset all options to their default value, but changes only newly
1253 * given options, then the displayed options will not reflect reality
1254 * any more.
1256 void save_mount_options(struct super_block *sb, char *options)
1258 BUG_ON(sb->s_options);
1259 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1261 EXPORT_SYMBOL(save_mount_options);
1263 void replace_mount_options(struct super_block *sb, char *options)
1265 char *old = sb->s_options;
1266 rcu_assign_pointer(sb->s_options, options);
1267 if (old) {
1268 synchronize_rcu();
1269 kfree(old);
1272 EXPORT_SYMBOL(replace_mount_options);
1274 #ifdef CONFIG_PROC_FS
1275 /* iterator; we want it to have access to namespace_sem, thus here... */
1276 static void *m_start(struct seq_file *m, loff_t *pos)
1278 struct proc_mounts *p = m->private;
1280 down_read(&namespace_sem);
1281 if (p->cached_event == p->ns->event) {
1282 void *v = p->cached_mount;
1283 if (*pos == p->cached_index)
1284 return v;
1285 if (*pos == p->cached_index + 1) {
1286 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1287 return p->cached_mount = v;
1291 p->cached_event = p->ns->event;
1292 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1293 p->cached_index = *pos;
1294 return p->cached_mount;
1297 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1299 struct proc_mounts *p = m->private;
1301 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1302 p->cached_index = *pos;
1303 return p->cached_mount;
1306 static void m_stop(struct seq_file *m, void *v)
1308 up_read(&namespace_sem);
1311 static int m_show(struct seq_file *m, void *v)
1313 struct proc_mounts *p = m->private;
1314 struct mount *r = list_entry(v, struct mount, mnt_list);
1315 return p->show(m, &r->mnt);
1318 const struct seq_operations mounts_op = {
1319 .start = m_start,
1320 .next = m_next,
1321 .stop = m_stop,
1322 .show = m_show,
1324 #endif /* CONFIG_PROC_FS */
1327 * may_umount_tree - check if a mount tree is busy
1328 * @mnt: root of mount tree
1330 * This is called to check if a tree of mounts has any
1331 * open files, pwds, chroots or sub mounts that are
1332 * busy.
1334 int may_umount_tree(struct vfsmount *m)
1336 struct mount *mnt = real_mount(m);
1337 int actual_refs = 0;
1338 int minimum_refs = 0;
1339 struct mount *p;
1340 BUG_ON(!m);
1342 /* write lock needed for mnt_get_count */
1343 lock_mount_hash();
1344 for (p = mnt; p; p = next_mnt(p, mnt)) {
1345 actual_refs += mnt_get_count(p);
1346 minimum_refs += 2;
1348 unlock_mount_hash();
1350 if (actual_refs > minimum_refs)
1351 return 0;
1353 return 1;
1356 EXPORT_SYMBOL(may_umount_tree);
1359 * may_umount - check if a mount point is busy
1360 * @mnt: root of mount
1362 * This is called to check if a mount point has any
1363 * open files, pwds, chroots or sub mounts. If the
1364 * mount has sub mounts this will return busy
1365 * regardless of whether the sub mounts are busy.
1367 * Doesn't take quota and stuff into account. IOW, in some cases it will
1368 * give false negatives. The main reason why it's here is that we need
1369 * a non-destructive way to look for easily umountable filesystems.
1371 int may_umount(struct vfsmount *mnt)
1373 int ret = 1;
1374 down_read(&namespace_sem);
1375 lock_mount_hash();
1376 if (propagate_mount_busy(real_mount(mnt), 2))
1377 ret = 0;
1378 unlock_mount_hash();
1379 up_read(&namespace_sem);
1380 return ret;
1383 EXPORT_SYMBOL(may_umount);
1385 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1387 static void namespace_unlock(void)
1389 struct hlist_head head;
1391 hlist_move_list(&unmounted, &head);
1393 up_write(&namespace_sem);
1395 if (likely(hlist_empty(&head)))
1396 return;
1398 synchronize_rcu();
1400 group_pin_kill(&head);
1403 static inline void namespace_lock(void)
1405 down_write(&namespace_sem);
1408 enum umount_tree_flags {
1409 UMOUNT_SYNC = 1,
1410 UMOUNT_PROPAGATE = 2,
1411 UMOUNT_CONNECTED = 4,
1414 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1416 /* Leaving mounts connected is only valid for lazy umounts */
1417 if (how & UMOUNT_SYNC)
1418 return true;
1420 /* A mount without a parent has nothing to be connected to */
1421 if (!mnt_has_parent(mnt))
1422 return true;
1424 /* Because the reference counting rules change when mounts are
1425 * unmounted and connected, umounted mounts may not be
1426 * connected to mounted mounts.
1428 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1429 return true;
1431 /* Has it been requested that the mount remain connected? */
1432 if (how & UMOUNT_CONNECTED)
1433 return false;
1435 /* Is the mount locked such that it needs to remain connected? */
1436 if (IS_MNT_LOCKED(mnt))
1437 return false;
1439 /* By default disconnect the mount */
1440 return true;
1444 * mount_lock must be held
1445 * namespace_sem must be held for write
1447 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1449 LIST_HEAD(tmp_list);
1450 struct mount *p;
1452 if (how & UMOUNT_PROPAGATE)
1453 propagate_mount_unlock(mnt);
1455 /* Gather the mounts to umount */
1456 for (p = mnt; p; p = next_mnt(p, mnt)) {
1457 p->mnt.mnt_flags |= MNT_UMOUNT;
1458 list_move(&p->mnt_list, &tmp_list);
1461 /* Hide the mounts from mnt_mounts */
1462 list_for_each_entry(p, &tmp_list, mnt_list) {
1463 list_del_init(&p->mnt_child);
1466 /* Add propogated mounts to the tmp_list */
1467 if (how & UMOUNT_PROPAGATE)
1468 propagate_umount(&tmp_list);
1470 while (!list_empty(&tmp_list)) {
1471 struct mnt_namespace *ns;
1472 bool disconnect;
1473 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1474 list_del_init(&p->mnt_expire);
1475 list_del_init(&p->mnt_list);
1476 ns = p->mnt_ns;
1477 if (ns) {
1478 ns->mounts--;
1479 __touch_mnt_namespace(ns);
1481 p->mnt_ns = NULL;
1482 if (how & UMOUNT_SYNC)
1483 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1485 disconnect = disconnect_mount(p, how);
1487 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1488 disconnect ? &unmounted : NULL);
1489 if (mnt_has_parent(p)) {
1490 mnt_add_count(p->mnt_parent, -1);
1491 if (!disconnect) {
1492 /* Don't forget about p */
1493 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1494 } else {
1495 umount_mnt(p);
1498 change_mnt_propagation(p, MS_PRIVATE);
1502 static void shrink_submounts(struct mount *mnt);
1504 static int do_umount(struct mount *mnt, int flags)
1506 struct super_block *sb = mnt->mnt.mnt_sb;
1507 int retval;
1509 retval = security_sb_umount(&mnt->mnt, flags);
1510 if (retval)
1511 return retval;
1514 * Allow userspace to request a mountpoint be expired rather than
1515 * unmounting unconditionally. Unmount only happens if:
1516 * (1) the mark is already set (the mark is cleared by mntput())
1517 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1519 if (flags & MNT_EXPIRE) {
1520 if (&mnt->mnt == current->fs->root.mnt ||
1521 flags & (MNT_FORCE | MNT_DETACH))
1522 return -EINVAL;
1525 * probably don't strictly need the lock here if we examined
1526 * all race cases, but it's a slowpath.
1528 lock_mount_hash();
1529 if (mnt_get_count(mnt) != 2) {
1530 unlock_mount_hash();
1531 return -EBUSY;
1533 unlock_mount_hash();
1535 if (!xchg(&mnt->mnt_expiry_mark, 1))
1536 return -EAGAIN;
1540 * If we may have to abort operations to get out of this
1541 * mount, and they will themselves hold resources we must
1542 * allow the fs to do things. In the Unix tradition of
1543 * 'Gee thats tricky lets do it in userspace' the umount_begin
1544 * might fail to complete on the first run through as other tasks
1545 * must return, and the like. Thats for the mount program to worry
1546 * about for the moment.
1549 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1550 sb->s_op->umount_begin(sb);
1554 * No sense to grab the lock for this test, but test itself looks
1555 * somewhat bogus. Suggestions for better replacement?
1556 * Ho-hum... In principle, we might treat that as umount + switch
1557 * to rootfs. GC would eventually take care of the old vfsmount.
1558 * Actually it makes sense, especially if rootfs would contain a
1559 * /reboot - static binary that would close all descriptors and
1560 * call reboot(9). Then init(8) could umount root and exec /reboot.
1562 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1564 * Special case for "unmounting" root ...
1565 * we just try to remount it readonly.
1567 if (!capable(CAP_SYS_ADMIN))
1568 return -EPERM;
1569 down_write(&sb->s_umount);
1570 if (!(sb->s_flags & MS_RDONLY))
1571 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1572 up_write(&sb->s_umount);
1573 return retval;
1576 namespace_lock();
1577 lock_mount_hash();
1578 event++;
1580 if (flags & MNT_DETACH) {
1581 if (!list_empty(&mnt->mnt_list))
1582 umount_tree(mnt, UMOUNT_PROPAGATE);
1583 retval = 0;
1584 } else {
1585 shrink_submounts(mnt);
1586 retval = -EBUSY;
1587 if (!propagate_mount_busy(mnt, 2)) {
1588 if (!list_empty(&mnt->mnt_list))
1589 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1590 retval = 0;
1593 unlock_mount_hash();
1594 namespace_unlock();
1595 return retval;
1599 * __detach_mounts - lazily unmount all mounts on the specified dentry
1601 * During unlink, rmdir, and d_drop it is possible to loose the path
1602 * to an existing mountpoint, and wind up leaking the mount.
1603 * detach_mounts allows lazily unmounting those mounts instead of
1604 * leaking them.
1606 * The caller may hold dentry->d_inode->i_mutex.
1608 void __detach_mounts(struct dentry *dentry)
1610 struct mountpoint *mp;
1611 struct mount *mnt;
1613 namespace_lock();
1614 lock_mount_hash();
1615 mp = lookup_mountpoint(dentry);
1616 if (IS_ERR_OR_NULL(mp))
1617 goto out_unlock;
1619 event++;
1620 while (!hlist_empty(&mp->m_list)) {
1621 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1622 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1623 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1624 umount_mnt(mnt);
1626 else umount_tree(mnt, UMOUNT_CONNECTED);
1628 put_mountpoint(mp);
1629 out_unlock:
1630 unlock_mount_hash();
1631 namespace_unlock();
1635 * Is the caller allowed to modify his namespace?
1637 static inline bool may_mount(void)
1639 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1642 static inline bool may_mandlock(void)
1644 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1645 return false;
1646 #endif
1647 return capable(CAP_SYS_ADMIN);
1651 * Now umount can handle mount points as well as block devices.
1652 * This is important for filesystems which use unnamed block devices.
1654 * We now support a flag for forced unmount like the other 'big iron'
1655 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1658 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1660 struct path path;
1661 struct mount *mnt;
1662 int retval;
1663 int lookup_flags = 0;
1665 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1666 return -EINVAL;
1668 if (!may_mount())
1669 return -EPERM;
1671 if (!(flags & UMOUNT_NOFOLLOW))
1672 lookup_flags |= LOOKUP_FOLLOW;
1674 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1675 if (retval)
1676 goto out;
1677 mnt = real_mount(path.mnt);
1678 retval = -EINVAL;
1679 if (path.dentry != path.mnt->mnt_root)
1680 goto dput_and_out;
1681 if (!check_mnt(mnt))
1682 goto dput_and_out;
1683 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1684 goto dput_and_out;
1685 retval = -EPERM;
1686 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1687 goto dput_and_out;
1689 retval = do_umount(mnt, flags);
1690 dput_and_out:
1691 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1692 dput(path.dentry);
1693 mntput_no_expire(mnt);
1694 out:
1695 return retval;
1698 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1701 * The 2.0 compatible umount. No flags.
1703 SYSCALL_DEFINE1(oldumount, char __user *, name)
1705 return sys_umount(name, 0);
1708 #endif
1710 static bool is_mnt_ns_file(struct dentry *dentry)
1712 /* Is this a proxy for a mount namespace? */
1713 return dentry->d_op == &ns_dentry_operations &&
1714 dentry->d_fsdata == &mntns_operations;
1717 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1719 return container_of(ns, struct mnt_namespace, ns);
1722 static bool mnt_ns_loop(struct dentry *dentry)
1724 /* Could bind mounting the mount namespace inode cause a
1725 * mount namespace loop?
1727 struct mnt_namespace *mnt_ns;
1728 if (!is_mnt_ns_file(dentry))
1729 return false;
1731 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1732 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1735 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1736 int flag)
1738 struct mount *res, *p, *q, *r, *parent;
1740 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1741 return ERR_PTR(-EINVAL);
1743 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1744 return ERR_PTR(-EINVAL);
1746 res = q = clone_mnt(mnt, dentry, flag);
1747 if (IS_ERR(q))
1748 return q;
1750 q->mnt_mountpoint = mnt->mnt_mountpoint;
1752 p = mnt;
1753 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1754 struct mount *s;
1755 if (!is_subdir(r->mnt_mountpoint, dentry))
1756 continue;
1758 for (s = r; s; s = next_mnt(s, r)) {
1759 if (!(flag & CL_COPY_UNBINDABLE) &&
1760 IS_MNT_UNBINDABLE(s)) {
1761 s = skip_mnt_tree(s);
1762 continue;
1764 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1765 is_mnt_ns_file(s->mnt.mnt_root)) {
1766 s = skip_mnt_tree(s);
1767 continue;
1769 while (p != s->mnt_parent) {
1770 p = p->mnt_parent;
1771 q = q->mnt_parent;
1773 p = s;
1774 parent = q;
1775 q = clone_mnt(p, p->mnt.mnt_root, flag);
1776 if (IS_ERR(q))
1777 goto out;
1778 lock_mount_hash();
1779 list_add_tail(&q->mnt_list, &res->mnt_list);
1780 attach_mnt(q, parent, p->mnt_mp);
1781 unlock_mount_hash();
1784 return res;
1785 out:
1786 if (res) {
1787 lock_mount_hash();
1788 umount_tree(res, UMOUNT_SYNC);
1789 unlock_mount_hash();
1791 return q;
1794 /* Caller should check returned pointer for errors */
1796 struct vfsmount *collect_mounts(struct path *path)
1798 struct mount *tree;
1799 namespace_lock();
1800 if (!check_mnt(real_mount(path->mnt)))
1801 tree = ERR_PTR(-EINVAL);
1802 else
1803 tree = copy_tree(real_mount(path->mnt), path->dentry,
1804 CL_COPY_ALL | CL_PRIVATE);
1805 namespace_unlock();
1806 if (IS_ERR(tree))
1807 return ERR_CAST(tree);
1808 return &tree->mnt;
1811 void drop_collected_mounts(struct vfsmount *mnt)
1813 namespace_lock();
1814 lock_mount_hash();
1815 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1816 unlock_mount_hash();
1817 namespace_unlock();
1821 * clone_private_mount - create a private clone of a path
1823 * This creates a new vfsmount, which will be the clone of @path. The new will
1824 * not be attached anywhere in the namespace and will be private (i.e. changes
1825 * to the originating mount won't be propagated into this).
1827 * Release with mntput().
1829 struct vfsmount *clone_private_mount(struct path *path)
1831 struct mount *old_mnt = real_mount(path->mnt);
1832 struct mount *new_mnt;
1834 if (IS_MNT_UNBINDABLE(old_mnt))
1835 return ERR_PTR(-EINVAL);
1837 down_read(&namespace_sem);
1838 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1839 up_read(&namespace_sem);
1840 if (IS_ERR(new_mnt))
1841 return ERR_CAST(new_mnt);
1843 return &new_mnt->mnt;
1845 EXPORT_SYMBOL_GPL(clone_private_mount);
1847 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1848 struct vfsmount *root)
1850 struct mount *mnt;
1851 int res = f(root, arg);
1852 if (res)
1853 return res;
1854 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1855 res = f(&mnt->mnt, arg);
1856 if (res)
1857 return res;
1859 return 0;
1862 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1864 struct mount *p;
1866 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1867 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1868 mnt_release_group_id(p);
1872 static int invent_group_ids(struct mount *mnt, bool recurse)
1874 struct mount *p;
1876 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1877 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1878 int err = mnt_alloc_group_id(p);
1879 if (err) {
1880 cleanup_group_ids(mnt, p);
1881 return err;
1886 return 0;
1889 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1891 unsigned int max = READ_ONCE(sysctl_mount_max);
1892 unsigned int mounts = 0, old, pending, sum;
1893 struct mount *p;
1895 for (p = mnt; p; p = next_mnt(p, mnt))
1896 mounts++;
1898 old = ns->mounts;
1899 pending = ns->pending_mounts;
1900 sum = old + pending;
1901 if ((old > sum) ||
1902 (pending > sum) ||
1903 (max < sum) ||
1904 (mounts > (max - sum)))
1905 return -ENOSPC;
1907 ns->pending_mounts = pending + mounts;
1908 return 0;
1912 * @source_mnt : mount tree to be attached
1913 * @nd : place the mount tree @source_mnt is attached
1914 * @parent_nd : if non-null, detach the source_mnt from its parent and
1915 * store the parent mount and mountpoint dentry.
1916 * (done when source_mnt is moved)
1918 * NOTE: in the table below explains the semantics when a source mount
1919 * of a given type is attached to a destination mount of a given type.
1920 * ---------------------------------------------------------------------------
1921 * | BIND MOUNT OPERATION |
1922 * |**************************************************************************
1923 * | source-->| shared | private | slave | unbindable |
1924 * | dest | | | | |
1925 * | | | | | | |
1926 * | v | | | | |
1927 * |**************************************************************************
1928 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1929 * | | | | | |
1930 * |non-shared| shared (+) | private | slave (*) | invalid |
1931 * ***************************************************************************
1932 * A bind operation clones the source mount and mounts the clone on the
1933 * destination mount.
1935 * (++) the cloned mount is propagated to all the mounts in the propagation
1936 * tree of the destination mount and the cloned mount is added to
1937 * the peer group of the source mount.
1938 * (+) the cloned mount is created under the destination mount and is marked
1939 * as shared. The cloned mount is added to the peer group of the source
1940 * mount.
1941 * (+++) the mount is propagated to all the mounts in the propagation tree
1942 * of the destination mount and the cloned mount is made slave
1943 * of the same master as that of the source mount. The cloned mount
1944 * is marked as 'shared and slave'.
1945 * (*) the cloned mount is made a slave of the same master as that of the
1946 * source mount.
1948 * ---------------------------------------------------------------------------
1949 * | MOVE MOUNT OPERATION |
1950 * |**************************************************************************
1951 * | source-->| shared | private | slave | unbindable |
1952 * | dest | | | | |
1953 * | | | | | | |
1954 * | v | | | | |
1955 * |**************************************************************************
1956 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1957 * | | | | | |
1958 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1959 * ***************************************************************************
1961 * (+) the mount is moved to the destination. And is then propagated to
1962 * all the mounts in the propagation tree of the destination mount.
1963 * (+*) the mount is moved to the destination.
1964 * (+++) the mount is moved to the destination and is then propagated to
1965 * all the mounts belonging to the destination mount's propagation tree.
1966 * the mount is marked as 'shared and slave'.
1967 * (*) the mount continues to be a slave at the new location.
1969 * if the source mount is a tree, the operations explained above is
1970 * applied to each mount in the tree.
1971 * Must be called without spinlocks held, since this function can sleep
1972 * in allocations.
1974 static int attach_recursive_mnt(struct mount *source_mnt,
1975 struct mount *dest_mnt,
1976 struct mountpoint *dest_mp,
1977 struct path *parent_path)
1979 HLIST_HEAD(tree_list);
1980 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1981 struct mountpoint *smp;
1982 struct mount *child, *p;
1983 struct hlist_node *n;
1984 int err;
1986 /* Preallocate a mountpoint in case the new mounts need
1987 * to be tucked under other mounts.
1989 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1990 if (IS_ERR(smp))
1991 return PTR_ERR(smp);
1993 /* Is there space to add these mounts to the mount namespace? */
1994 if (!parent_path) {
1995 err = count_mounts(ns, source_mnt);
1996 if (err)
1997 goto out;
2000 if (IS_MNT_SHARED(dest_mnt)) {
2001 err = invent_group_ids(source_mnt, true);
2002 if (err)
2003 goto out;
2004 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2005 lock_mount_hash();
2006 if (err)
2007 goto out_cleanup_ids;
2008 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2009 set_mnt_shared(p);
2010 } else {
2011 lock_mount_hash();
2013 if (parent_path) {
2014 detach_mnt(source_mnt, parent_path);
2015 attach_mnt(source_mnt, dest_mnt, dest_mp);
2016 touch_mnt_namespace(source_mnt->mnt_ns);
2017 } else {
2018 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2019 commit_tree(source_mnt);
2022 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2023 struct mount *q;
2024 hlist_del_init(&child->mnt_hash);
2025 q = __lookup_mnt(&child->mnt_parent->mnt,
2026 child->mnt_mountpoint);
2027 if (q)
2028 mnt_change_mountpoint(child, smp, q);
2029 commit_tree(child);
2031 put_mountpoint(smp);
2032 unlock_mount_hash();
2034 return 0;
2036 out_cleanup_ids:
2037 while (!hlist_empty(&tree_list)) {
2038 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2039 child->mnt_parent->mnt_ns->pending_mounts = 0;
2040 umount_tree(child, UMOUNT_SYNC);
2042 unlock_mount_hash();
2043 cleanup_group_ids(source_mnt, NULL);
2044 out:
2045 ns->pending_mounts = 0;
2047 read_seqlock_excl(&mount_lock);
2048 put_mountpoint(smp);
2049 read_sequnlock_excl(&mount_lock);
2051 return err;
2054 static struct mountpoint *lock_mount(struct path *path)
2056 struct vfsmount *mnt;
2057 struct dentry *dentry = path->dentry;
2058 retry:
2059 inode_lock(dentry->d_inode);
2060 if (unlikely(cant_mount(dentry))) {
2061 inode_unlock(dentry->d_inode);
2062 return ERR_PTR(-ENOENT);
2064 namespace_lock();
2065 mnt = lookup_mnt(path);
2066 if (likely(!mnt)) {
2067 struct mountpoint *mp = get_mountpoint(dentry);
2068 if (IS_ERR(mp)) {
2069 namespace_unlock();
2070 inode_unlock(dentry->d_inode);
2071 return mp;
2073 return mp;
2075 namespace_unlock();
2076 inode_unlock(path->dentry->d_inode);
2077 path_put(path);
2078 path->mnt = mnt;
2079 dentry = path->dentry = dget(mnt->mnt_root);
2080 goto retry;
2083 static void unlock_mount(struct mountpoint *where)
2085 struct dentry *dentry = where->m_dentry;
2087 read_seqlock_excl(&mount_lock);
2088 put_mountpoint(where);
2089 read_sequnlock_excl(&mount_lock);
2091 namespace_unlock();
2092 inode_unlock(dentry->d_inode);
2095 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2097 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2098 return -EINVAL;
2100 if (d_is_dir(mp->m_dentry) !=
2101 d_is_dir(mnt->mnt.mnt_root))
2102 return -ENOTDIR;
2104 return attach_recursive_mnt(mnt, p, mp, NULL);
2108 * Sanity check the flags to change_mnt_propagation.
2111 static int flags_to_propagation_type(int flags)
2113 int type = flags & ~(MS_REC | MS_SILENT);
2115 /* Fail if any non-propagation flags are set */
2116 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2117 return 0;
2118 /* Only one propagation flag should be set */
2119 if (!is_power_of_2(type))
2120 return 0;
2121 return type;
2125 * recursively change the type of the mountpoint.
2127 static int do_change_type(struct path *path, int flag)
2129 struct mount *m;
2130 struct mount *mnt = real_mount(path->mnt);
2131 int recurse = flag & MS_REC;
2132 int type;
2133 int err = 0;
2135 if (path->dentry != path->mnt->mnt_root)
2136 return -EINVAL;
2138 type = flags_to_propagation_type(flag);
2139 if (!type)
2140 return -EINVAL;
2142 namespace_lock();
2143 if (type == MS_SHARED) {
2144 err = invent_group_ids(mnt, recurse);
2145 if (err)
2146 goto out_unlock;
2149 lock_mount_hash();
2150 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2151 change_mnt_propagation(m, type);
2152 unlock_mount_hash();
2154 out_unlock:
2155 namespace_unlock();
2156 return err;
2159 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2161 struct mount *child;
2162 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2163 if (!is_subdir(child->mnt_mountpoint, dentry))
2164 continue;
2166 if (child->mnt.mnt_flags & MNT_LOCKED)
2167 return true;
2169 return false;
2173 * do loopback mount.
2175 static int do_loopback(struct path *path, const char *old_name,
2176 int recurse)
2178 struct path old_path;
2179 struct mount *mnt = NULL, *old, *parent;
2180 struct mountpoint *mp;
2181 int err;
2182 if (!old_name || !*old_name)
2183 return -EINVAL;
2184 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2185 if (err)
2186 return err;
2188 err = -EINVAL;
2189 if (mnt_ns_loop(old_path.dentry))
2190 goto out;
2192 mp = lock_mount(path);
2193 err = PTR_ERR(mp);
2194 if (IS_ERR(mp))
2195 goto out;
2197 old = real_mount(old_path.mnt);
2198 parent = real_mount(path->mnt);
2200 err = -EINVAL;
2201 if (IS_MNT_UNBINDABLE(old))
2202 goto out2;
2204 if (!check_mnt(parent))
2205 goto out2;
2207 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2208 goto out2;
2210 if (!recurse && has_locked_children(old, old_path.dentry))
2211 goto out2;
2213 if (recurse)
2214 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2215 else
2216 mnt = clone_mnt(old, old_path.dentry, 0);
2218 if (IS_ERR(mnt)) {
2219 err = PTR_ERR(mnt);
2220 goto out2;
2223 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2225 err = graft_tree(mnt, parent, mp);
2226 if (err) {
2227 lock_mount_hash();
2228 umount_tree(mnt, UMOUNT_SYNC);
2229 unlock_mount_hash();
2231 out2:
2232 unlock_mount(mp);
2233 out:
2234 path_put(&old_path);
2235 return err;
2238 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2240 int error = 0;
2241 int readonly_request = 0;
2243 if (ms_flags & MS_RDONLY)
2244 readonly_request = 1;
2245 if (readonly_request == __mnt_is_readonly(mnt))
2246 return 0;
2248 if (readonly_request)
2249 error = mnt_make_readonly(real_mount(mnt));
2250 else
2251 __mnt_unmake_readonly(real_mount(mnt));
2252 return error;
2256 * change filesystem flags. dir should be a physical root of filesystem.
2257 * If you've mounted a non-root directory somewhere and want to do remount
2258 * on it - tough luck.
2260 static int do_remount(struct path *path, int flags, int mnt_flags,
2261 void *data)
2263 int err;
2264 struct super_block *sb = path->mnt->mnt_sb;
2265 struct mount *mnt = real_mount(path->mnt);
2267 if (!check_mnt(mnt))
2268 return -EINVAL;
2270 if (path->dentry != path->mnt->mnt_root)
2271 return -EINVAL;
2273 /* Don't allow changing of locked mnt flags.
2275 * No locks need to be held here while testing the various
2276 * MNT_LOCK flags because those flags can never be cleared
2277 * once they are set.
2279 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2280 !(mnt_flags & MNT_READONLY)) {
2281 return -EPERM;
2283 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2284 !(mnt_flags & MNT_NODEV)) {
2285 return -EPERM;
2287 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2288 !(mnt_flags & MNT_NOSUID)) {
2289 return -EPERM;
2291 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2292 !(mnt_flags & MNT_NOEXEC)) {
2293 return -EPERM;
2295 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2296 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2297 return -EPERM;
2300 err = security_sb_remount(sb, data);
2301 if (err)
2302 return err;
2304 down_write(&sb->s_umount);
2305 if (flags & MS_BIND)
2306 err = change_mount_flags(path->mnt, flags);
2307 else if (!capable(CAP_SYS_ADMIN))
2308 err = -EPERM;
2309 else
2310 err = do_remount_sb(sb, flags, data, 0);
2311 if (!err) {
2312 lock_mount_hash();
2313 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2314 mnt->mnt.mnt_flags = mnt_flags;
2315 touch_mnt_namespace(mnt->mnt_ns);
2316 unlock_mount_hash();
2318 up_write(&sb->s_umount);
2319 return err;
2322 static inline int tree_contains_unbindable(struct mount *mnt)
2324 struct mount *p;
2325 for (p = mnt; p; p = next_mnt(p, mnt)) {
2326 if (IS_MNT_UNBINDABLE(p))
2327 return 1;
2329 return 0;
2332 static int do_move_mount(struct path *path, const char *old_name)
2334 struct path old_path, parent_path;
2335 struct mount *p;
2336 struct mount *old;
2337 struct mountpoint *mp;
2338 int err;
2339 if (!old_name || !*old_name)
2340 return -EINVAL;
2341 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2342 if (err)
2343 return err;
2345 mp = lock_mount(path);
2346 err = PTR_ERR(mp);
2347 if (IS_ERR(mp))
2348 goto out;
2350 old = real_mount(old_path.mnt);
2351 p = real_mount(path->mnt);
2353 err = -EINVAL;
2354 if (!check_mnt(p) || !check_mnt(old))
2355 goto out1;
2357 if (old->mnt.mnt_flags & MNT_LOCKED)
2358 goto out1;
2360 err = -EINVAL;
2361 if (old_path.dentry != old_path.mnt->mnt_root)
2362 goto out1;
2364 if (!mnt_has_parent(old))
2365 goto out1;
2367 if (d_is_dir(path->dentry) !=
2368 d_is_dir(old_path.dentry))
2369 goto out1;
2371 * Don't move a mount residing in a shared parent.
2373 if (IS_MNT_SHARED(old->mnt_parent))
2374 goto out1;
2376 * Don't move a mount tree containing unbindable mounts to a destination
2377 * mount which is shared.
2379 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2380 goto out1;
2381 err = -ELOOP;
2382 for (; mnt_has_parent(p); p = p->mnt_parent)
2383 if (p == old)
2384 goto out1;
2386 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2387 if (err)
2388 goto out1;
2390 /* if the mount is moved, it should no longer be expire
2391 * automatically */
2392 list_del_init(&old->mnt_expire);
2393 out1:
2394 unlock_mount(mp);
2395 out:
2396 if (!err)
2397 path_put(&parent_path);
2398 path_put(&old_path);
2399 return err;
2402 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2404 int err;
2405 const char *subtype = strchr(fstype, '.');
2406 if (subtype) {
2407 subtype++;
2408 err = -EINVAL;
2409 if (!subtype[0])
2410 goto err;
2411 } else
2412 subtype = "";
2414 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2415 err = -ENOMEM;
2416 if (!mnt->mnt_sb->s_subtype)
2417 goto err;
2418 return mnt;
2420 err:
2421 mntput(mnt);
2422 return ERR_PTR(err);
2426 * add a mount into a namespace's mount tree
2428 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2430 struct mountpoint *mp;
2431 struct mount *parent;
2432 int err;
2434 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2436 mp = lock_mount(path);
2437 if (IS_ERR(mp))
2438 return PTR_ERR(mp);
2440 parent = real_mount(path->mnt);
2441 err = -EINVAL;
2442 if (unlikely(!check_mnt(parent))) {
2443 /* that's acceptable only for automounts done in private ns */
2444 if (!(mnt_flags & MNT_SHRINKABLE))
2445 goto unlock;
2446 /* ... and for those we'd better have mountpoint still alive */
2447 if (!parent->mnt_ns)
2448 goto unlock;
2451 /* Refuse the same filesystem on the same mount point */
2452 err = -EBUSY;
2453 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2454 path->mnt->mnt_root == path->dentry)
2455 goto unlock;
2457 err = -EINVAL;
2458 if (d_is_symlink(newmnt->mnt.mnt_root))
2459 goto unlock;
2461 newmnt->mnt.mnt_flags = mnt_flags;
2462 err = graft_tree(newmnt, parent, mp);
2464 unlock:
2465 unlock_mount(mp);
2466 return err;
2469 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2472 * create a new mount for userspace and request it to be added into the
2473 * namespace's tree
2475 static int do_new_mount(struct path *path, const char *fstype, int flags,
2476 int mnt_flags, const char *name, void *data)
2478 struct file_system_type *type;
2479 struct vfsmount *mnt;
2480 int err;
2482 if (!fstype)
2483 return -EINVAL;
2485 type = get_fs_type(fstype);
2486 if (!type)
2487 return -ENODEV;
2489 mnt = vfs_kern_mount(type, flags, name, data);
2490 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2491 !mnt->mnt_sb->s_subtype)
2492 mnt = fs_set_subtype(mnt, fstype);
2494 put_filesystem(type);
2495 if (IS_ERR(mnt))
2496 return PTR_ERR(mnt);
2498 if (mount_too_revealing(mnt, &mnt_flags)) {
2499 mntput(mnt);
2500 return -EPERM;
2503 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2504 if (err)
2505 mntput(mnt);
2506 return err;
2509 int finish_automount(struct vfsmount *m, struct path *path)
2511 struct mount *mnt = real_mount(m);
2512 int err;
2513 /* The new mount record should have at least 2 refs to prevent it being
2514 * expired before we get a chance to add it
2516 BUG_ON(mnt_get_count(mnt) < 2);
2518 if (m->mnt_sb == path->mnt->mnt_sb &&
2519 m->mnt_root == path->dentry) {
2520 err = -ELOOP;
2521 goto fail;
2524 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2525 if (!err)
2526 return 0;
2527 fail:
2528 /* remove m from any expiration list it may be on */
2529 if (!list_empty(&mnt->mnt_expire)) {
2530 namespace_lock();
2531 list_del_init(&mnt->mnt_expire);
2532 namespace_unlock();
2534 mntput(m);
2535 mntput(m);
2536 return err;
2540 * mnt_set_expiry - Put a mount on an expiration list
2541 * @mnt: The mount to list.
2542 * @expiry_list: The list to add the mount to.
2544 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2546 namespace_lock();
2548 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2550 namespace_unlock();
2552 EXPORT_SYMBOL(mnt_set_expiry);
2555 * process a list of expirable mountpoints with the intent of discarding any
2556 * mountpoints that aren't in use and haven't been touched since last we came
2557 * here
2559 void mark_mounts_for_expiry(struct list_head *mounts)
2561 struct mount *mnt, *next;
2562 LIST_HEAD(graveyard);
2564 if (list_empty(mounts))
2565 return;
2567 namespace_lock();
2568 lock_mount_hash();
2570 /* extract from the expiration list every vfsmount that matches the
2571 * following criteria:
2572 * - only referenced by its parent vfsmount
2573 * - still marked for expiry (marked on the last call here; marks are
2574 * cleared by mntput())
2576 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2577 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2578 propagate_mount_busy(mnt, 1))
2579 continue;
2580 list_move(&mnt->mnt_expire, &graveyard);
2582 while (!list_empty(&graveyard)) {
2583 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2584 touch_mnt_namespace(mnt->mnt_ns);
2585 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2587 unlock_mount_hash();
2588 namespace_unlock();
2591 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2594 * Ripoff of 'select_parent()'
2596 * search the list of submounts for a given mountpoint, and move any
2597 * shrinkable submounts to the 'graveyard' list.
2599 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2601 struct mount *this_parent = parent;
2602 struct list_head *next;
2603 int found = 0;
2605 repeat:
2606 next = this_parent->mnt_mounts.next;
2607 resume:
2608 while (next != &this_parent->mnt_mounts) {
2609 struct list_head *tmp = next;
2610 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2612 next = tmp->next;
2613 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2614 continue;
2616 * Descend a level if the d_mounts list is non-empty.
2618 if (!list_empty(&mnt->mnt_mounts)) {
2619 this_parent = mnt;
2620 goto repeat;
2623 if (!propagate_mount_busy(mnt, 1)) {
2624 list_move_tail(&mnt->mnt_expire, graveyard);
2625 found++;
2629 * All done at this level ... ascend and resume the search
2631 if (this_parent != parent) {
2632 next = this_parent->mnt_child.next;
2633 this_parent = this_parent->mnt_parent;
2634 goto resume;
2636 return found;
2640 * process a list of expirable mountpoints with the intent of discarding any
2641 * submounts of a specific parent mountpoint
2643 * mount_lock must be held for write
2645 static void shrink_submounts(struct mount *mnt)
2647 LIST_HEAD(graveyard);
2648 struct mount *m;
2650 /* extract submounts of 'mountpoint' from the expiration list */
2651 while (select_submounts(mnt, &graveyard)) {
2652 while (!list_empty(&graveyard)) {
2653 m = list_first_entry(&graveyard, struct mount,
2654 mnt_expire);
2655 touch_mnt_namespace(m->mnt_ns);
2656 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2662 * Some copy_from_user() implementations do not return the exact number of
2663 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2664 * Note that this function differs from copy_from_user() in that it will oops
2665 * on bad values of `to', rather than returning a short copy.
2667 static long exact_copy_from_user(void *to, const void __user * from,
2668 unsigned long n)
2670 char *t = to;
2671 const char __user *f = from;
2672 char c;
2674 if (!access_ok(VERIFY_READ, from, n))
2675 return n;
2677 while (n) {
2678 if (__get_user(c, f)) {
2679 memset(t, 0, n);
2680 break;
2682 *t++ = c;
2683 f++;
2684 n--;
2686 return n;
2689 void *copy_mount_options(const void __user * data)
2691 int i;
2692 unsigned long size;
2693 char *copy;
2695 if (!data)
2696 return NULL;
2698 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2699 if (!copy)
2700 return ERR_PTR(-ENOMEM);
2702 /* We only care that *some* data at the address the user
2703 * gave us is valid. Just in case, we'll zero
2704 * the remainder of the page.
2706 /* copy_from_user cannot cross TASK_SIZE ! */
2707 size = TASK_SIZE - (unsigned long)data;
2708 if (size > PAGE_SIZE)
2709 size = PAGE_SIZE;
2711 i = size - exact_copy_from_user(copy, data, size);
2712 if (!i) {
2713 kfree(copy);
2714 return ERR_PTR(-EFAULT);
2716 if (i != PAGE_SIZE)
2717 memset(copy + i, 0, PAGE_SIZE - i);
2718 return copy;
2721 char *copy_mount_string(const void __user *data)
2723 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2727 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2728 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2730 * data is a (void *) that can point to any structure up to
2731 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2732 * information (or be NULL).
2734 * Pre-0.97 versions of mount() didn't have a flags word.
2735 * When the flags word was introduced its top half was required
2736 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2737 * Therefore, if this magic number is present, it carries no information
2738 * and must be discarded.
2740 long do_mount(const char *dev_name, const char __user *dir_name,
2741 const char *type_page, unsigned long flags, void *data_page)
2743 struct path path;
2744 int retval = 0;
2745 int mnt_flags = 0;
2747 /* Discard magic */
2748 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2749 flags &= ~MS_MGC_MSK;
2751 /* Basic sanity checks */
2752 if (data_page)
2753 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2755 /* ... and get the mountpoint */
2756 retval = user_path(dir_name, &path);
2757 if (retval)
2758 return retval;
2760 retval = security_sb_mount(dev_name, &path,
2761 type_page, flags, data_page);
2762 if (!retval && !may_mount())
2763 retval = -EPERM;
2764 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2765 retval = -EPERM;
2766 if (retval)
2767 goto dput_out;
2769 /* Default to relatime unless overriden */
2770 if (!(flags & MS_NOATIME))
2771 mnt_flags |= MNT_RELATIME;
2773 /* Separate the per-mountpoint flags */
2774 if (flags & MS_NOSUID)
2775 mnt_flags |= MNT_NOSUID;
2776 if (flags & MS_NODEV)
2777 mnt_flags |= MNT_NODEV;
2778 if (flags & MS_NOEXEC)
2779 mnt_flags |= MNT_NOEXEC;
2780 if (flags & MS_NOATIME)
2781 mnt_flags |= MNT_NOATIME;
2782 if (flags & MS_NODIRATIME)
2783 mnt_flags |= MNT_NODIRATIME;
2784 if (flags & MS_STRICTATIME)
2785 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2786 if (flags & MS_RDONLY)
2787 mnt_flags |= MNT_READONLY;
2789 /* The default atime for remount is preservation */
2790 if ((flags & MS_REMOUNT) &&
2791 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2792 MS_STRICTATIME)) == 0)) {
2793 mnt_flags &= ~MNT_ATIME_MASK;
2794 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2797 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2798 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2799 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2801 if (flags & MS_REMOUNT)
2802 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2803 data_page);
2804 else if (flags & MS_BIND)
2805 retval = do_loopback(&path, dev_name, flags & MS_REC);
2806 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2807 retval = do_change_type(&path, flags);
2808 else if (flags & MS_MOVE)
2809 retval = do_move_mount(&path, dev_name);
2810 else
2811 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2812 dev_name, data_page);
2813 dput_out:
2814 path_put(&path);
2815 return retval;
2818 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2820 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2823 static void dec_mnt_namespaces(struct ucounts *ucounts)
2825 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2828 static void free_mnt_ns(struct mnt_namespace *ns)
2830 ns_free_inum(&ns->ns);
2831 dec_mnt_namespaces(ns->ucounts);
2832 put_user_ns(ns->user_ns);
2833 kfree(ns);
2837 * Assign a sequence number so we can detect when we attempt to bind
2838 * mount a reference to an older mount namespace into the current
2839 * mount namespace, preventing reference counting loops. A 64bit
2840 * number incrementing at 10Ghz will take 12,427 years to wrap which
2841 * is effectively never, so we can ignore the possibility.
2843 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2845 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2847 struct mnt_namespace *new_ns;
2848 struct ucounts *ucounts;
2849 int ret;
2851 ucounts = inc_mnt_namespaces(user_ns);
2852 if (!ucounts)
2853 return ERR_PTR(-ENOSPC);
2855 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2856 if (!new_ns) {
2857 dec_mnt_namespaces(ucounts);
2858 return ERR_PTR(-ENOMEM);
2860 ret = ns_alloc_inum(&new_ns->ns);
2861 if (ret) {
2862 kfree(new_ns);
2863 dec_mnt_namespaces(ucounts);
2864 return ERR_PTR(ret);
2866 new_ns->ns.ops = &mntns_operations;
2867 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2868 atomic_set(&new_ns->count, 1);
2869 new_ns->root = NULL;
2870 INIT_LIST_HEAD(&new_ns->list);
2871 init_waitqueue_head(&new_ns->poll);
2872 new_ns->event = 0;
2873 new_ns->user_ns = get_user_ns(user_ns);
2874 new_ns->ucounts = ucounts;
2875 new_ns->mounts = 0;
2876 new_ns->pending_mounts = 0;
2877 return new_ns;
2880 __latent_entropy
2881 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2882 struct user_namespace *user_ns, struct fs_struct *new_fs)
2884 struct mnt_namespace *new_ns;
2885 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2886 struct mount *p, *q;
2887 struct mount *old;
2888 struct mount *new;
2889 int copy_flags;
2891 BUG_ON(!ns);
2893 if (likely(!(flags & CLONE_NEWNS))) {
2894 get_mnt_ns(ns);
2895 return ns;
2898 old = ns->root;
2900 new_ns = alloc_mnt_ns(user_ns);
2901 if (IS_ERR(new_ns))
2902 return new_ns;
2904 namespace_lock();
2905 /* First pass: copy the tree topology */
2906 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2907 if (user_ns != ns->user_ns)
2908 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2909 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2910 if (IS_ERR(new)) {
2911 namespace_unlock();
2912 free_mnt_ns(new_ns);
2913 return ERR_CAST(new);
2915 new_ns->root = new;
2916 list_add_tail(&new_ns->list, &new->mnt_list);
2919 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2920 * as belonging to new namespace. We have already acquired a private
2921 * fs_struct, so tsk->fs->lock is not needed.
2923 p = old;
2924 q = new;
2925 while (p) {
2926 q->mnt_ns = new_ns;
2927 new_ns->mounts++;
2928 if (new_fs) {
2929 if (&p->mnt == new_fs->root.mnt) {
2930 new_fs->root.mnt = mntget(&q->mnt);
2931 rootmnt = &p->mnt;
2933 if (&p->mnt == new_fs->pwd.mnt) {
2934 new_fs->pwd.mnt = mntget(&q->mnt);
2935 pwdmnt = &p->mnt;
2938 p = next_mnt(p, old);
2939 q = next_mnt(q, new);
2940 if (!q)
2941 break;
2942 while (p->mnt.mnt_root != q->mnt.mnt_root)
2943 p = next_mnt(p, old);
2945 namespace_unlock();
2947 if (rootmnt)
2948 mntput(rootmnt);
2949 if (pwdmnt)
2950 mntput(pwdmnt);
2952 return new_ns;
2956 * create_mnt_ns - creates a private namespace and adds a root filesystem
2957 * @mnt: pointer to the new root filesystem mountpoint
2959 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2961 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2962 if (!IS_ERR(new_ns)) {
2963 struct mount *mnt = real_mount(m);
2964 mnt->mnt_ns = new_ns;
2965 new_ns->root = mnt;
2966 new_ns->mounts++;
2967 list_add(&mnt->mnt_list, &new_ns->list);
2968 } else {
2969 mntput(m);
2971 return new_ns;
2974 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2976 struct mnt_namespace *ns;
2977 struct super_block *s;
2978 struct path path;
2979 int err;
2981 ns = create_mnt_ns(mnt);
2982 if (IS_ERR(ns))
2983 return ERR_CAST(ns);
2985 err = vfs_path_lookup(mnt->mnt_root, mnt,
2986 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2988 put_mnt_ns(ns);
2990 if (err)
2991 return ERR_PTR(err);
2993 /* trade a vfsmount reference for active sb one */
2994 s = path.mnt->mnt_sb;
2995 atomic_inc(&s->s_active);
2996 mntput(path.mnt);
2997 /* lock the sucker */
2998 down_write(&s->s_umount);
2999 /* ... and return the root of (sub)tree on it */
3000 return path.dentry;
3002 EXPORT_SYMBOL(mount_subtree);
3004 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3005 char __user *, type, unsigned long, flags, void __user *, data)
3007 int ret;
3008 char *kernel_type;
3009 char *kernel_dev;
3010 void *options;
3012 kernel_type = copy_mount_string(type);
3013 ret = PTR_ERR(kernel_type);
3014 if (IS_ERR(kernel_type))
3015 goto out_type;
3017 kernel_dev = copy_mount_string(dev_name);
3018 ret = PTR_ERR(kernel_dev);
3019 if (IS_ERR(kernel_dev))
3020 goto out_dev;
3022 options = copy_mount_options(data);
3023 ret = PTR_ERR(options);
3024 if (IS_ERR(options))
3025 goto out_data;
3027 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3029 kfree(options);
3030 out_data:
3031 kfree(kernel_dev);
3032 out_dev:
3033 kfree(kernel_type);
3034 out_type:
3035 return ret;
3039 * Return true if path is reachable from root
3041 * namespace_sem or mount_lock is held
3043 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3044 const struct path *root)
3046 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3047 dentry = mnt->mnt_mountpoint;
3048 mnt = mnt->mnt_parent;
3050 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3053 bool path_is_under(struct path *path1, struct path *path2)
3055 bool res;
3056 read_seqlock_excl(&mount_lock);
3057 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3058 read_sequnlock_excl(&mount_lock);
3059 return res;
3061 EXPORT_SYMBOL(path_is_under);
3064 * pivot_root Semantics:
3065 * Moves the root file system of the current process to the directory put_old,
3066 * makes new_root as the new root file system of the current process, and sets
3067 * root/cwd of all processes which had them on the current root to new_root.
3069 * Restrictions:
3070 * The new_root and put_old must be directories, and must not be on the
3071 * same file system as the current process root. The put_old must be
3072 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3073 * pointed to by put_old must yield the same directory as new_root. No other
3074 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3076 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3077 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3078 * in this situation.
3080 * Notes:
3081 * - we don't move root/cwd if they are not at the root (reason: if something
3082 * cared enough to change them, it's probably wrong to force them elsewhere)
3083 * - it's okay to pick a root that isn't the root of a file system, e.g.
3084 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3085 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3086 * first.
3088 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3089 const char __user *, put_old)
3091 struct path new, old, parent_path, root_parent, root;
3092 struct mount *new_mnt, *root_mnt, *old_mnt;
3093 struct mountpoint *old_mp, *root_mp;
3094 int error;
3096 if (!may_mount())
3097 return -EPERM;
3099 error = user_path_dir(new_root, &new);
3100 if (error)
3101 goto out0;
3103 error = user_path_dir(put_old, &old);
3104 if (error)
3105 goto out1;
3107 error = security_sb_pivotroot(&old, &new);
3108 if (error)
3109 goto out2;
3111 get_fs_root(current->fs, &root);
3112 old_mp = lock_mount(&old);
3113 error = PTR_ERR(old_mp);
3114 if (IS_ERR(old_mp))
3115 goto out3;
3117 error = -EINVAL;
3118 new_mnt = real_mount(new.mnt);
3119 root_mnt = real_mount(root.mnt);
3120 old_mnt = real_mount(old.mnt);
3121 if (IS_MNT_SHARED(old_mnt) ||
3122 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3123 IS_MNT_SHARED(root_mnt->mnt_parent))
3124 goto out4;
3125 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3126 goto out4;
3127 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3128 goto out4;
3129 error = -ENOENT;
3130 if (d_unlinked(new.dentry))
3131 goto out4;
3132 error = -EBUSY;
3133 if (new_mnt == root_mnt || old_mnt == root_mnt)
3134 goto out4; /* loop, on the same file system */
3135 error = -EINVAL;
3136 if (root.mnt->mnt_root != root.dentry)
3137 goto out4; /* not a mountpoint */
3138 if (!mnt_has_parent(root_mnt))
3139 goto out4; /* not attached */
3140 root_mp = root_mnt->mnt_mp;
3141 if (new.mnt->mnt_root != new.dentry)
3142 goto out4; /* not a mountpoint */
3143 if (!mnt_has_parent(new_mnt))
3144 goto out4; /* not attached */
3145 /* make sure we can reach put_old from new_root */
3146 if (!is_path_reachable(old_mnt, old.dentry, &new))
3147 goto out4;
3148 /* make certain new is below the root */
3149 if (!is_path_reachable(new_mnt, new.dentry, &root))
3150 goto out4;
3151 root_mp->m_count++; /* pin it so it won't go away */
3152 lock_mount_hash();
3153 detach_mnt(new_mnt, &parent_path);
3154 detach_mnt(root_mnt, &root_parent);
3155 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3156 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3157 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3159 /* mount old root on put_old */
3160 attach_mnt(root_mnt, old_mnt, old_mp);
3161 /* mount new_root on / */
3162 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3163 touch_mnt_namespace(current->nsproxy->mnt_ns);
3164 /* A moved mount should not expire automatically */
3165 list_del_init(&new_mnt->mnt_expire);
3166 put_mountpoint(root_mp);
3167 unlock_mount_hash();
3168 chroot_fs_refs(&root, &new);
3169 error = 0;
3170 out4:
3171 unlock_mount(old_mp);
3172 if (!error) {
3173 path_put(&root_parent);
3174 path_put(&parent_path);
3176 out3:
3177 path_put(&root);
3178 out2:
3179 path_put(&old);
3180 out1:
3181 path_put(&new);
3182 out0:
3183 return error;
3186 static void __init init_mount_tree(void)
3188 struct vfsmount *mnt;
3189 struct mnt_namespace *ns;
3190 struct path root;
3191 struct file_system_type *type;
3193 type = get_fs_type("rootfs");
3194 if (!type)
3195 panic("Can't find rootfs type");
3196 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3197 put_filesystem(type);
3198 if (IS_ERR(mnt))
3199 panic("Can't create rootfs");
3201 ns = create_mnt_ns(mnt);
3202 if (IS_ERR(ns))
3203 panic("Can't allocate initial namespace");
3205 init_task.nsproxy->mnt_ns = ns;
3206 get_mnt_ns(ns);
3208 root.mnt = mnt;
3209 root.dentry = mnt->mnt_root;
3210 mnt->mnt_flags |= MNT_LOCKED;
3212 set_fs_pwd(current->fs, &root);
3213 set_fs_root(current->fs, &root);
3216 void __init mnt_init(void)
3218 unsigned u;
3219 int err;
3221 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3222 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3224 mount_hashtable = alloc_large_system_hash("Mount-cache",
3225 sizeof(struct hlist_head),
3226 mhash_entries, 19,
3228 &m_hash_shift, &m_hash_mask, 0, 0);
3229 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3230 sizeof(struct hlist_head),
3231 mphash_entries, 19,
3233 &mp_hash_shift, &mp_hash_mask, 0, 0);
3235 if (!mount_hashtable || !mountpoint_hashtable)
3236 panic("Failed to allocate mount hash table\n");
3238 for (u = 0; u <= m_hash_mask; u++)
3239 INIT_HLIST_HEAD(&mount_hashtable[u]);
3240 for (u = 0; u <= mp_hash_mask; u++)
3241 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3243 kernfs_init();
3245 err = sysfs_init();
3246 if (err)
3247 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3248 __func__, err);
3249 fs_kobj = kobject_create_and_add("fs", NULL);
3250 if (!fs_kobj)
3251 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3252 init_rootfs();
3253 init_mount_tree();
3256 void put_mnt_ns(struct mnt_namespace *ns)
3258 if (!atomic_dec_and_test(&ns->count))
3259 return;
3260 drop_collected_mounts(&ns->root->mnt);
3261 free_mnt_ns(ns);
3264 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3266 struct vfsmount *mnt;
3267 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3268 if (!IS_ERR(mnt)) {
3270 * it is a longterm mount, don't release mnt until
3271 * we unmount before file sys is unregistered
3273 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3275 return mnt;
3277 EXPORT_SYMBOL_GPL(kern_mount_data);
3279 void kern_unmount(struct vfsmount *mnt)
3281 /* release long term mount so mount point can be released */
3282 if (!IS_ERR_OR_NULL(mnt)) {
3283 real_mount(mnt)->mnt_ns = NULL;
3284 synchronize_rcu(); /* yecchhh... */
3285 mntput(mnt);
3288 EXPORT_SYMBOL(kern_unmount);
3290 bool our_mnt(struct vfsmount *mnt)
3292 return check_mnt(real_mount(mnt));
3295 bool current_chrooted(void)
3297 /* Does the current process have a non-standard root */
3298 struct path ns_root;
3299 struct path fs_root;
3300 bool chrooted;
3302 /* Find the namespace root */
3303 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3304 ns_root.dentry = ns_root.mnt->mnt_root;
3305 path_get(&ns_root);
3306 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3309 get_fs_root(current->fs, &fs_root);
3311 chrooted = !path_equal(&fs_root, &ns_root);
3313 path_put(&fs_root);
3314 path_put(&ns_root);
3316 return chrooted;
3319 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3320 int *new_mnt_flags)
3322 int new_flags = *new_mnt_flags;
3323 struct mount *mnt;
3324 bool visible = false;
3326 down_read(&namespace_sem);
3327 list_for_each_entry(mnt, &ns->list, mnt_list) {
3328 struct mount *child;
3329 int mnt_flags;
3331 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3332 continue;
3334 /* This mount is not fully visible if it's root directory
3335 * is not the root directory of the filesystem.
3337 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3338 continue;
3340 /* A local view of the mount flags */
3341 mnt_flags = mnt->mnt.mnt_flags;
3343 /* Don't miss readonly hidden in the superblock flags */
3344 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3345 mnt_flags |= MNT_LOCK_READONLY;
3347 /* Verify the mount flags are equal to or more permissive
3348 * than the proposed new mount.
3350 if ((mnt_flags & MNT_LOCK_READONLY) &&
3351 !(new_flags & MNT_READONLY))
3352 continue;
3353 if ((mnt_flags & MNT_LOCK_ATIME) &&
3354 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3355 continue;
3357 /* This mount is not fully visible if there are any
3358 * locked child mounts that cover anything except for
3359 * empty directories.
3361 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3362 struct inode *inode = child->mnt_mountpoint->d_inode;
3363 /* Only worry about locked mounts */
3364 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3365 continue;
3366 /* Is the directory permanetly empty? */
3367 if (!is_empty_dir_inode(inode))
3368 goto next;
3370 /* Preserve the locked attributes */
3371 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3372 MNT_LOCK_ATIME);
3373 visible = true;
3374 goto found;
3375 next: ;
3377 found:
3378 up_read(&namespace_sem);
3379 return visible;
3382 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3384 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3385 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3386 unsigned long s_iflags;
3388 if (ns->user_ns == &init_user_ns)
3389 return false;
3391 /* Can this filesystem be too revealing? */
3392 s_iflags = mnt->mnt_sb->s_iflags;
3393 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3394 return false;
3396 if ((s_iflags & required_iflags) != required_iflags) {
3397 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3398 required_iflags);
3399 return true;
3402 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3405 bool mnt_may_suid(struct vfsmount *mnt)
3408 * Foreign mounts (accessed via fchdir or through /proc
3409 * symlinks) are always treated as if they are nosuid. This
3410 * prevents namespaces from trusting potentially unsafe
3411 * suid/sgid bits, file caps, or security labels that originate
3412 * in other namespaces.
3414 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3415 current_in_userns(mnt->mnt_sb->s_user_ns);
3418 static struct ns_common *mntns_get(struct task_struct *task)
3420 struct ns_common *ns = NULL;
3421 struct nsproxy *nsproxy;
3423 task_lock(task);
3424 nsproxy = task->nsproxy;
3425 if (nsproxy) {
3426 ns = &nsproxy->mnt_ns->ns;
3427 get_mnt_ns(to_mnt_ns(ns));
3429 task_unlock(task);
3431 return ns;
3434 static void mntns_put(struct ns_common *ns)
3436 put_mnt_ns(to_mnt_ns(ns));
3439 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3441 struct fs_struct *fs = current->fs;
3442 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3443 struct path root;
3445 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3446 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3447 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3448 return -EPERM;
3450 if (fs->users != 1)
3451 return -EINVAL;
3453 get_mnt_ns(mnt_ns);
3454 put_mnt_ns(nsproxy->mnt_ns);
3455 nsproxy->mnt_ns = mnt_ns;
3457 /* Find the root */
3458 root.mnt = &mnt_ns->root->mnt;
3459 root.dentry = mnt_ns->root->mnt.mnt_root;
3460 path_get(&root);
3461 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3464 /* Update the pwd and root */
3465 set_fs_pwd(fs, &root);
3466 set_fs_root(fs, &root);
3468 path_put(&root);
3469 return 0;
3472 static struct user_namespace *mntns_owner(struct ns_common *ns)
3474 return to_mnt_ns(ns)->user_ns;
3477 const struct proc_ns_operations mntns_operations = {
3478 .name = "mnt",
3479 .type = CLONE_NEWNS,
3480 .get = mntns_get,
3481 .put = mntns_put,
3482 .install = mntns_install,
3483 .owner = mntns_owner,