2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
22 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
24 cputime_t cputime
= secs_to_cputime(rlim_new
);
26 spin_lock_irq(&task
->sighand
->siglock
);
27 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &cputime
, NULL
);
28 spin_unlock_irq(&task
->sighand
->siglock
);
31 static int check_clock(const clockid_t which_clock
)
34 struct task_struct
*p
;
35 const pid_t pid
= CPUCLOCK_PID(which_clock
);
37 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
44 p
= find_task_by_vpid(pid
);
45 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
46 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
57 unsigned long long ret
;
59 ret
= 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
61 ret
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
63 ret
= cputime_to_expires(timespec_to_cputime(tp
));
68 static void sample_to_timespec(const clockid_t which_clock
,
69 unsigned long long expires
,
72 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
73 *tp
= ns_to_timespec(expires
);
75 cputime_to_timespec((__force cputime_t
)expires
, tp
);
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
82 static void bump_cpu_timer(struct k_itimer
*timer
,
83 unsigned long long now
)
86 unsigned long long delta
, incr
;
88 if (timer
->it
.cpu
.incr
== 0)
91 if (now
< timer
->it
.cpu
.expires
)
94 incr
= timer
->it
.cpu
.incr
;
95 delta
= now
+ incr
- timer
->it
.cpu
.expires
;
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i
= 0; incr
< delta
- incr
; i
++)
101 for (; i
>= 0; incr
>>= 1, i
--) {
105 timer
->it
.cpu
.expires
+= incr
;
106 timer
->it_overrun
+= 1 << i
;
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
114 * @cputime: The struct to compare.
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
119 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
121 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
126 static inline unsigned long long prof_ticks(struct task_struct
*p
)
128 cputime_t utime
, stime
;
130 task_cputime(p
, &utime
, &stime
);
132 return cputime_to_expires(utime
+ stime
);
134 static inline unsigned long long virt_ticks(struct task_struct
*p
)
138 task_cputime(p
, &utime
, NULL
);
140 return cputime_to_expires(utime
);
144 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
146 int error
= check_clock(which_clock
);
149 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
150 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
163 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
169 int error
= check_clock(which_clock
);
178 * Sample a per-thread clock for the given task.
180 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
181 unsigned long long *sample
)
183 switch (CPUCLOCK_WHICH(which_clock
)) {
187 *sample
= prof_ticks(p
);
190 *sample
= virt_ticks(p
);
193 *sample
= task_sched_runtime(p
);
200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201 * to avoid race conditions with concurrent updates to cputime.
203 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
207 curr_cputime
= atomic64_read(cputime
);
208 if (sum_cputime
> curr_cputime
) {
209 if (atomic64_cmpxchg(cputime
, curr_cputime
, sum_cputime
) != curr_cputime
)
214 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
, struct task_cputime
*sum
)
216 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
217 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
218 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222 static inline void sample_cputime_atomic(struct task_cputime
*times
,
223 struct task_cputime_atomic
*atomic_times
)
225 times
->utime
= atomic64_read(&atomic_times
->utime
);
226 times
->stime
= atomic64_read(&atomic_times
->stime
);
227 times
->sum_exec_runtime
= atomic64_read(&atomic_times
->sum_exec_runtime
);
230 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
232 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
233 struct task_cputime sum
;
235 /* Check if cputimer isn't running. This is accessed without locking. */
236 if (!READ_ONCE(cputimer
->running
)) {
238 * The POSIX timer interface allows for absolute time expiry
239 * values through the TIMER_ABSTIME flag, therefore we have
240 * to synchronize the timer to the clock every time we start it.
242 thread_group_cputime(tsk
, &sum
);
243 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
246 * We're setting cputimer->running without a lock. Ensure
247 * this only gets written to in one operation. We set
248 * running after update_gt_cputime() as a small optimization,
249 * but barriers are not required because update_gt_cputime()
250 * can handle concurrent updates.
252 WRITE_ONCE(cputimer
->running
, true);
254 sample_cputime_atomic(times
, &cputimer
->cputime_atomic
);
258 * Sample a process (thread group) clock for the given group_leader task.
259 * Must be called with task sighand lock held for safe while_each_thread()
262 static int cpu_clock_sample_group(const clockid_t which_clock
,
263 struct task_struct
*p
,
264 unsigned long long *sample
)
266 struct task_cputime cputime
;
268 switch (CPUCLOCK_WHICH(which_clock
)) {
272 thread_group_cputime(p
, &cputime
);
273 *sample
= cputime_to_expires(cputime
.utime
+ cputime
.stime
);
276 thread_group_cputime(p
, &cputime
);
277 *sample
= cputime_to_expires(cputime
.utime
);
280 thread_group_cputime(p
, &cputime
);
281 *sample
= cputime
.sum_exec_runtime
;
287 static int posix_cpu_clock_get_task(struct task_struct
*tsk
,
288 const clockid_t which_clock
,
292 unsigned long long rtn
;
294 if (CPUCLOCK_PERTHREAD(which_clock
)) {
295 if (same_thread_group(tsk
, current
))
296 err
= cpu_clock_sample(which_clock
, tsk
, &rtn
);
298 if (tsk
== current
|| thread_group_leader(tsk
))
299 err
= cpu_clock_sample_group(which_clock
, tsk
, &rtn
);
303 sample_to_timespec(which_clock
, rtn
, tp
);
309 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
311 const pid_t pid
= CPUCLOCK_PID(which_clock
);
316 * Special case constant value for our own clocks.
317 * We don't have to do any lookup to find ourselves.
319 err
= posix_cpu_clock_get_task(current
, which_clock
, tp
);
322 * Find the given PID, and validate that the caller
323 * should be able to see it.
325 struct task_struct
*p
;
327 p
= find_task_by_vpid(pid
);
329 err
= posix_cpu_clock_get_task(p
, which_clock
, tp
);
337 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
338 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
339 * new timer already all-zeros initialized.
341 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
344 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
345 struct task_struct
*p
;
347 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
350 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
353 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
357 p
= find_task_by_vpid(pid
);
358 if (p
&& !same_thread_group(p
, current
))
363 p
= current
->group_leader
;
365 p
= find_task_by_vpid(pid
);
366 if (p
&& !has_group_leader_pid(p
))
370 new_timer
->it
.cpu
.task
= p
;
382 * Clean up a CPU-clock timer that is about to be destroyed.
383 * This is called from timer deletion with the timer already locked.
384 * If we return TIMER_RETRY, it's necessary to release the timer's lock
385 * and try again. (This happens when the timer is in the middle of firing.)
387 static int posix_cpu_timer_del(struct k_itimer
*timer
)
391 struct sighand_struct
*sighand
;
392 struct task_struct
*p
= timer
->it
.cpu
.task
;
394 WARN_ON_ONCE(p
== NULL
);
397 * Protect against sighand release/switch in exit/exec and process/
398 * thread timer list entry concurrent read/writes.
400 sighand
= lock_task_sighand(p
, &flags
);
401 if (unlikely(sighand
== NULL
)) {
403 * We raced with the reaping of the task.
404 * The deletion should have cleared us off the list.
406 WARN_ON_ONCE(!list_empty(&timer
->it
.cpu
.entry
));
408 if (timer
->it
.cpu
.firing
)
411 list_del(&timer
->it
.cpu
.entry
);
413 unlock_task_sighand(p
, &flags
);
422 static void cleanup_timers_list(struct list_head
*head
)
424 struct cpu_timer_list
*timer
, *next
;
426 list_for_each_entry_safe(timer
, next
, head
, entry
)
427 list_del_init(&timer
->entry
);
431 * Clean out CPU timers still ticking when a thread exited. The task
432 * pointer is cleared, and the expiry time is replaced with the residual
433 * time for later timer_gettime calls to return.
434 * This must be called with the siglock held.
436 static void cleanup_timers(struct list_head
*head
)
438 cleanup_timers_list(head
);
439 cleanup_timers_list(++head
);
440 cleanup_timers_list(++head
);
444 * These are both called with the siglock held, when the current thread
445 * is being reaped. When the final (leader) thread in the group is reaped,
446 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
448 void posix_cpu_timers_exit(struct task_struct
*tsk
)
450 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
451 sizeof(unsigned long long));
452 cleanup_timers(tsk
->cpu_timers
);
455 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
457 cleanup_timers(tsk
->signal
->cpu_timers
);
460 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
462 return expires
== 0 || expires
> new_exp
;
466 * Insert the timer on the appropriate list before any timers that
467 * expire later. This must be called with the sighand lock held.
469 static void arm_timer(struct k_itimer
*timer
)
471 struct task_struct
*p
= timer
->it
.cpu
.task
;
472 struct list_head
*head
, *listpos
;
473 struct task_cputime
*cputime_expires
;
474 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
475 struct cpu_timer_list
*next
;
477 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
478 head
= p
->cpu_timers
;
479 cputime_expires
= &p
->cputime_expires
;
481 head
= p
->signal
->cpu_timers
;
482 cputime_expires
= &p
->signal
->cputime_expires
;
484 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
487 list_for_each_entry(next
, head
, entry
) {
488 if (nt
->expires
< next
->expires
)
490 listpos
= &next
->entry
;
492 list_add(&nt
->entry
, listpos
);
494 if (listpos
== head
) {
495 unsigned long long exp
= nt
->expires
;
498 * We are the new earliest-expiring POSIX 1.b timer, hence
499 * need to update expiration cache. Take into account that
500 * for process timers we share expiration cache with itimers
501 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
504 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
506 if (expires_gt(cputime_expires
->prof_exp
, expires_to_cputime(exp
)))
507 cputime_expires
->prof_exp
= expires_to_cputime(exp
);
510 if (expires_gt(cputime_expires
->virt_exp
, expires_to_cputime(exp
)))
511 cputime_expires
->virt_exp
= expires_to_cputime(exp
);
514 if (cputime_expires
->sched_exp
== 0 ||
515 cputime_expires
->sched_exp
> exp
)
516 cputime_expires
->sched_exp
= exp
;
519 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
520 tick_dep_set_task(p
, TICK_DEP_BIT_POSIX_TIMER
);
522 tick_dep_set_signal(p
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
527 * The timer is locked, fire it and arrange for its reload.
529 static void cpu_timer_fire(struct k_itimer
*timer
)
531 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
533 * User don't want any signal.
535 timer
->it
.cpu
.expires
= 0;
536 } else if (unlikely(timer
->sigq
== NULL
)) {
538 * This a special case for clock_nanosleep,
539 * not a normal timer from sys_timer_create.
541 wake_up_process(timer
->it_process
);
542 timer
->it
.cpu
.expires
= 0;
543 } else if (timer
->it
.cpu
.incr
== 0) {
545 * One-shot timer. Clear it as soon as it's fired.
547 posix_timer_event(timer
, 0);
548 timer
->it
.cpu
.expires
= 0;
549 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
551 * The signal did not get queued because the signal
552 * was ignored, so we won't get any callback to
553 * reload the timer. But we need to keep it
554 * ticking in case the signal is deliverable next time.
556 posix_cpu_timer_schedule(timer
);
561 * Sample a process (thread group) timer for the given group_leader task.
562 * Must be called with task sighand lock held for safe while_each_thread()
565 static int cpu_timer_sample_group(const clockid_t which_clock
,
566 struct task_struct
*p
,
567 unsigned long long *sample
)
569 struct task_cputime cputime
;
571 thread_group_cputimer(p
, &cputime
);
572 switch (CPUCLOCK_WHICH(which_clock
)) {
576 *sample
= cputime_to_expires(cputime
.utime
+ cputime
.stime
);
579 *sample
= cputime_to_expires(cputime
.utime
);
582 *sample
= cputime
.sum_exec_runtime
;
589 * Guts of sys_timer_settime for CPU timers.
590 * This is called with the timer locked and interrupts disabled.
591 * If we return TIMER_RETRY, it's necessary to release the timer's lock
592 * and try again. (This happens when the timer is in the middle of firing.)
594 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
595 struct itimerspec
*new, struct itimerspec
*old
)
598 struct sighand_struct
*sighand
;
599 struct task_struct
*p
= timer
->it
.cpu
.task
;
600 unsigned long long old_expires
, new_expires
, old_incr
, val
;
603 WARN_ON_ONCE(p
== NULL
);
605 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
608 * Protect against sighand release/switch in exit/exec and p->cpu_timers
609 * and p->signal->cpu_timers read/write in arm_timer()
611 sighand
= lock_task_sighand(p
, &flags
);
613 * If p has just been reaped, we can no
614 * longer get any information about it at all.
616 if (unlikely(sighand
== NULL
)) {
621 * Disarm any old timer after extracting its expiry time.
623 WARN_ON_ONCE(!irqs_disabled());
626 old_incr
= timer
->it
.cpu
.incr
;
627 old_expires
= timer
->it
.cpu
.expires
;
628 if (unlikely(timer
->it
.cpu
.firing
)) {
629 timer
->it
.cpu
.firing
= -1;
632 list_del_init(&timer
->it
.cpu
.entry
);
635 * We need to sample the current value to convert the new
636 * value from to relative and absolute, and to convert the
637 * old value from absolute to relative. To set a process
638 * timer, we need a sample to balance the thread expiry
639 * times (in arm_timer). With an absolute time, we must
640 * check if it's already passed. In short, we need a sample.
642 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
643 cpu_clock_sample(timer
->it_clock
, p
, &val
);
645 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
649 if (old_expires
== 0) {
650 old
->it_value
.tv_sec
= 0;
651 old
->it_value
.tv_nsec
= 0;
654 * Update the timer in case it has
655 * overrun already. If it has,
656 * we'll report it as having overrun
657 * and with the next reloaded timer
658 * already ticking, though we are
659 * swallowing that pending
660 * notification here to install the
663 bump_cpu_timer(timer
, val
);
664 if (val
< timer
->it
.cpu
.expires
) {
665 old_expires
= timer
->it
.cpu
.expires
- val
;
666 sample_to_timespec(timer
->it_clock
,
670 old
->it_value
.tv_nsec
= 1;
671 old
->it_value
.tv_sec
= 0;
678 * We are colliding with the timer actually firing.
679 * Punt after filling in the timer's old value, and
680 * disable this firing since we are already reporting
681 * it as an overrun (thanks to bump_cpu_timer above).
683 unlock_task_sighand(p
, &flags
);
687 if (new_expires
!= 0 && !(timer_flags
& TIMER_ABSTIME
)) {
692 * Install the new expiry time (or zero).
693 * For a timer with no notification action, we don't actually
694 * arm the timer (we'll just fake it for timer_gettime).
696 timer
->it
.cpu
.expires
= new_expires
;
697 if (new_expires
!= 0 && val
< new_expires
) {
701 unlock_task_sighand(p
, &flags
);
703 * Install the new reload setting, and
704 * set up the signal and overrun bookkeeping.
706 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
710 * This acts as a modification timestamp for the timer,
711 * so any automatic reload attempt will punt on seeing
712 * that we have reset the timer manually.
714 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
716 timer
->it_overrun_last
= 0;
717 timer
->it_overrun
= -1;
719 if (new_expires
!= 0 && !(val
< new_expires
)) {
721 * The designated time already passed, so we notify
722 * immediately, even if the thread never runs to
723 * accumulate more time on this clock.
725 cpu_timer_fire(timer
);
731 sample_to_timespec(timer
->it_clock
,
732 old_incr
, &old
->it_interval
);
738 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
740 unsigned long long now
;
741 struct task_struct
*p
= timer
->it
.cpu
.task
;
743 WARN_ON_ONCE(p
== NULL
);
746 * Easy part: convert the reload time.
748 sample_to_timespec(timer
->it_clock
,
749 timer
->it
.cpu
.incr
, &itp
->it_interval
);
751 if (timer
->it
.cpu
.expires
== 0) { /* Timer not armed at all. */
752 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
757 * Sample the clock to take the difference with the expiry time.
759 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
760 cpu_clock_sample(timer
->it_clock
, p
, &now
);
762 struct sighand_struct
*sighand
;
766 * Protect against sighand release/switch in exit/exec and
767 * also make timer sampling safe if it ends up calling
768 * thread_group_cputime().
770 sighand
= lock_task_sighand(p
, &flags
);
771 if (unlikely(sighand
== NULL
)) {
773 * The process has been reaped.
774 * We can't even collect a sample any more.
775 * Call the timer disarmed, nothing else to do.
777 timer
->it
.cpu
.expires
= 0;
778 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
782 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
783 unlock_task_sighand(p
, &flags
);
787 if (now
< timer
->it
.cpu
.expires
) {
788 sample_to_timespec(timer
->it_clock
,
789 timer
->it
.cpu
.expires
- now
,
793 * The timer should have expired already, but the firing
794 * hasn't taken place yet. Say it's just about to expire.
796 itp
->it_value
.tv_nsec
= 1;
797 itp
->it_value
.tv_sec
= 0;
801 static unsigned long long
802 check_timers_list(struct list_head
*timers
,
803 struct list_head
*firing
,
804 unsigned long long curr
)
808 while (!list_empty(timers
)) {
809 struct cpu_timer_list
*t
;
811 t
= list_first_entry(timers
, struct cpu_timer_list
, entry
);
813 if (!--maxfire
|| curr
< t
->expires
)
817 list_move_tail(&t
->entry
, firing
);
824 * Check for any per-thread CPU timers that have fired and move them off
825 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
826 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
828 static void check_thread_timers(struct task_struct
*tsk
,
829 struct list_head
*firing
)
831 struct list_head
*timers
= tsk
->cpu_timers
;
832 struct signal_struct
*const sig
= tsk
->signal
;
833 struct task_cputime
*tsk_expires
= &tsk
->cputime_expires
;
834 unsigned long long expires
;
838 * If cputime_expires is zero, then there are no active
839 * per thread CPU timers.
841 if (task_cputime_zero(&tsk
->cputime_expires
))
844 expires
= check_timers_list(timers
, firing
, prof_ticks(tsk
));
845 tsk_expires
->prof_exp
= expires_to_cputime(expires
);
847 expires
= check_timers_list(++timers
, firing
, virt_ticks(tsk
));
848 tsk_expires
->virt_exp
= expires_to_cputime(expires
);
850 tsk_expires
->sched_exp
= check_timers_list(++timers
, firing
,
851 tsk
->se
.sum_exec_runtime
);
854 * Check for the special case thread timers.
856 soft
= READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
857 if (soft
!= RLIM_INFINITY
) {
859 READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
861 if (hard
!= RLIM_INFINITY
&&
862 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
864 * At the hard limit, we just die.
865 * No need to calculate anything else now.
867 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
870 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
872 * At the soft limit, send a SIGXCPU every second.
875 soft
+= USEC_PER_SEC
;
876 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
879 "RT Watchdog Timeout: %s[%d]\n",
880 tsk
->comm
, task_pid_nr(tsk
));
881 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
884 if (task_cputime_zero(tsk_expires
))
885 tick_dep_clear_task(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
888 static inline void stop_process_timers(struct signal_struct
*sig
)
890 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
892 /* Turn off cputimer->running. This is done without locking. */
893 WRITE_ONCE(cputimer
->running
, false);
894 tick_dep_clear_signal(sig
, TICK_DEP_BIT_POSIX_TIMER
);
897 static u32 onecputick
;
899 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
900 unsigned long long *expires
,
901 unsigned long long cur_time
, int signo
)
906 if (cur_time
>= it
->expires
) {
908 it
->expires
+= it
->incr
;
909 it
->error
+= it
->incr_error
;
910 if (it
->error
>= onecputick
) {
911 it
->expires
-= cputime_one_jiffy
;
912 it
->error
-= onecputick
;
918 trace_itimer_expire(signo
== SIGPROF
?
919 ITIMER_PROF
: ITIMER_VIRTUAL
,
920 tsk
->signal
->leader_pid
, cur_time
);
921 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
924 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
)) {
925 *expires
= it
->expires
;
930 * Check for any per-thread CPU timers that have fired and move them
931 * off the tsk->*_timers list onto the firing list. Per-thread timers
932 * have already been taken off.
934 static void check_process_timers(struct task_struct
*tsk
,
935 struct list_head
*firing
)
937 struct signal_struct
*const sig
= tsk
->signal
;
938 unsigned long long utime
, ptime
, virt_expires
, prof_expires
;
939 unsigned long long sum_sched_runtime
, sched_expires
;
940 struct list_head
*timers
= sig
->cpu_timers
;
941 struct task_cputime cputime
;
945 * If cputimer is not running, then there are no active
946 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
948 if (!READ_ONCE(tsk
->signal
->cputimer
.running
))
952 * Signify that a thread is checking for process timers.
953 * Write access to this field is protected by the sighand lock.
955 sig
->cputimer
.checking_timer
= true;
958 * Collect the current process totals.
960 thread_group_cputimer(tsk
, &cputime
);
961 utime
= cputime_to_expires(cputime
.utime
);
962 ptime
= utime
+ cputime_to_expires(cputime
.stime
);
963 sum_sched_runtime
= cputime
.sum_exec_runtime
;
965 prof_expires
= check_timers_list(timers
, firing
, ptime
);
966 virt_expires
= check_timers_list(++timers
, firing
, utime
);
967 sched_expires
= check_timers_list(++timers
, firing
, sum_sched_runtime
);
970 * Check for the special case process timers.
972 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
974 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
976 soft
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
977 if (soft
!= RLIM_INFINITY
) {
978 unsigned long psecs
= cputime_to_secs(ptime
);
980 READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
984 * At the hard limit, we just die.
985 * No need to calculate anything else now.
987 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
992 * At the soft limit, send a SIGXCPU every second.
994 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
997 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
1000 x
= secs_to_cputime(soft
);
1001 if (!prof_expires
|| x
< prof_expires
) {
1006 sig
->cputime_expires
.prof_exp
= expires_to_cputime(prof_expires
);
1007 sig
->cputime_expires
.virt_exp
= expires_to_cputime(virt_expires
);
1008 sig
->cputime_expires
.sched_exp
= sched_expires
;
1009 if (task_cputime_zero(&sig
->cputime_expires
))
1010 stop_process_timers(sig
);
1012 sig
->cputimer
.checking_timer
= false;
1016 * This is called from the signal code (via do_schedule_next_timer)
1017 * when the last timer signal was delivered and we have to reload the timer.
1019 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1021 struct sighand_struct
*sighand
;
1022 unsigned long flags
;
1023 struct task_struct
*p
= timer
->it
.cpu
.task
;
1024 unsigned long long now
;
1026 WARN_ON_ONCE(p
== NULL
);
1029 * Fetch the current sample and update the timer's expiry time.
1031 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1032 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1033 bump_cpu_timer(timer
, now
);
1034 if (unlikely(p
->exit_state
))
1037 /* Protect timer list r/w in arm_timer() */
1038 sighand
= lock_task_sighand(p
, &flags
);
1043 * Protect arm_timer() and timer sampling in case of call to
1044 * thread_group_cputime().
1046 sighand
= lock_task_sighand(p
, &flags
);
1047 if (unlikely(sighand
== NULL
)) {
1049 * The process has been reaped.
1050 * We can't even collect a sample any more.
1052 timer
->it
.cpu
.expires
= 0;
1054 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1055 unlock_task_sighand(p
, &flags
);
1056 /* Optimizations: if the process is dying, no need to rearm */
1059 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1060 bump_cpu_timer(timer
, now
);
1061 /* Leave the sighand locked for the call below. */
1065 * Now re-arm for the new expiry time.
1067 WARN_ON_ONCE(!irqs_disabled());
1069 unlock_task_sighand(p
, &flags
);
1072 timer
->it_overrun_last
= timer
->it_overrun
;
1073 timer
->it_overrun
= -1;
1074 ++timer
->it_requeue_pending
;
1078 * task_cputime_expired - Compare two task_cputime entities.
1080 * @sample: The task_cputime structure to be checked for expiration.
1081 * @expires: Expiration times, against which @sample will be checked.
1083 * Checks @sample against @expires to see if any field of @sample has expired.
1084 * Returns true if any field of the former is greater than the corresponding
1085 * field of the latter if the latter field is set. Otherwise returns false.
1087 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1088 const struct task_cputime
*expires
)
1090 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1092 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1094 if (expires
->sum_exec_runtime
!= 0 &&
1095 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1101 * fastpath_timer_check - POSIX CPU timers fast path.
1103 * @tsk: The task (thread) being checked.
1105 * Check the task and thread group timers. If both are zero (there are no
1106 * timers set) return false. Otherwise snapshot the task and thread group
1107 * timers and compare them with the corresponding expiration times. Return
1108 * true if a timer has expired, else return false.
1110 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1112 struct signal_struct
*sig
;
1114 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1115 struct task_cputime task_sample
;
1117 task_cputime(tsk
, &task_sample
.utime
, &task_sample
.stime
);
1118 task_sample
.sum_exec_runtime
= tsk
->se
.sum_exec_runtime
;
1119 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1125 * Check if thread group timers expired when the cputimer is
1126 * running and no other thread in the group is already checking
1127 * for thread group cputimers. These fields are read without the
1128 * sighand lock. However, this is fine because this is meant to
1129 * be a fastpath heuristic to determine whether we should try to
1130 * acquire the sighand lock to check/handle timers.
1132 * In the worst case scenario, if 'running' or 'checking_timer' gets
1133 * set but the current thread doesn't see the change yet, we'll wait
1134 * until the next thread in the group gets a scheduler interrupt to
1135 * handle the timer. This isn't an issue in practice because these
1136 * types of delays with signals actually getting sent are expected.
1138 if (READ_ONCE(sig
->cputimer
.running
) &&
1139 !READ_ONCE(sig
->cputimer
.checking_timer
)) {
1140 struct task_cputime group_sample
;
1142 sample_cputime_atomic(&group_sample
, &sig
->cputimer
.cputime_atomic
);
1144 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1152 * This is called from the timer interrupt handler. The irq handler has
1153 * already updated our counts. We need to check if any timers fire now.
1154 * Interrupts are disabled.
1156 void run_posix_cpu_timers(struct task_struct
*tsk
)
1159 struct k_itimer
*timer
, *next
;
1160 unsigned long flags
;
1162 WARN_ON_ONCE(!irqs_disabled());
1165 * The fast path checks that there are no expired thread or thread
1166 * group timers. If that's so, just return.
1168 if (!fastpath_timer_check(tsk
))
1171 if (!lock_task_sighand(tsk
, &flags
))
1174 * Here we take off tsk->signal->cpu_timers[N] and
1175 * tsk->cpu_timers[N] all the timers that are firing, and
1176 * put them on the firing list.
1178 check_thread_timers(tsk
, &firing
);
1180 check_process_timers(tsk
, &firing
);
1183 * We must release these locks before taking any timer's lock.
1184 * There is a potential race with timer deletion here, as the
1185 * siglock now protects our private firing list. We have set
1186 * the firing flag in each timer, so that a deletion attempt
1187 * that gets the timer lock before we do will give it up and
1188 * spin until we've taken care of that timer below.
1190 unlock_task_sighand(tsk
, &flags
);
1193 * Now that all the timers on our list have the firing flag,
1194 * no one will touch their list entries but us. We'll take
1195 * each timer's lock before clearing its firing flag, so no
1196 * timer call will interfere.
1198 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1201 spin_lock(&timer
->it_lock
);
1202 list_del_init(&timer
->it
.cpu
.entry
);
1203 cpu_firing
= timer
->it
.cpu
.firing
;
1204 timer
->it
.cpu
.firing
= 0;
1206 * The firing flag is -1 if we collided with a reset
1207 * of the timer, which already reported this
1208 * almost-firing as an overrun. So don't generate an event.
1210 if (likely(cpu_firing
>= 0))
1211 cpu_timer_fire(timer
);
1212 spin_unlock(&timer
->it_lock
);
1217 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1218 * The tsk->sighand->siglock must be held by the caller.
1220 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1221 cputime_t
*newval
, cputime_t
*oldval
)
1223 unsigned long long now
;
1225 WARN_ON_ONCE(clock_idx
== CPUCLOCK_SCHED
);
1226 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1230 * We are setting itimer. The *oldval is absolute and we update
1231 * it to be relative, *newval argument is relative and we update
1232 * it to be absolute.
1235 if (*oldval
<= now
) {
1236 /* Just about to fire. */
1237 *oldval
= cputime_one_jiffy
;
1249 * Update expiration cache if we are the earliest timer, or eventually
1250 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1252 switch (clock_idx
) {
1254 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1255 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1258 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1259 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1263 tick_dep_set_signal(tsk
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
1266 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1267 struct timespec
*rqtp
, struct itimerspec
*it
)
1269 struct k_itimer timer
;
1273 * Set up a temporary timer and then wait for it to go off.
1275 memset(&timer
, 0, sizeof timer
);
1276 spin_lock_init(&timer
.it_lock
);
1277 timer
.it_clock
= which_clock
;
1278 timer
.it_overrun
= -1;
1279 error
= posix_cpu_timer_create(&timer
);
1280 timer
.it_process
= current
;
1282 static struct itimerspec zero_it
;
1284 memset(it
, 0, sizeof *it
);
1285 it
->it_value
= *rqtp
;
1287 spin_lock_irq(&timer
.it_lock
);
1288 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1290 spin_unlock_irq(&timer
.it_lock
);
1294 while (!signal_pending(current
)) {
1295 if (timer
.it
.cpu
.expires
== 0) {
1297 * Our timer fired and was reset, below
1298 * deletion can not fail.
1300 posix_cpu_timer_del(&timer
);
1301 spin_unlock_irq(&timer
.it_lock
);
1306 * Block until cpu_timer_fire (or a signal) wakes us.
1308 __set_current_state(TASK_INTERRUPTIBLE
);
1309 spin_unlock_irq(&timer
.it_lock
);
1311 spin_lock_irq(&timer
.it_lock
);
1315 * We were interrupted by a signal.
1317 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1318 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1321 * Timer is now unarmed, deletion can not fail.
1323 posix_cpu_timer_del(&timer
);
1325 spin_unlock_irq(&timer
.it_lock
);
1327 while (error
== TIMER_RETRY
) {
1329 * We need to handle case when timer was or is in the
1330 * middle of firing. In other cases we already freed
1333 spin_lock_irq(&timer
.it_lock
);
1334 error
= posix_cpu_timer_del(&timer
);
1335 spin_unlock_irq(&timer
.it_lock
);
1338 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1340 * It actually did fire already.
1345 error
= -ERESTART_RESTARTBLOCK
;
1351 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1353 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1354 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1356 struct restart_block
*restart_block
= ¤t
->restart_block
;
1357 struct itimerspec it
;
1361 * Diagnose required errors first.
1363 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1364 (CPUCLOCK_PID(which_clock
) == 0 ||
1365 CPUCLOCK_PID(which_clock
) == current
->pid
))
1368 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1370 if (error
== -ERESTART_RESTARTBLOCK
) {
1372 if (flags
& TIMER_ABSTIME
)
1373 return -ERESTARTNOHAND
;
1375 * Report back to the user the time still remaining.
1377 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1380 restart_block
->fn
= posix_cpu_nsleep_restart
;
1381 restart_block
->nanosleep
.clockid
= which_clock
;
1382 restart_block
->nanosleep
.rmtp
= rmtp
;
1383 restart_block
->nanosleep
.expires
= timespec_to_ns(rqtp
);
1388 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1390 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1392 struct itimerspec it
;
1395 t
= ns_to_timespec(restart_block
->nanosleep
.expires
);
1397 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1399 if (error
== -ERESTART_RESTARTBLOCK
) {
1400 struct timespec __user
*rmtp
= restart_block
->nanosleep
.rmtp
;
1402 * Report back to the user the time still remaining.
1404 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1407 restart_block
->nanosleep
.expires
= timespec_to_ns(&t
);
1413 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1414 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1416 static int process_cpu_clock_getres(const clockid_t which_clock
,
1417 struct timespec
*tp
)
1419 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1421 static int process_cpu_clock_get(const clockid_t which_clock
,
1422 struct timespec
*tp
)
1424 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1426 static int process_cpu_timer_create(struct k_itimer
*timer
)
1428 timer
->it_clock
= PROCESS_CLOCK
;
1429 return posix_cpu_timer_create(timer
);
1431 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1432 struct timespec
*rqtp
,
1433 struct timespec __user
*rmtp
)
1435 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1437 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1441 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1442 struct timespec
*tp
)
1444 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1446 static int thread_cpu_clock_get(const clockid_t which_clock
,
1447 struct timespec
*tp
)
1449 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1451 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1453 timer
->it_clock
= THREAD_CLOCK
;
1454 return posix_cpu_timer_create(timer
);
1457 struct k_clock clock_posix_cpu
= {
1458 .clock_getres
= posix_cpu_clock_getres
,
1459 .clock_set
= posix_cpu_clock_set
,
1460 .clock_get
= posix_cpu_clock_get
,
1461 .timer_create
= posix_cpu_timer_create
,
1462 .nsleep
= posix_cpu_nsleep
,
1463 .nsleep_restart
= posix_cpu_nsleep_restart
,
1464 .timer_set
= posix_cpu_timer_set
,
1465 .timer_del
= posix_cpu_timer_del
,
1466 .timer_get
= posix_cpu_timer_get
,
1469 static __init
int init_posix_cpu_timers(void)
1471 struct k_clock process
= {
1472 .clock_getres
= process_cpu_clock_getres
,
1473 .clock_get
= process_cpu_clock_get
,
1474 .timer_create
= process_cpu_timer_create
,
1475 .nsleep
= process_cpu_nsleep
,
1476 .nsleep_restart
= process_cpu_nsleep_restart
,
1478 struct k_clock thread
= {
1479 .clock_getres
= thread_cpu_clock_getres
,
1480 .clock_get
= thread_cpu_clock_get
,
1481 .timer_create
= thread_cpu_timer_create
,
1485 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1486 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1488 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1489 onecputick
= ts
.tv_nsec
;
1490 WARN_ON(ts
.tv_sec
!= 0);
1494 __initcall(init_posix_cpu_timers
);