inet: frag: enforce memory limits earlier
[linux/fpc-iii.git] / kernel / time / timekeeping.c
blobd831827d7ab0113e74494e6b6f5d0038faa2fd32
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
54 * See @update_fast_timekeeper() below.
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
77 struct timespec64 ts;
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
99 struct timespec64 tmp;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
120 * tk_clock_read - atomic clocksource read() helper
122 * This helper is necessary to use in the read paths because, while the
123 * seqlock ensures we don't return a bad value while structures are updated,
124 * it doesn't protect from potential crashes. There is the possibility that
125 * the tkr's clocksource may change between the read reference, and the
126 * clock reference passed to the read function. This can cause crashes if
127 * the wrong clocksource is passed to the wrong read function.
128 * This isn't necessary to use when holding the timekeeper_lock or doing
129 * a read of the fast-timekeeper tkrs (which is protected by its own locking
130 * and update logic).
132 static inline u64 tk_clock_read(struct tk_read_base *tkr)
134 struct clocksource *clock = READ_ONCE(tkr->clock);
136 return clock->read(clock);
139 #ifdef CONFIG_DEBUG_TIMEKEEPING
140 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
142 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
145 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
146 const char *name = tk->tkr_mono.clock->name;
148 if (offset > max_cycles) {
149 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
150 offset, name, max_cycles);
151 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
152 } else {
153 if (offset > (max_cycles >> 1)) {
154 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
155 offset, name, max_cycles >> 1);
156 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
160 if (tk->underflow_seen) {
161 if (jiffies - tk->last_warning > WARNING_FREQ) {
162 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
163 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
164 printk_deferred(" Your kernel is probably still fine.\n");
165 tk->last_warning = jiffies;
167 tk->underflow_seen = 0;
170 if (tk->overflow_seen) {
171 if (jiffies - tk->last_warning > WARNING_FREQ) {
172 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
173 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
174 printk_deferred(" Your kernel is probably still fine.\n");
175 tk->last_warning = jiffies;
177 tk->overflow_seen = 0;
181 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
183 struct timekeeper *tk = &tk_core.timekeeper;
184 cycle_t now, last, mask, max, delta;
185 unsigned int seq;
188 * Since we're called holding a seqlock, the data may shift
189 * under us while we're doing the calculation. This can cause
190 * false positives, since we'd note a problem but throw the
191 * results away. So nest another seqlock here to atomically
192 * grab the points we are checking with.
194 do {
195 seq = read_seqcount_begin(&tk_core.seq);
196 now = tk_clock_read(tkr);
197 last = tkr->cycle_last;
198 mask = tkr->mask;
199 max = tkr->clock->max_cycles;
200 } while (read_seqcount_retry(&tk_core.seq, seq));
202 delta = clocksource_delta(now, last, mask);
205 * Try to catch underflows by checking if we are seeing small
206 * mask-relative negative values.
208 if (unlikely((~delta & mask) < (mask >> 3))) {
209 tk->underflow_seen = 1;
210 delta = 0;
213 /* Cap delta value to the max_cycles values to avoid mult overflows */
214 if (unlikely(delta > max)) {
215 tk->overflow_seen = 1;
216 delta = tkr->clock->max_cycles;
219 return delta;
221 #else
222 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
225 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
227 cycle_t cycle_now, delta;
229 /* read clocksource */
230 cycle_now = tk_clock_read(tkr);
232 /* calculate the delta since the last update_wall_time */
233 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
235 return delta;
237 #endif
240 * tk_setup_internals - Set up internals to use clocksource clock.
242 * @tk: The target timekeeper to setup.
243 * @clock: Pointer to clocksource.
245 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
246 * pair and interval request.
248 * Unless you're the timekeeping code, you should not be using this!
250 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
252 cycle_t interval;
253 u64 tmp, ntpinterval;
254 struct clocksource *old_clock;
256 ++tk->cs_was_changed_seq;
257 old_clock = tk->tkr_mono.clock;
258 tk->tkr_mono.clock = clock;
259 tk->tkr_mono.mask = clock->mask;
260 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
262 tk->tkr_raw.clock = clock;
263 tk->tkr_raw.mask = clock->mask;
264 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
266 /* Do the ns -> cycle conversion first, using original mult */
267 tmp = NTP_INTERVAL_LENGTH;
268 tmp <<= clock->shift;
269 ntpinterval = tmp;
270 tmp += clock->mult/2;
271 do_div(tmp, clock->mult);
272 if (tmp == 0)
273 tmp = 1;
275 interval = (cycle_t) tmp;
276 tk->cycle_interval = interval;
278 /* Go back from cycles -> shifted ns */
279 tk->xtime_interval = (u64) interval * clock->mult;
280 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
281 tk->raw_interval = interval * clock->mult;
283 /* if changing clocks, convert xtime_nsec shift units */
284 if (old_clock) {
285 int shift_change = clock->shift - old_clock->shift;
286 if (shift_change < 0)
287 tk->tkr_mono.xtime_nsec >>= -shift_change;
288 else
289 tk->tkr_mono.xtime_nsec <<= shift_change;
291 tk->tkr_raw.xtime_nsec = 0;
293 tk->tkr_mono.shift = clock->shift;
294 tk->tkr_raw.shift = clock->shift;
296 tk->ntp_error = 0;
297 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
298 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
301 * The timekeeper keeps its own mult values for the currently
302 * active clocksource. These value will be adjusted via NTP
303 * to counteract clock drifting.
305 tk->tkr_mono.mult = clock->mult;
306 tk->tkr_raw.mult = clock->mult;
307 tk->ntp_err_mult = 0;
310 /* Timekeeper helper functions. */
312 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
313 static u32 default_arch_gettimeoffset(void) { return 0; }
314 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
315 #else
316 static inline u32 arch_gettimeoffset(void) { return 0; }
317 #endif
319 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
320 cycle_t delta)
322 u64 nsec;
324 nsec = delta * tkr->mult + tkr->xtime_nsec;
325 nsec >>= tkr->shift;
327 /* If arch requires, add in get_arch_timeoffset() */
328 return nsec + arch_gettimeoffset();
331 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
333 cycle_t delta;
335 delta = timekeeping_get_delta(tkr);
336 return timekeeping_delta_to_ns(tkr, delta);
339 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
340 cycle_t cycles)
342 cycle_t delta;
344 /* calculate the delta since the last update_wall_time */
345 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
346 return timekeeping_delta_to_ns(tkr, delta);
350 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
351 * @tkr: Timekeeping readout base from which we take the update
353 * We want to use this from any context including NMI and tracing /
354 * instrumenting the timekeeping code itself.
356 * Employ the latch technique; see @raw_write_seqcount_latch.
358 * So if a NMI hits the update of base[0] then it will use base[1]
359 * which is still consistent. In the worst case this can result is a
360 * slightly wrong timestamp (a few nanoseconds). See
361 * @ktime_get_mono_fast_ns.
363 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
365 struct tk_read_base *base = tkf->base;
367 /* Force readers off to base[1] */
368 raw_write_seqcount_latch(&tkf->seq);
370 /* Update base[0] */
371 memcpy(base, tkr, sizeof(*base));
373 /* Force readers back to base[0] */
374 raw_write_seqcount_latch(&tkf->seq);
376 /* Update base[1] */
377 memcpy(base + 1, base, sizeof(*base));
381 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
383 * This timestamp is not guaranteed to be monotonic across an update.
384 * The timestamp is calculated by:
386 * now = base_mono + clock_delta * slope
388 * So if the update lowers the slope, readers who are forced to the
389 * not yet updated second array are still using the old steeper slope.
391 * tmono
393 * | o n
394 * | o n
395 * | u
396 * | o
397 * |o
398 * |12345678---> reader order
400 * o = old slope
401 * u = update
402 * n = new slope
404 * So reader 6 will observe time going backwards versus reader 5.
406 * While other CPUs are likely to be able observe that, the only way
407 * for a CPU local observation is when an NMI hits in the middle of
408 * the update. Timestamps taken from that NMI context might be ahead
409 * of the following timestamps. Callers need to be aware of that and
410 * deal with it.
412 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
414 struct tk_read_base *tkr;
415 unsigned int seq;
416 u64 now;
418 do {
419 seq = raw_read_seqcount_latch(&tkf->seq);
420 tkr = tkf->base + (seq & 0x01);
421 now = ktime_to_ns(tkr->base);
423 now += timekeeping_delta_to_ns(tkr,
424 clocksource_delta(
425 tk_clock_read(tkr),
426 tkr->cycle_last,
427 tkr->mask));
428 } while (read_seqcount_retry(&tkf->seq, seq));
430 return now;
433 u64 ktime_get_mono_fast_ns(void)
435 return __ktime_get_fast_ns(&tk_fast_mono);
437 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
439 u64 ktime_get_raw_fast_ns(void)
441 return __ktime_get_fast_ns(&tk_fast_raw);
443 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
445 /* Suspend-time cycles value for halted fast timekeeper. */
446 static cycle_t cycles_at_suspend;
448 static cycle_t dummy_clock_read(struct clocksource *cs)
450 return cycles_at_suspend;
453 static struct clocksource dummy_clock = {
454 .read = dummy_clock_read,
458 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
459 * @tk: Timekeeper to snapshot.
461 * It generally is unsafe to access the clocksource after timekeeping has been
462 * suspended, so take a snapshot of the readout base of @tk and use it as the
463 * fast timekeeper's readout base while suspended. It will return the same
464 * number of cycles every time until timekeeping is resumed at which time the
465 * proper readout base for the fast timekeeper will be restored automatically.
467 static void halt_fast_timekeeper(struct timekeeper *tk)
469 static struct tk_read_base tkr_dummy;
470 struct tk_read_base *tkr = &tk->tkr_mono;
472 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
473 cycles_at_suspend = tk_clock_read(tkr);
474 tkr_dummy.clock = &dummy_clock;
475 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
477 tkr = &tk->tkr_raw;
478 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
479 tkr_dummy.clock = &dummy_clock;
480 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
483 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
485 static inline void update_vsyscall(struct timekeeper *tk)
487 struct timespec xt, wm;
489 xt = timespec64_to_timespec(tk_xtime(tk));
490 wm = timespec64_to_timespec(tk->wall_to_monotonic);
491 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
492 tk->tkr_mono.cycle_last);
495 static inline void old_vsyscall_fixup(struct timekeeper *tk)
497 s64 remainder;
500 * Store only full nanoseconds into xtime_nsec after rounding
501 * it up and add the remainder to the error difference.
502 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
503 * by truncating the remainder in vsyscalls. However, it causes
504 * additional work to be done in timekeeping_adjust(). Once
505 * the vsyscall implementations are converted to use xtime_nsec
506 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
507 * users are removed, this can be killed.
509 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
510 if (remainder != 0) {
511 tk->tkr_mono.xtime_nsec -= remainder;
512 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
513 tk->ntp_error += remainder << tk->ntp_error_shift;
514 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
517 #else
518 #define old_vsyscall_fixup(tk)
519 #endif
521 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
523 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
525 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
529 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
531 int pvclock_gtod_register_notifier(struct notifier_block *nb)
533 struct timekeeper *tk = &tk_core.timekeeper;
534 unsigned long flags;
535 int ret;
537 raw_spin_lock_irqsave(&timekeeper_lock, flags);
538 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
539 update_pvclock_gtod(tk, true);
540 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
542 return ret;
544 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
547 * pvclock_gtod_unregister_notifier - unregister a pvclock
548 * timedata update listener
550 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
552 unsigned long flags;
553 int ret;
555 raw_spin_lock_irqsave(&timekeeper_lock, flags);
556 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
557 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
559 return ret;
561 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
564 * tk_update_leap_state - helper to update the next_leap_ktime
566 static inline void tk_update_leap_state(struct timekeeper *tk)
568 tk->next_leap_ktime = ntp_get_next_leap();
569 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
570 /* Convert to monotonic time */
571 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
575 * Update the ktime_t based scalar nsec members of the timekeeper
577 static inline void tk_update_ktime_data(struct timekeeper *tk)
579 u64 seconds;
580 u32 nsec;
583 * The xtime based monotonic readout is:
584 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
585 * The ktime based monotonic readout is:
586 * nsec = base_mono + now();
587 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
589 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
590 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
591 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
593 /* Update the monotonic raw base */
594 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
597 * The sum of the nanoseconds portions of xtime and
598 * wall_to_monotonic can be greater/equal one second. Take
599 * this into account before updating tk->ktime_sec.
601 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
602 if (nsec >= NSEC_PER_SEC)
603 seconds++;
604 tk->ktime_sec = seconds;
607 /* must hold timekeeper_lock */
608 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
610 if (action & TK_CLEAR_NTP) {
611 tk->ntp_error = 0;
612 ntp_clear();
615 tk_update_leap_state(tk);
616 tk_update_ktime_data(tk);
618 update_vsyscall(tk);
619 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
621 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
622 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
624 if (action & TK_CLOCK_WAS_SET)
625 tk->clock_was_set_seq++;
627 * The mirroring of the data to the shadow-timekeeper needs
628 * to happen last here to ensure we don't over-write the
629 * timekeeper structure on the next update with stale data
631 if (action & TK_MIRROR)
632 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
633 sizeof(tk_core.timekeeper));
637 * timekeeping_forward_now - update clock to the current time
639 * Forward the current clock to update its state since the last call to
640 * update_wall_time(). This is useful before significant clock changes,
641 * as it avoids having to deal with this time offset explicitly.
643 static void timekeeping_forward_now(struct timekeeper *tk)
645 cycle_t cycle_now, delta;
646 s64 nsec;
648 cycle_now = tk_clock_read(&tk->tkr_mono);
649 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
650 tk->tkr_mono.cycle_last = cycle_now;
651 tk->tkr_raw.cycle_last = cycle_now;
653 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
655 /* If arch requires, add in get_arch_timeoffset() */
656 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
658 tk_normalize_xtime(tk);
660 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
661 timespec64_add_ns(&tk->raw_time, nsec);
665 * __getnstimeofday64 - Returns the time of day in a timespec64.
666 * @ts: pointer to the timespec to be set
668 * Updates the time of day in the timespec.
669 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
671 int __getnstimeofday64(struct timespec64 *ts)
673 struct timekeeper *tk = &tk_core.timekeeper;
674 unsigned long seq;
675 s64 nsecs = 0;
677 do {
678 seq = read_seqcount_begin(&tk_core.seq);
680 ts->tv_sec = tk->xtime_sec;
681 nsecs = timekeeping_get_ns(&tk->tkr_mono);
683 } while (read_seqcount_retry(&tk_core.seq, seq));
685 ts->tv_nsec = 0;
686 timespec64_add_ns(ts, nsecs);
689 * Do not bail out early, in case there were callers still using
690 * the value, even in the face of the WARN_ON.
692 if (unlikely(timekeeping_suspended))
693 return -EAGAIN;
694 return 0;
696 EXPORT_SYMBOL(__getnstimeofday64);
699 * getnstimeofday64 - Returns the time of day in a timespec64.
700 * @ts: pointer to the timespec64 to be set
702 * Returns the time of day in a timespec64 (WARN if suspended).
704 void getnstimeofday64(struct timespec64 *ts)
706 WARN_ON(__getnstimeofday64(ts));
708 EXPORT_SYMBOL(getnstimeofday64);
710 ktime_t ktime_get(void)
712 struct timekeeper *tk = &tk_core.timekeeper;
713 unsigned int seq;
714 ktime_t base;
715 s64 nsecs;
717 WARN_ON(timekeeping_suspended);
719 do {
720 seq = read_seqcount_begin(&tk_core.seq);
721 base = tk->tkr_mono.base;
722 nsecs = timekeeping_get_ns(&tk->tkr_mono);
724 } while (read_seqcount_retry(&tk_core.seq, seq));
726 return ktime_add_ns(base, nsecs);
728 EXPORT_SYMBOL_GPL(ktime_get);
730 u32 ktime_get_resolution_ns(void)
732 struct timekeeper *tk = &tk_core.timekeeper;
733 unsigned int seq;
734 u32 nsecs;
736 WARN_ON(timekeeping_suspended);
738 do {
739 seq = read_seqcount_begin(&tk_core.seq);
740 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
741 } while (read_seqcount_retry(&tk_core.seq, seq));
743 return nsecs;
745 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
747 static ktime_t *offsets[TK_OFFS_MAX] = {
748 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
749 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
750 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
753 ktime_t ktime_get_with_offset(enum tk_offsets offs)
755 struct timekeeper *tk = &tk_core.timekeeper;
756 unsigned int seq;
757 ktime_t base, *offset = offsets[offs];
758 s64 nsecs;
760 WARN_ON(timekeeping_suspended);
762 do {
763 seq = read_seqcount_begin(&tk_core.seq);
764 base = ktime_add(tk->tkr_mono.base, *offset);
765 nsecs = timekeeping_get_ns(&tk->tkr_mono);
767 } while (read_seqcount_retry(&tk_core.seq, seq));
769 return ktime_add_ns(base, nsecs);
772 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
775 * ktime_mono_to_any() - convert mononotic time to any other time
776 * @tmono: time to convert.
777 * @offs: which offset to use
779 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
781 ktime_t *offset = offsets[offs];
782 unsigned long seq;
783 ktime_t tconv;
785 do {
786 seq = read_seqcount_begin(&tk_core.seq);
787 tconv = ktime_add(tmono, *offset);
788 } while (read_seqcount_retry(&tk_core.seq, seq));
790 return tconv;
792 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
795 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
797 ktime_t ktime_get_raw(void)
799 struct timekeeper *tk = &tk_core.timekeeper;
800 unsigned int seq;
801 ktime_t base;
802 s64 nsecs;
804 do {
805 seq = read_seqcount_begin(&tk_core.seq);
806 base = tk->tkr_raw.base;
807 nsecs = timekeeping_get_ns(&tk->tkr_raw);
809 } while (read_seqcount_retry(&tk_core.seq, seq));
811 return ktime_add_ns(base, nsecs);
813 EXPORT_SYMBOL_GPL(ktime_get_raw);
816 * ktime_get_ts64 - get the monotonic clock in timespec64 format
817 * @ts: pointer to timespec variable
819 * The function calculates the monotonic clock from the realtime
820 * clock and the wall_to_monotonic offset and stores the result
821 * in normalized timespec64 format in the variable pointed to by @ts.
823 void ktime_get_ts64(struct timespec64 *ts)
825 struct timekeeper *tk = &tk_core.timekeeper;
826 struct timespec64 tomono;
827 s64 nsec;
828 unsigned int seq;
830 WARN_ON(timekeeping_suspended);
832 do {
833 seq = read_seqcount_begin(&tk_core.seq);
834 ts->tv_sec = tk->xtime_sec;
835 nsec = timekeeping_get_ns(&tk->tkr_mono);
836 tomono = tk->wall_to_monotonic;
838 } while (read_seqcount_retry(&tk_core.seq, seq));
840 ts->tv_sec += tomono.tv_sec;
841 ts->tv_nsec = 0;
842 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
844 EXPORT_SYMBOL_GPL(ktime_get_ts64);
847 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
849 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
850 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
851 * works on both 32 and 64 bit systems. On 32 bit systems the readout
852 * covers ~136 years of uptime which should be enough to prevent
853 * premature wrap arounds.
855 time64_t ktime_get_seconds(void)
857 struct timekeeper *tk = &tk_core.timekeeper;
859 WARN_ON(timekeeping_suspended);
860 return tk->ktime_sec;
862 EXPORT_SYMBOL_GPL(ktime_get_seconds);
865 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
867 * Returns the wall clock seconds since 1970. This replaces the
868 * get_seconds() interface which is not y2038 safe on 32bit systems.
870 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
871 * 32bit systems the access must be protected with the sequence
872 * counter to provide "atomic" access to the 64bit tk->xtime_sec
873 * value.
875 time64_t ktime_get_real_seconds(void)
877 struct timekeeper *tk = &tk_core.timekeeper;
878 time64_t seconds;
879 unsigned int seq;
881 if (IS_ENABLED(CONFIG_64BIT))
882 return tk->xtime_sec;
884 do {
885 seq = read_seqcount_begin(&tk_core.seq);
886 seconds = tk->xtime_sec;
888 } while (read_seqcount_retry(&tk_core.seq, seq));
890 return seconds;
892 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
895 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
896 * but without the sequence counter protect. This internal function
897 * is called just when timekeeping lock is already held.
899 time64_t __ktime_get_real_seconds(void)
901 struct timekeeper *tk = &tk_core.timekeeper;
903 return tk->xtime_sec;
907 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
908 * @systime_snapshot: pointer to struct receiving the system time snapshot
910 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
912 struct timekeeper *tk = &tk_core.timekeeper;
913 unsigned long seq;
914 ktime_t base_raw;
915 ktime_t base_real;
916 s64 nsec_raw;
917 s64 nsec_real;
918 cycle_t now;
920 WARN_ON_ONCE(timekeeping_suspended);
922 do {
923 seq = read_seqcount_begin(&tk_core.seq);
924 now = tk_clock_read(&tk->tkr_mono);
925 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
926 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
927 base_real = ktime_add(tk->tkr_mono.base,
928 tk_core.timekeeper.offs_real);
929 base_raw = tk->tkr_raw.base;
930 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
931 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
932 } while (read_seqcount_retry(&tk_core.seq, seq));
934 systime_snapshot->cycles = now;
935 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
936 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
938 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
940 /* Scale base by mult/div checking for overflow */
941 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
943 u64 tmp, rem;
945 tmp = div64_u64_rem(*base, div, &rem);
947 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
948 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
949 return -EOVERFLOW;
950 tmp *= mult;
951 rem *= mult;
953 do_div(rem, div);
954 *base = tmp + rem;
955 return 0;
959 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
960 * @history: Snapshot representing start of history
961 * @partial_history_cycles: Cycle offset into history (fractional part)
962 * @total_history_cycles: Total history length in cycles
963 * @discontinuity: True indicates clock was set on history period
964 * @ts: Cross timestamp that should be adjusted using
965 * partial/total ratio
967 * Helper function used by get_device_system_crosststamp() to correct the
968 * crosstimestamp corresponding to the start of the current interval to the
969 * system counter value (timestamp point) provided by the driver. The
970 * total_history_* quantities are the total history starting at the provided
971 * reference point and ending at the start of the current interval. The cycle
972 * count between the driver timestamp point and the start of the current
973 * interval is partial_history_cycles.
975 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
976 cycle_t partial_history_cycles,
977 cycle_t total_history_cycles,
978 bool discontinuity,
979 struct system_device_crosststamp *ts)
981 struct timekeeper *tk = &tk_core.timekeeper;
982 u64 corr_raw, corr_real;
983 bool interp_forward;
984 int ret;
986 if (total_history_cycles == 0 || partial_history_cycles == 0)
987 return 0;
989 /* Interpolate shortest distance from beginning or end of history */
990 interp_forward = partial_history_cycles > total_history_cycles/2 ?
991 true : false;
992 partial_history_cycles = interp_forward ?
993 total_history_cycles - partial_history_cycles :
994 partial_history_cycles;
997 * Scale the monotonic raw time delta by:
998 * partial_history_cycles / total_history_cycles
1000 corr_raw = (u64)ktime_to_ns(
1001 ktime_sub(ts->sys_monoraw, history->raw));
1002 ret = scale64_check_overflow(partial_history_cycles,
1003 total_history_cycles, &corr_raw);
1004 if (ret)
1005 return ret;
1008 * If there is a discontinuity in the history, scale monotonic raw
1009 * correction by:
1010 * mult(real)/mult(raw) yielding the realtime correction
1011 * Otherwise, calculate the realtime correction similar to monotonic
1012 * raw calculation
1014 if (discontinuity) {
1015 corr_real = mul_u64_u32_div
1016 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1017 } else {
1018 corr_real = (u64)ktime_to_ns(
1019 ktime_sub(ts->sys_realtime, history->real));
1020 ret = scale64_check_overflow(partial_history_cycles,
1021 total_history_cycles, &corr_real);
1022 if (ret)
1023 return ret;
1026 /* Fixup monotonic raw and real time time values */
1027 if (interp_forward) {
1028 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1029 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1030 } else {
1031 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1032 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1035 return 0;
1039 * cycle_between - true if test occurs chronologically between before and after
1041 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1043 if (test > before && test < after)
1044 return true;
1045 if (test < before && before > after)
1046 return true;
1047 return false;
1051 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1052 * @get_time_fn: Callback to get simultaneous device time and
1053 * system counter from the device driver
1054 * @ctx: Context passed to get_time_fn()
1055 * @history_begin: Historical reference point used to interpolate system
1056 * time when counter provided by the driver is before the current interval
1057 * @xtstamp: Receives simultaneously captured system and device time
1059 * Reads a timestamp from a device and correlates it to system time
1061 int get_device_system_crosststamp(int (*get_time_fn)
1062 (ktime_t *device_time,
1063 struct system_counterval_t *sys_counterval,
1064 void *ctx),
1065 void *ctx,
1066 struct system_time_snapshot *history_begin,
1067 struct system_device_crosststamp *xtstamp)
1069 struct system_counterval_t system_counterval;
1070 struct timekeeper *tk = &tk_core.timekeeper;
1071 cycle_t cycles, now, interval_start;
1072 unsigned int clock_was_set_seq = 0;
1073 ktime_t base_real, base_raw;
1074 s64 nsec_real, nsec_raw;
1075 u8 cs_was_changed_seq;
1076 unsigned long seq;
1077 bool do_interp;
1078 int ret;
1080 do {
1081 seq = read_seqcount_begin(&tk_core.seq);
1083 * Try to synchronously capture device time and a system
1084 * counter value calling back into the device driver
1086 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1087 if (ret)
1088 return ret;
1091 * Verify that the clocksource associated with the captured
1092 * system counter value is the same as the currently installed
1093 * timekeeper clocksource
1095 if (tk->tkr_mono.clock != system_counterval.cs)
1096 return -ENODEV;
1097 cycles = system_counterval.cycles;
1100 * Check whether the system counter value provided by the
1101 * device driver is on the current timekeeping interval.
1103 now = tk_clock_read(&tk->tkr_mono);
1104 interval_start = tk->tkr_mono.cycle_last;
1105 if (!cycle_between(interval_start, cycles, now)) {
1106 clock_was_set_seq = tk->clock_was_set_seq;
1107 cs_was_changed_seq = tk->cs_was_changed_seq;
1108 cycles = interval_start;
1109 do_interp = true;
1110 } else {
1111 do_interp = false;
1114 base_real = ktime_add(tk->tkr_mono.base,
1115 tk_core.timekeeper.offs_real);
1116 base_raw = tk->tkr_raw.base;
1118 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1119 system_counterval.cycles);
1120 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1121 system_counterval.cycles);
1122 } while (read_seqcount_retry(&tk_core.seq, seq));
1124 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1125 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1128 * Interpolate if necessary, adjusting back from the start of the
1129 * current interval
1131 if (do_interp) {
1132 cycle_t partial_history_cycles, total_history_cycles;
1133 bool discontinuity;
1136 * Check that the counter value occurs after the provided
1137 * history reference and that the history doesn't cross a
1138 * clocksource change
1140 if (!history_begin ||
1141 !cycle_between(history_begin->cycles,
1142 system_counterval.cycles, cycles) ||
1143 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1144 return -EINVAL;
1145 partial_history_cycles = cycles - system_counterval.cycles;
1146 total_history_cycles = cycles - history_begin->cycles;
1147 discontinuity =
1148 history_begin->clock_was_set_seq != clock_was_set_seq;
1150 ret = adjust_historical_crosststamp(history_begin,
1151 partial_history_cycles,
1152 total_history_cycles,
1153 discontinuity, xtstamp);
1154 if (ret)
1155 return ret;
1158 return 0;
1160 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1163 * do_gettimeofday - Returns the time of day in a timeval
1164 * @tv: pointer to the timeval to be set
1166 * NOTE: Users should be converted to using getnstimeofday()
1168 void do_gettimeofday(struct timeval *tv)
1170 struct timespec64 now;
1172 getnstimeofday64(&now);
1173 tv->tv_sec = now.tv_sec;
1174 tv->tv_usec = now.tv_nsec/1000;
1176 EXPORT_SYMBOL(do_gettimeofday);
1179 * do_settimeofday64 - Sets the time of day.
1180 * @ts: pointer to the timespec64 variable containing the new time
1182 * Sets the time of day to the new time and update NTP and notify hrtimers
1184 int do_settimeofday64(const struct timespec64 *ts)
1186 struct timekeeper *tk = &tk_core.timekeeper;
1187 struct timespec64 ts_delta, xt;
1188 unsigned long flags;
1189 int ret = 0;
1191 if (!timespec64_valid_strict(ts))
1192 return -EINVAL;
1194 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1195 write_seqcount_begin(&tk_core.seq);
1197 timekeeping_forward_now(tk);
1199 xt = tk_xtime(tk);
1200 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1201 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1203 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1204 ret = -EINVAL;
1205 goto out;
1208 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1210 tk_set_xtime(tk, ts);
1211 out:
1212 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1214 write_seqcount_end(&tk_core.seq);
1215 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1217 /* signal hrtimers about time change */
1218 clock_was_set();
1220 return ret;
1222 EXPORT_SYMBOL(do_settimeofday64);
1225 * timekeeping_inject_offset - Adds or subtracts from the current time.
1226 * @tv: pointer to the timespec variable containing the offset
1228 * Adds or subtracts an offset value from the current time.
1230 int timekeeping_inject_offset(struct timespec *ts)
1232 struct timekeeper *tk = &tk_core.timekeeper;
1233 unsigned long flags;
1234 struct timespec64 ts64, tmp;
1235 int ret = 0;
1237 if (!timespec_inject_offset_valid(ts))
1238 return -EINVAL;
1240 ts64 = timespec_to_timespec64(*ts);
1242 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1243 write_seqcount_begin(&tk_core.seq);
1245 timekeeping_forward_now(tk);
1247 /* Make sure the proposed value is valid */
1248 tmp = timespec64_add(tk_xtime(tk), ts64);
1249 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1250 !timespec64_valid_strict(&tmp)) {
1251 ret = -EINVAL;
1252 goto error;
1255 tk_xtime_add(tk, &ts64);
1256 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1258 error: /* even if we error out, we forwarded the time, so call update */
1259 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1261 write_seqcount_end(&tk_core.seq);
1262 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1264 /* signal hrtimers about time change */
1265 clock_was_set();
1267 return ret;
1269 EXPORT_SYMBOL(timekeeping_inject_offset);
1273 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1276 s32 timekeeping_get_tai_offset(void)
1278 struct timekeeper *tk = &tk_core.timekeeper;
1279 unsigned int seq;
1280 s32 ret;
1282 do {
1283 seq = read_seqcount_begin(&tk_core.seq);
1284 ret = tk->tai_offset;
1285 } while (read_seqcount_retry(&tk_core.seq, seq));
1287 return ret;
1291 * __timekeeping_set_tai_offset - Lock free worker function
1294 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1296 tk->tai_offset = tai_offset;
1297 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1301 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1304 void timekeeping_set_tai_offset(s32 tai_offset)
1306 struct timekeeper *tk = &tk_core.timekeeper;
1307 unsigned long flags;
1309 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1310 write_seqcount_begin(&tk_core.seq);
1311 __timekeeping_set_tai_offset(tk, tai_offset);
1312 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1313 write_seqcount_end(&tk_core.seq);
1314 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1315 clock_was_set();
1319 * change_clocksource - Swaps clocksources if a new one is available
1321 * Accumulates current time interval and initializes new clocksource
1323 static int change_clocksource(void *data)
1325 struct timekeeper *tk = &tk_core.timekeeper;
1326 struct clocksource *new, *old;
1327 unsigned long flags;
1329 new = (struct clocksource *) data;
1331 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1332 write_seqcount_begin(&tk_core.seq);
1334 timekeeping_forward_now(tk);
1336 * If the cs is in module, get a module reference. Succeeds
1337 * for built-in code (owner == NULL) as well.
1339 if (try_module_get(new->owner)) {
1340 if (!new->enable || new->enable(new) == 0) {
1341 old = tk->tkr_mono.clock;
1342 tk_setup_internals(tk, new);
1343 if (old->disable)
1344 old->disable(old);
1345 module_put(old->owner);
1346 } else {
1347 module_put(new->owner);
1350 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1352 write_seqcount_end(&tk_core.seq);
1353 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1355 return 0;
1359 * timekeeping_notify - Install a new clock source
1360 * @clock: pointer to the clock source
1362 * This function is called from clocksource.c after a new, better clock
1363 * source has been registered. The caller holds the clocksource_mutex.
1365 int timekeeping_notify(struct clocksource *clock)
1367 struct timekeeper *tk = &tk_core.timekeeper;
1369 if (tk->tkr_mono.clock == clock)
1370 return 0;
1371 stop_machine(change_clocksource, clock, NULL);
1372 tick_clock_notify();
1373 return tk->tkr_mono.clock == clock ? 0 : -1;
1377 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1378 * @ts: pointer to the timespec64 to be set
1380 * Returns the raw monotonic time (completely un-modified by ntp)
1382 void getrawmonotonic64(struct timespec64 *ts)
1384 struct timekeeper *tk = &tk_core.timekeeper;
1385 struct timespec64 ts64;
1386 unsigned long seq;
1387 s64 nsecs;
1389 do {
1390 seq = read_seqcount_begin(&tk_core.seq);
1391 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1392 ts64 = tk->raw_time;
1394 } while (read_seqcount_retry(&tk_core.seq, seq));
1396 timespec64_add_ns(&ts64, nsecs);
1397 *ts = ts64;
1399 EXPORT_SYMBOL(getrawmonotonic64);
1403 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1405 int timekeeping_valid_for_hres(void)
1407 struct timekeeper *tk = &tk_core.timekeeper;
1408 unsigned long seq;
1409 int ret;
1411 do {
1412 seq = read_seqcount_begin(&tk_core.seq);
1414 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1416 } while (read_seqcount_retry(&tk_core.seq, seq));
1418 return ret;
1422 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1424 u64 timekeeping_max_deferment(void)
1426 struct timekeeper *tk = &tk_core.timekeeper;
1427 unsigned long seq;
1428 u64 ret;
1430 do {
1431 seq = read_seqcount_begin(&tk_core.seq);
1433 ret = tk->tkr_mono.clock->max_idle_ns;
1435 } while (read_seqcount_retry(&tk_core.seq, seq));
1437 return ret;
1441 * read_persistent_clock - Return time from the persistent clock.
1443 * Weak dummy function for arches that do not yet support it.
1444 * Reads the time from the battery backed persistent clock.
1445 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1447 * XXX - Do be sure to remove it once all arches implement it.
1449 void __weak read_persistent_clock(struct timespec *ts)
1451 ts->tv_sec = 0;
1452 ts->tv_nsec = 0;
1455 void __weak read_persistent_clock64(struct timespec64 *ts64)
1457 struct timespec ts;
1459 read_persistent_clock(&ts);
1460 *ts64 = timespec_to_timespec64(ts);
1464 * read_boot_clock64 - Return time of the system start.
1466 * Weak dummy function for arches that do not yet support it.
1467 * Function to read the exact time the system has been started.
1468 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1470 * XXX - Do be sure to remove it once all arches implement it.
1472 void __weak read_boot_clock64(struct timespec64 *ts)
1474 ts->tv_sec = 0;
1475 ts->tv_nsec = 0;
1478 /* Flag for if timekeeping_resume() has injected sleeptime */
1479 static bool sleeptime_injected;
1481 /* Flag for if there is a persistent clock on this platform */
1482 static bool persistent_clock_exists;
1485 * timekeeping_init - Initializes the clocksource and common timekeeping values
1487 void __init timekeeping_init(void)
1489 struct timekeeper *tk = &tk_core.timekeeper;
1490 struct clocksource *clock;
1491 unsigned long flags;
1492 struct timespec64 now, boot, tmp;
1494 read_persistent_clock64(&now);
1495 if (!timespec64_valid_strict(&now)) {
1496 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1497 " Check your CMOS/BIOS settings.\n");
1498 now.tv_sec = 0;
1499 now.tv_nsec = 0;
1500 } else if (now.tv_sec || now.tv_nsec)
1501 persistent_clock_exists = true;
1503 read_boot_clock64(&boot);
1504 if (!timespec64_valid_strict(&boot)) {
1505 pr_warn("WARNING: Boot clock returned invalid value!\n"
1506 " Check your CMOS/BIOS settings.\n");
1507 boot.tv_sec = 0;
1508 boot.tv_nsec = 0;
1511 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1512 write_seqcount_begin(&tk_core.seq);
1513 ntp_init();
1515 clock = clocksource_default_clock();
1516 if (clock->enable)
1517 clock->enable(clock);
1518 tk_setup_internals(tk, clock);
1520 tk_set_xtime(tk, &now);
1521 tk->raw_time.tv_sec = 0;
1522 tk->raw_time.tv_nsec = 0;
1523 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1524 boot = tk_xtime(tk);
1526 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1527 tk_set_wall_to_mono(tk, tmp);
1529 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1531 write_seqcount_end(&tk_core.seq);
1532 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1535 /* time in seconds when suspend began for persistent clock */
1536 static struct timespec64 timekeeping_suspend_time;
1539 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1540 * @delta: pointer to a timespec delta value
1542 * Takes a timespec offset measuring a suspend interval and properly
1543 * adds the sleep offset to the timekeeping variables.
1545 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1546 struct timespec64 *delta)
1548 if (!timespec64_valid_strict(delta)) {
1549 printk_deferred(KERN_WARNING
1550 "__timekeeping_inject_sleeptime: Invalid "
1551 "sleep delta value!\n");
1552 return;
1554 tk_xtime_add(tk, delta);
1555 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1556 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1557 tk_debug_account_sleep_time(delta);
1560 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1562 * We have three kinds of time sources to use for sleep time
1563 * injection, the preference order is:
1564 * 1) non-stop clocksource
1565 * 2) persistent clock (ie: RTC accessible when irqs are off)
1566 * 3) RTC
1568 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1569 * If system has neither 1) nor 2), 3) will be used finally.
1572 * If timekeeping has injected sleeptime via either 1) or 2),
1573 * 3) becomes needless, so in this case we don't need to call
1574 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1575 * means.
1577 bool timekeeping_rtc_skipresume(void)
1579 return sleeptime_injected;
1583 * 1) can be determined whether to use or not only when doing
1584 * timekeeping_resume() which is invoked after rtc_suspend(),
1585 * so we can't skip rtc_suspend() surely if system has 1).
1587 * But if system has 2), 2) will definitely be used, so in this
1588 * case we don't need to call rtc_suspend(), and this is what
1589 * timekeeping_rtc_skipsuspend() means.
1591 bool timekeeping_rtc_skipsuspend(void)
1593 return persistent_clock_exists;
1597 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1598 * @delta: pointer to a timespec64 delta value
1600 * This hook is for architectures that cannot support read_persistent_clock64
1601 * because their RTC/persistent clock is only accessible when irqs are enabled.
1602 * and also don't have an effective nonstop clocksource.
1604 * This function should only be called by rtc_resume(), and allows
1605 * a suspend offset to be injected into the timekeeping values.
1607 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1609 struct timekeeper *tk = &tk_core.timekeeper;
1610 unsigned long flags;
1612 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1613 write_seqcount_begin(&tk_core.seq);
1615 timekeeping_forward_now(tk);
1617 __timekeeping_inject_sleeptime(tk, delta);
1619 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1621 write_seqcount_end(&tk_core.seq);
1622 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1624 /* signal hrtimers about time change */
1625 clock_was_set();
1627 #endif
1630 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1632 void timekeeping_resume(void)
1634 struct timekeeper *tk = &tk_core.timekeeper;
1635 struct clocksource *clock = tk->tkr_mono.clock;
1636 unsigned long flags;
1637 struct timespec64 ts_new, ts_delta;
1638 cycle_t cycle_now, cycle_delta;
1640 sleeptime_injected = false;
1641 read_persistent_clock64(&ts_new);
1643 clockevents_resume();
1644 clocksource_resume();
1646 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1647 write_seqcount_begin(&tk_core.seq);
1650 * After system resumes, we need to calculate the suspended time and
1651 * compensate it for the OS time. There are 3 sources that could be
1652 * used: Nonstop clocksource during suspend, persistent clock and rtc
1653 * device.
1655 * One specific platform may have 1 or 2 or all of them, and the
1656 * preference will be:
1657 * suspend-nonstop clocksource -> persistent clock -> rtc
1658 * The less preferred source will only be tried if there is no better
1659 * usable source. The rtc part is handled separately in rtc core code.
1661 cycle_now = tk_clock_read(&tk->tkr_mono);
1662 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1663 cycle_now > tk->tkr_mono.cycle_last) {
1664 u64 num, max = ULLONG_MAX;
1665 u32 mult = clock->mult;
1666 u32 shift = clock->shift;
1667 s64 nsec = 0;
1669 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1670 tk->tkr_mono.mask);
1673 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1674 * suspended time is too long. In that case we need do the
1675 * 64 bits math carefully
1677 do_div(max, mult);
1678 if (cycle_delta > max) {
1679 num = div64_u64(cycle_delta, max);
1680 nsec = (((u64) max * mult) >> shift) * num;
1681 cycle_delta -= num * max;
1683 nsec += ((u64) cycle_delta * mult) >> shift;
1685 ts_delta = ns_to_timespec64(nsec);
1686 sleeptime_injected = true;
1687 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1688 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1689 sleeptime_injected = true;
1692 if (sleeptime_injected)
1693 __timekeeping_inject_sleeptime(tk, &ts_delta);
1695 /* Re-base the last cycle value */
1696 tk->tkr_mono.cycle_last = cycle_now;
1697 tk->tkr_raw.cycle_last = cycle_now;
1699 tk->ntp_error = 0;
1700 timekeeping_suspended = 0;
1701 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1702 write_seqcount_end(&tk_core.seq);
1703 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1705 touch_softlockup_watchdog();
1707 tick_resume();
1708 hrtimers_resume();
1711 int timekeeping_suspend(void)
1713 struct timekeeper *tk = &tk_core.timekeeper;
1714 unsigned long flags;
1715 struct timespec64 delta, delta_delta;
1716 static struct timespec64 old_delta;
1718 read_persistent_clock64(&timekeeping_suspend_time);
1721 * On some systems the persistent_clock can not be detected at
1722 * timekeeping_init by its return value, so if we see a valid
1723 * value returned, update the persistent_clock_exists flag.
1725 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1726 persistent_clock_exists = true;
1728 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1729 write_seqcount_begin(&tk_core.seq);
1730 timekeeping_forward_now(tk);
1731 timekeeping_suspended = 1;
1733 if (persistent_clock_exists) {
1735 * To avoid drift caused by repeated suspend/resumes,
1736 * which each can add ~1 second drift error,
1737 * try to compensate so the difference in system time
1738 * and persistent_clock time stays close to constant.
1740 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1741 delta_delta = timespec64_sub(delta, old_delta);
1742 if (abs(delta_delta.tv_sec) >= 2) {
1744 * if delta_delta is too large, assume time correction
1745 * has occurred and set old_delta to the current delta.
1747 old_delta = delta;
1748 } else {
1749 /* Otherwise try to adjust old_system to compensate */
1750 timekeeping_suspend_time =
1751 timespec64_add(timekeeping_suspend_time, delta_delta);
1755 timekeeping_update(tk, TK_MIRROR);
1756 halt_fast_timekeeper(tk);
1757 write_seqcount_end(&tk_core.seq);
1758 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1760 tick_suspend();
1761 clocksource_suspend();
1762 clockevents_suspend();
1764 return 0;
1767 /* sysfs resume/suspend bits for timekeeping */
1768 static struct syscore_ops timekeeping_syscore_ops = {
1769 .resume = timekeeping_resume,
1770 .suspend = timekeeping_suspend,
1773 static int __init timekeeping_init_ops(void)
1775 register_syscore_ops(&timekeeping_syscore_ops);
1776 return 0;
1778 device_initcall(timekeeping_init_ops);
1781 * Apply a multiplier adjustment to the timekeeper
1783 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1784 s64 offset,
1785 bool negative,
1786 int adj_scale)
1788 s64 interval = tk->cycle_interval;
1789 s32 mult_adj = 1;
1791 if (negative) {
1792 mult_adj = -mult_adj;
1793 interval = -interval;
1794 offset = -offset;
1796 mult_adj <<= adj_scale;
1797 interval <<= adj_scale;
1798 offset <<= adj_scale;
1801 * So the following can be confusing.
1803 * To keep things simple, lets assume mult_adj == 1 for now.
1805 * When mult_adj != 1, remember that the interval and offset values
1806 * have been appropriately scaled so the math is the same.
1808 * The basic idea here is that we're increasing the multiplier
1809 * by one, this causes the xtime_interval to be incremented by
1810 * one cycle_interval. This is because:
1811 * xtime_interval = cycle_interval * mult
1812 * So if mult is being incremented by one:
1813 * xtime_interval = cycle_interval * (mult + 1)
1814 * Its the same as:
1815 * xtime_interval = (cycle_interval * mult) + cycle_interval
1816 * Which can be shortened to:
1817 * xtime_interval += cycle_interval
1819 * So offset stores the non-accumulated cycles. Thus the current
1820 * time (in shifted nanoseconds) is:
1821 * now = (offset * adj) + xtime_nsec
1822 * Now, even though we're adjusting the clock frequency, we have
1823 * to keep time consistent. In other words, we can't jump back
1824 * in time, and we also want to avoid jumping forward in time.
1826 * So given the same offset value, we need the time to be the same
1827 * both before and after the freq adjustment.
1828 * now = (offset * adj_1) + xtime_nsec_1
1829 * now = (offset * adj_2) + xtime_nsec_2
1830 * So:
1831 * (offset * adj_1) + xtime_nsec_1 =
1832 * (offset * adj_2) + xtime_nsec_2
1833 * And we know:
1834 * adj_2 = adj_1 + 1
1835 * So:
1836 * (offset * adj_1) + xtime_nsec_1 =
1837 * (offset * (adj_1+1)) + xtime_nsec_2
1838 * (offset * adj_1) + xtime_nsec_1 =
1839 * (offset * adj_1) + offset + xtime_nsec_2
1840 * Canceling the sides:
1841 * xtime_nsec_1 = offset + xtime_nsec_2
1842 * Which gives us:
1843 * xtime_nsec_2 = xtime_nsec_1 - offset
1844 * Which simplfies to:
1845 * xtime_nsec -= offset
1847 * XXX - TODO: Doc ntp_error calculation.
1849 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1850 /* NTP adjustment caused clocksource mult overflow */
1851 WARN_ON_ONCE(1);
1852 return;
1855 tk->tkr_mono.mult += mult_adj;
1856 tk->xtime_interval += interval;
1857 tk->tkr_mono.xtime_nsec -= offset;
1858 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1862 * Calculate the multiplier adjustment needed to match the frequency
1863 * specified by NTP
1865 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1866 s64 offset)
1868 s64 interval = tk->cycle_interval;
1869 s64 xinterval = tk->xtime_interval;
1870 u32 base = tk->tkr_mono.clock->mult;
1871 u32 max = tk->tkr_mono.clock->maxadj;
1872 u32 cur_adj = tk->tkr_mono.mult;
1873 s64 tick_error;
1874 bool negative;
1875 u32 adj_scale;
1877 /* Remove any current error adj from freq calculation */
1878 if (tk->ntp_err_mult)
1879 xinterval -= tk->cycle_interval;
1881 tk->ntp_tick = ntp_tick_length();
1883 /* Calculate current error per tick */
1884 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1885 tick_error -= (xinterval + tk->xtime_remainder);
1887 /* Don't worry about correcting it if its small */
1888 if (likely((tick_error >= 0) && (tick_error <= interval)))
1889 return;
1891 /* preserve the direction of correction */
1892 negative = (tick_error < 0);
1894 /* If any adjustment would pass the max, just return */
1895 if (negative && (cur_adj - 1) <= (base - max))
1896 return;
1897 if (!negative && (cur_adj + 1) >= (base + max))
1898 return;
1900 * Sort out the magnitude of the correction, but
1901 * avoid making so large a correction that we go
1902 * over the max adjustment.
1904 adj_scale = 0;
1905 tick_error = abs(tick_error);
1906 while (tick_error > interval) {
1907 u32 adj = 1 << (adj_scale + 1);
1909 /* Check if adjustment gets us within 1 unit from the max */
1910 if (negative && (cur_adj - adj) <= (base - max))
1911 break;
1912 if (!negative && (cur_adj + adj) >= (base + max))
1913 break;
1915 adj_scale++;
1916 tick_error >>= 1;
1919 /* scale the corrections */
1920 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1924 * Adjust the timekeeper's multiplier to the correct frequency
1925 * and also to reduce the accumulated error value.
1927 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1929 /* Correct for the current frequency error */
1930 timekeeping_freqadjust(tk, offset);
1932 /* Next make a small adjustment to fix any cumulative error */
1933 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1934 tk->ntp_err_mult = 1;
1935 timekeeping_apply_adjustment(tk, offset, 0, 0);
1936 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1937 /* Undo any existing error adjustment */
1938 timekeeping_apply_adjustment(tk, offset, 1, 0);
1939 tk->ntp_err_mult = 0;
1942 if (unlikely(tk->tkr_mono.clock->maxadj &&
1943 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1944 > tk->tkr_mono.clock->maxadj))) {
1945 printk_once(KERN_WARNING
1946 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1947 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1948 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1952 * It may be possible that when we entered this function, xtime_nsec
1953 * was very small. Further, if we're slightly speeding the clocksource
1954 * in the code above, its possible the required corrective factor to
1955 * xtime_nsec could cause it to underflow.
1957 * Now, since we already accumulated the second, cannot simply roll
1958 * the accumulated second back, since the NTP subsystem has been
1959 * notified via second_overflow. So instead we push xtime_nsec forward
1960 * by the amount we underflowed, and add that amount into the error.
1962 * We'll correct this error next time through this function, when
1963 * xtime_nsec is not as small.
1965 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1966 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1967 tk->tkr_mono.xtime_nsec = 0;
1968 tk->ntp_error += neg << tk->ntp_error_shift;
1973 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1975 * Helper function that accumulates the nsecs greater than a second
1976 * from the xtime_nsec field to the xtime_secs field.
1977 * It also calls into the NTP code to handle leapsecond processing.
1980 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1982 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1983 unsigned int clock_set = 0;
1985 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1986 int leap;
1988 tk->tkr_mono.xtime_nsec -= nsecps;
1989 tk->xtime_sec++;
1991 /* Figure out if its a leap sec and apply if needed */
1992 leap = second_overflow(tk->xtime_sec);
1993 if (unlikely(leap)) {
1994 struct timespec64 ts;
1996 tk->xtime_sec += leap;
1998 ts.tv_sec = leap;
1999 ts.tv_nsec = 0;
2000 tk_set_wall_to_mono(tk,
2001 timespec64_sub(tk->wall_to_monotonic, ts));
2003 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2005 clock_set = TK_CLOCK_WAS_SET;
2008 return clock_set;
2012 * logarithmic_accumulation - shifted accumulation of cycles
2014 * This functions accumulates a shifted interval of cycles into
2015 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2016 * loop.
2018 * Returns the unconsumed cycles.
2020 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2021 u32 shift,
2022 unsigned int *clock_set)
2024 cycle_t interval = tk->cycle_interval << shift;
2025 u64 snsec_per_sec;
2027 /* If the offset is smaller than a shifted interval, do nothing */
2028 if (offset < interval)
2029 return offset;
2031 /* Accumulate one shifted interval */
2032 offset -= interval;
2033 tk->tkr_mono.cycle_last += interval;
2034 tk->tkr_raw.cycle_last += interval;
2036 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2037 *clock_set |= accumulate_nsecs_to_secs(tk);
2039 /* Accumulate raw time */
2040 tk->tkr_raw.xtime_nsec += (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
2041 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2042 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2043 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2044 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2045 tk->raw_time.tv_sec++;
2047 tk->raw_time.tv_nsec = tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift;
2048 tk->tkr_raw.xtime_nsec -= (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
2050 /* Accumulate error between NTP and clock interval */
2051 tk->ntp_error += tk->ntp_tick << shift;
2052 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2053 (tk->ntp_error_shift + shift);
2055 return offset;
2059 * update_wall_time - Uses the current clocksource to increment the wall time
2062 void update_wall_time(void)
2064 struct timekeeper *real_tk = &tk_core.timekeeper;
2065 struct timekeeper *tk = &shadow_timekeeper;
2066 cycle_t offset;
2067 int shift = 0, maxshift;
2068 unsigned int clock_set = 0;
2069 unsigned long flags;
2071 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2073 /* Make sure we're fully resumed: */
2074 if (unlikely(timekeeping_suspended))
2075 goto out;
2077 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2078 offset = real_tk->cycle_interval;
2079 #else
2080 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2081 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2082 #endif
2084 /* Check if there's really nothing to do */
2085 if (offset < real_tk->cycle_interval)
2086 goto out;
2088 /* Do some additional sanity checking */
2089 timekeeping_check_update(real_tk, offset);
2092 * With NO_HZ we may have to accumulate many cycle_intervals
2093 * (think "ticks") worth of time at once. To do this efficiently,
2094 * we calculate the largest doubling multiple of cycle_intervals
2095 * that is smaller than the offset. We then accumulate that
2096 * chunk in one go, and then try to consume the next smaller
2097 * doubled multiple.
2099 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2100 shift = max(0, shift);
2101 /* Bound shift to one less than what overflows tick_length */
2102 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2103 shift = min(shift, maxshift);
2104 while (offset >= tk->cycle_interval) {
2105 offset = logarithmic_accumulation(tk, offset, shift,
2106 &clock_set);
2107 if (offset < tk->cycle_interval<<shift)
2108 shift--;
2111 /* correct the clock when NTP error is too big */
2112 timekeeping_adjust(tk, offset);
2115 * XXX This can be killed once everyone converts
2116 * to the new update_vsyscall.
2118 old_vsyscall_fixup(tk);
2121 * Finally, make sure that after the rounding
2122 * xtime_nsec isn't larger than NSEC_PER_SEC
2124 clock_set |= accumulate_nsecs_to_secs(tk);
2126 write_seqcount_begin(&tk_core.seq);
2128 * Update the real timekeeper.
2130 * We could avoid this memcpy by switching pointers, but that
2131 * requires changes to all other timekeeper usage sites as
2132 * well, i.e. move the timekeeper pointer getter into the
2133 * spinlocked/seqcount protected sections. And we trade this
2134 * memcpy under the tk_core.seq against one before we start
2135 * updating.
2137 timekeeping_update(tk, clock_set);
2138 memcpy(real_tk, tk, sizeof(*tk));
2139 /* The memcpy must come last. Do not put anything here! */
2140 write_seqcount_end(&tk_core.seq);
2141 out:
2142 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2143 if (clock_set)
2144 /* Have to call _delayed version, since in irq context*/
2145 clock_was_set_delayed();
2149 * getboottime64 - Return the real time of system boot.
2150 * @ts: pointer to the timespec64 to be set
2152 * Returns the wall-time of boot in a timespec64.
2154 * This is based on the wall_to_monotonic offset and the total suspend
2155 * time. Calls to settimeofday will affect the value returned (which
2156 * basically means that however wrong your real time clock is at boot time,
2157 * you get the right time here).
2159 void getboottime64(struct timespec64 *ts)
2161 struct timekeeper *tk = &tk_core.timekeeper;
2162 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2164 *ts = ktime_to_timespec64(t);
2166 EXPORT_SYMBOL_GPL(getboottime64);
2168 unsigned long get_seconds(void)
2170 struct timekeeper *tk = &tk_core.timekeeper;
2172 return tk->xtime_sec;
2174 EXPORT_SYMBOL(get_seconds);
2176 struct timespec __current_kernel_time(void)
2178 struct timekeeper *tk = &tk_core.timekeeper;
2180 return timespec64_to_timespec(tk_xtime(tk));
2183 struct timespec64 current_kernel_time64(void)
2185 struct timekeeper *tk = &tk_core.timekeeper;
2186 struct timespec64 now;
2187 unsigned long seq;
2189 do {
2190 seq = read_seqcount_begin(&tk_core.seq);
2192 now = tk_xtime(tk);
2193 } while (read_seqcount_retry(&tk_core.seq, seq));
2195 return now;
2197 EXPORT_SYMBOL(current_kernel_time64);
2199 struct timespec64 get_monotonic_coarse64(void)
2201 struct timekeeper *tk = &tk_core.timekeeper;
2202 struct timespec64 now, mono;
2203 unsigned long seq;
2205 do {
2206 seq = read_seqcount_begin(&tk_core.seq);
2208 now = tk_xtime(tk);
2209 mono = tk->wall_to_monotonic;
2210 } while (read_seqcount_retry(&tk_core.seq, seq));
2212 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2213 now.tv_nsec + mono.tv_nsec);
2215 return now;
2217 EXPORT_SYMBOL(get_monotonic_coarse64);
2220 * Must hold jiffies_lock
2222 void do_timer(unsigned long ticks)
2224 jiffies_64 += ticks;
2225 calc_global_load(ticks);
2229 * ktime_get_update_offsets_now - hrtimer helper
2230 * @cwsseq: pointer to check and store the clock was set sequence number
2231 * @offs_real: pointer to storage for monotonic -> realtime offset
2232 * @offs_boot: pointer to storage for monotonic -> boottime offset
2233 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2235 * Returns current monotonic time and updates the offsets if the
2236 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2237 * different.
2239 * Called from hrtimer_interrupt() or retrigger_next_event()
2241 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2242 ktime_t *offs_boot, ktime_t *offs_tai)
2244 struct timekeeper *tk = &tk_core.timekeeper;
2245 unsigned int seq;
2246 ktime_t base;
2247 u64 nsecs;
2249 do {
2250 seq = read_seqcount_begin(&tk_core.seq);
2252 base = tk->tkr_mono.base;
2253 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2254 base = ktime_add_ns(base, nsecs);
2256 if (*cwsseq != tk->clock_was_set_seq) {
2257 *cwsseq = tk->clock_was_set_seq;
2258 *offs_real = tk->offs_real;
2259 *offs_boot = tk->offs_boot;
2260 *offs_tai = tk->offs_tai;
2263 /* Handle leapsecond insertion adjustments */
2264 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2265 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2267 } while (read_seqcount_retry(&tk_core.seq, seq));
2269 return base;
2273 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2275 int do_adjtimex(struct timex *txc)
2277 struct timekeeper *tk = &tk_core.timekeeper;
2278 unsigned long flags;
2279 struct timespec64 ts;
2280 s32 orig_tai, tai;
2281 int ret;
2283 /* Validate the data before disabling interrupts */
2284 ret = ntp_validate_timex(txc);
2285 if (ret)
2286 return ret;
2288 if (txc->modes & ADJ_SETOFFSET) {
2289 struct timespec delta;
2290 delta.tv_sec = txc->time.tv_sec;
2291 delta.tv_nsec = txc->time.tv_usec;
2292 if (!(txc->modes & ADJ_NANO))
2293 delta.tv_nsec *= 1000;
2294 ret = timekeeping_inject_offset(&delta);
2295 if (ret)
2296 return ret;
2299 getnstimeofday64(&ts);
2301 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2302 write_seqcount_begin(&tk_core.seq);
2304 orig_tai = tai = tk->tai_offset;
2305 ret = __do_adjtimex(txc, &ts, &tai);
2307 if (tai != orig_tai) {
2308 __timekeeping_set_tai_offset(tk, tai);
2309 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2311 tk_update_leap_state(tk);
2313 write_seqcount_end(&tk_core.seq);
2314 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2316 if (tai != orig_tai)
2317 clock_was_set();
2319 ntp_notify_cmos_timer();
2321 return ret;
2324 #ifdef CONFIG_NTP_PPS
2326 * hardpps() - Accessor function to NTP __hardpps function
2328 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2330 unsigned long flags;
2332 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2333 write_seqcount_begin(&tk_core.seq);
2335 __hardpps(phase_ts, raw_ts);
2337 write_seqcount_end(&tk_core.seq);
2338 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2340 EXPORT_SYMBOL(hardpps);
2341 #endif
2344 * xtime_update() - advances the timekeeping infrastructure
2345 * @ticks: number of ticks, that have elapsed since the last call.
2347 * Must be called with interrupts disabled.
2349 void xtime_update(unsigned long ticks)
2351 write_seqlock(&jiffies_lock);
2352 do_timer(ticks);
2353 write_sequnlock(&jiffies_lock);
2354 update_wall_time();