2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
41 struct timekeeper timekeeper
;
42 } tk_core ____cacheline_aligned
;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock
);
45 static struct timekeeper shadow_timekeeper
;
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * See @update_fast_timekeeper() below.
58 struct tk_read_base base
[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned
;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned
;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended
;
67 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
69 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
70 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
75 static inline struct timespec64
tk_xtime(struct timekeeper
*tk
)
79 ts
.tv_sec
= tk
->xtime_sec
;
80 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
84 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
86 tk
->xtime_sec
= ts
->tv_sec
;
87 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
90 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
92 tk
->xtime_sec
+= ts
->tv_sec
;
93 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
94 tk_normalize_xtime(tk
);
97 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
99 struct timespec64 tmp
;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
106 -tk
->wall_to_monotonic
.tv_nsec
);
107 WARN_ON_ONCE(tk
->offs_real
.tv64
!= timespec64_to_ktime(tmp
).tv64
);
108 tk
->wall_to_monotonic
= wtm
;
109 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
110 tk
->offs_real
= timespec64_to_ktime(tmp
);
111 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0));
114 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
116 tk
->offs_boot
= ktime_add(tk
->offs_boot
, delta
);
120 * tk_clock_read - atomic clocksource read() helper
122 * This helper is necessary to use in the read paths because, while the
123 * seqlock ensures we don't return a bad value while structures are updated,
124 * it doesn't protect from potential crashes. There is the possibility that
125 * the tkr's clocksource may change between the read reference, and the
126 * clock reference passed to the read function. This can cause crashes if
127 * the wrong clocksource is passed to the wrong read function.
128 * This isn't necessary to use when holding the timekeeper_lock or doing
129 * a read of the fast-timekeeper tkrs (which is protected by its own locking
132 static inline u64
tk_clock_read(struct tk_read_base
*tkr
)
134 struct clocksource
*clock
= READ_ONCE(tkr
->clock
);
136 return clock
->read(clock
);
139 #ifdef CONFIG_DEBUG_TIMEKEEPING
140 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
142 static void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
145 cycle_t max_cycles
= tk
->tkr_mono
.clock
->max_cycles
;
146 const char *name
= tk
->tkr_mono
.clock
->name
;
148 if (offset
> max_cycles
) {
149 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
150 offset
, name
, max_cycles
);
151 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
153 if (offset
> (max_cycles
>> 1)) {
154 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
155 offset
, name
, max_cycles
>> 1);
156 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
160 if (tk
->underflow_seen
) {
161 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
162 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name
);
163 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
164 printk_deferred(" Your kernel is probably still fine.\n");
165 tk
->last_warning
= jiffies
;
167 tk
->underflow_seen
= 0;
170 if (tk
->overflow_seen
) {
171 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
172 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name
);
173 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
174 printk_deferred(" Your kernel is probably still fine.\n");
175 tk
->last_warning
= jiffies
;
177 tk
->overflow_seen
= 0;
181 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
183 struct timekeeper
*tk
= &tk_core
.timekeeper
;
184 cycle_t now
, last
, mask
, max
, delta
;
188 * Since we're called holding a seqlock, the data may shift
189 * under us while we're doing the calculation. This can cause
190 * false positives, since we'd note a problem but throw the
191 * results away. So nest another seqlock here to atomically
192 * grab the points we are checking with.
195 seq
= read_seqcount_begin(&tk_core
.seq
);
196 now
= tk_clock_read(tkr
);
197 last
= tkr
->cycle_last
;
199 max
= tkr
->clock
->max_cycles
;
200 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
202 delta
= clocksource_delta(now
, last
, mask
);
205 * Try to catch underflows by checking if we are seeing small
206 * mask-relative negative values.
208 if (unlikely((~delta
& mask
) < (mask
>> 3))) {
209 tk
->underflow_seen
= 1;
213 /* Cap delta value to the max_cycles values to avoid mult overflows */
214 if (unlikely(delta
> max
)) {
215 tk
->overflow_seen
= 1;
216 delta
= tkr
->clock
->max_cycles
;
222 static inline void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
225 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
227 cycle_t cycle_now
, delta
;
229 /* read clocksource */
230 cycle_now
= tk_clock_read(tkr
);
232 /* calculate the delta since the last update_wall_time */
233 delta
= clocksource_delta(cycle_now
, tkr
->cycle_last
, tkr
->mask
);
240 * tk_setup_internals - Set up internals to use clocksource clock.
242 * @tk: The target timekeeper to setup.
243 * @clock: Pointer to clocksource.
245 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
246 * pair and interval request.
248 * Unless you're the timekeeping code, you should not be using this!
250 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
253 u64 tmp
, ntpinterval
;
254 struct clocksource
*old_clock
;
256 ++tk
->cs_was_changed_seq
;
257 old_clock
= tk
->tkr_mono
.clock
;
258 tk
->tkr_mono
.clock
= clock
;
259 tk
->tkr_mono
.mask
= clock
->mask
;
260 tk
->tkr_mono
.cycle_last
= tk_clock_read(&tk
->tkr_mono
);
262 tk
->tkr_raw
.clock
= clock
;
263 tk
->tkr_raw
.mask
= clock
->mask
;
264 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
266 /* Do the ns -> cycle conversion first, using original mult */
267 tmp
= NTP_INTERVAL_LENGTH
;
268 tmp
<<= clock
->shift
;
270 tmp
+= clock
->mult
/2;
271 do_div(tmp
, clock
->mult
);
275 interval
= (cycle_t
) tmp
;
276 tk
->cycle_interval
= interval
;
278 /* Go back from cycles -> shifted ns */
279 tk
->xtime_interval
= (u64
) interval
* clock
->mult
;
280 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
281 tk
->raw_interval
= interval
* clock
->mult
;
283 /* if changing clocks, convert xtime_nsec shift units */
285 int shift_change
= clock
->shift
- old_clock
->shift
;
286 if (shift_change
< 0)
287 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
289 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
291 tk
->tkr_raw
.xtime_nsec
= 0;
293 tk
->tkr_mono
.shift
= clock
->shift
;
294 tk
->tkr_raw
.shift
= clock
->shift
;
297 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
298 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
301 * The timekeeper keeps its own mult values for the currently
302 * active clocksource. These value will be adjusted via NTP
303 * to counteract clock drifting.
305 tk
->tkr_mono
.mult
= clock
->mult
;
306 tk
->tkr_raw
.mult
= clock
->mult
;
307 tk
->ntp_err_mult
= 0;
310 /* Timekeeper helper functions. */
312 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
313 static u32
default_arch_gettimeoffset(void) { return 0; }
314 u32 (*arch_gettimeoffset
)(void) = default_arch_gettimeoffset
;
316 static inline u32
arch_gettimeoffset(void) { return 0; }
319 static inline u64
timekeeping_delta_to_ns(struct tk_read_base
*tkr
,
324 nsec
= delta
* tkr
->mult
+ tkr
->xtime_nsec
;
327 /* If arch requires, add in get_arch_timeoffset() */
328 return nsec
+ arch_gettimeoffset();
331 static inline s64
timekeeping_get_ns(struct tk_read_base
*tkr
)
335 delta
= timekeeping_get_delta(tkr
);
336 return timekeeping_delta_to_ns(tkr
, delta
);
339 static inline s64
timekeeping_cycles_to_ns(struct tk_read_base
*tkr
,
344 /* calculate the delta since the last update_wall_time */
345 delta
= clocksource_delta(cycles
, tkr
->cycle_last
, tkr
->mask
);
346 return timekeeping_delta_to_ns(tkr
, delta
);
350 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
351 * @tkr: Timekeeping readout base from which we take the update
353 * We want to use this from any context including NMI and tracing /
354 * instrumenting the timekeeping code itself.
356 * Employ the latch technique; see @raw_write_seqcount_latch.
358 * So if a NMI hits the update of base[0] then it will use base[1]
359 * which is still consistent. In the worst case this can result is a
360 * slightly wrong timestamp (a few nanoseconds). See
361 * @ktime_get_mono_fast_ns.
363 static void update_fast_timekeeper(struct tk_read_base
*tkr
, struct tk_fast
*tkf
)
365 struct tk_read_base
*base
= tkf
->base
;
367 /* Force readers off to base[1] */
368 raw_write_seqcount_latch(&tkf
->seq
);
371 memcpy(base
, tkr
, sizeof(*base
));
373 /* Force readers back to base[0] */
374 raw_write_seqcount_latch(&tkf
->seq
);
377 memcpy(base
+ 1, base
, sizeof(*base
));
381 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
383 * This timestamp is not guaranteed to be monotonic across an update.
384 * The timestamp is calculated by:
386 * now = base_mono + clock_delta * slope
388 * So if the update lowers the slope, readers who are forced to the
389 * not yet updated second array are still using the old steeper slope.
398 * |12345678---> reader order
404 * So reader 6 will observe time going backwards versus reader 5.
406 * While other CPUs are likely to be able observe that, the only way
407 * for a CPU local observation is when an NMI hits in the middle of
408 * the update. Timestamps taken from that NMI context might be ahead
409 * of the following timestamps. Callers need to be aware of that and
412 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
414 struct tk_read_base
*tkr
;
419 seq
= raw_read_seqcount_latch(&tkf
->seq
);
420 tkr
= tkf
->base
+ (seq
& 0x01);
421 now
= ktime_to_ns(tkr
->base
);
423 now
+= timekeeping_delta_to_ns(tkr
,
428 } while (read_seqcount_retry(&tkf
->seq
, seq
));
433 u64
ktime_get_mono_fast_ns(void)
435 return __ktime_get_fast_ns(&tk_fast_mono
);
437 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
439 u64
ktime_get_raw_fast_ns(void)
441 return __ktime_get_fast_ns(&tk_fast_raw
);
443 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
445 /* Suspend-time cycles value for halted fast timekeeper. */
446 static cycle_t cycles_at_suspend
;
448 static cycle_t
dummy_clock_read(struct clocksource
*cs
)
450 return cycles_at_suspend
;
453 static struct clocksource dummy_clock
= {
454 .read
= dummy_clock_read
,
458 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
459 * @tk: Timekeeper to snapshot.
461 * It generally is unsafe to access the clocksource after timekeeping has been
462 * suspended, so take a snapshot of the readout base of @tk and use it as the
463 * fast timekeeper's readout base while suspended. It will return the same
464 * number of cycles every time until timekeeping is resumed at which time the
465 * proper readout base for the fast timekeeper will be restored automatically.
467 static void halt_fast_timekeeper(struct timekeeper
*tk
)
469 static struct tk_read_base tkr_dummy
;
470 struct tk_read_base
*tkr
= &tk
->tkr_mono
;
472 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
473 cycles_at_suspend
= tk_clock_read(tkr
);
474 tkr_dummy
.clock
= &dummy_clock
;
475 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
478 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
479 tkr_dummy
.clock
= &dummy_clock
;
480 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
483 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
485 static inline void update_vsyscall(struct timekeeper
*tk
)
487 struct timespec xt
, wm
;
489 xt
= timespec64_to_timespec(tk_xtime(tk
));
490 wm
= timespec64_to_timespec(tk
->wall_to_monotonic
);
491 update_vsyscall_old(&xt
, &wm
, tk
->tkr_mono
.clock
, tk
->tkr_mono
.mult
,
492 tk
->tkr_mono
.cycle_last
);
495 static inline void old_vsyscall_fixup(struct timekeeper
*tk
)
500 * Store only full nanoseconds into xtime_nsec after rounding
501 * it up and add the remainder to the error difference.
502 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
503 * by truncating the remainder in vsyscalls. However, it causes
504 * additional work to be done in timekeeping_adjust(). Once
505 * the vsyscall implementations are converted to use xtime_nsec
506 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
507 * users are removed, this can be killed.
509 remainder
= tk
->tkr_mono
.xtime_nsec
& ((1ULL << tk
->tkr_mono
.shift
) - 1);
510 if (remainder
!= 0) {
511 tk
->tkr_mono
.xtime_nsec
-= remainder
;
512 tk
->tkr_mono
.xtime_nsec
+= 1ULL << tk
->tkr_mono
.shift
;
513 tk
->ntp_error
+= remainder
<< tk
->ntp_error_shift
;
514 tk
->ntp_error
-= (1ULL << tk
->tkr_mono
.shift
) << tk
->ntp_error_shift
;
518 #define old_vsyscall_fixup(tk)
521 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
523 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
525 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
529 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
531 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
533 struct timekeeper
*tk
= &tk_core
.timekeeper
;
537 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
538 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
539 update_pvclock_gtod(tk
, true);
540 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
544 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
547 * pvclock_gtod_unregister_notifier - unregister a pvclock
548 * timedata update listener
550 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
555 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
556 ret
= raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
557 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
561 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
564 * tk_update_leap_state - helper to update the next_leap_ktime
566 static inline void tk_update_leap_state(struct timekeeper
*tk
)
568 tk
->next_leap_ktime
= ntp_get_next_leap();
569 if (tk
->next_leap_ktime
.tv64
!= KTIME_MAX
)
570 /* Convert to monotonic time */
571 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
575 * Update the ktime_t based scalar nsec members of the timekeeper
577 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
583 * The xtime based monotonic readout is:
584 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
585 * The ktime based monotonic readout is:
586 * nsec = base_mono + now();
587 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
589 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
590 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
591 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
593 /* Update the monotonic raw base */
594 tk
->tkr_raw
.base
= timespec64_to_ktime(tk
->raw_time
);
597 * The sum of the nanoseconds portions of xtime and
598 * wall_to_monotonic can be greater/equal one second. Take
599 * this into account before updating tk->ktime_sec.
601 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
602 if (nsec
>= NSEC_PER_SEC
)
604 tk
->ktime_sec
= seconds
;
607 /* must hold timekeeper_lock */
608 static void timekeeping_update(struct timekeeper
*tk
, unsigned int action
)
610 if (action
& TK_CLEAR_NTP
) {
615 tk_update_leap_state(tk
);
616 tk_update_ktime_data(tk
);
619 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
621 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
622 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
624 if (action
& TK_CLOCK_WAS_SET
)
625 tk
->clock_was_set_seq
++;
627 * The mirroring of the data to the shadow-timekeeper needs
628 * to happen last here to ensure we don't over-write the
629 * timekeeper structure on the next update with stale data
631 if (action
& TK_MIRROR
)
632 memcpy(&shadow_timekeeper
, &tk_core
.timekeeper
,
633 sizeof(tk_core
.timekeeper
));
637 * timekeeping_forward_now - update clock to the current time
639 * Forward the current clock to update its state since the last call to
640 * update_wall_time(). This is useful before significant clock changes,
641 * as it avoids having to deal with this time offset explicitly.
643 static void timekeeping_forward_now(struct timekeeper
*tk
)
645 cycle_t cycle_now
, delta
;
648 cycle_now
= tk_clock_read(&tk
->tkr_mono
);
649 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
650 tk
->tkr_mono
.cycle_last
= cycle_now
;
651 tk
->tkr_raw
.cycle_last
= cycle_now
;
653 tk
->tkr_mono
.xtime_nsec
+= delta
* tk
->tkr_mono
.mult
;
655 /* If arch requires, add in get_arch_timeoffset() */
656 tk
->tkr_mono
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_mono
.shift
;
658 tk_normalize_xtime(tk
);
660 nsec
= clocksource_cyc2ns(delta
, tk
->tkr_raw
.mult
, tk
->tkr_raw
.shift
);
661 timespec64_add_ns(&tk
->raw_time
, nsec
);
665 * __getnstimeofday64 - Returns the time of day in a timespec64.
666 * @ts: pointer to the timespec to be set
668 * Updates the time of day in the timespec.
669 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
671 int __getnstimeofday64(struct timespec64
*ts
)
673 struct timekeeper
*tk
= &tk_core
.timekeeper
;
678 seq
= read_seqcount_begin(&tk_core
.seq
);
680 ts
->tv_sec
= tk
->xtime_sec
;
681 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
683 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
686 timespec64_add_ns(ts
, nsecs
);
689 * Do not bail out early, in case there were callers still using
690 * the value, even in the face of the WARN_ON.
692 if (unlikely(timekeeping_suspended
))
696 EXPORT_SYMBOL(__getnstimeofday64
);
699 * getnstimeofday64 - Returns the time of day in a timespec64.
700 * @ts: pointer to the timespec64 to be set
702 * Returns the time of day in a timespec64 (WARN if suspended).
704 void getnstimeofday64(struct timespec64
*ts
)
706 WARN_ON(__getnstimeofday64(ts
));
708 EXPORT_SYMBOL(getnstimeofday64
);
710 ktime_t
ktime_get(void)
712 struct timekeeper
*tk
= &tk_core
.timekeeper
;
717 WARN_ON(timekeeping_suspended
);
720 seq
= read_seqcount_begin(&tk_core
.seq
);
721 base
= tk
->tkr_mono
.base
;
722 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
724 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
726 return ktime_add_ns(base
, nsecs
);
728 EXPORT_SYMBOL_GPL(ktime_get
);
730 u32
ktime_get_resolution_ns(void)
732 struct timekeeper
*tk
= &tk_core
.timekeeper
;
736 WARN_ON(timekeeping_suspended
);
739 seq
= read_seqcount_begin(&tk_core
.seq
);
740 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
741 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
745 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
747 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
748 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
749 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
750 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
753 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
755 struct timekeeper
*tk
= &tk_core
.timekeeper
;
757 ktime_t base
, *offset
= offsets
[offs
];
760 WARN_ON(timekeeping_suspended
);
763 seq
= read_seqcount_begin(&tk_core
.seq
);
764 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
765 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
767 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
769 return ktime_add_ns(base
, nsecs
);
772 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
775 * ktime_mono_to_any() - convert mononotic time to any other time
776 * @tmono: time to convert.
777 * @offs: which offset to use
779 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
781 ktime_t
*offset
= offsets
[offs
];
786 seq
= read_seqcount_begin(&tk_core
.seq
);
787 tconv
= ktime_add(tmono
, *offset
);
788 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
792 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
795 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
797 ktime_t
ktime_get_raw(void)
799 struct timekeeper
*tk
= &tk_core
.timekeeper
;
805 seq
= read_seqcount_begin(&tk_core
.seq
);
806 base
= tk
->tkr_raw
.base
;
807 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
809 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
811 return ktime_add_ns(base
, nsecs
);
813 EXPORT_SYMBOL_GPL(ktime_get_raw
);
816 * ktime_get_ts64 - get the monotonic clock in timespec64 format
817 * @ts: pointer to timespec variable
819 * The function calculates the monotonic clock from the realtime
820 * clock and the wall_to_monotonic offset and stores the result
821 * in normalized timespec64 format in the variable pointed to by @ts.
823 void ktime_get_ts64(struct timespec64
*ts
)
825 struct timekeeper
*tk
= &tk_core
.timekeeper
;
826 struct timespec64 tomono
;
830 WARN_ON(timekeeping_suspended
);
833 seq
= read_seqcount_begin(&tk_core
.seq
);
834 ts
->tv_sec
= tk
->xtime_sec
;
835 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
836 tomono
= tk
->wall_to_monotonic
;
838 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
840 ts
->tv_sec
+= tomono
.tv_sec
;
842 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
844 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
847 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
849 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
850 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
851 * works on both 32 and 64 bit systems. On 32 bit systems the readout
852 * covers ~136 years of uptime which should be enough to prevent
853 * premature wrap arounds.
855 time64_t
ktime_get_seconds(void)
857 struct timekeeper
*tk
= &tk_core
.timekeeper
;
859 WARN_ON(timekeeping_suspended
);
860 return tk
->ktime_sec
;
862 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
865 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
867 * Returns the wall clock seconds since 1970. This replaces the
868 * get_seconds() interface which is not y2038 safe on 32bit systems.
870 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
871 * 32bit systems the access must be protected with the sequence
872 * counter to provide "atomic" access to the 64bit tk->xtime_sec
875 time64_t
ktime_get_real_seconds(void)
877 struct timekeeper
*tk
= &tk_core
.timekeeper
;
881 if (IS_ENABLED(CONFIG_64BIT
))
882 return tk
->xtime_sec
;
885 seq
= read_seqcount_begin(&tk_core
.seq
);
886 seconds
= tk
->xtime_sec
;
888 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
892 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
895 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
896 * but without the sequence counter protect. This internal function
897 * is called just when timekeeping lock is already held.
899 time64_t
__ktime_get_real_seconds(void)
901 struct timekeeper
*tk
= &tk_core
.timekeeper
;
903 return tk
->xtime_sec
;
907 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
908 * @systime_snapshot: pointer to struct receiving the system time snapshot
910 void ktime_get_snapshot(struct system_time_snapshot
*systime_snapshot
)
912 struct timekeeper
*tk
= &tk_core
.timekeeper
;
920 WARN_ON_ONCE(timekeeping_suspended
);
923 seq
= read_seqcount_begin(&tk_core
.seq
);
924 now
= tk_clock_read(&tk
->tkr_mono
);
925 systime_snapshot
->cs_was_changed_seq
= tk
->cs_was_changed_seq
;
926 systime_snapshot
->clock_was_set_seq
= tk
->clock_was_set_seq
;
927 base_real
= ktime_add(tk
->tkr_mono
.base
,
928 tk_core
.timekeeper
.offs_real
);
929 base_raw
= tk
->tkr_raw
.base
;
930 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
, now
);
931 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
, now
);
932 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
934 systime_snapshot
->cycles
= now
;
935 systime_snapshot
->real
= ktime_add_ns(base_real
, nsec_real
);
936 systime_snapshot
->raw
= ktime_add_ns(base_raw
, nsec_raw
);
938 EXPORT_SYMBOL_GPL(ktime_get_snapshot
);
940 /* Scale base by mult/div checking for overflow */
941 static int scale64_check_overflow(u64 mult
, u64 div
, u64
*base
)
945 tmp
= div64_u64_rem(*base
, div
, &rem
);
947 if (((int)sizeof(u64
)*8 - fls64(mult
) < fls64(tmp
)) ||
948 ((int)sizeof(u64
)*8 - fls64(mult
) < fls64(rem
)))
959 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
960 * @history: Snapshot representing start of history
961 * @partial_history_cycles: Cycle offset into history (fractional part)
962 * @total_history_cycles: Total history length in cycles
963 * @discontinuity: True indicates clock was set on history period
964 * @ts: Cross timestamp that should be adjusted using
965 * partial/total ratio
967 * Helper function used by get_device_system_crosststamp() to correct the
968 * crosstimestamp corresponding to the start of the current interval to the
969 * system counter value (timestamp point) provided by the driver. The
970 * total_history_* quantities are the total history starting at the provided
971 * reference point and ending at the start of the current interval. The cycle
972 * count between the driver timestamp point and the start of the current
973 * interval is partial_history_cycles.
975 static int adjust_historical_crosststamp(struct system_time_snapshot
*history
,
976 cycle_t partial_history_cycles
,
977 cycle_t total_history_cycles
,
979 struct system_device_crosststamp
*ts
)
981 struct timekeeper
*tk
= &tk_core
.timekeeper
;
982 u64 corr_raw
, corr_real
;
986 if (total_history_cycles
== 0 || partial_history_cycles
== 0)
989 /* Interpolate shortest distance from beginning or end of history */
990 interp_forward
= partial_history_cycles
> total_history_cycles
/2 ?
992 partial_history_cycles
= interp_forward
?
993 total_history_cycles
- partial_history_cycles
:
994 partial_history_cycles
;
997 * Scale the monotonic raw time delta by:
998 * partial_history_cycles / total_history_cycles
1000 corr_raw
= (u64
)ktime_to_ns(
1001 ktime_sub(ts
->sys_monoraw
, history
->raw
));
1002 ret
= scale64_check_overflow(partial_history_cycles
,
1003 total_history_cycles
, &corr_raw
);
1008 * If there is a discontinuity in the history, scale monotonic raw
1010 * mult(real)/mult(raw) yielding the realtime correction
1011 * Otherwise, calculate the realtime correction similar to monotonic
1014 if (discontinuity
) {
1015 corr_real
= mul_u64_u32_div
1016 (corr_raw
, tk
->tkr_mono
.mult
, tk
->tkr_raw
.mult
);
1018 corr_real
= (u64
)ktime_to_ns(
1019 ktime_sub(ts
->sys_realtime
, history
->real
));
1020 ret
= scale64_check_overflow(partial_history_cycles
,
1021 total_history_cycles
, &corr_real
);
1026 /* Fixup monotonic raw and real time time values */
1027 if (interp_forward
) {
1028 ts
->sys_monoraw
= ktime_add_ns(history
->raw
, corr_raw
);
1029 ts
->sys_realtime
= ktime_add_ns(history
->real
, corr_real
);
1031 ts
->sys_monoraw
= ktime_sub_ns(ts
->sys_monoraw
, corr_raw
);
1032 ts
->sys_realtime
= ktime_sub_ns(ts
->sys_realtime
, corr_real
);
1039 * cycle_between - true if test occurs chronologically between before and after
1041 static bool cycle_between(cycle_t before
, cycle_t test
, cycle_t after
)
1043 if (test
> before
&& test
< after
)
1045 if (test
< before
&& before
> after
)
1051 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1052 * @get_time_fn: Callback to get simultaneous device time and
1053 * system counter from the device driver
1054 * @ctx: Context passed to get_time_fn()
1055 * @history_begin: Historical reference point used to interpolate system
1056 * time when counter provided by the driver is before the current interval
1057 * @xtstamp: Receives simultaneously captured system and device time
1059 * Reads a timestamp from a device and correlates it to system time
1061 int get_device_system_crosststamp(int (*get_time_fn
)
1062 (ktime_t
*device_time
,
1063 struct system_counterval_t
*sys_counterval
,
1066 struct system_time_snapshot
*history_begin
,
1067 struct system_device_crosststamp
*xtstamp
)
1069 struct system_counterval_t system_counterval
;
1070 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1071 cycle_t cycles
, now
, interval_start
;
1072 unsigned int clock_was_set_seq
= 0;
1073 ktime_t base_real
, base_raw
;
1074 s64 nsec_real
, nsec_raw
;
1075 u8 cs_was_changed_seq
;
1081 seq
= read_seqcount_begin(&tk_core
.seq
);
1083 * Try to synchronously capture device time and a system
1084 * counter value calling back into the device driver
1086 ret
= get_time_fn(&xtstamp
->device
, &system_counterval
, ctx
);
1091 * Verify that the clocksource associated with the captured
1092 * system counter value is the same as the currently installed
1093 * timekeeper clocksource
1095 if (tk
->tkr_mono
.clock
!= system_counterval
.cs
)
1097 cycles
= system_counterval
.cycles
;
1100 * Check whether the system counter value provided by the
1101 * device driver is on the current timekeeping interval.
1103 now
= tk_clock_read(&tk
->tkr_mono
);
1104 interval_start
= tk
->tkr_mono
.cycle_last
;
1105 if (!cycle_between(interval_start
, cycles
, now
)) {
1106 clock_was_set_seq
= tk
->clock_was_set_seq
;
1107 cs_was_changed_seq
= tk
->cs_was_changed_seq
;
1108 cycles
= interval_start
;
1114 base_real
= ktime_add(tk
->tkr_mono
.base
,
1115 tk_core
.timekeeper
.offs_real
);
1116 base_raw
= tk
->tkr_raw
.base
;
1118 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
,
1119 system_counterval
.cycles
);
1120 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
,
1121 system_counterval
.cycles
);
1122 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1124 xtstamp
->sys_realtime
= ktime_add_ns(base_real
, nsec_real
);
1125 xtstamp
->sys_monoraw
= ktime_add_ns(base_raw
, nsec_raw
);
1128 * Interpolate if necessary, adjusting back from the start of the
1132 cycle_t partial_history_cycles
, total_history_cycles
;
1136 * Check that the counter value occurs after the provided
1137 * history reference and that the history doesn't cross a
1138 * clocksource change
1140 if (!history_begin
||
1141 !cycle_between(history_begin
->cycles
,
1142 system_counterval
.cycles
, cycles
) ||
1143 history_begin
->cs_was_changed_seq
!= cs_was_changed_seq
)
1145 partial_history_cycles
= cycles
- system_counterval
.cycles
;
1146 total_history_cycles
= cycles
- history_begin
->cycles
;
1148 history_begin
->clock_was_set_seq
!= clock_was_set_seq
;
1150 ret
= adjust_historical_crosststamp(history_begin
,
1151 partial_history_cycles
,
1152 total_history_cycles
,
1153 discontinuity
, xtstamp
);
1160 EXPORT_SYMBOL_GPL(get_device_system_crosststamp
);
1163 * do_gettimeofday - Returns the time of day in a timeval
1164 * @tv: pointer to the timeval to be set
1166 * NOTE: Users should be converted to using getnstimeofday()
1168 void do_gettimeofday(struct timeval
*tv
)
1170 struct timespec64 now
;
1172 getnstimeofday64(&now
);
1173 tv
->tv_sec
= now
.tv_sec
;
1174 tv
->tv_usec
= now
.tv_nsec
/1000;
1176 EXPORT_SYMBOL(do_gettimeofday
);
1179 * do_settimeofday64 - Sets the time of day.
1180 * @ts: pointer to the timespec64 variable containing the new time
1182 * Sets the time of day to the new time and update NTP and notify hrtimers
1184 int do_settimeofday64(const struct timespec64
*ts
)
1186 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1187 struct timespec64 ts_delta
, xt
;
1188 unsigned long flags
;
1191 if (!timespec64_valid_strict(ts
))
1194 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1195 write_seqcount_begin(&tk_core
.seq
);
1197 timekeeping_forward_now(tk
);
1200 ts_delta
.tv_sec
= ts
->tv_sec
- xt
.tv_sec
;
1201 ts_delta
.tv_nsec
= ts
->tv_nsec
- xt
.tv_nsec
;
1203 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts_delta
) > 0) {
1208 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts_delta
));
1210 tk_set_xtime(tk
, ts
);
1212 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1214 write_seqcount_end(&tk_core
.seq
);
1215 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1217 /* signal hrtimers about time change */
1222 EXPORT_SYMBOL(do_settimeofday64
);
1225 * timekeeping_inject_offset - Adds or subtracts from the current time.
1226 * @tv: pointer to the timespec variable containing the offset
1228 * Adds or subtracts an offset value from the current time.
1230 int timekeeping_inject_offset(struct timespec
*ts
)
1232 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1233 unsigned long flags
;
1234 struct timespec64 ts64
, tmp
;
1237 if (!timespec_inject_offset_valid(ts
))
1240 ts64
= timespec_to_timespec64(*ts
);
1242 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1243 write_seqcount_begin(&tk_core
.seq
);
1245 timekeeping_forward_now(tk
);
1247 /* Make sure the proposed value is valid */
1248 tmp
= timespec64_add(tk_xtime(tk
), ts64
);
1249 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts64
) > 0 ||
1250 !timespec64_valid_strict(&tmp
)) {
1255 tk_xtime_add(tk
, &ts64
);
1256 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts64
));
1258 error
: /* even if we error out, we forwarded the time, so call update */
1259 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1261 write_seqcount_end(&tk_core
.seq
);
1262 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1264 /* signal hrtimers about time change */
1269 EXPORT_SYMBOL(timekeeping_inject_offset
);
1273 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1276 s32
timekeeping_get_tai_offset(void)
1278 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1283 seq
= read_seqcount_begin(&tk_core
.seq
);
1284 ret
= tk
->tai_offset
;
1285 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1291 * __timekeeping_set_tai_offset - Lock free worker function
1294 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1296 tk
->tai_offset
= tai_offset
;
1297 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1301 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1304 void timekeeping_set_tai_offset(s32 tai_offset
)
1306 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1307 unsigned long flags
;
1309 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1310 write_seqcount_begin(&tk_core
.seq
);
1311 __timekeeping_set_tai_offset(tk
, tai_offset
);
1312 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1313 write_seqcount_end(&tk_core
.seq
);
1314 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1319 * change_clocksource - Swaps clocksources if a new one is available
1321 * Accumulates current time interval and initializes new clocksource
1323 static int change_clocksource(void *data
)
1325 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1326 struct clocksource
*new, *old
;
1327 unsigned long flags
;
1329 new = (struct clocksource
*) data
;
1331 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1332 write_seqcount_begin(&tk_core
.seq
);
1334 timekeeping_forward_now(tk
);
1336 * If the cs is in module, get a module reference. Succeeds
1337 * for built-in code (owner == NULL) as well.
1339 if (try_module_get(new->owner
)) {
1340 if (!new->enable
|| new->enable(new) == 0) {
1341 old
= tk
->tkr_mono
.clock
;
1342 tk_setup_internals(tk
, new);
1345 module_put(old
->owner
);
1347 module_put(new->owner
);
1350 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1352 write_seqcount_end(&tk_core
.seq
);
1353 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1359 * timekeeping_notify - Install a new clock source
1360 * @clock: pointer to the clock source
1362 * This function is called from clocksource.c after a new, better clock
1363 * source has been registered. The caller holds the clocksource_mutex.
1365 int timekeeping_notify(struct clocksource
*clock
)
1367 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1369 if (tk
->tkr_mono
.clock
== clock
)
1371 stop_machine(change_clocksource
, clock
, NULL
);
1372 tick_clock_notify();
1373 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1377 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1378 * @ts: pointer to the timespec64 to be set
1380 * Returns the raw monotonic time (completely un-modified by ntp)
1382 void getrawmonotonic64(struct timespec64
*ts
)
1384 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1385 struct timespec64 ts64
;
1390 seq
= read_seqcount_begin(&tk_core
.seq
);
1391 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1392 ts64
= tk
->raw_time
;
1394 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1396 timespec64_add_ns(&ts64
, nsecs
);
1399 EXPORT_SYMBOL(getrawmonotonic64
);
1403 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1405 int timekeeping_valid_for_hres(void)
1407 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1412 seq
= read_seqcount_begin(&tk_core
.seq
);
1414 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1416 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1422 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1424 u64
timekeeping_max_deferment(void)
1426 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1431 seq
= read_seqcount_begin(&tk_core
.seq
);
1433 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1435 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1441 * read_persistent_clock - Return time from the persistent clock.
1443 * Weak dummy function for arches that do not yet support it.
1444 * Reads the time from the battery backed persistent clock.
1445 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1447 * XXX - Do be sure to remove it once all arches implement it.
1449 void __weak
read_persistent_clock(struct timespec
*ts
)
1455 void __weak
read_persistent_clock64(struct timespec64
*ts64
)
1459 read_persistent_clock(&ts
);
1460 *ts64
= timespec_to_timespec64(ts
);
1464 * read_boot_clock64 - Return time of the system start.
1466 * Weak dummy function for arches that do not yet support it.
1467 * Function to read the exact time the system has been started.
1468 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1470 * XXX - Do be sure to remove it once all arches implement it.
1472 void __weak
read_boot_clock64(struct timespec64
*ts
)
1478 /* Flag for if timekeeping_resume() has injected sleeptime */
1479 static bool sleeptime_injected
;
1481 /* Flag for if there is a persistent clock on this platform */
1482 static bool persistent_clock_exists
;
1485 * timekeeping_init - Initializes the clocksource and common timekeeping values
1487 void __init
timekeeping_init(void)
1489 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1490 struct clocksource
*clock
;
1491 unsigned long flags
;
1492 struct timespec64 now
, boot
, tmp
;
1494 read_persistent_clock64(&now
);
1495 if (!timespec64_valid_strict(&now
)) {
1496 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1497 " Check your CMOS/BIOS settings.\n");
1500 } else if (now
.tv_sec
|| now
.tv_nsec
)
1501 persistent_clock_exists
= true;
1503 read_boot_clock64(&boot
);
1504 if (!timespec64_valid_strict(&boot
)) {
1505 pr_warn("WARNING: Boot clock returned invalid value!\n"
1506 " Check your CMOS/BIOS settings.\n");
1511 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1512 write_seqcount_begin(&tk_core
.seq
);
1515 clock
= clocksource_default_clock();
1517 clock
->enable(clock
);
1518 tk_setup_internals(tk
, clock
);
1520 tk_set_xtime(tk
, &now
);
1521 tk
->raw_time
.tv_sec
= 0;
1522 tk
->raw_time
.tv_nsec
= 0;
1523 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0)
1524 boot
= tk_xtime(tk
);
1526 set_normalized_timespec64(&tmp
, -boot
.tv_sec
, -boot
.tv_nsec
);
1527 tk_set_wall_to_mono(tk
, tmp
);
1529 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1531 write_seqcount_end(&tk_core
.seq
);
1532 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1535 /* time in seconds when suspend began for persistent clock */
1536 static struct timespec64 timekeeping_suspend_time
;
1539 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1540 * @delta: pointer to a timespec delta value
1542 * Takes a timespec offset measuring a suspend interval and properly
1543 * adds the sleep offset to the timekeeping variables.
1545 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1546 struct timespec64
*delta
)
1548 if (!timespec64_valid_strict(delta
)) {
1549 printk_deferred(KERN_WARNING
1550 "__timekeeping_inject_sleeptime: Invalid "
1551 "sleep delta value!\n");
1554 tk_xtime_add(tk
, delta
);
1555 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1556 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1557 tk_debug_account_sleep_time(delta
);
1560 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1562 * We have three kinds of time sources to use for sleep time
1563 * injection, the preference order is:
1564 * 1) non-stop clocksource
1565 * 2) persistent clock (ie: RTC accessible when irqs are off)
1568 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1569 * If system has neither 1) nor 2), 3) will be used finally.
1572 * If timekeeping has injected sleeptime via either 1) or 2),
1573 * 3) becomes needless, so in this case we don't need to call
1574 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1577 bool timekeeping_rtc_skipresume(void)
1579 return sleeptime_injected
;
1583 * 1) can be determined whether to use or not only when doing
1584 * timekeeping_resume() which is invoked after rtc_suspend(),
1585 * so we can't skip rtc_suspend() surely if system has 1).
1587 * But if system has 2), 2) will definitely be used, so in this
1588 * case we don't need to call rtc_suspend(), and this is what
1589 * timekeeping_rtc_skipsuspend() means.
1591 bool timekeeping_rtc_skipsuspend(void)
1593 return persistent_clock_exists
;
1597 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1598 * @delta: pointer to a timespec64 delta value
1600 * This hook is for architectures that cannot support read_persistent_clock64
1601 * because their RTC/persistent clock is only accessible when irqs are enabled.
1602 * and also don't have an effective nonstop clocksource.
1604 * This function should only be called by rtc_resume(), and allows
1605 * a suspend offset to be injected into the timekeeping values.
1607 void timekeeping_inject_sleeptime64(struct timespec64
*delta
)
1609 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1610 unsigned long flags
;
1612 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1613 write_seqcount_begin(&tk_core
.seq
);
1615 timekeeping_forward_now(tk
);
1617 __timekeeping_inject_sleeptime(tk
, delta
);
1619 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1621 write_seqcount_end(&tk_core
.seq
);
1622 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1624 /* signal hrtimers about time change */
1630 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1632 void timekeeping_resume(void)
1634 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1635 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
1636 unsigned long flags
;
1637 struct timespec64 ts_new
, ts_delta
;
1638 cycle_t cycle_now
, cycle_delta
;
1640 sleeptime_injected
= false;
1641 read_persistent_clock64(&ts_new
);
1643 clockevents_resume();
1644 clocksource_resume();
1646 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1647 write_seqcount_begin(&tk_core
.seq
);
1650 * After system resumes, we need to calculate the suspended time and
1651 * compensate it for the OS time. There are 3 sources that could be
1652 * used: Nonstop clocksource during suspend, persistent clock and rtc
1655 * One specific platform may have 1 or 2 or all of them, and the
1656 * preference will be:
1657 * suspend-nonstop clocksource -> persistent clock -> rtc
1658 * The less preferred source will only be tried if there is no better
1659 * usable source. The rtc part is handled separately in rtc core code.
1661 cycle_now
= tk_clock_read(&tk
->tkr_mono
);
1662 if ((clock
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
) &&
1663 cycle_now
> tk
->tkr_mono
.cycle_last
) {
1664 u64 num
, max
= ULLONG_MAX
;
1665 u32 mult
= clock
->mult
;
1666 u32 shift
= clock
->shift
;
1669 cycle_delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
,
1673 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1674 * suspended time is too long. In that case we need do the
1675 * 64 bits math carefully
1678 if (cycle_delta
> max
) {
1679 num
= div64_u64(cycle_delta
, max
);
1680 nsec
= (((u64
) max
* mult
) >> shift
) * num
;
1681 cycle_delta
-= num
* max
;
1683 nsec
+= ((u64
) cycle_delta
* mult
) >> shift
;
1685 ts_delta
= ns_to_timespec64(nsec
);
1686 sleeptime_injected
= true;
1687 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1688 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1689 sleeptime_injected
= true;
1692 if (sleeptime_injected
)
1693 __timekeeping_inject_sleeptime(tk
, &ts_delta
);
1695 /* Re-base the last cycle value */
1696 tk
->tkr_mono
.cycle_last
= cycle_now
;
1697 tk
->tkr_raw
.cycle_last
= cycle_now
;
1700 timekeeping_suspended
= 0;
1701 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1702 write_seqcount_end(&tk_core
.seq
);
1703 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1705 touch_softlockup_watchdog();
1711 int timekeeping_suspend(void)
1713 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1714 unsigned long flags
;
1715 struct timespec64 delta
, delta_delta
;
1716 static struct timespec64 old_delta
;
1718 read_persistent_clock64(&timekeeping_suspend_time
);
1721 * On some systems the persistent_clock can not be detected at
1722 * timekeeping_init by its return value, so if we see a valid
1723 * value returned, update the persistent_clock_exists flag.
1725 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1726 persistent_clock_exists
= true;
1728 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1729 write_seqcount_begin(&tk_core
.seq
);
1730 timekeeping_forward_now(tk
);
1731 timekeeping_suspended
= 1;
1733 if (persistent_clock_exists
) {
1735 * To avoid drift caused by repeated suspend/resumes,
1736 * which each can add ~1 second drift error,
1737 * try to compensate so the difference in system time
1738 * and persistent_clock time stays close to constant.
1740 delta
= timespec64_sub(tk_xtime(tk
), timekeeping_suspend_time
);
1741 delta_delta
= timespec64_sub(delta
, old_delta
);
1742 if (abs(delta_delta
.tv_sec
) >= 2) {
1744 * if delta_delta is too large, assume time correction
1745 * has occurred and set old_delta to the current delta.
1749 /* Otherwise try to adjust old_system to compensate */
1750 timekeeping_suspend_time
=
1751 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1755 timekeeping_update(tk
, TK_MIRROR
);
1756 halt_fast_timekeeper(tk
);
1757 write_seqcount_end(&tk_core
.seq
);
1758 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1761 clocksource_suspend();
1762 clockevents_suspend();
1767 /* sysfs resume/suspend bits for timekeeping */
1768 static struct syscore_ops timekeeping_syscore_ops
= {
1769 .resume
= timekeeping_resume
,
1770 .suspend
= timekeeping_suspend
,
1773 static int __init
timekeeping_init_ops(void)
1775 register_syscore_ops(&timekeeping_syscore_ops
);
1778 device_initcall(timekeeping_init_ops
);
1781 * Apply a multiplier adjustment to the timekeeper
1783 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1788 s64 interval
= tk
->cycle_interval
;
1792 mult_adj
= -mult_adj
;
1793 interval
= -interval
;
1796 mult_adj
<<= adj_scale
;
1797 interval
<<= adj_scale
;
1798 offset
<<= adj_scale
;
1801 * So the following can be confusing.
1803 * To keep things simple, lets assume mult_adj == 1 for now.
1805 * When mult_adj != 1, remember that the interval and offset values
1806 * have been appropriately scaled so the math is the same.
1808 * The basic idea here is that we're increasing the multiplier
1809 * by one, this causes the xtime_interval to be incremented by
1810 * one cycle_interval. This is because:
1811 * xtime_interval = cycle_interval * mult
1812 * So if mult is being incremented by one:
1813 * xtime_interval = cycle_interval * (mult + 1)
1815 * xtime_interval = (cycle_interval * mult) + cycle_interval
1816 * Which can be shortened to:
1817 * xtime_interval += cycle_interval
1819 * So offset stores the non-accumulated cycles. Thus the current
1820 * time (in shifted nanoseconds) is:
1821 * now = (offset * adj) + xtime_nsec
1822 * Now, even though we're adjusting the clock frequency, we have
1823 * to keep time consistent. In other words, we can't jump back
1824 * in time, and we also want to avoid jumping forward in time.
1826 * So given the same offset value, we need the time to be the same
1827 * both before and after the freq adjustment.
1828 * now = (offset * adj_1) + xtime_nsec_1
1829 * now = (offset * adj_2) + xtime_nsec_2
1831 * (offset * adj_1) + xtime_nsec_1 =
1832 * (offset * adj_2) + xtime_nsec_2
1836 * (offset * adj_1) + xtime_nsec_1 =
1837 * (offset * (adj_1+1)) + xtime_nsec_2
1838 * (offset * adj_1) + xtime_nsec_1 =
1839 * (offset * adj_1) + offset + xtime_nsec_2
1840 * Canceling the sides:
1841 * xtime_nsec_1 = offset + xtime_nsec_2
1843 * xtime_nsec_2 = xtime_nsec_1 - offset
1844 * Which simplfies to:
1845 * xtime_nsec -= offset
1847 * XXX - TODO: Doc ntp_error calculation.
1849 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
1850 /* NTP adjustment caused clocksource mult overflow */
1855 tk
->tkr_mono
.mult
+= mult_adj
;
1856 tk
->xtime_interval
+= interval
;
1857 tk
->tkr_mono
.xtime_nsec
-= offset
;
1858 tk
->ntp_error
-= (interval
- offset
) << tk
->ntp_error_shift
;
1862 * Calculate the multiplier adjustment needed to match the frequency
1865 static __always_inline
void timekeeping_freqadjust(struct timekeeper
*tk
,
1868 s64 interval
= tk
->cycle_interval
;
1869 s64 xinterval
= tk
->xtime_interval
;
1870 u32 base
= tk
->tkr_mono
.clock
->mult
;
1871 u32 max
= tk
->tkr_mono
.clock
->maxadj
;
1872 u32 cur_adj
= tk
->tkr_mono
.mult
;
1877 /* Remove any current error adj from freq calculation */
1878 if (tk
->ntp_err_mult
)
1879 xinterval
-= tk
->cycle_interval
;
1881 tk
->ntp_tick
= ntp_tick_length();
1883 /* Calculate current error per tick */
1884 tick_error
= ntp_tick_length() >> tk
->ntp_error_shift
;
1885 tick_error
-= (xinterval
+ tk
->xtime_remainder
);
1887 /* Don't worry about correcting it if its small */
1888 if (likely((tick_error
>= 0) && (tick_error
<= interval
)))
1891 /* preserve the direction of correction */
1892 negative
= (tick_error
< 0);
1894 /* If any adjustment would pass the max, just return */
1895 if (negative
&& (cur_adj
- 1) <= (base
- max
))
1897 if (!negative
&& (cur_adj
+ 1) >= (base
+ max
))
1900 * Sort out the magnitude of the correction, but
1901 * avoid making so large a correction that we go
1902 * over the max adjustment.
1905 tick_error
= abs(tick_error
);
1906 while (tick_error
> interval
) {
1907 u32 adj
= 1 << (adj_scale
+ 1);
1909 /* Check if adjustment gets us within 1 unit from the max */
1910 if (negative
&& (cur_adj
- adj
) <= (base
- max
))
1912 if (!negative
&& (cur_adj
+ adj
) >= (base
+ max
))
1919 /* scale the corrections */
1920 timekeeping_apply_adjustment(tk
, offset
, negative
, adj_scale
);
1924 * Adjust the timekeeper's multiplier to the correct frequency
1925 * and also to reduce the accumulated error value.
1927 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
1929 /* Correct for the current frequency error */
1930 timekeeping_freqadjust(tk
, offset
);
1932 /* Next make a small adjustment to fix any cumulative error */
1933 if (!tk
->ntp_err_mult
&& (tk
->ntp_error
> 0)) {
1934 tk
->ntp_err_mult
= 1;
1935 timekeeping_apply_adjustment(tk
, offset
, 0, 0);
1936 } else if (tk
->ntp_err_mult
&& (tk
->ntp_error
<= 0)) {
1937 /* Undo any existing error adjustment */
1938 timekeeping_apply_adjustment(tk
, offset
, 1, 0);
1939 tk
->ntp_err_mult
= 0;
1942 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
1943 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
1944 > tk
->tkr_mono
.clock
->maxadj
))) {
1945 printk_once(KERN_WARNING
1946 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1947 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
1948 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
1952 * It may be possible that when we entered this function, xtime_nsec
1953 * was very small. Further, if we're slightly speeding the clocksource
1954 * in the code above, its possible the required corrective factor to
1955 * xtime_nsec could cause it to underflow.
1957 * Now, since we already accumulated the second, cannot simply roll
1958 * the accumulated second back, since the NTP subsystem has been
1959 * notified via second_overflow. So instead we push xtime_nsec forward
1960 * by the amount we underflowed, and add that amount into the error.
1962 * We'll correct this error next time through this function, when
1963 * xtime_nsec is not as small.
1965 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
1966 s64 neg
= -(s64
)tk
->tkr_mono
.xtime_nsec
;
1967 tk
->tkr_mono
.xtime_nsec
= 0;
1968 tk
->ntp_error
+= neg
<< tk
->ntp_error_shift
;
1973 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1975 * Helper function that accumulates the nsecs greater than a second
1976 * from the xtime_nsec field to the xtime_secs field.
1977 * It also calls into the NTP code to handle leapsecond processing.
1980 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
1982 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
1983 unsigned int clock_set
= 0;
1985 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
1988 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
1991 /* Figure out if its a leap sec and apply if needed */
1992 leap
= second_overflow(tk
->xtime_sec
);
1993 if (unlikely(leap
)) {
1994 struct timespec64 ts
;
1996 tk
->xtime_sec
+= leap
;
2000 tk_set_wall_to_mono(tk
,
2001 timespec64_sub(tk
->wall_to_monotonic
, ts
));
2003 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
2005 clock_set
= TK_CLOCK_WAS_SET
;
2012 * logarithmic_accumulation - shifted accumulation of cycles
2014 * This functions accumulates a shifted interval of cycles into
2015 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2018 * Returns the unconsumed cycles.
2020 static cycle_t
logarithmic_accumulation(struct timekeeper
*tk
, cycle_t offset
,
2022 unsigned int *clock_set
)
2024 cycle_t interval
= tk
->cycle_interval
<< shift
;
2027 /* If the offset is smaller than a shifted interval, do nothing */
2028 if (offset
< interval
)
2031 /* Accumulate one shifted interval */
2033 tk
->tkr_mono
.cycle_last
+= interval
;
2034 tk
->tkr_raw
.cycle_last
+= interval
;
2036 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
2037 *clock_set
|= accumulate_nsecs_to_secs(tk
);
2039 /* Accumulate raw time */
2040 tk
->tkr_raw
.xtime_nsec
+= (u64
)tk
->raw_time
.tv_nsec
<< tk
->tkr_raw
.shift
;
2041 tk
->tkr_raw
.xtime_nsec
+= tk
->raw_interval
<< shift
;
2042 snsec_per_sec
= (u64
)NSEC_PER_SEC
<< tk
->tkr_raw
.shift
;
2043 while (tk
->tkr_raw
.xtime_nsec
>= snsec_per_sec
) {
2044 tk
->tkr_raw
.xtime_nsec
-= snsec_per_sec
;
2045 tk
->raw_time
.tv_sec
++;
2047 tk
->raw_time
.tv_nsec
= tk
->tkr_raw
.xtime_nsec
>> tk
->tkr_raw
.shift
;
2048 tk
->tkr_raw
.xtime_nsec
-= (u64
)tk
->raw_time
.tv_nsec
<< tk
->tkr_raw
.shift
;
2050 /* Accumulate error between NTP and clock interval */
2051 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
2052 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
2053 (tk
->ntp_error_shift
+ shift
);
2059 * update_wall_time - Uses the current clocksource to increment the wall time
2062 void update_wall_time(void)
2064 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
2065 struct timekeeper
*tk
= &shadow_timekeeper
;
2067 int shift
= 0, maxshift
;
2068 unsigned int clock_set
= 0;
2069 unsigned long flags
;
2071 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2073 /* Make sure we're fully resumed: */
2074 if (unlikely(timekeeping_suspended
))
2077 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2078 offset
= real_tk
->cycle_interval
;
2080 offset
= clocksource_delta(tk_clock_read(&tk
->tkr_mono
),
2081 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
2084 /* Check if there's really nothing to do */
2085 if (offset
< real_tk
->cycle_interval
)
2088 /* Do some additional sanity checking */
2089 timekeeping_check_update(real_tk
, offset
);
2092 * With NO_HZ we may have to accumulate many cycle_intervals
2093 * (think "ticks") worth of time at once. To do this efficiently,
2094 * we calculate the largest doubling multiple of cycle_intervals
2095 * that is smaller than the offset. We then accumulate that
2096 * chunk in one go, and then try to consume the next smaller
2099 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
2100 shift
= max(0, shift
);
2101 /* Bound shift to one less than what overflows tick_length */
2102 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
2103 shift
= min(shift
, maxshift
);
2104 while (offset
>= tk
->cycle_interval
) {
2105 offset
= logarithmic_accumulation(tk
, offset
, shift
,
2107 if (offset
< tk
->cycle_interval
<<shift
)
2111 /* correct the clock when NTP error is too big */
2112 timekeeping_adjust(tk
, offset
);
2115 * XXX This can be killed once everyone converts
2116 * to the new update_vsyscall.
2118 old_vsyscall_fixup(tk
);
2121 * Finally, make sure that after the rounding
2122 * xtime_nsec isn't larger than NSEC_PER_SEC
2124 clock_set
|= accumulate_nsecs_to_secs(tk
);
2126 write_seqcount_begin(&tk_core
.seq
);
2128 * Update the real timekeeper.
2130 * We could avoid this memcpy by switching pointers, but that
2131 * requires changes to all other timekeeper usage sites as
2132 * well, i.e. move the timekeeper pointer getter into the
2133 * spinlocked/seqcount protected sections. And we trade this
2134 * memcpy under the tk_core.seq against one before we start
2137 timekeeping_update(tk
, clock_set
);
2138 memcpy(real_tk
, tk
, sizeof(*tk
));
2139 /* The memcpy must come last. Do not put anything here! */
2140 write_seqcount_end(&tk_core
.seq
);
2142 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2144 /* Have to call _delayed version, since in irq context*/
2145 clock_was_set_delayed();
2149 * getboottime64 - Return the real time of system boot.
2150 * @ts: pointer to the timespec64 to be set
2152 * Returns the wall-time of boot in a timespec64.
2154 * This is based on the wall_to_monotonic offset and the total suspend
2155 * time. Calls to settimeofday will affect the value returned (which
2156 * basically means that however wrong your real time clock is at boot time,
2157 * you get the right time here).
2159 void getboottime64(struct timespec64
*ts
)
2161 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2162 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
2164 *ts
= ktime_to_timespec64(t
);
2166 EXPORT_SYMBOL_GPL(getboottime64
);
2168 unsigned long get_seconds(void)
2170 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2172 return tk
->xtime_sec
;
2174 EXPORT_SYMBOL(get_seconds
);
2176 struct timespec
__current_kernel_time(void)
2178 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2180 return timespec64_to_timespec(tk_xtime(tk
));
2183 struct timespec64
current_kernel_time64(void)
2185 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2186 struct timespec64 now
;
2190 seq
= read_seqcount_begin(&tk_core
.seq
);
2193 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2197 EXPORT_SYMBOL(current_kernel_time64
);
2199 struct timespec64
get_monotonic_coarse64(void)
2201 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2202 struct timespec64 now
, mono
;
2206 seq
= read_seqcount_begin(&tk_core
.seq
);
2209 mono
= tk
->wall_to_monotonic
;
2210 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2212 set_normalized_timespec64(&now
, now
.tv_sec
+ mono
.tv_sec
,
2213 now
.tv_nsec
+ mono
.tv_nsec
);
2217 EXPORT_SYMBOL(get_monotonic_coarse64
);
2220 * Must hold jiffies_lock
2222 void do_timer(unsigned long ticks
)
2224 jiffies_64
+= ticks
;
2225 calc_global_load(ticks
);
2229 * ktime_get_update_offsets_now - hrtimer helper
2230 * @cwsseq: pointer to check and store the clock was set sequence number
2231 * @offs_real: pointer to storage for monotonic -> realtime offset
2232 * @offs_boot: pointer to storage for monotonic -> boottime offset
2233 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2235 * Returns current monotonic time and updates the offsets if the
2236 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2239 * Called from hrtimer_interrupt() or retrigger_next_event()
2241 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
2242 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
2244 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2250 seq
= read_seqcount_begin(&tk_core
.seq
);
2252 base
= tk
->tkr_mono
.base
;
2253 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
2254 base
= ktime_add_ns(base
, nsecs
);
2256 if (*cwsseq
!= tk
->clock_was_set_seq
) {
2257 *cwsseq
= tk
->clock_was_set_seq
;
2258 *offs_real
= tk
->offs_real
;
2259 *offs_boot
= tk
->offs_boot
;
2260 *offs_tai
= tk
->offs_tai
;
2263 /* Handle leapsecond insertion adjustments */
2264 if (unlikely(base
.tv64
>= tk
->next_leap_ktime
.tv64
))
2265 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
2267 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2273 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2275 int do_adjtimex(struct timex
*txc
)
2277 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2278 unsigned long flags
;
2279 struct timespec64 ts
;
2283 /* Validate the data before disabling interrupts */
2284 ret
= ntp_validate_timex(txc
);
2288 if (txc
->modes
& ADJ_SETOFFSET
) {
2289 struct timespec delta
;
2290 delta
.tv_sec
= txc
->time
.tv_sec
;
2291 delta
.tv_nsec
= txc
->time
.tv_usec
;
2292 if (!(txc
->modes
& ADJ_NANO
))
2293 delta
.tv_nsec
*= 1000;
2294 ret
= timekeeping_inject_offset(&delta
);
2299 getnstimeofday64(&ts
);
2301 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2302 write_seqcount_begin(&tk_core
.seq
);
2304 orig_tai
= tai
= tk
->tai_offset
;
2305 ret
= __do_adjtimex(txc
, &ts
, &tai
);
2307 if (tai
!= orig_tai
) {
2308 __timekeeping_set_tai_offset(tk
, tai
);
2309 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
2311 tk_update_leap_state(tk
);
2313 write_seqcount_end(&tk_core
.seq
);
2314 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2316 if (tai
!= orig_tai
)
2319 ntp_notify_cmos_timer();
2324 #ifdef CONFIG_NTP_PPS
2326 * hardpps() - Accessor function to NTP __hardpps function
2328 void hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
2330 unsigned long flags
;
2332 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2333 write_seqcount_begin(&tk_core
.seq
);
2335 __hardpps(phase_ts
, raw_ts
);
2337 write_seqcount_end(&tk_core
.seq
);
2338 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2340 EXPORT_SYMBOL(hardpps
);
2344 * xtime_update() - advances the timekeeping infrastructure
2345 * @ticks: number of ticks, that have elapsed since the last call.
2347 * Must be called with interrupts disabled.
2349 void xtime_update(unsigned long ticks
)
2351 write_seqlock(&jiffies_lock
);
2353 write_sequnlock(&jiffies_lock
);