fs: create and use seq_show_option for escaping
[linux/fpc-iii.git] / fs / ext4 / inode.c
blobcecf9aa1081134d255455ee329a4e118b8355216
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
45 #include <trace/events/ext4.h>
47 #define MPAGE_DA_EXTENT_TAIL 0x01
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 struct ext4_inode_info *ei)
52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 __u16 csum_lo;
54 __u16 csum_hi = 0;
55 __u32 csum;
57 csum_lo = le16_to_cpu(raw->i_checksum_lo);
58 raw->i_checksum_lo = 0;
59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61 csum_hi = le16_to_cpu(raw->i_checksum_hi);
62 raw->i_checksum_hi = 0;
65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 EXT4_INODE_SIZE(inode->i_sb));
68 raw->i_checksum_lo = cpu_to_le16(csum_lo);
69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 return csum;
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 struct ext4_inode_info *ei)
79 __u32 provided, calculated;
81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 cpu_to_le32(EXT4_OS_LINUX) ||
83 !ext4_has_metadata_csum(inode->i_sb))
84 return 1;
86 provided = le16_to_cpu(raw->i_checksum_lo);
87 calculated = ext4_inode_csum(inode, raw, ei);
88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91 else
92 calculated &= 0xFFFF;
94 return provided == calculated;
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 struct ext4_inode_info *ei)
100 __u32 csum;
102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 cpu_to_le32(EXT4_OS_LINUX) ||
104 !ext4_has_metadata_csum(inode->i_sb))
105 return;
107 csum = ext4_inode_csum(inode, raw, ei);
108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115 loff_t new_size)
117 trace_ext4_begin_ordered_truncate(inode, new_size);
119 * If jinode is zero, then we never opened the file for
120 * writing, so there's no need to call
121 * jbd2_journal_begin_ordered_truncate() since there's no
122 * outstanding writes we need to flush.
124 if (!EXT4_I(inode)->jinode)
125 return 0;
126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 EXT4_I(inode)->jinode,
128 new_size);
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136 int pextents);
139 * Test whether an inode is a fast symlink.
141 int ext4_inode_is_fast_symlink(struct inode *inode)
143 int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 if (ext4_has_inline_data(inode))
147 return 0;
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 int nblocks)
160 int ret;
163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 jbd_debug(2, "restarting handle %p\n", handle);
170 up_write(&EXT4_I(inode)->i_data_sem);
171 ret = ext4_journal_restart(handle, nblocks);
172 down_write(&EXT4_I(inode)->i_data_sem);
173 ext4_discard_preallocations(inode);
175 return ret;
179 * Called at the last iput() if i_nlink is zero.
181 void ext4_evict_inode(struct inode *inode)
183 handle_t *handle;
184 int err;
186 trace_ext4_evict_inode(inode);
188 if (inode->i_nlink) {
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
204 * Note that directories do not have this problem because they
205 * don't use page cache.
207 if (ext4_should_journal_data(inode) &&
208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 inode->i_ino != EXT4_JOURNAL_INO) {
210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 jbd2_complete_transaction(journal, commit_tid);
214 filemap_write_and_wait(&inode->i_data);
216 truncate_inode_pages_final(&inode->i_data);
218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219 goto no_delete;
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages_final(&inode->i_data);
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
236 sb_start_intwrite(inode->i_sb);
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
239 if (IS_ERR(handle)) {
240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
246 ext4_orphan_del(NULL, inode);
247 sb_end_intwrite(inode->i_sb);
248 goto no_delete;
251 if (IS_SYNC(inode))
252 ext4_handle_sync(handle);
253 inode->i_size = 0;
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
256 ext4_warning(inode->i_sb,
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
260 if (inode->i_blocks)
261 ext4_truncate(inode);
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
269 if (!ext4_handle_has_enough_credits(handle, 3)) {
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
274 ext4_warning(inode->i_sb,
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
278 ext4_orphan_del(NULL, inode);
279 sb_end_intwrite(inode->i_sb);
280 goto no_delete;
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
302 if (ext4_mark_inode_dirty(handle, inode))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode);
305 else
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
308 sb_end_intwrite(inode->i_sb);
309 return;
310 no_delete:
311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 return &EXT4_I(inode)->i_reserved_quota;
319 #endif
322 * Called with i_data_sem down, which is important since we can call
323 * ext4_discard_preallocations() from here.
325 void ext4_da_update_reserve_space(struct inode *inode,
326 int used, int quota_claim)
328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329 struct ext4_inode_info *ei = EXT4_I(inode);
331 spin_lock(&ei->i_block_reservation_lock);
332 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333 if (unlikely(used > ei->i_reserved_data_blocks)) {
334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335 "with only %d reserved data blocks",
336 __func__, inode->i_ino, used,
337 ei->i_reserved_data_blocks);
338 WARN_ON(1);
339 used = ei->i_reserved_data_blocks;
342 /* Update per-inode reservations */
343 ei->i_reserved_data_blocks -= used;
344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348 /* Update quota subsystem for data blocks */
349 if (quota_claim)
350 dquot_claim_block(inode, EXT4_C2B(sbi, used));
351 else {
353 * We did fallocate with an offset that is already delayed
354 * allocated. So on delayed allocated writeback we should
355 * not re-claim the quota for fallocated blocks.
357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 * If we have done all the pending block allocations and if
362 * there aren't any writers on the inode, we can discard the
363 * inode's preallocations.
365 if ((ei->i_reserved_data_blocks == 0) &&
366 (atomic_read(&inode->i_writecount) == 0))
367 ext4_discard_preallocations(inode);
370 static int __check_block_validity(struct inode *inode, const char *func,
371 unsigned int line,
372 struct ext4_map_blocks *map)
374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375 map->m_len)) {
376 ext4_error_inode(inode, func, line, map->m_pblk,
377 "lblock %lu mapped to illegal pblock "
378 "(length %d)", (unsigned long) map->m_lblk,
379 map->m_len);
380 return -EIO;
382 return 0;
385 #define check_block_validity(inode, map) \
386 __check_block_validity((inode), __func__, __LINE__, (map))
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390 struct inode *inode,
391 struct ext4_map_blocks *es_map,
392 struct ext4_map_blocks *map,
393 int flags)
395 int retval;
397 map->m_flags = 0;
399 * There is a race window that the result is not the same.
400 * e.g. xfstests #223 when dioread_nolock enables. The reason
401 * is that we lookup a block mapping in extent status tree with
402 * out taking i_data_sem. So at the time the unwritten extent
403 * could be converted.
405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406 down_read(&EXT4_I(inode)->i_data_sem);
407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 EXT4_GET_BLOCKS_KEEP_SIZE);
410 } else {
411 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 up_read((&EXT4_I(inode)->i_data_sem));
418 * We don't check m_len because extent will be collpased in status
419 * tree. So the m_len might not equal.
421 if (es_map->m_lblk != map->m_lblk ||
422 es_map->m_flags != map->m_flags ||
423 es_map->m_pblk != map->m_pblk) {
424 printk("ES cache assertion failed for inode: %lu "
425 "es_cached ex [%d/%d/%llu/%x] != "
426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 inode->i_ino, es_map->m_lblk, es_map->m_len,
428 es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 map->m_len, map->m_pblk, map->m_flags,
430 retval, flags);
433 #endif /* ES_AGGRESSIVE_TEST */
436 * The ext4_map_blocks() function tries to look up the requested blocks,
437 * and returns if the blocks are already mapped.
439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440 * and store the allocated blocks in the result buffer head and mark it
441 * mapped.
443 * If file type is extents based, it will call ext4_ext_map_blocks(),
444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445 * based files
447 * On success, it returns the number of blocks being mapped or allocated.
448 * if create==0 and the blocks are pre-allocated and unwritten block,
449 * the result buffer head is unmapped. If the create ==1, it will make sure
450 * the buffer head is mapped.
452 * It returns 0 if plain look up failed (blocks have not been allocated), in
453 * that case, buffer head is unmapped
455 * It returns the error in case of allocation failure.
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 struct ext4_map_blocks *map, int flags)
460 struct extent_status es;
461 int retval;
462 int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464 struct ext4_map_blocks orig_map;
466 memcpy(&orig_map, map, sizeof(*map));
467 #endif
469 map->m_flags = 0;
470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 (unsigned long) map->m_lblk);
475 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 if (unlikely(map->m_len > INT_MAX))
478 map->m_len = INT_MAX;
480 /* We can handle the block number less than EXT_MAX_BLOCKS */
481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482 return -EIO;
484 /* Lookup extent status tree firstly */
485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 map->m_pblk = ext4_es_pblock(&es) +
488 map->m_lblk - es.es_lblk;
489 map->m_flags |= ext4_es_is_written(&es) ?
490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 retval = es.es_len - (map->m_lblk - es.es_lblk);
492 if (retval > map->m_len)
493 retval = map->m_len;
494 map->m_len = retval;
495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496 retval = 0;
497 } else {
498 BUG_ON(1);
500 #ifdef ES_AGGRESSIVE_TEST
501 ext4_map_blocks_es_recheck(handle, inode, map,
502 &orig_map, flags);
503 #endif
504 goto found;
508 * Try to see if we can get the block without requesting a new
509 * file system block.
511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 down_read(&EXT4_I(inode)->i_data_sem);
513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 EXT4_GET_BLOCKS_KEEP_SIZE);
516 } else {
517 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 EXT4_GET_BLOCKS_KEEP_SIZE);
520 if (retval > 0) {
521 unsigned int status;
523 if (unlikely(retval != map->m_len)) {
524 ext4_warning(inode->i_sb,
525 "ES len assertion failed for inode "
526 "%lu: retval %d != map->m_len %d",
527 inode->i_ino, retval, map->m_len);
528 WARN_ON(1);
531 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534 !(status & EXTENT_STATUS_WRITTEN) &&
535 ext4_find_delalloc_range(inode, map->m_lblk,
536 map->m_lblk + map->m_len - 1))
537 status |= EXTENT_STATUS_DELAYED;
538 ret = ext4_es_insert_extent(inode, map->m_lblk,
539 map->m_len, map->m_pblk, status);
540 if (ret < 0)
541 retval = ret;
543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 up_read((&EXT4_I(inode)->i_data_sem));
546 found:
547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548 ret = check_block_validity(inode, map);
549 if (ret != 0)
550 return ret;
553 /* If it is only a block(s) look up */
554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555 return retval;
558 * Returns if the blocks have already allocated
560 * Note that if blocks have been preallocated
561 * ext4_ext_get_block() returns the create = 0
562 * with buffer head unmapped.
564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566 * If we need to convert extent to unwritten
567 * we continue and do the actual work in
568 * ext4_ext_map_blocks()
570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571 return retval;
574 * Here we clear m_flags because after allocating an new extent,
575 * it will be set again.
577 map->m_flags &= ~EXT4_MAP_FLAGS;
580 * New blocks allocate and/or writing to unwritten extent
581 * will possibly result in updating i_data, so we take
582 * the write lock of i_data_sem, and call get_block()
583 * with create == 1 flag.
585 down_write(&EXT4_I(inode)->i_data_sem);
588 * We need to check for EXT4 here because migrate
589 * could have changed the inode type in between
591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593 } else {
594 retval = ext4_ind_map_blocks(handle, inode, map, flags);
596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598 * We allocated new blocks which will result in
599 * i_data's format changing. Force the migrate
600 * to fail by clearing migrate flags
602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606 * Update reserved blocks/metadata blocks after successful
607 * block allocation which had been deferred till now. We don't
608 * support fallocate for non extent files. So we can update
609 * reserve space here.
611 if ((retval > 0) &&
612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613 ext4_da_update_reserve_space(inode, retval, 1);
616 if (retval > 0) {
617 unsigned int status;
619 if (unlikely(retval != map->m_len)) {
620 ext4_warning(inode->i_sb,
621 "ES len assertion failed for inode "
622 "%lu: retval %d != map->m_len %d",
623 inode->i_ino, retval, map->m_len);
624 WARN_ON(1);
628 * If the extent has been zeroed out, we don't need to update
629 * extent status tree.
631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 if (ext4_es_is_written(&es))
634 goto has_zeroout;
636 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639 !(status & EXTENT_STATUS_WRITTEN) &&
640 ext4_find_delalloc_range(inode, map->m_lblk,
641 map->m_lblk + map->m_len - 1))
642 status |= EXTENT_STATUS_DELAYED;
643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 map->m_pblk, status);
645 if (ret < 0)
646 retval = ret;
649 has_zeroout:
650 up_write((&EXT4_I(inode)->i_data_sem));
651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652 ret = check_block_validity(inode, map);
653 if (ret != 0)
654 return ret;
656 return retval;
659 /* Maximum number of blocks we map for direct IO at once. */
660 #define DIO_MAX_BLOCKS 4096
662 static int _ext4_get_block(struct inode *inode, sector_t iblock,
663 struct buffer_head *bh, int flags)
665 handle_t *handle = ext4_journal_current_handle();
666 struct ext4_map_blocks map;
667 int ret = 0, started = 0;
668 int dio_credits;
670 if (ext4_has_inline_data(inode))
671 return -ERANGE;
673 map.m_lblk = iblock;
674 map.m_len = bh->b_size >> inode->i_blkbits;
676 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
677 /* Direct IO write... */
678 if (map.m_len > DIO_MAX_BLOCKS)
679 map.m_len = DIO_MAX_BLOCKS;
680 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
681 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
682 dio_credits);
683 if (IS_ERR(handle)) {
684 ret = PTR_ERR(handle);
685 return ret;
687 started = 1;
690 ret = ext4_map_blocks(handle, inode, &map, flags);
691 if (ret > 0) {
692 ext4_io_end_t *io_end = ext4_inode_aio(inode);
694 map_bh(bh, inode->i_sb, map.m_pblk);
695 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
696 if (IS_DAX(inode) && buffer_unwritten(bh)) {
698 * dgc: I suspect unwritten conversion on ext4+DAX is
699 * fundamentally broken here when there are concurrent
700 * read/write in progress on this inode.
702 WARN_ON_ONCE(io_end);
703 bh->b_assoc_map = inode->i_mapping;
704 bh->b_private = (void *)(unsigned long)iblock;
706 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
707 set_buffer_defer_completion(bh);
708 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
709 ret = 0;
711 if (started)
712 ext4_journal_stop(handle);
713 return ret;
716 int ext4_get_block(struct inode *inode, sector_t iblock,
717 struct buffer_head *bh, int create)
719 return _ext4_get_block(inode, iblock, bh,
720 create ? EXT4_GET_BLOCKS_CREATE : 0);
724 * `handle' can be NULL if create is zero
726 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
727 ext4_lblk_t block, int map_flags)
729 struct ext4_map_blocks map;
730 struct buffer_head *bh;
731 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
732 int err;
734 J_ASSERT(handle != NULL || create == 0);
736 map.m_lblk = block;
737 map.m_len = 1;
738 err = ext4_map_blocks(handle, inode, &map, map_flags);
740 if (err == 0)
741 return create ? ERR_PTR(-ENOSPC) : NULL;
742 if (err < 0)
743 return ERR_PTR(err);
745 bh = sb_getblk(inode->i_sb, map.m_pblk);
746 if (unlikely(!bh))
747 return ERR_PTR(-ENOMEM);
748 if (map.m_flags & EXT4_MAP_NEW) {
749 J_ASSERT(create != 0);
750 J_ASSERT(handle != NULL);
753 * Now that we do not always journal data, we should
754 * keep in mind whether this should always journal the
755 * new buffer as metadata. For now, regular file
756 * writes use ext4_get_block instead, so it's not a
757 * problem.
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 err = ext4_journal_get_create_access(handle, bh);
762 if (unlikely(err)) {
763 unlock_buffer(bh);
764 goto errout;
766 if (!buffer_uptodate(bh)) {
767 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
768 set_buffer_uptodate(bh);
770 unlock_buffer(bh);
771 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
772 err = ext4_handle_dirty_metadata(handle, inode, bh);
773 if (unlikely(err))
774 goto errout;
775 } else
776 BUFFER_TRACE(bh, "not a new buffer");
777 return bh;
778 errout:
779 brelse(bh);
780 return ERR_PTR(err);
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784 ext4_lblk_t block, int map_flags)
786 struct buffer_head *bh;
788 bh = ext4_getblk(handle, inode, block, map_flags);
789 if (IS_ERR(bh))
790 return bh;
791 if (!bh || buffer_uptodate(bh))
792 return bh;
793 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794 wait_on_buffer(bh);
795 if (buffer_uptodate(bh))
796 return bh;
797 put_bh(bh);
798 return ERR_PTR(-EIO);
801 int ext4_walk_page_buffers(handle_t *handle,
802 struct buffer_head *head,
803 unsigned from,
804 unsigned to,
805 int *partial,
806 int (*fn)(handle_t *handle,
807 struct buffer_head *bh))
809 struct buffer_head *bh;
810 unsigned block_start, block_end;
811 unsigned blocksize = head->b_size;
812 int err, ret = 0;
813 struct buffer_head *next;
815 for (bh = head, block_start = 0;
816 ret == 0 && (bh != head || !block_start);
817 block_start = block_end, bh = next) {
818 next = bh->b_this_page;
819 block_end = block_start + blocksize;
820 if (block_end <= from || block_start >= to) {
821 if (partial && !buffer_uptodate(bh))
822 *partial = 1;
823 continue;
825 err = (*fn)(handle, bh);
826 if (!ret)
827 ret = err;
829 return ret;
833 * To preserve ordering, it is essential that the hole instantiation and
834 * the data write be encapsulated in a single transaction. We cannot
835 * close off a transaction and start a new one between the ext4_get_block()
836 * and the commit_write(). So doing the jbd2_journal_start at the start of
837 * prepare_write() is the right place.
839 * Also, this function can nest inside ext4_writepage(). In that case, we
840 * *know* that ext4_writepage() has generated enough buffer credits to do the
841 * whole page. So we won't block on the journal in that case, which is good,
842 * because the caller may be PF_MEMALLOC.
844 * By accident, ext4 can be reentered when a transaction is open via
845 * quota file writes. If we were to commit the transaction while thus
846 * reentered, there can be a deadlock - we would be holding a quota
847 * lock, and the commit would never complete if another thread had a
848 * transaction open and was blocking on the quota lock - a ranking
849 * violation.
851 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
852 * will _not_ run commit under these circumstances because handle->h_ref
853 * is elevated. We'll still have enough credits for the tiny quotafile
854 * write.
856 int do_journal_get_write_access(handle_t *handle,
857 struct buffer_head *bh)
859 int dirty = buffer_dirty(bh);
860 int ret;
862 if (!buffer_mapped(bh) || buffer_freed(bh))
863 return 0;
865 * __block_write_begin() could have dirtied some buffers. Clean
866 * the dirty bit as jbd2_journal_get_write_access() could complain
867 * otherwise about fs integrity issues. Setting of the dirty bit
868 * by __block_write_begin() isn't a real problem here as we clear
869 * the bit before releasing a page lock and thus writeback cannot
870 * ever write the buffer.
872 if (dirty)
873 clear_buffer_dirty(bh);
874 BUFFER_TRACE(bh, "get write access");
875 ret = ext4_journal_get_write_access(handle, bh);
876 if (!ret && dirty)
877 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 return ret;
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882 struct buffer_head *bh_result, int create);
884 #ifdef CONFIG_EXT4_FS_ENCRYPTION
885 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
886 get_block_t *get_block)
888 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
889 unsigned to = from + len;
890 struct inode *inode = page->mapping->host;
891 unsigned block_start, block_end;
892 sector_t block;
893 int err = 0;
894 unsigned blocksize = inode->i_sb->s_blocksize;
895 unsigned bbits;
896 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
897 bool decrypt = false;
899 BUG_ON(!PageLocked(page));
900 BUG_ON(from > PAGE_CACHE_SIZE);
901 BUG_ON(to > PAGE_CACHE_SIZE);
902 BUG_ON(from > to);
904 if (!page_has_buffers(page))
905 create_empty_buffers(page, blocksize, 0);
906 head = page_buffers(page);
907 bbits = ilog2(blocksize);
908 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
910 for (bh = head, block_start = 0; bh != head || !block_start;
911 block++, block_start = block_end, bh = bh->b_this_page) {
912 block_end = block_start + blocksize;
913 if (block_end <= from || block_start >= to) {
914 if (PageUptodate(page)) {
915 if (!buffer_uptodate(bh))
916 set_buffer_uptodate(bh);
918 continue;
920 if (buffer_new(bh))
921 clear_buffer_new(bh);
922 if (!buffer_mapped(bh)) {
923 WARN_ON(bh->b_size != blocksize);
924 err = get_block(inode, block, bh, 1);
925 if (err)
926 break;
927 if (buffer_new(bh)) {
928 unmap_underlying_metadata(bh->b_bdev,
929 bh->b_blocknr);
930 if (PageUptodate(page)) {
931 clear_buffer_new(bh);
932 set_buffer_uptodate(bh);
933 mark_buffer_dirty(bh);
934 continue;
936 if (block_end > to || block_start < from)
937 zero_user_segments(page, to, block_end,
938 block_start, from);
939 continue;
942 if (PageUptodate(page)) {
943 if (!buffer_uptodate(bh))
944 set_buffer_uptodate(bh);
945 continue;
947 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
948 !buffer_unwritten(bh) &&
949 (block_start < from || block_end > to)) {
950 ll_rw_block(READ, 1, &bh);
951 *wait_bh++ = bh;
952 decrypt = ext4_encrypted_inode(inode) &&
953 S_ISREG(inode->i_mode);
957 * If we issued read requests, let them complete.
959 while (wait_bh > wait) {
960 wait_on_buffer(*--wait_bh);
961 if (!buffer_uptodate(*wait_bh))
962 err = -EIO;
964 if (unlikely(err))
965 page_zero_new_buffers(page, from, to);
966 else if (decrypt)
967 err = ext4_decrypt_one(inode, page);
968 return err;
970 #endif
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 loff_t pos, unsigned len, unsigned flags,
974 struct page **pagep, void **fsdata)
976 struct inode *inode = mapping->host;
977 int ret, needed_blocks;
978 handle_t *handle;
979 int retries = 0;
980 struct page *page;
981 pgoff_t index;
982 unsigned from, to;
984 trace_ext4_write_begin(inode, pos, len, flags);
986 * Reserve one block more for addition to orphan list in case
987 * we allocate blocks but write fails for some reason
989 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990 index = pos >> PAGE_CACHE_SHIFT;
991 from = pos & (PAGE_CACHE_SIZE - 1);
992 to = from + len;
994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996 flags, pagep);
997 if (ret < 0)
998 return ret;
999 if (ret == 1)
1000 return 0;
1004 * grab_cache_page_write_begin() can take a long time if the
1005 * system is thrashing due to memory pressure, or if the page
1006 * is being written back. So grab it first before we start
1007 * the transaction handle. This also allows us to allocate
1008 * the page (if needed) without using GFP_NOFS.
1010 retry_grab:
1011 page = grab_cache_page_write_begin(mapping, index, flags);
1012 if (!page)
1013 return -ENOMEM;
1014 unlock_page(page);
1016 retry_journal:
1017 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018 if (IS_ERR(handle)) {
1019 page_cache_release(page);
1020 return PTR_ERR(handle);
1023 lock_page(page);
1024 if (page->mapping != mapping) {
1025 /* The page got truncated from under us */
1026 unlock_page(page);
1027 page_cache_release(page);
1028 ext4_journal_stop(handle);
1029 goto retry_grab;
1031 /* In case writeback began while the page was unlocked */
1032 wait_for_stable_page(page);
1034 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1035 if (ext4_should_dioread_nolock(inode))
1036 ret = ext4_block_write_begin(page, pos, len,
1037 ext4_get_block_write);
1038 else
1039 ret = ext4_block_write_begin(page, pos, len,
1040 ext4_get_block);
1041 #else
1042 if (ext4_should_dioread_nolock(inode))
1043 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1044 else
1045 ret = __block_write_begin(page, pos, len, ext4_get_block);
1046 #endif
1047 if (!ret && ext4_should_journal_data(inode)) {
1048 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1049 from, to, NULL,
1050 do_journal_get_write_access);
1053 if (ret) {
1054 unlock_page(page);
1056 * __block_write_begin may have instantiated a few blocks
1057 * outside i_size. Trim these off again. Don't need
1058 * i_size_read because we hold i_mutex.
1060 * Add inode to orphan list in case we crash before
1061 * truncate finishes
1063 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1064 ext4_orphan_add(handle, inode);
1066 ext4_journal_stop(handle);
1067 if (pos + len > inode->i_size) {
1068 ext4_truncate_failed_write(inode);
1070 * If truncate failed early the inode might
1071 * still be on the orphan list; we need to
1072 * make sure the inode is removed from the
1073 * orphan list in that case.
1075 if (inode->i_nlink)
1076 ext4_orphan_del(NULL, inode);
1079 if (ret == -ENOSPC &&
1080 ext4_should_retry_alloc(inode->i_sb, &retries))
1081 goto retry_journal;
1082 page_cache_release(page);
1083 return ret;
1085 *pagep = page;
1086 return ret;
1089 /* For write_end() in data=journal mode */
1090 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1092 int ret;
1093 if (!buffer_mapped(bh) || buffer_freed(bh))
1094 return 0;
1095 set_buffer_uptodate(bh);
1096 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1097 clear_buffer_meta(bh);
1098 clear_buffer_prio(bh);
1099 return ret;
1103 * We need to pick up the new inode size which generic_commit_write gave us
1104 * `file' can be NULL - eg, when called from page_symlink().
1106 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1107 * buffers are managed internally.
1109 static int ext4_write_end(struct file *file,
1110 struct address_space *mapping,
1111 loff_t pos, unsigned len, unsigned copied,
1112 struct page *page, void *fsdata)
1114 handle_t *handle = ext4_journal_current_handle();
1115 struct inode *inode = mapping->host;
1116 loff_t old_size = inode->i_size;
1117 int ret = 0, ret2;
1118 int i_size_changed = 0;
1120 trace_ext4_write_end(inode, pos, len, copied);
1121 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1122 ret = ext4_jbd2_file_inode(handle, inode);
1123 if (ret) {
1124 unlock_page(page);
1125 page_cache_release(page);
1126 goto errout;
1130 if (ext4_has_inline_data(inode)) {
1131 ret = ext4_write_inline_data_end(inode, pos, len,
1132 copied, page);
1133 if (ret < 0)
1134 goto errout;
1135 copied = ret;
1136 } else
1137 copied = block_write_end(file, mapping, pos,
1138 len, copied, page, fsdata);
1140 * it's important to update i_size while still holding page lock:
1141 * page writeout could otherwise come in and zero beyond i_size.
1143 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1144 unlock_page(page);
1145 page_cache_release(page);
1147 if (old_size < pos)
1148 pagecache_isize_extended(inode, old_size, pos);
1150 * Don't mark the inode dirty under page lock. First, it unnecessarily
1151 * makes the holding time of page lock longer. Second, it forces lock
1152 * ordering of page lock and transaction start for journaling
1153 * filesystems.
1155 if (i_size_changed)
1156 ext4_mark_inode_dirty(handle, inode);
1158 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1159 /* if we have allocated more blocks and copied
1160 * less. We will have blocks allocated outside
1161 * inode->i_size. So truncate them
1163 ext4_orphan_add(handle, inode);
1164 errout:
1165 ret2 = ext4_journal_stop(handle);
1166 if (!ret)
1167 ret = ret2;
1169 if (pos + len > inode->i_size) {
1170 ext4_truncate_failed_write(inode);
1172 * If truncate failed early the inode might still be
1173 * on the orphan list; we need to make sure the inode
1174 * is removed from the orphan list in that case.
1176 if (inode->i_nlink)
1177 ext4_orphan_del(NULL, inode);
1180 return ret ? ret : copied;
1183 static int ext4_journalled_write_end(struct file *file,
1184 struct address_space *mapping,
1185 loff_t pos, unsigned len, unsigned copied,
1186 struct page *page, void *fsdata)
1188 handle_t *handle = ext4_journal_current_handle();
1189 struct inode *inode = mapping->host;
1190 loff_t old_size = inode->i_size;
1191 int ret = 0, ret2;
1192 int partial = 0;
1193 unsigned from, to;
1194 int size_changed = 0;
1196 trace_ext4_journalled_write_end(inode, pos, len, copied);
1197 from = pos & (PAGE_CACHE_SIZE - 1);
1198 to = from + len;
1200 BUG_ON(!ext4_handle_valid(handle));
1202 if (ext4_has_inline_data(inode))
1203 copied = ext4_write_inline_data_end(inode, pos, len,
1204 copied, page);
1205 else {
1206 if (copied < len) {
1207 if (!PageUptodate(page))
1208 copied = 0;
1209 page_zero_new_buffers(page, from+copied, to);
1212 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1213 to, &partial, write_end_fn);
1214 if (!partial)
1215 SetPageUptodate(page);
1217 size_changed = ext4_update_inode_size(inode, pos + copied);
1218 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220 unlock_page(page);
1221 page_cache_release(page);
1223 if (old_size < pos)
1224 pagecache_isize_extended(inode, old_size, pos);
1226 if (size_changed) {
1227 ret2 = ext4_mark_inode_dirty(handle, inode);
1228 if (!ret)
1229 ret = ret2;
1232 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1233 /* if we have allocated more blocks and copied
1234 * less. We will have blocks allocated outside
1235 * inode->i_size. So truncate them
1237 ext4_orphan_add(handle, inode);
1239 ret2 = ext4_journal_stop(handle);
1240 if (!ret)
1241 ret = ret2;
1242 if (pos + len > inode->i_size) {
1243 ext4_truncate_failed_write(inode);
1245 * If truncate failed early the inode might still be
1246 * on the orphan list; we need to make sure the inode
1247 * is removed from the orphan list in that case.
1249 if (inode->i_nlink)
1250 ext4_orphan_del(NULL, inode);
1253 return ret ? ret : copied;
1257 * Reserve space for a single cluster
1259 static int ext4_da_reserve_space(struct inode *inode)
1261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1262 struct ext4_inode_info *ei = EXT4_I(inode);
1263 int ret;
1266 * We will charge metadata quota at writeout time; this saves
1267 * us from metadata over-estimation, though we may go over by
1268 * a small amount in the end. Here we just reserve for data.
1270 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271 if (ret)
1272 return ret;
1274 spin_lock(&ei->i_block_reservation_lock);
1275 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1276 spin_unlock(&ei->i_block_reservation_lock);
1277 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1278 return -ENOSPC;
1280 ei->i_reserved_data_blocks++;
1281 trace_ext4_da_reserve_space(inode);
1282 spin_unlock(&ei->i_block_reservation_lock);
1284 return 0; /* success */
1287 static void ext4_da_release_space(struct inode *inode, int to_free)
1289 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1290 struct ext4_inode_info *ei = EXT4_I(inode);
1292 if (!to_free)
1293 return; /* Nothing to release, exit */
1295 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1297 trace_ext4_da_release_space(inode, to_free);
1298 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1300 * if there aren't enough reserved blocks, then the
1301 * counter is messed up somewhere. Since this
1302 * function is called from invalidate page, it's
1303 * harmless to return without any action.
1305 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1306 "ino %lu, to_free %d with only %d reserved "
1307 "data blocks", inode->i_ino, to_free,
1308 ei->i_reserved_data_blocks);
1309 WARN_ON(1);
1310 to_free = ei->i_reserved_data_blocks;
1312 ei->i_reserved_data_blocks -= to_free;
1314 /* update fs dirty data blocks counter */
1315 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1317 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1319 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1322 static void ext4_da_page_release_reservation(struct page *page,
1323 unsigned int offset,
1324 unsigned int length)
1326 int to_release = 0, contiguous_blks = 0;
1327 struct buffer_head *head, *bh;
1328 unsigned int curr_off = 0;
1329 struct inode *inode = page->mapping->host;
1330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1331 unsigned int stop = offset + length;
1332 int num_clusters;
1333 ext4_fsblk_t lblk;
1335 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1337 head = page_buffers(page);
1338 bh = head;
1339 do {
1340 unsigned int next_off = curr_off + bh->b_size;
1342 if (next_off > stop)
1343 break;
1345 if ((offset <= curr_off) && (buffer_delay(bh))) {
1346 to_release++;
1347 contiguous_blks++;
1348 clear_buffer_delay(bh);
1349 } else if (contiguous_blks) {
1350 lblk = page->index <<
1351 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1352 lblk += (curr_off >> inode->i_blkbits) -
1353 contiguous_blks;
1354 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1355 contiguous_blks = 0;
1357 curr_off = next_off;
1358 } while ((bh = bh->b_this_page) != head);
1360 if (contiguous_blks) {
1361 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1362 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1363 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1366 /* If we have released all the blocks belonging to a cluster, then we
1367 * need to release the reserved space for that cluster. */
1368 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1369 while (num_clusters > 0) {
1370 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1371 ((num_clusters - 1) << sbi->s_cluster_bits);
1372 if (sbi->s_cluster_ratio == 1 ||
1373 !ext4_find_delalloc_cluster(inode, lblk))
1374 ext4_da_release_space(inode, 1);
1376 num_clusters--;
1381 * Delayed allocation stuff
1384 struct mpage_da_data {
1385 struct inode *inode;
1386 struct writeback_control *wbc;
1388 pgoff_t first_page; /* The first page to write */
1389 pgoff_t next_page; /* Current page to examine */
1390 pgoff_t last_page; /* Last page to examine */
1392 * Extent to map - this can be after first_page because that can be
1393 * fully mapped. We somewhat abuse m_flags to store whether the extent
1394 * is delalloc or unwritten.
1396 struct ext4_map_blocks map;
1397 struct ext4_io_submit io_submit; /* IO submission data */
1400 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1401 bool invalidate)
1403 int nr_pages, i;
1404 pgoff_t index, end;
1405 struct pagevec pvec;
1406 struct inode *inode = mpd->inode;
1407 struct address_space *mapping = inode->i_mapping;
1409 /* This is necessary when next_page == 0. */
1410 if (mpd->first_page >= mpd->next_page)
1411 return;
1413 index = mpd->first_page;
1414 end = mpd->next_page - 1;
1415 if (invalidate) {
1416 ext4_lblk_t start, last;
1417 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1418 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1419 ext4_es_remove_extent(inode, start, last - start + 1);
1422 pagevec_init(&pvec, 0);
1423 while (index <= end) {
1424 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1425 if (nr_pages == 0)
1426 break;
1427 for (i = 0; i < nr_pages; i++) {
1428 struct page *page = pvec.pages[i];
1429 if (page->index > end)
1430 break;
1431 BUG_ON(!PageLocked(page));
1432 BUG_ON(PageWriteback(page));
1433 if (invalidate) {
1434 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1435 ClearPageUptodate(page);
1437 unlock_page(page);
1439 index = pvec.pages[nr_pages - 1]->index + 1;
1440 pagevec_release(&pvec);
1444 static void ext4_print_free_blocks(struct inode *inode)
1446 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1447 struct super_block *sb = inode->i_sb;
1448 struct ext4_inode_info *ei = EXT4_I(inode);
1450 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1451 EXT4_C2B(EXT4_SB(inode->i_sb),
1452 ext4_count_free_clusters(sb)));
1453 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1454 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1455 (long long) EXT4_C2B(EXT4_SB(sb),
1456 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1457 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1458 (long long) EXT4_C2B(EXT4_SB(sb),
1459 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1460 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1461 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1462 ei->i_reserved_data_blocks);
1463 return;
1466 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1468 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1472 * This function is grabs code from the very beginning of
1473 * ext4_map_blocks, but assumes that the caller is from delayed write
1474 * time. This function looks up the requested blocks and sets the
1475 * buffer delay bit under the protection of i_data_sem.
1477 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1478 struct ext4_map_blocks *map,
1479 struct buffer_head *bh)
1481 struct extent_status es;
1482 int retval;
1483 sector_t invalid_block = ~((sector_t) 0xffff);
1484 #ifdef ES_AGGRESSIVE_TEST
1485 struct ext4_map_blocks orig_map;
1487 memcpy(&orig_map, map, sizeof(*map));
1488 #endif
1490 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1491 invalid_block = ~0;
1493 map->m_flags = 0;
1494 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1495 "logical block %lu\n", inode->i_ino, map->m_len,
1496 (unsigned long) map->m_lblk);
1498 /* Lookup extent status tree firstly */
1499 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1500 if (ext4_es_is_hole(&es)) {
1501 retval = 0;
1502 down_read(&EXT4_I(inode)->i_data_sem);
1503 goto add_delayed;
1507 * Delayed extent could be allocated by fallocate.
1508 * So we need to check it.
1510 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1511 map_bh(bh, inode->i_sb, invalid_block);
1512 set_buffer_new(bh);
1513 set_buffer_delay(bh);
1514 return 0;
1517 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1518 retval = es.es_len - (iblock - es.es_lblk);
1519 if (retval > map->m_len)
1520 retval = map->m_len;
1521 map->m_len = retval;
1522 if (ext4_es_is_written(&es))
1523 map->m_flags |= EXT4_MAP_MAPPED;
1524 else if (ext4_es_is_unwritten(&es))
1525 map->m_flags |= EXT4_MAP_UNWRITTEN;
1526 else
1527 BUG_ON(1);
1529 #ifdef ES_AGGRESSIVE_TEST
1530 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1531 #endif
1532 return retval;
1536 * Try to see if we can get the block without requesting a new
1537 * file system block.
1539 down_read(&EXT4_I(inode)->i_data_sem);
1540 if (ext4_has_inline_data(inode))
1541 retval = 0;
1542 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1543 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1544 else
1545 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1547 add_delayed:
1548 if (retval == 0) {
1549 int ret;
1551 * XXX: __block_prepare_write() unmaps passed block,
1552 * is it OK?
1555 * If the block was allocated from previously allocated cluster,
1556 * then we don't need to reserve it again. However we still need
1557 * to reserve metadata for every block we're going to write.
1559 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1560 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1561 ret = ext4_da_reserve_space(inode);
1562 if (ret) {
1563 /* not enough space to reserve */
1564 retval = ret;
1565 goto out_unlock;
1569 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1570 ~0, EXTENT_STATUS_DELAYED);
1571 if (ret) {
1572 retval = ret;
1573 goto out_unlock;
1576 map_bh(bh, inode->i_sb, invalid_block);
1577 set_buffer_new(bh);
1578 set_buffer_delay(bh);
1579 } else if (retval > 0) {
1580 int ret;
1581 unsigned int status;
1583 if (unlikely(retval != map->m_len)) {
1584 ext4_warning(inode->i_sb,
1585 "ES len assertion failed for inode "
1586 "%lu: retval %d != map->m_len %d",
1587 inode->i_ino, retval, map->m_len);
1588 WARN_ON(1);
1591 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1593 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1594 map->m_pblk, status);
1595 if (ret != 0)
1596 retval = ret;
1599 out_unlock:
1600 up_read((&EXT4_I(inode)->i_data_sem));
1602 return retval;
1606 * This is a special get_block_t callback which is used by
1607 * ext4_da_write_begin(). It will either return mapped block or
1608 * reserve space for a single block.
1610 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1611 * We also have b_blocknr = -1 and b_bdev initialized properly
1613 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1614 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1615 * initialized properly.
1617 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1618 struct buffer_head *bh, int create)
1620 struct ext4_map_blocks map;
1621 int ret = 0;
1623 BUG_ON(create == 0);
1624 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1626 map.m_lblk = iblock;
1627 map.m_len = 1;
1630 * first, we need to know whether the block is allocated already
1631 * preallocated blocks are unmapped but should treated
1632 * the same as allocated blocks.
1634 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1635 if (ret <= 0)
1636 return ret;
1638 map_bh(bh, inode->i_sb, map.m_pblk);
1639 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641 if (buffer_unwritten(bh)) {
1642 /* A delayed write to unwritten bh should be marked
1643 * new and mapped. Mapped ensures that we don't do
1644 * get_block multiple times when we write to the same
1645 * offset and new ensures that we do proper zero out
1646 * for partial write.
1648 set_buffer_new(bh);
1649 set_buffer_mapped(bh);
1651 return 0;
1654 static int bget_one(handle_t *handle, struct buffer_head *bh)
1656 get_bh(bh);
1657 return 0;
1660 static int bput_one(handle_t *handle, struct buffer_head *bh)
1662 put_bh(bh);
1663 return 0;
1666 static int __ext4_journalled_writepage(struct page *page,
1667 unsigned int len)
1669 struct address_space *mapping = page->mapping;
1670 struct inode *inode = mapping->host;
1671 struct buffer_head *page_bufs = NULL;
1672 handle_t *handle = NULL;
1673 int ret = 0, err = 0;
1674 int inline_data = ext4_has_inline_data(inode);
1675 struct buffer_head *inode_bh = NULL;
1677 ClearPageChecked(page);
1679 if (inline_data) {
1680 BUG_ON(page->index != 0);
1681 BUG_ON(len > ext4_get_max_inline_size(inode));
1682 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1683 if (inode_bh == NULL)
1684 goto out;
1685 } else {
1686 page_bufs = page_buffers(page);
1687 if (!page_bufs) {
1688 BUG();
1689 goto out;
1691 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1692 NULL, bget_one);
1695 * We need to release the page lock before we start the
1696 * journal, so grab a reference so the page won't disappear
1697 * out from under us.
1699 get_page(page);
1700 unlock_page(page);
1702 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1703 ext4_writepage_trans_blocks(inode));
1704 if (IS_ERR(handle)) {
1705 ret = PTR_ERR(handle);
1706 put_page(page);
1707 goto out_no_pagelock;
1709 BUG_ON(!ext4_handle_valid(handle));
1711 lock_page(page);
1712 put_page(page);
1713 if (page->mapping != mapping) {
1714 /* The page got truncated from under us */
1715 ext4_journal_stop(handle);
1716 ret = 0;
1717 goto out;
1720 if (inline_data) {
1721 BUFFER_TRACE(inode_bh, "get write access");
1722 ret = ext4_journal_get_write_access(handle, inode_bh);
1724 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1726 } else {
1727 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1728 do_journal_get_write_access);
1730 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1731 write_end_fn);
1733 if (ret == 0)
1734 ret = err;
1735 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1736 err = ext4_journal_stop(handle);
1737 if (!ret)
1738 ret = err;
1740 if (!ext4_has_inline_data(inode))
1741 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1742 NULL, bput_one);
1743 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1744 out:
1745 unlock_page(page);
1746 out_no_pagelock:
1747 brelse(inode_bh);
1748 return ret;
1752 * Note that we don't need to start a transaction unless we're journaling data
1753 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1754 * need to file the inode to the transaction's list in ordered mode because if
1755 * we are writing back data added by write(), the inode is already there and if
1756 * we are writing back data modified via mmap(), no one guarantees in which
1757 * transaction the data will hit the disk. In case we are journaling data, we
1758 * cannot start transaction directly because transaction start ranks above page
1759 * lock so we have to do some magic.
1761 * This function can get called via...
1762 * - ext4_writepages after taking page lock (have journal handle)
1763 * - journal_submit_inode_data_buffers (no journal handle)
1764 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1765 * - grab_page_cache when doing write_begin (have journal handle)
1767 * We don't do any block allocation in this function. If we have page with
1768 * multiple blocks we need to write those buffer_heads that are mapped. This
1769 * is important for mmaped based write. So if we do with blocksize 1K
1770 * truncate(f, 1024);
1771 * a = mmap(f, 0, 4096);
1772 * a[0] = 'a';
1773 * truncate(f, 4096);
1774 * we have in the page first buffer_head mapped via page_mkwrite call back
1775 * but other buffer_heads would be unmapped but dirty (dirty done via the
1776 * do_wp_page). So writepage should write the first block. If we modify
1777 * the mmap area beyond 1024 we will again get a page_fault and the
1778 * page_mkwrite callback will do the block allocation and mark the
1779 * buffer_heads mapped.
1781 * We redirty the page if we have any buffer_heads that is either delay or
1782 * unwritten in the page.
1784 * We can get recursively called as show below.
1786 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1787 * ext4_writepage()
1789 * But since we don't do any block allocation we should not deadlock.
1790 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1792 static int ext4_writepage(struct page *page,
1793 struct writeback_control *wbc)
1795 int ret = 0;
1796 loff_t size;
1797 unsigned int len;
1798 struct buffer_head *page_bufs = NULL;
1799 struct inode *inode = page->mapping->host;
1800 struct ext4_io_submit io_submit;
1801 bool keep_towrite = false;
1803 trace_ext4_writepage(page);
1804 size = i_size_read(inode);
1805 if (page->index == size >> PAGE_CACHE_SHIFT)
1806 len = size & ~PAGE_CACHE_MASK;
1807 else
1808 len = PAGE_CACHE_SIZE;
1810 page_bufs = page_buffers(page);
1812 * We cannot do block allocation or other extent handling in this
1813 * function. If there are buffers needing that, we have to redirty
1814 * the page. But we may reach here when we do a journal commit via
1815 * journal_submit_inode_data_buffers() and in that case we must write
1816 * allocated buffers to achieve data=ordered mode guarantees.
1818 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1819 ext4_bh_delay_or_unwritten)) {
1820 redirty_page_for_writepage(wbc, page);
1821 if (current->flags & PF_MEMALLOC) {
1823 * For memory cleaning there's no point in writing only
1824 * some buffers. So just bail out. Warn if we came here
1825 * from direct reclaim.
1827 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1828 == PF_MEMALLOC);
1829 unlock_page(page);
1830 return 0;
1832 keep_towrite = true;
1835 if (PageChecked(page) && ext4_should_journal_data(inode))
1837 * It's mmapped pagecache. Add buffers and journal it. There
1838 * doesn't seem much point in redirtying the page here.
1840 return __ext4_journalled_writepage(page, len);
1842 ext4_io_submit_init(&io_submit, wbc);
1843 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1844 if (!io_submit.io_end) {
1845 redirty_page_for_writepage(wbc, page);
1846 unlock_page(page);
1847 return -ENOMEM;
1849 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1850 ext4_io_submit(&io_submit);
1851 /* Drop io_end reference we got from init */
1852 ext4_put_io_end_defer(io_submit.io_end);
1853 return ret;
1856 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1858 int len;
1859 loff_t size = i_size_read(mpd->inode);
1860 int err;
1862 BUG_ON(page->index != mpd->first_page);
1863 if (page->index == size >> PAGE_CACHE_SHIFT)
1864 len = size & ~PAGE_CACHE_MASK;
1865 else
1866 len = PAGE_CACHE_SIZE;
1867 clear_page_dirty_for_io(page);
1868 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1869 if (!err)
1870 mpd->wbc->nr_to_write--;
1871 mpd->first_page++;
1873 return err;
1876 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1879 * mballoc gives us at most this number of blocks...
1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881 * The rest of mballoc seems to handle chunks up to full group size.
1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1888 * @mpd - extent of blocks
1889 * @lblk - logical number of the block in the file
1890 * @bh - buffer head we want to add to the extent
1892 * The function is used to collect contig. blocks in the same state. If the
1893 * buffer doesn't require mapping for writeback and we haven't started the
1894 * extent of buffers to map yet, the function returns 'true' immediately - the
1895 * caller can write the buffer right away. Otherwise the function returns true
1896 * if the block has been added to the extent, false if the block couldn't be
1897 * added.
1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900 struct buffer_head *bh)
1902 struct ext4_map_blocks *map = &mpd->map;
1904 /* Buffer that doesn't need mapping for writeback? */
1905 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907 /* So far no extent to map => we write the buffer right away */
1908 if (map->m_len == 0)
1909 return true;
1910 return false;
1913 /* First block in the extent? */
1914 if (map->m_len == 0) {
1915 map->m_lblk = lblk;
1916 map->m_len = 1;
1917 map->m_flags = bh->b_state & BH_FLAGS;
1918 return true;
1921 /* Don't go larger than mballoc is willing to allocate */
1922 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1923 return false;
1925 /* Can we merge the block to our big extent? */
1926 if (lblk == map->m_lblk + map->m_len &&
1927 (bh->b_state & BH_FLAGS) == map->m_flags) {
1928 map->m_len++;
1929 return true;
1931 return false;
1935 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1937 * @mpd - extent of blocks for mapping
1938 * @head - the first buffer in the page
1939 * @bh - buffer we should start processing from
1940 * @lblk - logical number of the block in the file corresponding to @bh
1942 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1943 * the page for IO if all buffers in this page were mapped and there's no
1944 * accumulated extent of buffers to map or add buffers in the page to the
1945 * extent of buffers to map. The function returns 1 if the caller can continue
1946 * by processing the next page, 0 if it should stop adding buffers to the
1947 * extent to map because we cannot extend it anymore. It can also return value
1948 * < 0 in case of error during IO submission.
1950 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1951 struct buffer_head *head,
1952 struct buffer_head *bh,
1953 ext4_lblk_t lblk)
1955 struct inode *inode = mpd->inode;
1956 int err;
1957 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1958 >> inode->i_blkbits;
1960 do {
1961 BUG_ON(buffer_locked(bh));
1963 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1964 /* Found extent to map? */
1965 if (mpd->map.m_len)
1966 return 0;
1967 /* Everything mapped so far and we hit EOF */
1968 break;
1970 } while (lblk++, (bh = bh->b_this_page) != head);
1971 /* So far everything mapped? Submit the page for IO. */
1972 if (mpd->map.m_len == 0) {
1973 err = mpage_submit_page(mpd, head->b_page);
1974 if (err < 0)
1975 return err;
1977 return lblk < blocks;
1981 * mpage_map_buffers - update buffers corresponding to changed extent and
1982 * submit fully mapped pages for IO
1984 * @mpd - description of extent to map, on return next extent to map
1986 * Scan buffers corresponding to changed extent (we expect corresponding pages
1987 * to be already locked) and update buffer state according to new extent state.
1988 * We map delalloc buffers to their physical location, clear unwritten bits,
1989 * and mark buffers as uninit when we perform writes to unwritten extents
1990 * and do extent conversion after IO is finished. If the last page is not fully
1991 * mapped, we update @map to the next extent in the last page that needs
1992 * mapping. Otherwise we submit the page for IO.
1994 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1996 struct pagevec pvec;
1997 int nr_pages, i;
1998 struct inode *inode = mpd->inode;
1999 struct buffer_head *head, *bh;
2000 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2001 pgoff_t start, end;
2002 ext4_lblk_t lblk;
2003 sector_t pblock;
2004 int err;
2006 start = mpd->map.m_lblk >> bpp_bits;
2007 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2008 lblk = start << bpp_bits;
2009 pblock = mpd->map.m_pblk;
2011 pagevec_init(&pvec, 0);
2012 while (start <= end) {
2013 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2014 PAGEVEC_SIZE);
2015 if (nr_pages == 0)
2016 break;
2017 for (i = 0; i < nr_pages; i++) {
2018 struct page *page = pvec.pages[i];
2020 if (page->index > end)
2021 break;
2022 /* Up to 'end' pages must be contiguous */
2023 BUG_ON(page->index != start);
2024 bh = head = page_buffers(page);
2025 do {
2026 if (lblk < mpd->map.m_lblk)
2027 continue;
2028 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2030 * Buffer after end of mapped extent.
2031 * Find next buffer in the page to map.
2033 mpd->map.m_len = 0;
2034 mpd->map.m_flags = 0;
2036 * FIXME: If dioread_nolock supports
2037 * blocksize < pagesize, we need to make
2038 * sure we add size mapped so far to
2039 * io_end->size as the following call
2040 * can submit the page for IO.
2042 err = mpage_process_page_bufs(mpd, head,
2043 bh, lblk);
2044 pagevec_release(&pvec);
2045 if (err > 0)
2046 err = 0;
2047 return err;
2049 if (buffer_delay(bh)) {
2050 clear_buffer_delay(bh);
2051 bh->b_blocknr = pblock++;
2053 clear_buffer_unwritten(bh);
2054 } while (lblk++, (bh = bh->b_this_page) != head);
2057 * FIXME: This is going to break if dioread_nolock
2058 * supports blocksize < pagesize as we will try to
2059 * convert potentially unmapped parts of inode.
2061 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2062 /* Page fully mapped - let IO run! */
2063 err = mpage_submit_page(mpd, page);
2064 if (err < 0) {
2065 pagevec_release(&pvec);
2066 return err;
2068 start++;
2070 pagevec_release(&pvec);
2072 /* Extent fully mapped and matches with page boundary. We are done. */
2073 mpd->map.m_len = 0;
2074 mpd->map.m_flags = 0;
2075 return 0;
2078 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2080 struct inode *inode = mpd->inode;
2081 struct ext4_map_blocks *map = &mpd->map;
2082 int get_blocks_flags;
2083 int err, dioread_nolock;
2085 trace_ext4_da_write_pages_extent(inode, map);
2087 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2088 * to convert an unwritten extent to be initialized (in the case
2089 * where we have written into one or more preallocated blocks). It is
2090 * possible that we're going to need more metadata blocks than
2091 * previously reserved. However we must not fail because we're in
2092 * writeback and there is nothing we can do about it so it might result
2093 * in data loss. So use reserved blocks to allocate metadata if
2094 * possible.
2096 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2097 * the blocks in question are delalloc blocks. This indicates
2098 * that the blocks and quotas has already been checked when
2099 * the data was copied into the page cache.
2101 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2102 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2103 dioread_nolock = ext4_should_dioread_nolock(inode);
2104 if (dioread_nolock)
2105 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2106 if (map->m_flags & (1 << BH_Delay))
2107 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2109 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2110 if (err < 0)
2111 return err;
2112 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2113 if (!mpd->io_submit.io_end->handle &&
2114 ext4_handle_valid(handle)) {
2115 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2116 handle->h_rsv_handle = NULL;
2118 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2121 BUG_ON(map->m_len == 0);
2122 if (map->m_flags & EXT4_MAP_NEW) {
2123 struct block_device *bdev = inode->i_sb->s_bdev;
2124 int i;
2126 for (i = 0; i < map->m_len; i++)
2127 unmap_underlying_metadata(bdev, map->m_pblk + i);
2129 return 0;
2133 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2134 * mpd->len and submit pages underlying it for IO
2136 * @handle - handle for journal operations
2137 * @mpd - extent to map
2138 * @give_up_on_write - we set this to true iff there is a fatal error and there
2139 * is no hope of writing the data. The caller should discard
2140 * dirty pages to avoid infinite loops.
2142 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2143 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2144 * them to initialized or split the described range from larger unwritten
2145 * extent. Note that we need not map all the described range since allocation
2146 * can return less blocks or the range is covered by more unwritten extents. We
2147 * cannot map more because we are limited by reserved transaction credits. On
2148 * the other hand we always make sure that the last touched page is fully
2149 * mapped so that it can be written out (and thus forward progress is
2150 * guaranteed). After mapping we submit all mapped pages for IO.
2152 static int mpage_map_and_submit_extent(handle_t *handle,
2153 struct mpage_da_data *mpd,
2154 bool *give_up_on_write)
2156 struct inode *inode = mpd->inode;
2157 struct ext4_map_blocks *map = &mpd->map;
2158 int err;
2159 loff_t disksize;
2160 int progress = 0;
2162 mpd->io_submit.io_end->offset =
2163 ((loff_t)map->m_lblk) << inode->i_blkbits;
2164 do {
2165 err = mpage_map_one_extent(handle, mpd);
2166 if (err < 0) {
2167 struct super_block *sb = inode->i_sb;
2169 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2170 goto invalidate_dirty_pages;
2172 * Let the uper layers retry transient errors.
2173 * In the case of ENOSPC, if ext4_count_free_blocks()
2174 * is non-zero, a commit should free up blocks.
2176 if ((err == -ENOMEM) ||
2177 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2178 if (progress)
2179 goto update_disksize;
2180 return err;
2182 ext4_msg(sb, KERN_CRIT,
2183 "Delayed block allocation failed for "
2184 "inode %lu at logical offset %llu with"
2185 " max blocks %u with error %d",
2186 inode->i_ino,
2187 (unsigned long long)map->m_lblk,
2188 (unsigned)map->m_len, -err);
2189 ext4_msg(sb, KERN_CRIT,
2190 "This should not happen!! Data will "
2191 "be lost\n");
2192 if (err == -ENOSPC)
2193 ext4_print_free_blocks(inode);
2194 invalidate_dirty_pages:
2195 *give_up_on_write = true;
2196 return err;
2198 progress = 1;
2200 * Update buffer state, submit mapped pages, and get us new
2201 * extent to map
2203 err = mpage_map_and_submit_buffers(mpd);
2204 if (err < 0)
2205 goto update_disksize;
2206 } while (map->m_len);
2208 update_disksize:
2210 * Update on-disk size after IO is submitted. Races with
2211 * truncate are avoided by checking i_size under i_data_sem.
2213 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2214 if (disksize > EXT4_I(inode)->i_disksize) {
2215 int err2;
2216 loff_t i_size;
2218 down_write(&EXT4_I(inode)->i_data_sem);
2219 i_size = i_size_read(inode);
2220 if (disksize > i_size)
2221 disksize = i_size;
2222 if (disksize > EXT4_I(inode)->i_disksize)
2223 EXT4_I(inode)->i_disksize = disksize;
2224 err2 = ext4_mark_inode_dirty(handle, inode);
2225 up_write(&EXT4_I(inode)->i_data_sem);
2226 if (err2)
2227 ext4_error(inode->i_sb,
2228 "Failed to mark inode %lu dirty",
2229 inode->i_ino);
2230 if (!err)
2231 err = err2;
2233 return err;
2237 * Calculate the total number of credits to reserve for one writepages
2238 * iteration. This is called from ext4_writepages(). We map an extent of
2239 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2240 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2241 * bpp - 1 blocks in bpp different extents.
2243 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2245 int bpp = ext4_journal_blocks_per_page(inode);
2247 return ext4_meta_trans_blocks(inode,
2248 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2252 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2253 * and underlying extent to map
2255 * @mpd - where to look for pages
2257 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2258 * IO immediately. When we find a page which isn't mapped we start accumulating
2259 * extent of buffers underlying these pages that needs mapping (formed by
2260 * either delayed or unwritten buffers). We also lock the pages containing
2261 * these buffers. The extent found is returned in @mpd structure (starting at
2262 * mpd->lblk with length mpd->len blocks).
2264 * Note that this function can attach bios to one io_end structure which are
2265 * neither logically nor physically contiguous. Although it may seem as an
2266 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2267 * case as we need to track IO to all buffers underlying a page in one io_end.
2269 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2271 struct address_space *mapping = mpd->inode->i_mapping;
2272 struct pagevec pvec;
2273 unsigned int nr_pages;
2274 long left = mpd->wbc->nr_to_write;
2275 pgoff_t index = mpd->first_page;
2276 pgoff_t end = mpd->last_page;
2277 int tag;
2278 int i, err = 0;
2279 int blkbits = mpd->inode->i_blkbits;
2280 ext4_lblk_t lblk;
2281 struct buffer_head *head;
2283 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2284 tag = PAGECACHE_TAG_TOWRITE;
2285 else
2286 tag = PAGECACHE_TAG_DIRTY;
2288 pagevec_init(&pvec, 0);
2289 mpd->map.m_len = 0;
2290 mpd->next_page = index;
2291 while (index <= end) {
2292 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2293 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2294 if (nr_pages == 0)
2295 goto out;
2297 for (i = 0; i < nr_pages; i++) {
2298 struct page *page = pvec.pages[i];
2301 * At this point, the page may be truncated or
2302 * invalidated (changing page->mapping to NULL), or
2303 * even swizzled back from swapper_space to tmpfs file
2304 * mapping. However, page->index will not change
2305 * because we have a reference on the page.
2307 if (page->index > end)
2308 goto out;
2311 * Accumulated enough dirty pages? This doesn't apply
2312 * to WB_SYNC_ALL mode. For integrity sync we have to
2313 * keep going because someone may be concurrently
2314 * dirtying pages, and we might have synced a lot of
2315 * newly appeared dirty pages, but have not synced all
2316 * of the old dirty pages.
2318 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2319 goto out;
2321 /* If we can't merge this page, we are done. */
2322 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2323 goto out;
2325 lock_page(page);
2327 * If the page is no longer dirty, or its mapping no
2328 * longer corresponds to inode we are writing (which
2329 * means it has been truncated or invalidated), or the
2330 * page is already under writeback and we are not doing
2331 * a data integrity writeback, skip the page
2333 if (!PageDirty(page) ||
2334 (PageWriteback(page) &&
2335 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2336 unlikely(page->mapping != mapping)) {
2337 unlock_page(page);
2338 continue;
2341 wait_on_page_writeback(page);
2342 BUG_ON(PageWriteback(page));
2344 if (mpd->map.m_len == 0)
2345 mpd->first_page = page->index;
2346 mpd->next_page = page->index + 1;
2347 /* Add all dirty buffers to mpd */
2348 lblk = ((ext4_lblk_t)page->index) <<
2349 (PAGE_CACHE_SHIFT - blkbits);
2350 head = page_buffers(page);
2351 err = mpage_process_page_bufs(mpd, head, head, lblk);
2352 if (err <= 0)
2353 goto out;
2354 err = 0;
2355 left--;
2357 pagevec_release(&pvec);
2358 cond_resched();
2360 return 0;
2361 out:
2362 pagevec_release(&pvec);
2363 return err;
2366 static int __writepage(struct page *page, struct writeback_control *wbc,
2367 void *data)
2369 struct address_space *mapping = data;
2370 int ret = ext4_writepage(page, wbc);
2371 mapping_set_error(mapping, ret);
2372 return ret;
2375 static int ext4_writepages(struct address_space *mapping,
2376 struct writeback_control *wbc)
2378 pgoff_t writeback_index = 0;
2379 long nr_to_write = wbc->nr_to_write;
2380 int range_whole = 0;
2381 int cycled = 1;
2382 handle_t *handle = NULL;
2383 struct mpage_da_data mpd;
2384 struct inode *inode = mapping->host;
2385 int needed_blocks, rsv_blocks = 0, ret = 0;
2386 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2387 bool done;
2388 struct blk_plug plug;
2389 bool give_up_on_write = false;
2391 trace_ext4_writepages(inode, wbc);
2394 * No pages to write? This is mainly a kludge to avoid starting
2395 * a transaction for special inodes like journal inode on last iput()
2396 * because that could violate lock ordering on umount
2398 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2399 goto out_writepages;
2401 if (ext4_should_journal_data(inode)) {
2402 struct blk_plug plug;
2404 blk_start_plug(&plug);
2405 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2406 blk_finish_plug(&plug);
2407 goto out_writepages;
2411 * If the filesystem has aborted, it is read-only, so return
2412 * right away instead of dumping stack traces later on that
2413 * will obscure the real source of the problem. We test
2414 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2415 * the latter could be true if the filesystem is mounted
2416 * read-only, and in that case, ext4_writepages should
2417 * *never* be called, so if that ever happens, we would want
2418 * the stack trace.
2420 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2421 ret = -EROFS;
2422 goto out_writepages;
2425 if (ext4_should_dioread_nolock(inode)) {
2427 * We may need to convert up to one extent per block in
2428 * the page and we may dirty the inode.
2430 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2434 * If we have inline data and arrive here, it means that
2435 * we will soon create the block for the 1st page, so
2436 * we'd better clear the inline data here.
2438 if (ext4_has_inline_data(inode)) {
2439 /* Just inode will be modified... */
2440 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2441 if (IS_ERR(handle)) {
2442 ret = PTR_ERR(handle);
2443 goto out_writepages;
2445 BUG_ON(ext4_test_inode_state(inode,
2446 EXT4_STATE_MAY_INLINE_DATA));
2447 ext4_destroy_inline_data(handle, inode);
2448 ext4_journal_stop(handle);
2451 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2452 range_whole = 1;
2454 if (wbc->range_cyclic) {
2455 writeback_index = mapping->writeback_index;
2456 if (writeback_index)
2457 cycled = 0;
2458 mpd.first_page = writeback_index;
2459 mpd.last_page = -1;
2460 } else {
2461 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2462 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2465 mpd.inode = inode;
2466 mpd.wbc = wbc;
2467 ext4_io_submit_init(&mpd.io_submit, wbc);
2468 retry:
2469 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2470 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2471 done = false;
2472 blk_start_plug(&plug);
2473 while (!done && mpd.first_page <= mpd.last_page) {
2474 /* For each extent of pages we use new io_end */
2475 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2476 if (!mpd.io_submit.io_end) {
2477 ret = -ENOMEM;
2478 break;
2482 * We have two constraints: We find one extent to map and we
2483 * must always write out whole page (makes a difference when
2484 * blocksize < pagesize) so that we don't block on IO when we
2485 * try to write out the rest of the page. Journalled mode is
2486 * not supported by delalloc.
2488 BUG_ON(ext4_should_journal_data(inode));
2489 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2491 /* start a new transaction */
2492 handle = ext4_journal_start_with_reserve(inode,
2493 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2494 if (IS_ERR(handle)) {
2495 ret = PTR_ERR(handle);
2496 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2497 "%ld pages, ino %lu; err %d", __func__,
2498 wbc->nr_to_write, inode->i_ino, ret);
2499 /* Release allocated io_end */
2500 ext4_put_io_end(mpd.io_submit.io_end);
2501 break;
2504 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2505 ret = mpage_prepare_extent_to_map(&mpd);
2506 if (!ret) {
2507 if (mpd.map.m_len)
2508 ret = mpage_map_and_submit_extent(handle, &mpd,
2509 &give_up_on_write);
2510 else {
2512 * We scanned the whole range (or exhausted
2513 * nr_to_write), submitted what was mapped and
2514 * didn't find anything needing mapping. We are
2515 * done.
2517 done = true;
2520 ext4_journal_stop(handle);
2521 /* Submit prepared bio */
2522 ext4_io_submit(&mpd.io_submit);
2523 /* Unlock pages we didn't use */
2524 mpage_release_unused_pages(&mpd, give_up_on_write);
2525 /* Drop our io_end reference we got from init */
2526 ext4_put_io_end(mpd.io_submit.io_end);
2528 if (ret == -ENOSPC && sbi->s_journal) {
2530 * Commit the transaction which would
2531 * free blocks released in the transaction
2532 * and try again
2534 jbd2_journal_force_commit_nested(sbi->s_journal);
2535 ret = 0;
2536 continue;
2538 /* Fatal error - ENOMEM, EIO... */
2539 if (ret)
2540 break;
2542 blk_finish_plug(&plug);
2543 if (!ret && !cycled && wbc->nr_to_write > 0) {
2544 cycled = 1;
2545 mpd.last_page = writeback_index - 1;
2546 mpd.first_page = 0;
2547 goto retry;
2550 /* Update index */
2551 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2553 * Set the writeback_index so that range_cyclic
2554 * mode will write it back later
2556 mapping->writeback_index = mpd.first_page;
2558 out_writepages:
2559 trace_ext4_writepages_result(inode, wbc, ret,
2560 nr_to_write - wbc->nr_to_write);
2561 return ret;
2564 static int ext4_nonda_switch(struct super_block *sb)
2566 s64 free_clusters, dirty_clusters;
2567 struct ext4_sb_info *sbi = EXT4_SB(sb);
2570 * switch to non delalloc mode if we are running low
2571 * on free block. The free block accounting via percpu
2572 * counters can get slightly wrong with percpu_counter_batch getting
2573 * accumulated on each CPU without updating global counters
2574 * Delalloc need an accurate free block accounting. So switch
2575 * to non delalloc when we are near to error range.
2577 free_clusters =
2578 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2579 dirty_clusters =
2580 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2582 * Start pushing delalloc when 1/2 of free blocks are dirty.
2584 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2585 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2587 if (2 * free_clusters < 3 * dirty_clusters ||
2588 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2590 * free block count is less than 150% of dirty blocks
2591 * or free blocks is less than watermark
2593 return 1;
2595 return 0;
2598 /* We always reserve for an inode update; the superblock could be there too */
2599 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2601 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2602 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2603 return 1;
2605 if (pos + len <= 0x7fffffffULL)
2606 return 1;
2608 /* We might need to update the superblock to set LARGE_FILE */
2609 return 2;
2612 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2613 loff_t pos, unsigned len, unsigned flags,
2614 struct page **pagep, void **fsdata)
2616 int ret, retries = 0;
2617 struct page *page;
2618 pgoff_t index;
2619 struct inode *inode = mapping->host;
2620 handle_t *handle;
2622 index = pos >> PAGE_CACHE_SHIFT;
2624 if (ext4_nonda_switch(inode->i_sb)) {
2625 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2626 return ext4_write_begin(file, mapping, pos,
2627 len, flags, pagep, fsdata);
2629 *fsdata = (void *)0;
2630 trace_ext4_da_write_begin(inode, pos, len, flags);
2632 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2633 ret = ext4_da_write_inline_data_begin(mapping, inode,
2634 pos, len, flags,
2635 pagep, fsdata);
2636 if (ret < 0)
2637 return ret;
2638 if (ret == 1)
2639 return 0;
2643 * grab_cache_page_write_begin() can take a long time if the
2644 * system is thrashing due to memory pressure, or if the page
2645 * is being written back. So grab it first before we start
2646 * the transaction handle. This also allows us to allocate
2647 * the page (if needed) without using GFP_NOFS.
2649 retry_grab:
2650 page = grab_cache_page_write_begin(mapping, index, flags);
2651 if (!page)
2652 return -ENOMEM;
2653 unlock_page(page);
2656 * With delayed allocation, we don't log the i_disksize update
2657 * if there is delayed block allocation. But we still need
2658 * to journalling the i_disksize update if writes to the end
2659 * of file which has an already mapped buffer.
2661 retry_journal:
2662 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2663 ext4_da_write_credits(inode, pos, len));
2664 if (IS_ERR(handle)) {
2665 page_cache_release(page);
2666 return PTR_ERR(handle);
2669 lock_page(page);
2670 if (page->mapping != mapping) {
2671 /* The page got truncated from under us */
2672 unlock_page(page);
2673 page_cache_release(page);
2674 ext4_journal_stop(handle);
2675 goto retry_grab;
2677 /* In case writeback began while the page was unlocked */
2678 wait_for_stable_page(page);
2680 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2681 ret = ext4_block_write_begin(page, pos, len,
2682 ext4_da_get_block_prep);
2683 #else
2684 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2685 #endif
2686 if (ret < 0) {
2687 unlock_page(page);
2688 ext4_journal_stop(handle);
2690 * block_write_begin may have instantiated a few blocks
2691 * outside i_size. Trim these off again. Don't need
2692 * i_size_read because we hold i_mutex.
2694 if (pos + len > inode->i_size)
2695 ext4_truncate_failed_write(inode);
2697 if (ret == -ENOSPC &&
2698 ext4_should_retry_alloc(inode->i_sb, &retries))
2699 goto retry_journal;
2701 page_cache_release(page);
2702 return ret;
2705 *pagep = page;
2706 return ret;
2710 * Check if we should update i_disksize
2711 * when write to the end of file but not require block allocation
2713 static int ext4_da_should_update_i_disksize(struct page *page,
2714 unsigned long offset)
2716 struct buffer_head *bh;
2717 struct inode *inode = page->mapping->host;
2718 unsigned int idx;
2719 int i;
2721 bh = page_buffers(page);
2722 idx = offset >> inode->i_blkbits;
2724 for (i = 0; i < idx; i++)
2725 bh = bh->b_this_page;
2727 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2728 return 0;
2729 return 1;
2732 static int ext4_da_write_end(struct file *file,
2733 struct address_space *mapping,
2734 loff_t pos, unsigned len, unsigned copied,
2735 struct page *page, void *fsdata)
2737 struct inode *inode = mapping->host;
2738 int ret = 0, ret2;
2739 handle_t *handle = ext4_journal_current_handle();
2740 loff_t new_i_size;
2741 unsigned long start, end;
2742 int write_mode = (int)(unsigned long)fsdata;
2744 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2745 return ext4_write_end(file, mapping, pos,
2746 len, copied, page, fsdata);
2748 trace_ext4_da_write_end(inode, pos, len, copied);
2749 start = pos & (PAGE_CACHE_SIZE - 1);
2750 end = start + copied - 1;
2753 * generic_write_end() will run mark_inode_dirty() if i_size
2754 * changes. So let's piggyback the i_disksize mark_inode_dirty
2755 * into that.
2757 new_i_size = pos + copied;
2758 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2759 if (ext4_has_inline_data(inode) ||
2760 ext4_da_should_update_i_disksize(page, end)) {
2761 ext4_update_i_disksize(inode, new_i_size);
2762 /* We need to mark inode dirty even if
2763 * new_i_size is less that inode->i_size
2764 * bu greater than i_disksize.(hint delalloc)
2766 ext4_mark_inode_dirty(handle, inode);
2770 if (write_mode != CONVERT_INLINE_DATA &&
2771 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2772 ext4_has_inline_data(inode))
2773 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2774 page);
2775 else
2776 ret2 = generic_write_end(file, mapping, pos, len, copied,
2777 page, fsdata);
2779 copied = ret2;
2780 if (ret2 < 0)
2781 ret = ret2;
2782 ret2 = ext4_journal_stop(handle);
2783 if (!ret)
2784 ret = ret2;
2786 return ret ? ret : copied;
2789 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2790 unsigned int length)
2793 * Drop reserved blocks
2795 BUG_ON(!PageLocked(page));
2796 if (!page_has_buffers(page))
2797 goto out;
2799 ext4_da_page_release_reservation(page, offset, length);
2801 out:
2802 ext4_invalidatepage(page, offset, length);
2804 return;
2808 * Force all delayed allocation blocks to be allocated for a given inode.
2810 int ext4_alloc_da_blocks(struct inode *inode)
2812 trace_ext4_alloc_da_blocks(inode);
2814 if (!EXT4_I(inode)->i_reserved_data_blocks)
2815 return 0;
2818 * We do something simple for now. The filemap_flush() will
2819 * also start triggering a write of the data blocks, which is
2820 * not strictly speaking necessary (and for users of
2821 * laptop_mode, not even desirable). However, to do otherwise
2822 * would require replicating code paths in:
2824 * ext4_writepages() ->
2825 * write_cache_pages() ---> (via passed in callback function)
2826 * __mpage_da_writepage() -->
2827 * mpage_add_bh_to_extent()
2828 * mpage_da_map_blocks()
2830 * The problem is that write_cache_pages(), located in
2831 * mm/page-writeback.c, marks pages clean in preparation for
2832 * doing I/O, which is not desirable if we're not planning on
2833 * doing I/O at all.
2835 * We could call write_cache_pages(), and then redirty all of
2836 * the pages by calling redirty_page_for_writepage() but that
2837 * would be ugly in the extreme. So instead we would need to
2838 * replicate parts of the code in the above functions,
2839 * simplifying them because we wouldn't actually intend to
2840 * write out the pages, but rather only collect contiguous
2841 * logical block extents, call the multi-block allocator, and
2842 * then update the buffer heads with the block allocations.
2844 * For now, though, we'll cheat by calling filemap_flush(),
2845 * which will map the blocks, and start the I/O, but not
2846 * actually wait for the I/O to complete.
2848 return filemap_flush(inode->i_mapping);
2852 * bmap() is special. It gets used by applications such as lilo and by
2853 * the swapper to find the on-disk block of a specific piece of data.
2855 * Naturally, this is dangerous if the block concerned is still in the
2856 * journal. If somebody makes a swapfile on an ext4 data-journaling
2857 * filesystem and enables swap, then they may get a nasty shock when the
2858 * data getting swapped to that swapfile suddenly gets overwritten by
2859 * the original zero's written out previously to the journal and
2860 * awaiting writeback in the kernel's buffer cache.
2862 * So, if we see any bmap calls here on a modified, data-journaled file,
2863 * take extra steps to flush any blocks which might be in the cache.
2865 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2867 struct inode *inode = mapping->host;
2868 journal_t *journal;
2869 int err;
2872 * We can get here for an inline file via the FIBMAP ioctl
2874 if (ext4_has_inline_data(inode))
2875 return 0;
2877 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2878 test_opt(inode->i_sb, DELALLOC)) {
2880 * With delalloc we want to sync the file
2881 * so that we can make sure we allocate
2882 * blocks for file
2884 filemap_write_and_wait(mapping);
2887 if (EXT4_JOURNAL(inode) &&
2888 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2890 * This is a REALLY heavyweight approach, but the use of
2891 * bmap on dirty files is expected to be extremely rare:
2892 * only if we run lilo or swapon on a freshly made file
2893 * do we expect this to happen.
2895 * (bmap requires CAP_SYS_RAWIO so this does not
2896 * represent an unprivileged user DOS attack --- we'd be
2897 * in trouble if mortal users could trigger this path at
2898 * will.)
2900 * NB. EXT4_STATE_JDATA is not set on files other than
2901 * regular files. If somebody wants to bmap a directory
2902 * or symlink and gets confused because the buffer
2903 * hasn't yet been flushed to disk, they deserve
2904 * everything they get.
2907 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2908 journal = EXT4_JOURNAL(inode);
2909 jbd2_journal_lock_updates(journal);
2910 err = jbd2_journal_flush(journal);
2911 jbd2_journal_unlock_updates(journal);
2913 if (err)
2914 return 0;
2917 return generic_block_bmap(mapping, block, ext4_get_block);
2920 static int ext4_readpage(struct file *file, struct page *page)
2922 int ret = -EAGAIN;
2923 struct inode *inode = page->mapping->host;
2925 trace_ext4_readpage(page);
2927 if (ext4_has_inline_data(inode))
2928 ret = ext4_readpage_inline(inode, page);
2930 if (ret == -EAGAIN)
2931 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2933 return ret;
2936 static int
2937 ext4_readpages(struct file *file, struct address_space *mapping,
2938 struct list_head *pages, unsigned nr_pages)
2940 struct inode *inode = mapping->host;
2942 /* If the file has inline data, no need to do readpages. */
2943 if (ext4_has_inline_data(inode))
2944 return 0;
2946 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2949 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2950 unsigned int length)
2952 trace_ext4_invalidatepage(page, offset, length);
2954 /* No journalling happens on data buffers when this function is used */
2955 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2957 block_invalidatepage(page, offset, length);
2960 static int __ext4_journalled_invalidatepage(struct page *page,
2961 unsigned int offset,
2962 unsigned int length)
2964 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2966 trace_ext4_journalled_invalidatepage(page, offset, length);
2969 * If it's a full truncate we just forget about the pending dirtying
2971 if (offset == 0 && length == PAGE_CACHE_SIZE)
2972 ClearPageChecked(page);
2974 return jbd2_journal_invalidatepage(journal, page, offset, length);
2977 /* Wrapper for aops... */
2978 static void ext4_journalled_invalidatepage(struct page *page,
2979 unsigned int offset,
2980 unsigned int length)
2982 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2985 static int ext4_releasepage(struct page *page, gfp_t wait)
2987 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2989 trace_ext4_releasepage(page);
2991 /* Page has dirty journalled data -> cannot release */
2992 if (PageChecked(page))
2993 return 0;
2994 if (journal)
2995 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2996 else
2997 return try_to_free_buffers(page);
3001 * ext4_get_block used when preparing for a DIO write or buffer write.
3002 * We allocate an uinitialized extent if blocks haven't been allocated.
3003 * The extent will be converted to initialized after the IO is complete.
3005 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3006 struct buffer_head *bh_result, int create)
3008 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3009 inode->i_ino, create);
3010 return _ext4_get_block(inode, iblock, bh_result,
3011 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3014 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3015 struct buffer_head *bh_result, int create)
3017 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3018 inode->i_ino, create);
3019 return _ext4_get_block(inode, iblock, bh_result,
3020 EXT4_GET_BLOCKS_NO_LOCK);
3023 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3024 ssize_t size, void *private)
3026 ext4_io_end_t *io_end = iocb->private;
3028 /* if not async direct IO just return */
3029 if (!io_end)
3030 return;
3032 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3033 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3034 iocb->private, io_end->inode->i_ino, iocb, offset,
3035 size);
3037 iocb->private = NULL;
3038 io_end->offset = offset;
3039 io_end->size = size;
3040 ext4_put_io_end(io_end);
3044 * For ext4 extent files, ext4 will do direct-io write to holes,
3045 * preallocated extents, and those write extend the file, no need to
3046 * fall back to buffered IO.
3048 * For holes, we fallocate those blocks, mark them as unwritten
3049 * If those blocks were preallocated, we mark sure they are split, but
3050 * still keep the range to write as unwritten.
3052 * The unwritten extents will be converted to written when DIO is completed.
3053 * For async direct IO, since the IO may still pending when return, we
3054 * set up an end_io call back function, which will do the conversion
3055 * when async direct IO completed.
3057 * If the O_DIRECT write will extend the file then add this inode to the
3058 * orphan list. So recovery will truncate it back to the original size
3059 * if the machine crashes during the write.
3062 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3063 loff_t offset)
3065 struct file *file = iocb->ki_filp;
3066 struct inode *inode = file->f_mapping->host;
3067 ssize_t ret;
3068 size_t count = iov_iter_count(iter);
3069 int overwrite = 0;
3070 get_block_t *get_block_func = NULL;
3071 int dio_flags = 0;
3072 loff_t final_size = offset + count;
3073 ext4_io_end_t *io_end = NULL;
3075 /* Use the old path for reads and writes beyond i_size. */
3076 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3077 return ext4_ind_direct_IO(iocb, iter, offset);
3079 BUG_ON(iocb->private == NULL);
3082 * Make all waiters for direct IO properly wait also for extent
3083 * conversion. This also disallows race between truncate() and
3084 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3086 if (iov_iter_rw(iter) == WRITE)
3087 inode_dio_begin(inode);
3089 /* If we do a overwrite dio, i_mutex locking can be released */
3090 overwrite = *((int *)iocb->private);
3092 if (overwrite) {
3093 down_read(&EXT4_I(inode)->i_data_sem);
3094 mutex_unlock(&inode->i_mutex);
3098 * We could direct write to holes and fallocate.
3100 * Allocated blocks to fill the hole are marked as
3101 * unwritten to prevent parallel buffered read to expose
3102 * the stale data before DIO complete the data IO.
3104 * As to previously fallocated extents, ext4 get_block will
3105 * just simply mark the buffer mapped but still keep the
3106 * extents unwritten.
3108 * For non AIO case, we will convert those unwritten extents
3109 * to written after return back from blockdev_direct_IO.
3111 * For async DIO, the conversion needs to be deferred when the
3112 * IO is completed. The ext4 end_io callback function will be
3113 * called to take care of the conversion work. Here for async
3114 * case, we allocate an io_end structure to hook to the iocb.
3116 iocb->private = NULL;
3117 ext4_inode_aio_set(inode, NULL);
3118 if (!is_sync_kiocb(iocb)) {
3119 io_end = ext4_init_io_end(inode, GFP_NOFS);
3120 if (!io_end) {
3121 ret = -ENOMEM;
3122 goto retake_lock;
3125 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3127 iocb->private = ext4_get_io_end(io_end);
3129 * we save the io structure for current async direct
3130 * IO, so that later ext4_map_blocks() could flag the
3131 * io structure whether there is a unwritten extents
3132 * needs to be converted when IO is completed.
3134 ext4_inode_aio_set(inode, io_end);
3137 if (overwrite) {
3138 get_block_func = ext4_get_block_write_nolock;
3139 } else {
3140 get_block_func = ext4_get_block_write;
3141 dio_flags = DIO_LOCKING;
3143 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3144 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3145 #endif
3146 if (IS_DAX(inode))
3147 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3148 ext4_end_io_dio, dio_flags);
3149 else
3150 ret = __blockdev_direct_IO(iocb, inode,
3151 inode->i_sb->s_bdev, iter, offset,
3152 get_block_func,
3153 ext4_end_io_dio, NULL, dio_flags);
3156 * Put our reference to io_end. This can free the io_end structure e.g.
3157 * in sync IO case or in case of error. It can even perform extent
3158 * conversion if all bios we submitted finished before we got here.
3159 * Note that in that case iocb->private can be already set to NULL
3160 * here.
3162 if (io_end) {
3163 ext4_inode_aio_set(inode, NULL);
3164 ext4_put_io_end(io_end);
3166 * When no IO was submitted ext4_end_io_dio() was not
3167 * called so we have to put iocb's reference.
3169 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3170 WARN_ON(iocb->private != io_end);
3171 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3172 ext4_put_io_end(io_end);
3173 iocb->private = NULL;
3176 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3177 EXT4_STATE_DIO_UNWRITTEN)) {
3178 int err;
3180 * for non AIO case, since the IO is already
3181 * completed, we could do the conversion right here
3183 err = ext4_convert_unwritten_extents(NULL, inode,
3184 offset, ret);
3185 if (err < 0)
3186 ret = err;
3187 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3190 retake_lock:
3191 if (iov_iter_rw(iter) == WRITE)
3192 inode_dio_end(inode);
3193 /* take i_mutex locking again if we do a ovewrite dio */
3194 if (overwrite) {
3195 up_read(&EXT4_I(inode)->i_data_sem);
3196 mutex_lock(&inode->i_mutex);
3199 return ret;
3202 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3203 loff_t offset)
3205 struct file *file = iocb->ki_filp;
3206 struct inode *inode = file->f_mapping->host;
3207 size_t count = iov_iter_count(iter);
3208 ssize_t ret;
3210 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3211 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3212 return 0;
3213 #endif
3216 * If we are doing data journalling we don't support O_DIRECT
3218 if (ext4_should_journal_data(inode))
3219 return 0;
3221 /* Let buffer I/O handle the inline data case. */
3222 if (ext4_has_inline_data(inode))
3223 return 0;
3225 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3226 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3227 ret = ext4_ext_direct_IO(iocb, iter, offset);
3228 else
3229 ret = ext4_ind_direct_IO(iocb, iter, offset);
3230 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3231 return ret;
3235 * Pages can be marked dirty completely asynchronously from ext4's journalling
3236 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3237 * much here because ->set_page_dirty is called under VFS locks. The page is
3238 * not necessarily locked.
3240 * We cannot just dirty the page and leave attached buffers clean, because the
3241 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3242 * or jbddirty because all the journalling code will explode.
3244 * So what we do is to mark the page "pending dirty" and next time writepage
3245 * is called, propagate that into the buffers appropriately.
3247 static int ext4_journalled_set_page_dirty(struct page *page)
3249 SetPageChecked(page);
3250 return __set_page_dirty_nobuffers(page);
3253 static const struct address_space_operations ext4_aops = {
3254 .readpage = ext4_readpage,
3255 .readpages = ext4_readpages,
3256 .writepage = ext4_writepage,
3257 .writepages = ext4_writepages,
3258 .write_begin = ext4_write_begin,
3259 .write_end = ext4_write_end,
3260 .bmap = ext4_bmap,
3261 .invalidatepage = ext4_invalidatepage,
3262 .releasepage = ext4_releasepage,
3263 .direct_IO = ext4_direct_IO,
3264 .migratepage = buffer_migrate_page,
3265 .is_partially_uptodate = block_is_partially_uptodate,
3266 .error_remove_page = generic_error_remove_page,
3269 static const struct address_space_operations ext4_journalled_aops = {
3270 .readpage = ext4_readpage,
3271 .readpages = ext4_readpages,
3272 .writepage = ext4_writepage,
3273 .writepages = ext4_writepages,
3274 .write_begin = ext4_write_begin,
3275 .write_end = ext4_journalled_write_end,
3276 .set_page_dirty = ext4_journalled_set_page_dirty,
3277 .bmap = ext4_bmap,
3278 .invalidatepage = ext4_journalled_invalidatepage,
3279 .releasepage = ext4_releasepage,
3280 .direct_IO = ext4_direct_IO,
3281 .is_partially_uptodate = block_is_partially_uptodate,
3282 .error_remove_page = generic_error_remove_page,
3285 static const struct address_space_operations ext4_da_aops = {
3286 .readpage = ext4_readpage,
3287 .readpages = ext4_readpages,
3288 .writepage = ext4_writepage,
3289 .writepages = ext4_writepages,
3290 .write_begin = ext4_da_write_begin,
3291 .write_end = ext4_da_write_end,
3292 .bmap = ext4_bmap,
3293 .invalidatepage = ext4_da_invalidatepage,
3294 .releasepage = ext4_releasepage,
3295 .direct_IO = ext4_direct_IO,
3296 .migratepage = buffer_migrate_page,
3297 .is_partially_uptodate = block_is_partially_uptodate,
3298 .error_remove_page = generic_error_remove_page,
3301 void ext4_set_aops(struct inode *inode)
3303 switch (ext4_inode_journal_mode(inode)) {
3304 case EXT4_INODE_ORDERED_DATA_MODE:
3305 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3306 break;
3307 case EXT4_INODE_WRITEBACK_DATA_MODE:
3308 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3309 break;
3310 case EXT4_INODE_JOURNAL_DATA_MODE:
3311 inode->i_mapping->a_ops = &ext4_journalled_aops;
3312 return;
3313 default:
3314 BUG();
3316 if (test_opt(inode->i_sb, DELALLOC))
3317 inode->i_mapping->a_ops = &ext4_da_aops;
3318 else
3319 inode->i_mapping->a_ops = &ext4_aops;
3322 static int __ext4_block_zero_page_range(handle_t *handle,
3323 struct address_space *mapping, loff_t from, loff_t length)
3325 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3326 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3327 unsigned blocksize, pos;
3328 ext4_lblk_t iblock;
3329 struct inode *inode = mapping->host;
3330 struct buffer_head *bh;
3331 struct page *page;
3332 int err = 0;
3334 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3335 mapping_gfp_mask(mapping) & ~__GFP_FS);
3336 if (!page)
3337 return -ENOMEM;
3339 blocksize = inode->i_sb->s_blocksize;
3341 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3343 if (!page_has_buffers(page))
3344 create_empty_buffers(page, blocksize, 0);
3346 /* Find the buffer that contains "offset" */
3347 bh = page_buffers(page);
3348 pos = blocksize;
3349 while (offset >= pos) {
3350 bh = bh->b_this_page;
3351 iblock++;
3352 pos += blocksize;
3354 if (buffer_freed(bh)) {
3355 BUFFER_TRACE(bh, "freed: skip");
3356 goto unlock;
3358 if (!buffer_mapped(bh)) {
3359 BUFFER_TRACE(bh, "unmapped");
3360 ext4_get_block(inode, iblock, bh, 0);
3361 /* unmapped? It's a hole - nothing to do */
3362 if (!buffer_mapped(bh)) {
3363 BUFFER_TRACE(bh, "still unmapped");
3364 goto unlock;
3368 /* Ok, it's mapped. Make sure it's up-to-date */
3369 if (PageUptodate(page))
3370 set_buffer_uptodate(bh);
3372 if (!buffer_uptodate(bh)) {
3373 err = -EIO;
3374 ll_rw_block(READ, 1, &bh);
3375 wait_on_buffer(bh);
3376 /* Uhhuh. Read error. Complain and punt. */
3377 if (!buffer_uptodate(bh))
3378 goto unlock;
3379 if (S_ISREG(inode->i_mode) &&
3380 ext4_encrypted_inode(inode)) {
3381 /* We expect the key to be set. */
3382 BUG_ON(!ext4_has_encryption_key(inode));
3383 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3384 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3387 if (ext4_should_journal_data(inode)) {
3388 BUFFER_TRACE(bh, "get write access");
3389 err = ext4_journal_get_write_access(handle, bh);
3390 if (err)
3391 goto unlock;
3393 zero_user(page, offset, length);
3394 BUFFER_TRACE(bh, "zeroed end of block");
3396 if (ext4_should_journal_data(inode)) {
3397 err = ext4_handle_dirty_metadata(handle, inode, bh);
3398 } else {
3399 err = 0;
3400 mark_buffer_dirty(bh);
3401 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3402 err = ext4_jbd2_file_inode(handle, inode);
3405 unlock:
3406 unlock_page(page);
3407 page_cache_release(page);
3408 return err;
3412 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3413 * starting from file offset 'from'. The range to be zero'd must
3414 * be contained with in one block. If the specified range exceeds
3415 * the end of the block it will be shortened to end of the block
3416 * that cooresponds to 'from'
3418 static int ext4_block_zero_page_range(handle_t *handle,
3419 struct address_space *mapping, loff_t from, loff_t length)
3421 struct inode *inode = mapping->host;
3422 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3423 unsigned blocksize = inode->i_sb->s_blocksize;
3424 unsigned max = blocksize - (offset & (blocksize - 1));
3427 * correct length if it does not fall between
3428 * 'from' and the end of the block
3430 if (length > max || length < 0)
3431 length = max;
3433 if (IS_DAX(inode))
3434 return dax_zero_page_range(inode, from, length, ext4_get_block);
3435 return __ext4_block_zero_page_range(handle, mapping, from, length);
3439 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3440 * up to the end of the block which corresponds to `from'.
3441 * This required during truncate. We need to physically zero the tail end
3442 * of that block so it doesn't yield old data if the file is later grown.
3444 static int ext4_block_truncate_page(handle_t *handle,
3445 struct address_space *mapping, loff_t from)
3447 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3448 unsigned length;
3449 unsigned blocksize;
3450 struct inode *inode = mapping->host;
3452 blocksize = inode->i_sb->s_blocksize;
3453 length = blocksize - (offset & (blocksize - 1));
3455 return ext4_block_zero_page_range(handle, mapping, from, length);
3458 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3459 loff_t lstart, loff_t length)
3461 struct super_block *sb = inode->i_sb;
3462 struct address_space *mapping = inode->i_mapping;
3463 unsigned partial_start, partial_end;
3464 ext4_fsblk_t start, end;
3465 loff_t byte_end = (lstart + length - 1);
3466 int err = 0;
3468 partial_start = lstart & (sb->s_blocksize - 1);
3469 partial_end = byte_end & (sb->s_blocksize - 1);
3471 start = lstart >> sb->s_blocksize_bits;
3472 end = byte_end >> sb->s_blocksize_bits;
3474 /* Handle partial zero within the single block */
3475 if (start == end &&
3476 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3477 err = ext4_block_zero_page_range(handle, mapping,
3478 lstart, length);
3479 return err;
3481 /* Handle partial zero out on the start of the range */
3482 if (partial_start) {
3483 err = ext4_block_zero_page_range(handle, mapping,
3484 lstart, sb->s_blocksize);
3485 if (err)
3486 return err;
3488 /* Handle partial zero out on the end of the range */
3489 if (partial_end != sb->s_blocksize - 1)
3490 err = ext4_block_zero_page_range(handle, mapping,
3491 byte_end - partial_end,
3492 partial_end + 1);
3493 return err;
3496 int ext4_can_truncate(struct inode *inode)
3498 if (S_ISREG(inode->i_mode))
3499 return 1;
3500 if (S_ISDIR(inode->i_mode))
3501 return 1;
3502 if (S_ISLNK(inode->i_mode))
3503 return !ext4_inode_is_fast_symlink(inode);
3504 return 0;
3508 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3509 * associated with the given offset and length
3511 * @inode: File inode
3512 * @offset: The offset where the hole will begin
3513 * @len: The length of the hole
3515 * Returns: 0 on success or negative on failure
3518 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3520 struct super_block *sb = inode->i_sb;
3521 ext4_lblk_t first_block, stop_block;
3522 struct address_space *mapping = inode->i_mapping;
3523 loff_t first_block_offset, last_block_offset;
3524 handle_t *handle;
3525 unsigned int credits;
3526 int ret = 0;
3528 if (!S_ISREG(inode->i_mode))
3529 return -EOPNOTSUPP;
3531 trace_ext4_punch_hole(inode, offset, length, 0);
3534 * Write out all dirty pages to avoid race conditions
3535 * Then release them.
3537 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3538 ret = filemap_write_and_wait_range(mapping, offset,
3539 offset + length - 1);
3540 if (ret)
3541 return ret;
3544 mutex_lock(&inode->i_mutex);
3546 /* No need to punch hole beyond i_size */
3547 if (offset >= inode->i_size)
3548 goto out_mutex;
3551 * If the hole extends beyond i_size, set the hole
3552 * to end after the page that contains i_size
3554 if (offset + length > inode->i_size) {
3555 length = inode->i_size +
3556 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3557 offset;
3560 if (offset & (sb->s_blocksize - 1) ||
3561 (offset + length) & (sb->s_blocksize - 1)) {
3563 * Attach jinode to inode for jbd2 if we do any zeroing of
3564 * partial block
3566 ret = ext4_inode_attach_jinode(inode);
3567 if (ret < 0)
3568 goto out_mutex;
3572 first_block_offset = round_up(offset, sb->s_blocksize);
3573 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3575 /* Now release the pages and zero block aligned part of pages*/
3576 if (last_block_offset > first_block_offset)
3577 truncate_pagecache_range(inode, first_block_offset,
3578 last_block_offset);
3580 /* Wait all existing dio workers, newcomers will block on i_mutex */
3581 ext4_inode_block_unlocked_dio(inode);
3582 inode_dio_wait(inode);
3584 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3585 credits = ext4_writepage_trans_blocks(inode);
3586 else
3587 credits = ext4_blocks_for_truncate(inode);
3588 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3589 if (IS_ERR(handle)) {
3590 ret = PTR_ERR(handle);
3591 ext4_std_error(sb, ret);
3592 goto out_dio;
3595 ret = ext4_zero_partial_blocks(handle, inode, offset,
3596 length);
3597 if (ret)
3598 goto out_stop;
3600 first_block = (offset + sb->s_blocksize - 1) >>
3601 EXT4_BLOCK_SIZE_BITS(sb);
3602 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3604 /* If there are no blocks to remove, return now */
3605 if (first_block >= stop_block)
3606 goto out_stop;
3608 down_write(&EXT4_I(inode)->i_data_sem);
3609 ext4_discard_preallocations(inode);
3611 ret = ext4_es_remove_extent(inode, first_block,
3612 stop_block - first_block);
3613 if (ret) {
3614 up_write(&EXT4_I(inode)->i_data_sem);
3615 goto out_stop;
3618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3619 ret = ext4_ext_remove_space(inode, first_block,
3620 stop_block - 1);
3621 else
3622 ret = ext4_ind_remove_space(handle, inode, first_block,
3623 stop_block);
3625 up_write(&EXT4_I(inode)->i_data_sem);
3626 if (IS_SYNC(inode))
3627 ext4_handle_sync(handle);
3629 /* Now release the pages again to reduce race window */
3630 if (last_block_offset > first_block_offset)
3631 truncate_pagecache_range(inode, first_block_offset,
3632 last_block_offset);
3634 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3635 ext4_mark_inode_dirty(handle, inode);
3636 out_stop:
3637 ext4_journal_stop(handle);
3638 out_dio:
3639 ext4_inode_resume_unlocked_dio(inode);
3640 out_mutex:
3641 mutex_unlock(&inode->i_mutex);
3642 return ret;
3645 int ext4_inode_attach_jinode(struct inode *inode)
3647 struct ext4_inode_info *ei = EXT4_I(inode);
3648 struct jbd2_inode *jinode;
3650 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3651 return 0;
3653 jinode = jbd2_alloc_inode(GFP_KERNEL);
3654 spin_lock(&inode->i_lock);
3655 if (!ei->jinode) {
3656 if (!jinode) {
3657 spin_unlock(&inode->i_lock);
3658 return -ENOMEM;
3660 ei->jinode = jinode;
3661 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3662 jinode = NULL;
3664 spin_unlock(&inode->i_lock);
3665 if (unlikely(jinode != NULL))
3666 jbd2_free_inode(jinode);
3667 return 0;
3671 * ext4_truncate()
3673 * We block out ext4_get_block() block instantiations across the entire
3674 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3675 * simultaneously on behalf of the same inode.
3677 * As we work through the truncate and commit bits of it to the journal there
3678 * is one core, guiding principle: the file's tree must always be consistent on
3679 * disk. We must be able to restart the truncate after a crash.
3681 * The file's tree may be transiently inconsistent in memory (although it
3682 * probably isn't), but whenever we close off and commit a journal transaction,
3683 * the contents of (the filesystem + the journal) must be consistent and
3684 * restartable. It's pretty simple, really: bottom up, right to left (although
3685 * left-to-right works OK too).
3687 * Note that at recovery time, journal replay occurs *before* the restart of
3688 * truncate against the orphan inode list.
3690 * The committed inode has the new, desired i_size (which is the same as
3691 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3692 * that this inode's truncate did not complete and it will again call
3693 * ext4_truncate() to have another go. So there will be instantiated blocks
3694 * to the right of the truncation point in a crashed ext4 filesystem. But
3695 * that's fine - as long as they are linked from the inode, the post-crash
3696 * ext4_truncate() run will find them and release them.
3698 void ext4_truncate(struct inode *inode)
3700 struct ext4_inode_info *ei = EXT4_I(inode);
3701 unsigned int credits;
3702 handle_t *handle;
3703 struct address_space *mapping = inode->i_mapping;
3706 * There is a possibility that we're either freeing the inode
3707 * or it's a completely new inode. In those cases we might not
3708 * have i_mutex locked because it's not necessary.
3710 if (!(inode->i_state & (I_NEW|I_FREEING)))
3711 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3712 trace_ext4_truncate_enter(inode);
3714 if (!ext4_can_truncate(inode))
3715 return;
3717 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3719 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3720 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3722 if (ext4_has_inline_data(inode)) {
3723 int has_inline = 1;
3725 ext4_inline_data_truncate(inode, &has_inline);
3726 if (has_inline)
3727 return;
3730 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3731 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3732 if (ext4_inode_attach_jinode(inode) < 0)
3733 return;
3736 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3737 credits = ext4_writepage_trans_blocks(inode);
3738 else
3739 credits = ext4_blocks_for_truncate(inode);
3741 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3742 if (IS_ERR(handle)) {
3743 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3744 return;
3747 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3748 ext4_block_truncate_page(handle, mapping, inode->i_size);
3751 * We add the inode to the orphan list, so that if this
3752 * truncate spans multiple transactions, and we crash, we will
3753 * resume the truncate when the filesystem recovers. It also
3754 * marks the inode dirty, to catch the new size.
3756 * Implication: the file must always be in a sane, consistent
3757 * truncatable state while each transaction commits.
3759 if (ext4_orphan_add(handle, inode))
3760 goto out_stop;
3762 down_write(&EXT4_I(inode)->i_data_sem);
3764 ext4_discard_preallocations(inode);
3766 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3767 ext4_ext_truncate(handle, inode);
3768 else
3769 ext4_ind_truncate(handle, inode);
3771 up_write(&ei->i_data_sem);
3773 if (IS_SYNC(inode))
3774 ext4_handle_sync(handle);
3776 out_stop:
3778 * If this was a simple ftruncate() and the file will remain alive,
3779 * then we need to clear up the orphan record which we created above.
3780 * However, if this was a real unlink then we were called by
3781 * ext4_evict_inode(), and we allow that function to clean up the
3782 * orphan info for us.
3784 if (inode->i_nlink)
3785 ext4_orphan_del(handle, inode);
3787 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3788 ext4_mark_inode_dirty(handle, inode);
3789 ext4_journal_stop(handle);
3791 trace_ext4_truncate_exit(inode);
3795 * ext4_get_inode_loc returns with an extra refcount against the inode's
3796 * underlying buffer_head on success. If 'in_mem' is true, we have all
3797 * data in memory that is needed to recreate the on-disk version of this
3798 * inode.
3800 static int __ext4_get_inode_loc(struct inode *inode,
3801 struct ext4_iloc *iloc, int in_mem)
3803 struct ext4_group_desc *gdp;
3804 struct buffer_head *bh;
3805 struct super_block *sb = inode->i_sb;
3806 ext4_fsblk_t block;
3807 int inodes_per_block, inode_offset;
3809 iloc->bh = NULL;
3810 if (!ext4_valid_inum(sb, inode->i_ino))
3811 return -EIO;
3813 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3814 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3815 if (!gdp)
3816 return -EIO;
3819 * Figure out the offset within the block group inode table
3821 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3822 inode_offset = ((inode->i_ino - 1) %
3823 EXT4_INODES_PER_GROUP(sb));
3824 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3825 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3827 bh = sb_getblk(sb, block);
3828 if (unlikely(!bh))
3829 return -ENOMEM;
3830 if (!buffer_uptodate(bh)) {
3831 lock_buffer(bh);
3834 * If the buffer has the write error flag, we have failed
3835 * to write out another inode in the same block. In this
3836 * case, we don't have to read the block because we may
3837 * read the old inode data successfully.
3839 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3840 set_buffer_uptodate(bh);
3842 if (buffer_uptodate(bh)) {
3843 /* someone brought it uptodate while we waited */
3844 unlock_buffer(bh);
3845 goto has_buffer;
3849 * If we have all information of the inode in memory and this
3850 * is the only valid inode in the block, we need not read the
3851 * block.
3853 if (in_mem) {
3854 struct buffer_head *bitmap_bh;
3855 int i, start;
3857 start = inode_offset & ~(inodes_per_block - 1);
3859 /* Is the inode bitmap in cache? */
3860 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3861 if (unlikely(!bitmap_bh))
3862 goto make_io;
3865 * If the inode bitmap isn't in cache then the
3866 * optimisation may end up performing two reads instead
3867 * of one, so skip it.
3869 if (!buffer_uptodate(bitmap_bh)) {
3870 brelse(bitmap_bh);
3871 goto make_io;
3873 for (i = start; i < start + inodes_per_block; i++) {
3874 if (i == inode_offset)
3875 continue;
3876 if (ext4_test_bit(i, bitmap_bh->b_data))
3877 break;
3879 brelse(bitmap_bh);
3880 if (i == start + inodes_per_block) {
3881 /* all other inodes are free, so skip I/O */
3882 memset(bh->b_data, 0, bh->b_size);
3883 set_buffer_uptodate(bh);
3884 unlock_buffer(bh);
3885 goto has_buffer;
3889 make_io:
3891 * If we need to do any I/O, try to pre-readahead extra
3892 * blocks from the inode table.
3894 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3895 ext4_fsblk_t b, end, table;
3896 unsigned num;
3897 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3899 table = ext4_inode_table(sb, gdp);
3900 /* s_inode_readahead_blks is always a power of 2 */
3901 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3902 if (table > b)
3903 b = table;
3904 end = b + ra_blks;
3905 num = EXT4_INODES_PER_GROUP(sb);
3906 if (ext4_has_group_desc_csum(sb))
3907 num -= ext4_itable_unused_count(sb, gdp);
3908 table += num / inodes_per_block;
3909 if (end > table)
3910 end = table;
3911 while (b <= end)
3912 sb_breadahead(sb, b++);
3916 * There are other valid inodes in the buffer, this inode
3917 * has in-inode xattrs, or we don't have this inode in memory.
3918 * Read the block from disk.
3920 trace_ext4_load_inode(inode);
3921 get_bh(bh);
3922 bh->b_end_io = end_buffer_read_sync;
3923 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3924 wait_on_buffer(bh);
3925 if (!buffer_uptodate(bh)) {
3926 EXT4_ERROR_INODE_BLOCK(inode, block,
3927 "unable to read itable block");
3928 brelse(bh);
3929 return -EIO;
3932 has_buffer:
3933 iloc->bh = bh;
3934 return 0;
3937 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3939 /* We have all inode data except xattrs in memory here. */
3940 return __ext4_get_inode_loc(inode, iloc,
3941 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3944 void ext4_set_inode_flags(struct inode *inode)
3946 unsigned int flags = EXT4_I(inode)->i_flags;
3947 unsigned int new_fl = 0;
3949 if (flags & EXT4_SYNC_FL)
3950 new_fl |= S_SYNC;
3951 if (flags & EXT4_APPEND_FL)
3952 new_fl |= S_APPEND;
3953 if (flags & EXT4_IMMUTABLE_FL)
3954 new_fl |= S_IMMUTABLE;
3955 if (flags & EXT4_NOATIME_FL)
3956 new_fl |= S_NOATIME;
3957 if (flags & EXT4_DIRSYNC_FL)
3958 new_fl |= S_DIRSYNC;
3959 if (test_opt(inode->i_sb, DAX))
3960 new_fl |= S_DAX;
3961 inode_set_flags(inode, new_fl,
3962 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3966 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3968 unsigned int vfs_fl;
3969 unsigned long old_fl, new_fl;
3971 do {
3972 vfs_fl = ei->vfs_inode.i_flags;
3973 old_fl = ei->i_flags;
3974 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3975 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3976 EXT4_DIRSYNC_FL);
3977 if (vfs_fl & S_SYNC)
3978 new_fl |= EXT4_SYNC_FL;
3979 if (vfs_fl & S_APPEND)
3980 new_fl |= EXT4_APPEND_FL;
3981 if (vfs_fl & S_IMMUTABLE)
3982 new_fl |= EXT4_IMMUTABLE_FL;
3983 if (vfs_fl & S_NOATIME)
3984 new_fl |= EXT4_NOATIME_FL;
3985 if (vfs_fl & S_DIRSYNC)
3986 new_fl |= EXT4_DIRSYNC_FL;
3987 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3990 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3991 struct ext4_inode_info *ei)
3993 blkcnt_t i_blocks ;
3994 struct inode *inode = &(ei->vfs_inode);
3995 struct super_block *sb = inode->i_sb;
3997 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3998 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3999 /* we are using combined 48 bit field */
4000 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4001 le32_to_cpu(raw_inode->i_blocks_lo);
4002 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4003 /* i_blocks represent file system block size */
4004 return i_blocks << (inode->i_blkbits - 9);
4005 } else {
4006 return i_blocks;
4008 } else {
4009 return le32_to_cpu(raw_inode->i_blocks_lo);
4013 static inline void ext4_iget_extra_inode(struct inode *inode,
4014 struct ext4_inode *raw_inode,
4015 struct ext4_inode_info *ei)
4017 __le32 *magic = (void *)raw_inode +
4018 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4019 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4020 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4021 ext4_find_inline_data_nolock(inode);
4022 } else
4023 EXT4_I(inode)->i_inline_off = 0;
4026 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4028 struct ext4_iloc iloc;
4029 struct ext4_inode *raw_inode;
4030 struct ext4_inode_info *ei;
4031 struct inode *inode;
4032 journal_t *journal = EXT4_SB(sb)->s_journal;
4033 long ret;
4034 int block;
4035 uid_t i_uid;
4036 gid_t i_gid;
4038 inode = iget_locked(sb, ino);
4039 if (!inode)
4040 return ERR_PTR(-ENOMEM);
4041 if (!(inode->i_state & I_NEW))
4042 return inode;
4044 ei = EXT4_I(inode);
4045 iloc.bh = NULL;
4047 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4048 if (ret < 0)
4049 goto bad_inode;
4050 raw_inode = ext4_raw_inode(&iloc);
4052 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4053 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4054 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4055 EXT4_INODE_SIZE(inode->i_sb)) {
4056 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4057 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4058 EXT4_INODE_SIZE(inode->i_sb));
4059 ret = -EIO;
4060 goto bad_inode;
4062 } else
4063 ei->i_extra_isize = 0;
4065 /* Precompute checksum seed for inode metadata */
4066 if (ext4_has_metadata_csum(sb)) {
4067 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4068 __u32 csum;
4069 __le32 inum = cpu_to_le32(inode->i_ino);
4070 __le32 gen = raw_inode->i_generation;
4071 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4072 sizeof(inum));
4073 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4074 sizeof(gen));
4077 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4078 EXT4_ERROR_INODE(inode, "checksum invalid");
4079 ret = -EIO;
4080 goto bad_inode;
4083 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4084 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4085 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4086 if (!(test_opt(inode->i_sb, NO_UID32))) {
4087 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4088 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4090 i_uid_write(inode, i_uid);
4091 i_gid_write(inode, i_gid);
4092 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4094 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4095 ei->i_inline_off = 0;
4096 ei->i_dir_start_lookup = 0;
4097 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4098 /* We now have enough fields to check if the inode was active or not.
4099 * This is needed because nfsd might try to access dead inodes
4100 * the test is that same one that e2fsck uses
4101 * NeilBrown 1999oct15
4103 if (inode->i_nlink == 0) {
4104 if ((inode->i_mode == 0 ||
4105 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4106 ino != EXT4_BOOT_LOADER_INO) {
4107 /* this inode is deleted */
4108 ret = -ESTALE;
4109 goto bad_inode;
4111 /* The only unlinked inodes we let through here have
4112 * valid i_mode and are being read by the orphan
4113 * recovery code: that's fine, we're about to complete
4114 * the process of deleting those.
4115 * OR it is the EXT4_BOOT_LOADER_INO which is
4116 * not initialized on a new filesystem. */
4118 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4119 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4120 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4121 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4122 ei->i_file_acl |=
4123 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4124 inode->i_size = ext4_isize(raw_inode);
4125 ei->i_disksize = inode->i_size;
4126 #ifdef CONFIG_QUOTA
4127 ei->i_reserved_quota = 0;
4128 #endif
4129 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4130 ei->i_block_group = iloc.block_group;
4131 ei->i_last_alloc_group = ~0;
4133 * NOTE! The in-memory inode i_data array is in little-endian order
4134 * even on big-endian machines: we do NOT byteswap the block numbers!
4136 for (block = 0; block < EXT4_N_BLOCKS; block++)
4137 ei->i_data[block] = raw_inode->i_block[block];
4138 INIT_LIST_HEAD(&ei->i_orphan);
4141 * Set transaction id's of transactions that have to be committed
4142 * to finish f[data]sync. We set them to currently running transaction
4143 * as we cannot be sure that the inode or some of its metadata isn't
4144 * part of the transaction - the inode could have been reclaimed and
4145 * now it is reread from disk.
4147 if (journal) {
4148 transaction_t *transaction;
4149 tid_t tid;
4151 read_lock(&journal->j_state_lock);
4152 if (journal->j_running_transaction)
4153 transaction = journal->j_running_transaction;
4154 else
4155 transaction = journal->j_committing_transaction;
4156 if (transaction)
4157 tid = transaction->t_tid;
4158 else
4159 tid = journal->j_commit_sequence;
4160 read_unlock(&journal->j_state_lock);
4161 ei->i_sync_tid = tid;
4162 ei->i_datasync_tid = tid;
4165 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4166 if (ei->i_extra_isize == 0) {
4167 /* The extra space is currently unused. Use it. */
4168 ei->i_extra_isize = sizeof(struct ext4_inode) -
4169 EXT4_GOOD_OLD_INODE_SIZE;
4170 } else {
4171 ext4_iget_extra_inode(inode, raw_inode, ei);
4175 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4176 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4177 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4178 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4180 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4181 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4182 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4183 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4184 inode->i_version |=
4185 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4189 ret = 0;
4190 if (ei->i_file_acl &&
4191 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4192 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4193 ei->i_file_acl);
4194 ret = -EIO;
4195 goto bad_inode;
4196 } else if (!ext4_has_inline_data(inode)) {
4197 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4198 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4199 (S_ISLNK(inode->i_mode) &&
4200 !ext4_inode_is_fast_symlink(inode))))
4201 /* Validate extent which is part of inode */
4202 ret = ext4_ext_check_inode(inode);
4203 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4204 (S_ISLNK(inode->i_mode) &&
4205 !ext4_inode_is_fast_symlink(inode))) {
4206 /* Validate block references which are part of inode */
4207 ret = ext4_ind_check_inode(inode);
4210 if (ret)
4211 goto bad_inode;
4213 if (S_ISREG(inode->i_mode)) {
4214 inode->i_op = &ext4_file_inode_operations;
4215 inode->i_fop = &ext4_file_operations;
4216 ext4_set_aops(inode);
4217 } else if (S_ISDIR(inode->i_mode)) {
4218 inode->i_op = &ext4_dir_inode_operations;
4219 inode->i_fop = &ext4_dir_operations;
4220 } else if (S_ISLNK(inode->i_mode)) {
4221 if (ext4_encrypted_inode(inode)) {
4222 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4223 ext4_set_aops(inode);
4224 } else if (ext4_inode_is_fast_symlink(inode)) {
4225 inode->i_link = (char *)ei->i_data;
4226 inode->i_op = &ext4_fast_symlink_inode_operations;
4227 nd_terminate_link(ei->i_data, inode->i_size,
4228 sizeof(ei->i_data) - 1);
4229 } else {
4230 inode->i_op = &ext4_symlink_inode_operations;
4231 ext4_set_aops(inode);
4233 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4234 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4235 inode->i_op = &ext4_special_inode_operations;
4236 if (raw_inode->i_block[0])
4237 init_special_inode(inode, inode->i_mode,
4238 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4239 else
4240 init_special_inode(inode, inode->i_mode,
4241 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4242 } else if (ino == EXT4_BOOT_LOADER_INO) {
4243 make_bad_inode(inode);
4244 } else {
4245 ret = -EIO;
4246 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4247 goto bad_inode;
4249 brelse(iloc.bh);
4250 ext4_set_inode_flags(inode);
4251 unlock_new_inode(inode);
4252 return inode;
4254 bad_inode:
4255 brelse(iloc.bh);
4256 iget_failed(inode);
4257 return ERR_PTR(ret);
4260 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4262 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4263 return ERR_PTR(-EIO);
4264 return ext4_iget(sb, ino);
4267 static int ext4_inode_blocks_set(handle_t *handle,
4268 struct ext4_inode *raw_inode,
4269 struct ext4_inode_info *ei)
4271 struct inode *inode = &(ei->vfs_inode);
4272 u64 i_blocks = inode->i_blocks;
4273 struct super_block *sb = inode->i_sb;
4275 if (i_blocks <= ~0U) {
4277 * i_blocks can be represented in a 32 bit variable
4278 * as multiple of 512 bytes
4280 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4281 raw_inode->i_blocks_high = 0;
4282 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4283 return 0;
4285 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4286 return -EFBIG;
4288 if (i_blocks <= 0xffffffffffffULL) {
4290 * i_blocks can be represented in a 48 bit variable
4291 * as multiple of 512 bytes
4293 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4294 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4295 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4296 } else {
4297 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4298 /* i_block is stored in file system block size */
4299 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4300 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4301 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4303 return 0;
4306 struct other_inode {
4307 unsigned long orig_ino;
4308 struct ext4_inode *raw_inode;
4311 static int other_inode_match(struct inode * inode, unsigned long ino,
4312 void *data)
4314 struct other_inode *oi = (struct other_inode *) data;
4316 if ((inode->i_ino != ino) ||
4317 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4318 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4319 ((inode->i_state & I_DIRTY_TIME) == 0))
4320 return 0;
4321 spin_lock(&inode->i_lock);
4322 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4323 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4324 (inode->i_state & I_DIRTY_TIME)) {
4325 struct ext4_inode_info *ei = EXT4_I(inode);
4327 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4328 spin_unlock(&inode->i_lock);
4330 spin_lock(&ei->i_raw_lock);
4331 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4332 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4333 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4334 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4335 spin_unlock(&ei->i_raw_lock);
4336 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4337 return -1;
4339 spin_unlock(&inode->i_lock);
4340 return -1;
4344 * Opportunistically update the other time fields for other inodes in
4345 * the same inode table block.
4347 static void ext4_update_other_inodes_time(struct super_block *sb,
4348 unsigned long orig_ino, char *buf)
4350 struct other_inode oi;
4351 unsigned long ino;
4352 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4353 int inode_size = EXT4_INODE_SIZE(sb);
4355 oi.orig_ino = orig_ino;
4357 * Calculate the first inode in the inode table block. Inode
4358 * numbers are one-based. That is, the first inode in a block
4359 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4361 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4362 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4363 if (ino == orig_ino)
4364 continue;
4365 oi.raw_inode = (struct ext4_inode *) buf;
4366 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4371 * Post the struct inode info into an on-disk inode location in the
4372 * buffer-cache. This gobbles the caller's reference to the
4373 * buffer_head in the inode location struct.
4375 * The caller must have write access to iloc->bh.
4377 static int ext4_do_update_inode(handle_t *handle,
4378 struct inode *inode,
4379 struct ext4_iloc *iloc)
4381 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4382 struct ext4_inode_info *ei = EXT4_I(inode);
4383 struct buffer_head *bh = iloc->bh;
4384 struct super_block *sb = inode->i_sb;
4385 int err = 0, rc, block;
4386 int need_datasync = 0, set_large_file = 0;
4387 uid_t i_uid;
4388 gid_t i_gid;
4390 spin_lock(&ei->i_raw_lock);
4392 /* For fields not tracked in the in-memory inode,
4393 * initialise them to zero for new inodes. */
4394 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4395 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4397 ext4_get_inode_flags(ei);
4398 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4399 i_uid = i_uid_read(inode);
4400 i_gid = i_gid_read(inode);
4401 if (!(test_opt(inode->i_sb, NO_UID32))) {
4402 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4403 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4405 * Fix up interoperability with old kernels. Otherwise, old inodes get
4406 * re-used with the upper 16 bits of the uid/gid intact
4408 if (!ei->i_dtime) {
4409 raw_inode->i_uid_high =
4410 cpu_to_le16(high_16_bits(i_uid));
4411 raw_inode->i_gid_high =
4412 cpu_to_le16(high_16_bits(i_gid));
4413 } else {
4414 raw_inode->i_uid_high = 0;
4415 raw_inode->i_gid_high = 0;
4417 } else {
4418 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4419 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4420 raw_inode->i_uid_high = 0;
4421 raw_inode->i_gid_high = 0;
4423 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4425 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4426 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4427 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4428 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4430 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4431 if (err) {
4432 spin_unlock(&ei->i_raw_lock);
4433 goto out_brelse;
4435 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4436 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4437 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4438 raw_inode->i_file_acl_high =
4439 cpu_to_le16(ei->i_file_acl >> 32);
4440 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4441 if (ei->i_disksize != ext4_isize(raw_inode)) {
4442 ext4_isize_set(raw_inode, ei->i_disksize);
4443 need_datasync = 1;
4445 if (ei->i_disksize > 0x7fffffffULL) {
4446 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4447 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4448 EXT4_SB(sb)->s_es->s_rev_level ==
4449 cpu_to_le32(EXT4_GOOD_OLD_REV))
4450 set_large_file = 1;
4452 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4453 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4454 if (old_valid_dev(inode->i_rdev)) {
4455 raw_inode->i_block[0] =
4456 cpu_to_le32(old_encode_dev(inode->i_rdev));
4457 raw_inode->i_block[1] = 0;
4458 } else {
4459 raw_inode->i_block[0] = 0;
4460 raw_inode->i_block[1] =
4461 cpu_to_le32(new_encode_dev(inode->i_rdev));
4462 raw_inode->i_block[2] = 0;
4464 } else if (!ext4_has_inline_data(inode)) {
4465 for (block = 0; block < EXT4_N_BLOCKS; block++)
4466 raw_inode->i_block[block] = ei->i_data[block];
4469 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4470 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4471 if (ei->i_extra_isize) {
4472 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4473 raw_inode->i_version_hi =
4474 cpu_to_le32(inode->i_version >> 32);
4475 raw_inode->i_extra_isize =
4476 cpu_to_le16(ei->i_extra_isize);
4479 ext4_inode_csum_set(inode, raw_inode, ei);
4480 spin_unlock(&ei->i_raw_lock);
4481 if (inode->i_sb->s_flags & MS_LAZYTIME)
4482 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4483 bh->b_data);
4485 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4486 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4487 if (!err)
4488 err = rc;
4489 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4490 if (set_large_file) {
4491 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4492 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4493 if (err)
4494 goto out_brelse;
4495 ext4_update_dynamic_rev(sb);
4496 EXT4_SET_RO_COMPAT_FEATURE(sb,
4497 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4498 ext4_handle_sync(handle);
4499 err = ext4_handle_dirty_super(handle, sb);
4501 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4502 out_brelse:
4503 brelse(bh);
4504 ext4_std_error(inode->i_sb, err);
4505 return err;
4509 * ext4_write_inode()
4511 * We are called from a few places:
4513 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4514 * Here, there will be no transaction running. We wait for any running
4515 * transaction to commit.
4517 * - Within flush work (sys_sync(), kupdate and such).
4518 * We wait on commit, if told to.
4520 * - Within iput_final() -> write_inode_now()
4521 * We wait on commit, if told to.
4523 * In all cases it is actually safe for us to return without doing anything,
4524 * because the inode has been copied into a raw inode buffer in
4525 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4526 * writeback.
4528 * Note that we are absolutely dependent upon all inode dirtiers doing the
4529 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4530 * which we are interested.
4532 * It would be a bug for them to not do this. The code:
4534 * mark_inode_dirty(inode)
4535 * stuff();
4536 * inode->i_size = expr;
4538 * is in error because write_inode() could occur while `stuff()' is running,
4539 * and the new i_size will be lost. Plus the inode will no longer be on the
4540 * superblock's dirty inode list.
4542 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4544 int err;
4546 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4547 return 0;
4549 if (EXT4_SB(inode->i_sb)->s_journal) {
4550 if (ext4_journal_current_handle()) {
4551 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4552 dump_stack();
4553 return -EIO;
4557 * No need to force transaction in WB_SYNC_NONE mode. Also
4558 * ext4_sync_fs() will force the commit after everything is
4559 * written.
4561 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4562 return 0;
4564 err = ext4_force_commit(inode->i_sb);
4565 } else {
4566 struct ext4_iloc iloc;
4568 err = __ext4_get_inode_loc(inode, &iloc, 0);
4569 if (err)
4570 return err;
4572 * sync(2) will flush the whole buffer cache. No need to do
4573 * it here separately for each inode.
4575 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4576 sync_dirty_buffer(iloc.bh);
4577 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4578 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4579 "IO error syncing inode");
4580 err = -EIO;
4582 brelse(iloc.bh);
4584 return err;
4588 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4589 * buffers that are attached to a page stradding i_size and are undergoing
4590 * commit. In that case we have to wait for commit to finish and try again.
4592 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4594 struct page *page;
4595 unsigned offset;
4596 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4597 tid_t commit_tid = 0;
4598 int ret;
4600 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4602 * All buffers in the last page remain valid? Then there's nothing to
4603 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4604 * blocksize case
4606 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4607 return;
4608 while (1) {
4609 page = find_lock_page(inode->i_mapping,
4610 inode->i_size >> PAGE_CACHE_SHIFT);
4611 if (!page)
4612 return;
4613 ret = __ext4_journalled_invalidatepage(page, offset,
4614 PAGE_CACHE_SIZE - offset);
4615 unlock_page(page);
4616 page_cache_release(page);
4617 if (ret != -EBUSY)
4618 return;
4619 commit_tid = 0;
4620 read_lock(&journal->j_state_lock);
4621 if (journal->j_committing_transaction)
4622 commit_tid = journal->j_committing_transaction->t_tid;
4623 read_unlock(&journal->j_state_lock);
4624 if (commit_tid)
4625 jbd2_log_wait_commit(journal, commit_tid);
4630 * ext4_setattr()
4632 * Called from notify_change.
4634 * We want to trap VFS attempts to truncate the file as soon as
4635 * possible. In particular, we want to make sure that when the VFS
4636 * shrinks i_size, we put the inode on the orphan list and modify
4637 * i_disksize immediately, so that during the subsequent flushing of
4638 * dirty pages and freeing of disk blocks, we can guarantee that any
4639 * commit will leave the blocks being flushed in an unused state on
4640 * disk. (On recovery, the inode will get truncated and the blocks will
4641 * be freed, so we have a strong guarantee that no future commit will
4642 * leave these blocks visible to the user.)
4644 * Another thing we have to assure is that if we are in ordered mode
4645 * and inode is still attached to the committing transaction, we must
4646 * we start writeout of all the dirty pages which are being truncated.
4647 * This way we are sure that all the data written in the previous
4648 * transaction are already on disk (truncate waits for pages under
4649 * writeback).
4651 * Called with inode->i_mutex down.
4653 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4655 struct inode *inode = d_inode(dentry);
4656 int error, rc = 0;
4657 int orphan = 0;
4658 const unsigned int ia_valid = attr->ia_valid;
4660 error = inode_change_ok(inode, attr);
4661 if (error)
4662 return error;
4664 if (is_quota_modification(inode, attr))
4665 dquot_initialize(inode);
4666 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4667 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4668 handle_t *handle;
4670 /* (user+group)*(old+new) structure, inode write (sb,
4671 * inode block, ? - but truncate inode update has it) */
4672 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4673 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4674 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4675 if (IS_ERR(handle)) {
4676 error = PTR_ERR(handle);
4677 goto err_out;
4679 error = dquot_transfer(inode, attr);
4680 if (error) {
4681 ext4_journal_stop(handle);
4682 return error;
4684 /* Update corresponding info in inode so that everything is in
4685 * one transaction */
4686 if (attr->ia_valid & ATTR_UID)
4687 inode->i_uid = attr->ia_uid;
4688 if (attr->ia_valid & ATTR_GID)
4689 inode->i_gid = attr->ia_gid;
4690 error = ext4_mark_inode_dirty(handle, inode);
4691 ext4_journal_stop(handle);
4694 if (attr->ia_valid & ATTR_SIZE) {
4695 handle_t *handle;
4696 loff_t oldsize = inode->i_size;
4697 int shrink = (attr->ia_size <= inode->i_size);
4699 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4700 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4702 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4703 return -EFBIG;
4705 if (!S_ISREG(inode->i_mode))
4706 return -EINVAL;
4708 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4709 inode_inc_iversion(inode);
4711 if (ext4_should_order_data(inode) &&
4712 (attr->ia_size < inode->i_size)) {
4713 error = ext4_begin_ordered_truncate(inode,
4714 attr->ia_size);
4715 if (error)
4716 goto err_out;
4718 if (attr->ia_size != inode->i_size) {
4719 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4720 if (IS_ERR(handle)) {
4721 error = PTR_ERR(handle);
4722 goto err_out;
4724 if (ext4_handle_valid(handle) && shrink) {
4725 error = ext4_orphan_add(handle, inode);
4726 orphan = 1;
4728 down_write(&EXT4_I(inode)->i_data_sem);
4729 EXT4_I(inode)->i_disksize = attr->ia_size;
4730 rc = ext4_mark_inode_dirty(handle, inode);
4731 if (!error)
4732 error = rc;
4734 * We have to update i_size under i_data_sem together
4735 * with i_disksize to avoid races with writeback code
4736 * running ext4_wb_update_i_disksize().
4738 if (!error)
4739 i_size_write(inode, attr->ia_size);
4740 up_write(&EXT4_I(inode)->i_data_sem);
4741 ext4_journal_stop(handle);
4742 if (error) {
4743 if (orphan)
4744 ext4_orphan_del(NULL, inode);
4745 goto err_out;
4748 if (!shrink)
4749 pagecache_isize_extended(inode, oldsize, inode->i_size);
4752 * Blocks are going to be removed from the inode. Wait
4753 * for dio in flight. Temporarily disable
4754 * dioread_nolock to prevent livelock.
4756 if (orphan) {
4757 if (!ext4_should_journal_data(inode)) {
4758 ext4_inode_block_unlocked_dio(inode);
4759 inode_dio_wait(inode);
4760 ext4_inode_resume_unlocked_dio(inode);
4761 } else
4762 ext4_wait_for_tail_page_commit(inode);
4765 * Truncate pagecache after we've waited for commit
4766 * in data=journal mode to make pages freeable.
4768 truncate_pagecache(inode, inode->i_size);
4769 if (shrink)
4770 ext4_truncate(inode);
4773 if (!rc) {
4774 setattr_copy(inode, attr);
4775 mark_inode_dirty(inode);
4779 * If the call to ext4_truncate failed to get a transaction handle at
4780 * all, we need to clean up the in-core orphan list manually.
4782 if (orphan && inode->i_nlink)
4783 ext4_orphan_del(NULL, inode);
4785 if (!rc && (ia_valid & ATTR_MODE))
4786 rc = posix_acl_chmod(inode, inode->i_mode);
4788 err_out:
4789 ext4_std_error(inode->i_sb, error);
4790 if (!error)
4791 error = rc;
4792 return error;
4795 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4796 struct kstat *stat)
4798 struct inode *inode;
4799 unsigned long long delalloc_blocks;
4801 inode = d_inode(dentry);
4802 generic_fillattr(inode, stat);
4805 * If there is inline data in the inode, the inode will normally not
4806 * have data blocks allocated (it may have an external xattr block).
4807 * Report at least one sector for such files, so tools like tar, rsync,
4808 * others doen't incorrectly think the file is completely sparse.
4810 if (unlikely(ext4_has_inline_data(inode)))
4811 stat->blocks += (stat->size + 511) >> 9;
4814 * We can't update i_blocks if the block allocation is delayed
4815 * otherwise in the case of system crash before the real block
4816 * allocation is done, we will have i_blocks inconsistent with
4817 * on-disk file blocks.
4818 * We always keep i_blocks updated together with real
4819 * allocation. But to not confuse with user, stat
4820 * will return the blocks that include the delayed allocation
4821 * blocks for this file.
4823 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4824 EXT4_I(inode)->i_reserved_data_blocks);
4825 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4826 return 0;
4829 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4830 int pextents)
4832 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4833 return ext4_ind_trans_blocks(inode, lblocks);
4834 return ext4_ext_index_trans_blocks(inode, pextents);
4838 * Account for index blocks, block groups bitmaps and block group
4839 * descriptor blocks if modify datablocks and index blocks
4840 * worse case, the indexs blocks spread over different block groups
4842 * If datablocks are discontiguous, they are possible to spread over
4843 * different block groups too. If they are contiguous, with flexbg,
4844 * they could still across block group boundary.
4846 * Also account for superblock, inode, quota and xattr blocks
4848 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4849 int pextents)
4851 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4852 int gdpblocks;
4853 int idxblocks;
4854 int ret = 0;
4857 * How many index blocks need to touch to map @lblocks logical blocks
4858 * to @pextents physical extents?
4860 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4862 ret = idxblocks;
4865 * Now let's see how many group bitmaps and group descriptors need
4866 * to account
4868 groups = idxblocks + pextents;
4869 gdpblocks = groups;
4870 if (groups > ngroups)
4871 groups = ngroups;
4872 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4873 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4875 /* bitmaps and block group descriptor blocks */
4876 ret += groups + gdpblocks;
4878 /* Blocks for super block, inode, quota and xattr blocks */
4879 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4881 return ret;
4885 * Calculate the total number of credits to reserve to fit
4886 * the modification of a single pages into a single transaction,
4887 * which may include multiple chunks of block allocations.
4889 * This could be called via ext4_write_begin()
4891 * We need to consider the worse case, when
4892 * one new block per extent.
4894 int ext4_writepage_trans_blocks(struct inode *inode)
4896 int bpp = ext4_journal_blocks_per_page(inode);
4897 int ret;
4899 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4901 /* Account for data blocks for journalled mode */
4902 if (ext4_should_journal_data(inode))
4903 ret += bpp;
4904 return ret;
4908 * Calculate the journal credits for a chunk of data modification.
4910 * This is called from DIO, fallocate or whoever calling
4911 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4913 * journal buffers for data blocks are not included here, as DIO
4914 * and fallocate do no need to journal data buffers.
4916 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4918 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4922 * The caller must have previously called ext4_reserve_inode_write().
4923 * Give this, we know that the caller already has write access to iloc->bh.
4925 int ext4_mark_iloc_dirty(handle_t *handle,
4926 struct inode *inode, struct ext4_iloc *iloc)
4928 int err = 0;
4930 if (IS_I_VERSION(inode))
4931 inode_inc_iversion(inode);
4933 /* the do_update_inode consumes one bh->b_count */
4934 get_bh(iloc->bh);
4936 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4937 err = ext4_do_update_inode(handle, inode, iloc);
4938 put_bh(iloc->bh);
4939 return err;
4943 * On success, We end up with an outstanding reference count against
4944 * iloc->bh. This _must_ be cleaned up later.
4948 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4949 struct ext4_iloc *iloc)
4951 int err;
4953 err = ext4_get_inode_loc(inode, iloc);
4954 if (!err) {
4955 BUFFER_TRACE(iloc->bh, "get_write_access");
4956 err = ext4_journal_get_write_access(handle, iloc->bh);
4957 if (err) {
4958 brelse(iloc->bh);
4959 iloc->bh = NULL;
4962 ext4_std_error(inode->i_sb, err);
4963 return err;
4967 * Expand an inode by new_extra_isize bytes.
4968 * Returns 0 on success or negative error number on failure.
4970 static int ext4_expand_extra_isize(struct inode *inode,
4971 unsigned int new_extra_isize,
4972 struct ext4_iloc iloc,
4973 handle_t *handle)
4975 struct ext4_inode *raw_inode;
4976 struct ext4_xattr_ibody_header *header;
4978 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4979 return 0;
4981 raw_inode = ext4_raw_inode(&iloc);
4983 header = IHDR(inode, raw_inode);
4985 /* No extended attributes present */
4986 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4987 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4988 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4989 new_extra_isize);
4990 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4991 return 0;
4994 /* try to expand with EAs present */
4995 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4996 raw_inode, handle);
5000 * What we do here is to mark the in-core inode as clean with respect to inode
5001 * dirtiness (it may still be data-dirty).
5002 * This means that the in-core inode may be reaped by prune_icache
5003 * without having to perform any I/O. This is a very good thing,
5004 * because *any* task may call prune_icache - even ones which
5005 * have a transaction open against a different journal.
5007 * Is this cheating? Not really. Sure, we haven't written the
5008 * inode out, but prune_icache isn't a user-visible syncing function.
5009 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5010 * we start and wait on commits.
5012 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5014 struct ext4_iloc iloc;
5015 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5016 static unsigned int mnt_count;
5017 int err, ret;
5019 might_sleep();
5020 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5021 err = ext4_reserve_inode_write(handle, inode, &iloc);
5022 if (ext4_handle_valid(handle) &&
5023 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5024 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5026 * We need extra buffer credits since we may write into EA block
5027 * with this same handle. If journal_extend fails, then it will
5028 * only result in a minor loss of functionality for that inode.
5029 * If this is felt to be critical, then e2fsck should be run to
5030 * force a large enough s_min_extra_isize.
5032 if ((jbd2_journal_extend(handle,
5033 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5034 ret = ext4_expand_extra_isize(inode,
5035 sbi->s_want_extra_isize,
5036 iloc, handle);
5037 if (ret) {
5038 ext4_set_inode_state(inode,
5039 EXT4_STATE_NO_EXPAND);
5040 if (mnt_count !=
5041 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5042 ext4_warning(inode->i_sb,
5043 "Unable to expand inode %lu. Delete"
5044 " some EAs or run e2fsck.",
5045 inode->i_ino);
5046 mnt_count =
5047 le16_to_cpu(sbi->s_es->s_mnt_count);
5052 if (!err)
5053 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5054 return err;
5058 * ext4_dirty_inode() is called from __mark_inode_dirty()
5060 * We're really interested in the case where a file is being extended.
5061 * i_size has been changed by generic_commit_write() and we thus need
5062 * to include the updated inode in the current transaction.
5064 * Also, dquot_alloc_block() will always dirty the inode when blocks
5065 * are allocated to the file.
5067 * If the inode is marked synchronous, we don't honour that here - doing
5068 * so would cause a commit on atime updates, which we don't bother doing.
5069 * We handle synchronous inodes at the highest possible level.
5071 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5072 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5073 * to copy into the on-disk inode structure are the timestamp files.
5075 void ext4_dirty_inode(struct inode *inode, int flags)
5077 handle_t *handle;
5079 if (flags == I_DIRTY_TIME)
5080 return;
5081 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5082 if (IS_ERR(handle))
5083 goto out;
5085 ext4_mark_inode_dirty(handle, inode);
5087 ext4_journal_stop(handle);
5088 out:
5089 return;
5092 #if 0
5094 * Bind an inode's backing buffer_head into this transaction, to prevent
5095 * it from being flushed to disk early. Unlike
5096 * ext4_reserve_inode_write, this leaves behind no bh reference and
5097 * returns no iloc structure, so the caller needs to repeat the iloc
5098 * lookup to mark the inode dirty later.
5100 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5102 struct ext4_iloc iloc;
5104 int err = 0;
5105 if (handle) {
5106 err = ext4_get_inode_loc(inode, &iloc);
5107 if (!err) {
5108 BUFFER_TRACE(iloc.bh, "get_write_access");
5109 err = jbd2_journal_get_write_access(handle, iloc.bh);
5110 if (!err)
5111 err = ext4_handle_dirty_metadata(handle,
5112 NULL,
5113 iloc.bh);
5114 brelse(iloc.bh);
5117 ext4_std_error(inode->i_sb, err);
5118 return err;
5120 #endif
5122 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5124 journal_t *journal;
5125 handle_t *handle;
5126 int err;
5129 * We have to be very careful here: changing a data block's
5130 * journaling status dynamically is dangerous. If we write a
5131 * data block to the journal, change the status and then delete
5132 * that block, we risk forgetting to revoke the old log record
5133 * from the journal and so a subsequent replay can corrupt data.
5134 * So, first we make sure that the journal is empty and that
5135 * nobody is changing anything.
5138 journal = EXT4_JOURNAL(inode);
5139 if (!journal)
5140 return 0;
5141 if (is_journal_aborted(journal))
5142 return -EROFS;
5143 /* We have to allocate physical blocks for delalloc blocks
5144 * before flushing journal. otherwise delalloc blocks can not
5145 * be allocated any more. even more truncate on delalloc blocks
5146 * could trigger BUG by flushing delalloc blocks in journal.
5147 * There is no delalloc block in non-journal data mode.
5149 if (val && test_opt(inode->i_sb, DELALLOC)) {
5150 err = ext4_alloc_da_blocks(inode);
5151 if (err < 0)
5152 return err;
5155 /* Wait for all existing dio workers */
5156 ext4_inode_block_unlocked_dio(inode);
5157 inode_dio_wait(inode);
5159 jbd2_journal_lock_updates(journal);
5162 * OK, there are no updates running now, and all cached data is
5163 * synced to disk. We are now in a completely consistent state
5164 * which doesn't have anything in the journal, and we know that
5165 * no filesystem updates are running, so it is safe to modify
5166 * the inode's in-core data-journaling state flag now.
5169 if (val)
5170 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5171 else {
5172 err = jbd2_journal_flush(journal);
5173 if (err < 0) {
5174 jbd2_journal_unlock_updates(journal);
5175 ext4_inode_resume_unlocked_dio(inode);
5176 return err;
5178 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5180 ext4_set_aops(inode);
5182 jbd2_journal_unlock_updates(journal);
5183 ext4_inode_resume_unlocked_dio(inode);
5185 /* Finally we can mark the inode as dirty. */
5187 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5188 if (IS_ERR(handle))
5189 return PTR_ERR(handle);
5191 err = ext4_mark_inode_dirty(handle, inode);
5192 ext4_handle_sync(handle);
5193 ext4_journal_stop(handle);
5194 ext4_std_error(inode->i_sb, err);
5196 return err;
5199 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5201 return !buffer_mapped(bh);
5204 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5206 struct page *page = vmf->page;
5207 loff_t size;
5208 unsigned long len;
5209 int ret;
5210 struct file *file = vma->vm_file;
5211 struct inode *inode = file_inode(file);
5212 struct address_space *mapping = inode->i_mapping;
5213 handle_t *handle;
5214 get_block_t *get_block;
5215 int retries = 0;
5217 sb_start_pagefault(inode->i_sb);
5218 file_update_time(vma->vm_file);
5219 /* Delalloc case is easy... */
5220 if (test_opt(inode->i_sb, DELALLOC) &&
5221 !ext4_should_journal_data(inode) &&
5222 !ext4_nonda_switch(inode->i_sb)) {
5223 do {
5224 ret = __block_page_mkwrite(vma, vmf,
5225 ext4_da_get_block_prep);
5226 } while (ret == -ENOSPC &&
5227 ext4_should_retry_alloc(inode->i_sb, &retries));
5228 goto out_ret;
5231 lock_page(page);
5232 size = i_size_read(inode);
5233 /* Page got truncated from under us? */
5234 if (page->mapping != mapping || page_offset(page) > size) {
5235 unlock_page(page);
5236 ret = VM_FAULT_NOPAGE;
5237 goto out;
5240 if (page->index == size >> PAGE_CACHE_SHIFT)
5241 len = size & ~PAGE_CACHE_MASK;
5242 else
5243 len = PAGE_CACHE_SIZE;
5245 * Return if we have all the buffers mapped. This avoids the need to do
5246 * journal_start/journal_stop which can block and take a long time
5248 if (page_has_buffers(page)) {
5249 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5250 0, len, NULL,
5251 ext4_bh_unmapped)) {
5252 /* Wait so that we don't change page under IO */
5253 wait_for_stable_page(page);
5254 ret = VM_FAULT_LOCKED;
5255 goto out;
5258 unlock_page(page);
5259 /* OK, we need to fill the hole... */
5260 if (ext4_should_dioread_nolock(inode))
5261 get_block = ext4_get_block_write;
5262 else
5263 get_block = ext4_get_block;
5264 retry_alloc:
5265 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5266 ext4_writepage_trans_blocks(inode));
5267 if (IS_ERR(handle)) {
5268 ret = VM_FAULT_SIGBUS;
5269 goto out;
5271 ret = __block_page_mkwrite(vma, vmf, get_block);
5272 if (!ret && ext4_should_journal_data(inode)) {
5273 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5274 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5275 unlock_page(page);
5276 ret = VM_FAULT_SIGBUS;
5277 ext4_journal_stop(handle);
5278 goto out;
5280 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5282 ext4_journal_stop(handle);
5283 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5284 goto retry_alloc;
5285 out_ret:
5286 ret = block_page_mkwrite_return(ret);
5287 out:
5288 sb_end_pagefault(inode->i_sb);
5289 return ret;