fs: create and use seq_show_option for escaping
[linux/fpc-iii.git] / fs / jffs2 / readinode.c
blob28e0aab42bc34f6a26f67b82bc3f8c94a9bf4232
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/crc32.h>
19 #include <linux/pagemap.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/compiler.h>
22 #include "nodelist.h"
25 * Check the data CRC of the node.
27 * Returns: 0 if the data CRC is correct;
28 * 1 - if incorrect;
29 * error code if an error occurred.
31 static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
33 struct jffs2_raw_node_ref *ref = tn->fn->raw;
34 int err = 0, pointed = 0;
35 struct jffs2_eraseblock *jeb;
36 unsigned char *buffer;
37 uint32_t crc, ofs, len;
38 size_t retlen;
40 BUG_ON(tn->csize == 0);
42 /* Calculate how many bytes were already checked */
43 ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
44 len = tn->csize;
46 if (jffs2_is_writebuffered(c)) {
47 int adj = ofs % c->wbuf_pagesize;
48 if (likely(adj))
49 adj = c->wbuf_pagesize - adj;
51 if (adj >= tn->csize) {
52 dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
53 ref_offset(ref), tn->csize, ofs);
54 goto adj_acc;
57 ofs += adj;
58 len -= adj;
61 dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
62 ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
64 #ifndef __ECOS
65 /* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
66 * adding and jffs2_flash_read_end() interface. */
67 err = mtd_point(c->mtd, ofs, len, &retlen, (void **)&buffer, NULL);
68 if (!err && retlen < len) {
69 JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
70 mtd_unpoint(c->mtd, ofs, retlen);
71 } else if (err) {
72 if (err != -EOPNOTSUPP)
73 JFFS2_WARNING("MTD point failed: error code %d.\n", err);
74 } else
75 pointed = 1; /* succefully pointed to device */
76 #endif
78 if (!pointed) {
79 buffer = kmalloc(len, GFP_KERNEL);
80 if (unlikely(!buffer))
81 return -ENOMEM;
83 /* TODO: this is very frequent pattern, make it a separate
84 * routine */
85 err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
86 if (err) {
87 JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
88 goto free_out;
91 if (retlen != len) {
92 JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
93 err = -EIO;
94 goto free_out;
98 /* Continue calculating CRC */
99 crc = crc32(tn->partial_crc, buffer, len);
100 if(!pointed)
101 kfree(buffer);
102 #ifndef __ECOS
103 else
104 mtd_unpoint(c->mtd, ofs, len);
105 #endif
107 if (crc != tn->data_crc) {
108 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
109 ref_offset(ref), tn->data_crc, crc);
110 return 1;
113 adj_acc:
114 jeb = &c->blocks[ref->flash_offset / c->sector_size];
115 len = ref_totlen(c, jeb, ref);
116 /* If it should be REF_NORMAL, it'll get marked as such when
117 we build the fragtree, shortly. No need to worry about GC
118 moving it while it's marked REF_PRISTINE -- GC won't happen
119 till we've finished checking every inode anyway. */
120 ref->flash_offset |= REF_PRISTINE;
122 * Mark the node as having been checked and fix the
123 * accounting accordingly.
125 spin_lock(&c->erase_completion_lock);
126 jeb->used_size += len;
127 jeb->unchecked_size -= len;
128 c->used_size += len;
129 c->unchecked_size -= len;
130 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
131 spin_unlock(&c->erase_completion_lock);
133 return 0;
135 free_out:
136 if(!pointed)
137 kfree(buffer);
138 #ifndef __ECOS
139 else
140 mtd_unpoint(c->mtd, ofs, len);
141 #endif
142 return err;
146 * Helper function for jffs2_add_older_frag_to_fragtree().
148 * Checks the node if we are in the checking stage.
150 static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
152 int ret;
154 BUG_ON(ref_obsolete(tn->fn->raw));
156 /* We only check the data CRC of unchecked nodes */
157 if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
158 return 0;
160 dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
161 tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
163 ret = check_node_data(c, tn);
164 if (unlikely(ret < 0)) {
165 JFFS2_ERROR("check_node_data() returned error: %d.\n",
166 ret);
167 } else if (unlikely(ret > 0)) {
168 dbg_readinode("CRC error, mark it obsolete.\n");
169 jffs2_mark_node_obsolete(c, tn->fn->raw);
172 return ret;
175 static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
177 struct rb_node *next;
178 struct jffs2_tmp_dnode_info *tn = NULL;
180 dbg_readinode("root %p, offset %d\n", tn_root, offset);
182 next = tn_root->rb_node;
184 while (next) {
185 tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);
187 if (tn->fn->ofs < offset)
188 next = tn->rb.rb_right;
189 else if (tn->fn->ofs >= offset)
190 next = tn->rb.rb_left;
191 else
192 break;
195 return tn;
199 static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
201 jffs2_mark_node_obsolete(c, tn->fn->raw);
202 jffs2_free_full_dnode(tn->fn);
203 jffs2_free_tmp_dnode_info(tn);
206 * This function is used when we read an inode. Data nodes arrive in
207 * arbitrary order -- they may be older or newer than the nodes which
208 * are already in the tree. Where overlaps occur, the older node can
209 * be discarded as long as the newer passes the CRC check. We don't
210 * bother to keep track of holes in this rbtree, and neither do we deal
211 * with frags -- we can have multiple entries starting at the same
212 * offset, and the one with the smallest length will come first in the
213 * ordering.
215 * Returns 0 if the node was handled (including marking it obsolete)
216 * < 0 an if error occurred
218 static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
219 struct jffs2_readinode_info *rii,
220 struct jffs2_tmp_dnode_info *tn)
222 uint32_t fn_end = tn->fn->ofs + tn->fn->size;
223 struct jffs2_tmp_dnode_info *this, *ptn;
225 dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));
227 /* If a node has zero dsize, we only have to keep it if it might be the
228 node with highest version -- i.e. the one which will end up as f->metadata.
229 Note that such nodes won't be REF_UNCHECKED since there are no data to
230 check anyway. */
231 if (!tn->fn->size) {
232 if (rii->mdata_tn) {
233 if (rii->mdata_tn->version < tn->version) {
234 /* We had a candidate mdata node already */
235 dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
236 jffs2_kill_tn(c, rii->mdata_tn);
237 } else {
238 dbg_readinode("kill new mdata with ver %d (older than existing %d\n",
239 tn->version, rii->mdata_tn->version);
240 jffs2_kill_tn(c, tn);
241 return 0;
244 rii->mdata_tn = tn;
245 dbg_readinode("keep new mdata with ver %d\n", tn->version);
246 return 0;
249 /* Find the earliest node which _may_ be relevant to this one */
250 this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
251 if (this) {
252 /* If the node is coincident with another at a lower address,
253 back up until the other node is found. It may be relevant */
254 while (this->overlapped) {
255 ptn = tn_prev(this);
256 if (!ptn) {
258 * We killed a node which set the overlapped
259 * flags during the scan. Fix it up.
261 this->overlapped = 0;
262 break;
264 this = ptn;
266 dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
269 while (this) {
270 if (this->fn->ofs > fn_end)
271 break;
272 dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
273 this->version, this->fn->ofs, this->fn->size);
275 if (this->version == tn->version) {
276 /* Version number collision means REF_PRISTINE GC. Accept either of them
277 as long as the CRC is correct. Check the one we have already... */
278 if (!check_tn_node(c, this)) {
279 /* The one we already had was OK. Keep it and throw away the new one */
280 dbg_readinode("Like old node. Throw away new\n");
281 jffs2_kill_tn(c, tn);
282 return 0;
283 } else {
284 /* Who cares if the new one is good; keep it for now anyway. */
285 dbg_readinode("Like new node. Throw away old\n");
286 rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
287 jffs2_kill_tn(c, this);
288 /* Same overlapping from in front and behind */
289 return 0;
292 if (this->version < tn->version &&
293 this->fn->ofs >= tn->fn->ofs &&
294 this->fn->ofs + this->fn->size <= fn_end) {
295 /* New node entirely overlaps 'this' */
296 if (check_tn_node(c, tn)) {
297 dbg_readinode("new node bad CRC\n");
298 jffs2_kill_tn(c, tn);
299 return 0;
301 /* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
302 while (this && this->fn->ofs + this->fn->size <= fn_end) {
303 struct jffs2_tmp_dnode_info *next = tn_next(this);
304 if (this->version < tn->version) {
305 tn_erase(this, &rii->tn_root);
306 dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
307 this->version, this->fn->ofs,
308 this->fn->ofs+this->fn->size);
309 jffs2_kill_tn(c, this);
311 this = next;
313 dbg_readinode("Done killing overlapped nodes\n");
314 continue;
316 if (this->version > tn->version &&
317 this->fn->ofs <= tn->fn->ofs &&
318 this->fn->ofs+this->fn->size >= fn_end) {
319 /* New node entirely overlapped by 'this' */
320 if (!check_tn_node(c, this)) {
321 dbg_readinode("Good CRC on old node. Kill new\n");
322 jffs2_kill_tn(c, tn);
323 return 0;
325 /* ... but 'this' was bad. Replace it... */
326 dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
327 tn_erase(this, &rii->tn_root);
328 jffs2_kill_tn(c, this);
329 break;
332 this = tn_next(this);
335 /* We neither completely obsoleted nor were completely
336 obsoleted by an earlier node. Insert into the tree */
338 struct rb_node *parent;
339 struct rb_node **link = &rii->tn_root.rb_node;
340 struct jffs2_tmp_dnode_info *insert_point = NULL;
342 while (*link) {
343 parent = *link;
344 insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
345 if (tn->fn->ofs > insert_point->fn->ofs)
346 link = &insert_point->rb.rb_right;
347 else if (tn->fn->ofs < insert_point->fn->ofs ||
348 tn->fn->size < insert_point->fn->size)
349 link = &insert_point->rb.rb_left;
350 else
351 link = &insert_point->rb.rb_right;
353 rb_link_node(&tn->rb, &insert_point->rb, link);
354 rb_insert_color(&tn->rb, &rii->tn_root);
357 /* If there's anything behind that overlaps us, note it */
358 this = tn_prev(tn);
359 if (this) {
360 while (1) {
361 if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
362 dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
363 this, this->version, this->fn->ofs,
364 this->fn->ofs+this->fn->size);
365 tn->overlapped = 1;
366 break;
368 if (!this->overlapped)
369 break;
371 ptn = tn_prev(this);
372 if (!ptn) {
374 * We killed a node which set the overlapped
375 * flags during the scan. Fix it up.
377 this->overlapped = 0;
378 break;
380 this = ptn;
384 /* If the new node overlaps anything ahead, note it */
385 this = tn_next(tn);
386 while (this && this->fn->ofs < fn_end) {
387 this->overlapped = 1;
388 dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
389 this->version, this->fn->ofs,
390 this->fn->ofs+this->fn->size);
391 this = tn_next(this);
393 return 0;
396 /* Trivial function to remove the last node in the tree. Which by definition
397 has no right-hand child — so can be removed just by making its left-hand
398 child (if any) take its place under its parent. Since this is only done
399 when we're consuming the whole tree, there's no need to use rb_erase()
400 and let it worry about adjusting colours and balancing the tree. That
401 would just be a waste of time. */
402 static void eat_last(struct rb_root *root, struct rb_node *node)
404 struct rb_node *parent = rb_parent(node);
405 struct rb_node **link;
407 /* LAST! */
408 BUG_ON(node->rb_right);
410 if (!parent)
411 link = &root->rb_node;
412 else if (node == parent->rb_left)
413 link = &parent->rb_left;
414 else
415 link = &parent->rb_right;
417 *link = node->rb_left;
418 if (node->rb_left)
419 node->rb_left->__rb_parent_color = node->__rb_parent_color;
422 /* We put the version tree in reverse order, so we can use the same eat_last()
423 function that we use to consume the tmpnode tree (tn_root). */
424 static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
426 struct rb_node **link = &ver_root->rb_node;
427 struct rb_node *parent = NULL;
428 struct jffs2_tmp_dnode_info *this_tn;
430 while (*link) {
431 parent = *link;
432 this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
434 if (tn->version > this_tn->version)
435 link = &parent->rb_left;
436 else
437 link = &parent->rb_right;
439 dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
440 rb_link_node(&tn->rb, parent, link);
441 rb_insert_color(&tn->rb, ver_root);
444 /* Build final, normal fragtree from tn tree. It doesn't matter which order
445 we add nodes to the real fragtree, as long as they don't overlap. And
446 having thrown away the majority of overlapped nodes as we went, there
447 really shouldn't be many sets of nodes which do overlap. If we start at
448 the end, we can use the overlap markers -- we can just eat nodes which
449 aren't overlapped, and when we encounter nodes which _do_ overlap we
450 sort them all into a temporary tree in version order before replaying them. */
451 static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
452 struct jffs2_inode_info *f,
453 struct jffs2_readinode_info *rii)
455 struct jffs2_tmp_dnode_info *pen, *last, *this;
456 struct rb_root ver_root = RB_ROOT;
457 uint32_t high_ver = 0;
459 if (rii->mdata_tn) {
460 dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
461 high_ver = rii->mdata_tn->version;
462 rii->latest_ref = rii->mdata_tn->fn->raw;
464 #ifdef JFFS2_DBG_READINODE_MESSAGES
465 this = tn_last(&rii->tn_root);
466 while (this) {
467 dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
468 this->fn->ofs+this->fn->size, this->overlapped);
469 this = tn_prev(this);
471 #endif
472 pen = tn_last(&rii->tn_root);
473 while ((last = pen)) {
474 pen = tn_prev(last);
476 eat_last(&rii->tn_root, &last->rb);
477 ver_insert(&ver_root, last);
479 if (unlikely(last->overlapped)) {
480 if (pen)
481 continue;
483 * We killed a node which set the overlapped
484 * flags during the scan. Fix it up.
486 last->overlapped = 0;
489 /* Now we have a bunch of nodes in reverse version
490 order, in the tree at ver_root. Most of the time,
491 there'll actually be only one node in the 'tree',
492 in fact. */
493 this = tn_last(&ver_root);
495 while (this) {
496 struct jffs2_tmp_dnode_info *vers_next;
497 int ret;
498 vers_next = tn_prev(this);
499 eat_last(&ver_root, &this->rb);
500 if (check_tn_node(c, this)) {
501 dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
502 this->version, this->fn->ofs,
503 this->fn->ofs+this->fn->size);
504 jffs2_kill_tn(c, this);
505 } else {
506 if (this->version > high_ver) {
507 /* Note that this is different from the other
508 highest_version, because this one is only
509 counting _valid_ nodes which could give the
510 latest inode metadata */
511 high_ver = this->version;
512 rii->latest_ref = this->fn->raw;
514 dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
515 this, this->version, this->fn->ofs,
516 this->fn->ofs+this->fn->size, this->overlapped);
518 ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
519 if (ret) {
520 /* Free the nodes in vers_root; let the caller
521 deal with the rest */
522 JFFS2_ERROR("Add node to tree failed %d\n", ret);
523 while (1) {
524 vers_next = tn_prev(this);
525 if (check_tn_node(c, this))
526 jffs2_mark_node_obsolete(c, this->fn->raw);
527 jffs2_free_full_dnode(this->fn);
528 jffs2_free_tmp_dnode_info(this);
529 this = vers_next;
530 if (!this)
531 break;
532 eat_last(&ver_root, &vers_next->rb);
534 return ret;
536 jffs2_free_tmp_dnode_info(this);
538 this = vers_next;
541 return 0;
544 static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
546 struct jffs2_tmp_dnode_info *tn, *next;
548 rbtree_postorder_for_each_entry_safe(tn, next, list, rb) {
549 jffs2_free_full_dnode(tn->fn);
550 jffs2_free_tmp_dnode_info(tn);
553 *list = RB_ROOT;
556 static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
558 struct jffs2_full_dirent *next;
560 while (fd) {
561 next = fd->next;
562 jffs2_free_full_dirent(fd);
563 fd = next;
567 /* Returns first valid node after 'ref'. May return 'ref' */
568 static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
570 while (ref && ref->next_in_ino) {
571 if (!ref_obsolete(ref))
572 return ref;
573 dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
574 ref = ref->next_in_ino;
576 return NULL;
580 * Helper function for jffs2_get_inode_nodes().
581 * It is called every time an directory entry node is found.
583 * Returns: 0 on success;
584 * negative error code on failure.
586 static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
587 struct jffs2_raw_dirent *rd, size_t read,
588 struct jffs2_readinode_info *rii)
590 struct jffs2_full_dirent *fd;
591 uint32_t crc;
593 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
594 BUG_ON(ref_obsolete(ref));
596 crc = crc32(0, rd, sizeof(*rd) - 8);
597 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
598 JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
599 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
600 jffs2_mark_node_obsolete(c, ref);
601 return 0;
604 /* If we've never checked the CRCs on this node, check them now */
605 if (ref_flags(ref) == REF_UNCHECKED) {
606 struct jffs2_eraseblock *jeb;
607 int len;
609 /* Sanity check */
610 if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
611 JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
612 ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
613 jffs2_mark_node_obsolete(c, ref);
614 return 0;
617 jeb = &c->blocks[ref->flash_offset / c->sector_size];
618 len = ref_totlen(c, jeb, ref);
620 spin_lock(&c->erase_completion_lock);
621 jeb->used_size += len;
622 jeb->unchecked_size -= len;
623 c->used_size += len;
624 c->unchecked_size -= len;
625 ref->flash_offset = ref_offset(ref) | dirent_node_state(rd);
626 spin_unlock(&c->erase_completion_lock);
629 fd = jffs2_alloc_full_dirent(rd->nsize + 1);
630 if (unlikely(!fd))
631 return -ENOMEM;
633 fd->raw = ref;
634 fd->version = je32_to_cpu(rd->version);
635 fd->ino = je32_to_cpu(rd->ino);
636 fd->type = rd->type;
638 if (fd->version > rii->highest_version)
639 rii->highest_version = fd->version;
641 /* Pick out the mctime of the latest dirent */
642 if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
643 rii->mctime_ver = fd->version;
644 rii->latest_mctime = je32_to_cpu(rd->mctime);
648 * Copy as much of the name as possible from the raw
649 * dirent we've already read from the flash.
651 if (read > sizeof(*rd))
652 memcpy(&fd->name[0], &rd->name[0],
653 min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
655 /* Do we need to copy any more of the name directly from the flash? */
656 if (rd->nsize + sizeof(*rd) > read) {
657 /* FIXME: point() */
658 int err;
659 int already = read - sizeof(*rd);
661 err = jffs2_flash_read(c, (ref_offset(ref)) + read,
662 rd->nsize - already, &read, &fd->name[already]);
663 if (unlikely(read != rd->nsize - already) && likely(!err))
664 return -EIO;
666 if (unlikely(err)) {
667 JFFS2_ERROR("read remainder of name: error %d\n", err);
668 jffs2_free_full_dirent(fd);
669 return -EIO;
673 fd->nhash = full_name_hash(fd->name, rd->nsize);
674 fd->next = NULL;
675 fd->name[rd->nsize] = '\0';
678 * Wheee. We now have a complete jffs2_full_dirent structure, with
679 * the name in it and everything. Link it into the list
681 jffs2_add_fd_to_list(c, fd, &rii->fds);
683 return 0;
687 * Helper function for jffs2_get_inode_nodes().
688 * It is called every time an inode node is found.
690 * Returns: 0 on success (possibly after marking a bad node obsolete);
691 * negative error code on failure.
693 static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
694 struct jffs2_raw_inode *rd, int rdlen,
695 struct jffs2_readinode_info *rii)
697 struct jffs2_tmp_dnode_info *tn;
698 uint32_t len, csize;
699 int ret = 0;
700 uint32_t crc;
702 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
703 BUG_ON(ref_obsolete(ref));
705 crc = crc32(0, rd, sizeof(*rd) - 8);
706 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
707 JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
708 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
709 jffs2_mark_node_obsolete(c, ref);
710 return 0;
713 tn = jffs2_alloc_tmp_dnode_info();
714 if (!tn) {
715 JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
716 return -ENOMEM;
719 tn->partial_crc = 0;
720 csize = je32_to_cpu(rd->csize);
722 /* If we've never checked the CRCs on this node, check them now */
723 if (ref_flags(ref) == REF_UNCHECKED) {
725 /* Sanity checks */
726 if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
727 unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
728 JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
729 jffs2_dbg_dump_node(c, ref_offset(ref));
730 jffs2_mark_node_obsolete(c, ref);
731 goto free_out;
734 if (jffs2_is_writebuffered(c) && csize != 0) {
735 /* At this point we are supposed to check the data CRC
736 * of our unchecked node. But thus far, we do not
737 * know whether the node is valid or obsolete. To
738 * figure this out, we need to walk all the nodes of
739 * the inode and build the inode fragtree. We don't
740 * want to spend time checking data of nodes which may
741 * later be found to be obsolete. So we put off the full
742 * data CRC checking until we have read all the inode
743 * nodes and have started building the fragtree.
745 * The fragtree is being built starting with nodes
746 * having the highest version number, so we'll be able
747 * to detect whether a node is valid (i.e., it is not
748 * overlapped by a node with higher version) or not.
749 * And we'll be able to check only those nodes, which
750 * are not obsolete.
752 * Of course, this optimization only makes sense in case
753 * of NAND flashes (or other flashes with
754 * !jffs2_can_mark_obsolete()), since on NOR flashes
755 * nodes are marked obsolete physically.
757 * Since NAND flashes (or other flashes with
758 * jffs2_is_writebuffered(c)) are anyway read by
759 * fractions of c->wbuf_pagesize, and we have just read
760 * the node header, it is likely that the starting part
761 * of the node data is also read when we read the
762 * header. So we don't mind to check the CRC of the
763 * starting part of the data of the node now, and check
764 * the second part later (in jffs2_check_node_data()).
765 * Of course, we will not need to re-read and re-check
766 * the NAND page which we have just read. This is why we
767 * read the whole NAND page at jffs2_get_inode_nodes(),
768 * while we needed only the node header.
770 unsigned char *buf;
772 /* 'buf' will point to the start of data */
773 buf = (unsigned char *)rd + sizeof(*rd);
774 /* len will be the read data length */
775 len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
776 tn->partial_crc = crc32(0, buf, len);
778 dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);
780 /* If we actually calculated the whole data CRC
781 * and it is wrong, drop the node. */
782 if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
783 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
784 ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
785 jffs2_mark_node_obsolete(c, ref);
786 goto free_out;
789 } else if (csize == 0) {
791 * We checked the header CRC. If the node has no data, adjust
792 * the space accounting now. For other nodes this will be done
793 * later either when the node is marked obsolete or when its
794 * data is checked.
796 struct jffs2_eraseblock *jeb;
798 dbg_readinode("the node has no data.\n");
799 jeb = &c->blocks[ref->flash_offset / c->sector_size];
800 len = ref_totlen(c, jeb, ref);
802 spin_lock(&c->erase_completion_lock);
803 jeb->used_size += len;
804 jeb->unchecked_size -= len;
805 c->used_size += len;
806 c->unchecked_size -= len;
807 ref->flash_offset = ref_offset(ref) | REF_NORMAL;
808 spin_unlock(&c->erase_completion_lock);
812 tn->fn = jffs2_alloc_full_dnode();
813 if (!tn->fn) {
814 JFFS2_ERROR("alloc fn failed\n");
815 ret = -ENOMEM;
816 goto free_out;
819 tn->version = je32_to_cpu(rd->version);
820 tn->fn->ofs = je32_to_cpu(rd->offset);
821 tn->data_crc = je32_to_cpu(rd->data_crc);
822 tn->csize = csize;
823 tn->fn->raw = ref;
824 tn->overlapped = 0;
826 if (tn->version > rii->highest_version)
827 rii->highest_version = tn->version;
829 /* There was a bug where we wrote hole nodes out with
830 csize/dsize swapped. Deal with it */
831 if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
832 tn->fn->size = csize;
833 else // normal case...
834 tn->fn->size = je32_to_cpu(rd->dsize);
836 dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
837 ref_offset(ref), je32_to_cpu(rd->version),
838 je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);
840 ret = jffs2_add_tn_to_tree(c, rii, tn);
842 if (ret) {
843 jffs2_free_full_dnode(tn->fn);
844 free_out:
845 jffs2_free_tmp_dnode_info(tn);
846 return ret;
848 #ifdef JFFS2_DBG_READINODE2_MESSAGES
849 dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version));
850 tn = tn_first(&rii->tn_root);
851 while (tn) {
852 dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n",
853 tn, tn->version, tn->fn->ofs,
854 tn->fn->ofs+tn->fn->size, tn->overlapped);
855 tn = tn_next(tn);
857 #endif
858 return 0;
862 * Helper function for jffs2_get_inode_nodes().
863 * It is called every time an unknown node is found.
865 * Returns: 0 on success;
866 * negative error code on failure.
868 static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
870 /* We don't mark unknown nodes as REF_UNCHECKED */
871 if (ref_flags(ref) == REF_UNCHECKED) {
872 JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
873 ref_offset(ref));
874 JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
875 je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
876 je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
877 jffs2_mark_node_obsolete(c, ref);
878 return 0;
881 un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
883 switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
885 case JFFS2_FEATURE_INCOMPAT:
886 JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
887 je16_to_cpu(un->nodetype), ref_offset(ref));
888 /* EEP */
889 BUG();
890 break;
892 case JFFS2_FEATURE_ROCOMPAT:
893 JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
894 je16_to_cpu(un->nodetype), ref_offset(ref));
895 BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
896 break;
898 case JFFS2_FEATURE_RWCOMPAT_COPY:
899 JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
900 je16_to_cpu(un->nodetype), ref_offset(ref));
901 break;
903 case JFFS2_FEATURE_RWCOMPAT_DELETE:
904 JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
905 je16_to_cpu(un->nodetype), ref_offset(ref));
906 jffs2_mark_node_obsolete(c, ref);
907 return 0;
910 return 0;
914 * Helper function for jffs2_get_inode_nodes().
915 * The function detects whether more data should be read and reads it if yes.
917 * Returns: 0 on success;
918 * negative error code on failure.
920 static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
921 int needed_len, int *rdlen, unsigned char *buf)
923 int err, to_read = needed_len - *rdlen;
924 size_t retlen;
925 uint32_t offs;
927 if (jffs2_is_writebuffered(c)) {
928 int rem = to_read % c->wbuf_pagesize;
930 if (rem)
931 to_read += c->wbuf_pagesize - rem;
934 /* We need to read more data */
935 offs = ref_offset(ref) + *rdlen;
937 dbg_readinode("read more %d bytes\n", to_read);
939 err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
940 if (err) {
941 JFFS2_ERROR("can not read %d bytes from 0x%08x, "
942 "error code: %d.\n", to_read, offs, err);
943 return err;
946 if (retlen < to_read) {
947 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
948 offs, retlen, to_read);
949 return -EIO;
952 *rdlen += to_read;
953 return 0;
956 /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
957 with this ino. Perform a preliminary ordering on data nodes, throwing away
958 those which are completely obsoleted by newer ones. The naïve approach we
959 use to take of just returning them _all_ in version order will cause us to
960 run out of memory in certain degenerate cases. */
961 static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
962 struct jffs2_readinode_info *rii)
964 struct jffs2_raw_node_ref *ref, *valid_ref;
965 unsigned char *buf = NULL;
966 union jffs2_node_union *node;
967 size_t retlen;
968 int len, err;
970 rii->mctime_ver = 0;
972 dbg_readinode("ino #%u\n", f->inocache->ino);
974 /* FIXME: in case of NOR and available ->point() this
975 * needs to be fixed. */
976 len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
977 buf = kmalloc(len, GFP_KERNEL);
978 if (!buf)
979 return -ENOMEM;
981 spin_lock(&c->erase_completion_lock);
982 valid_ref = jffs2_first_valid_node(f->inocache->nodes);
983 if (!valid_ref && f->inocache->ino != 1)
984 JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
985 while (valid_ref) {
986 /* We can hold a pointer to a non-obsolete node without the spinlock,
987 but _obsolete_ nodes may disappear at any time, if the block
988 they're in gets erased. So if we mark 'ref' obsolete while we're
989 not holding the lock, it can go away immediately. For that reason,
990 we find the next valid node first, before processing 'ref'.
992 ref = valid_ref;
993 valid_ref = jffs2_first_valid_node(ref->next_in_ino);
994 spin_unlock(&c->erase_completion_lock);
996 cond_resched();
999 * At this point we don't know the type of the node we're going
1000 * to read, so we do not know the size of its header. In order
1001 * to minimize the amount of flash IO we assume the header is
1002 * of size = JFFS2_MIN_NODE_HEADER.
1004 len = JFFS2_MIN_NODE_HEADER;
1005 if (jffs2_is_writebuffered(c)) {
1006 int end, rem;
1009 * We are about to read JFFS2_MIN_NODE_HEADER bytes,
1010 * but this flash has some minimal I/O unit. It is
1011 * possible that we'll need to read more soon, so read
1012 * up to the next min. I/O unit, in order not to
1013 * re-read the same min. I/O unit twice.
1015 end = ref_offset(ref) + len;
1016 rem = end % c->wbuf_pagesize;
1017 if (rem)
1018 end += c->wbuf_pagesize - rem;
1019 len = end - ref_offset(ref);
1022 dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));
1024 /* FIXME: point() */
1025 err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
1026 if (err) {
1027 JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ref_offset(ref), err);
1028 goto free_out;
1031 if (retlen < len) {
1032 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
1033 err = -EIO;
1034 goto free_out;
1037 node = (union jffs2_node_union *)buf;
1039 /* No need to mask in the valid bit; it shouldn't be invalid */
1040 if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
1041 JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
1042 ref_offset(ref), je16_to_cpu(node->u.magic),
1043 je16_to_cpu(node->u.nodetype),
1044 je32_to_cpu(node->u.totlen),
1045 je32_to_cpu(node->u.hdr_crc));
1046 jffs2_dbg_dump_node(c, ref_offset(ref));
1047 jffs2_mark_node_obsolete(c, ref);
1048 goto cont;
1050 if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
1051 /* Not a JFFS2 node, whinge and move on */
1052 JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
1053 je16_to_cpu(node->u.magic), ref_offset(ref));
1054 jffs2_mark_node_obsolete(c, ref);
1055 goto cont;
1058 switch (je16_to_cpu(node->u.nodetype)) {
1060 case JFFS2_NODETYPE_DIRENT:
1062 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) &&
1063 len < sizeof(struct jffs2_raw_dirent)) {
1064 err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
1065 if (unlikely(err))
1066 goto free_out;
1069 err = read_direntry(c, ref, &node->d, retlen, rii);
1070 if (unlikely(err))
1071 goto free_out;
1073 break;
1075 case JFFS2_NODETYPE_INODE:
1077 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) &&
1078 len < sizeof(struct jffs2_raw_inode)) {
1079 err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
1080 if (unlikely(err))
1081 goto free_out;
1084 err = read_dnode(c, ref, &node->i, len, rii);
1085 if (unlikely(err))
1086 goto free_out;
1088 break;
1090 default:
1091 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) &&
1092 len < sizeof(struct jffs2_unknown_node)) {
1093 err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
1094 if (unlikely(err))
1095 goto free_out;
1098 err = read_unknown(c, ref, &node->u);
1099 if (unlikely(err))
1100 goto free_out;
1103 cont:
1104 spin_lock(&c->erase_completion_lock);
1107 spin_unlock(&c->erase_completion_lock);
1108 kfree(buf);
1110 f->highest_version = rii->highest_version;
1112 dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
1113 f->inocache->ino, rii->highest_version, rii->latest_mctime,
1114 rii->mctime_ver);
1115 return 0;
1117 free_out:
1118 jffs2_free_tmp_dnode_info_list(&rii->tn_root);
1119 jffs2_free_full_dirent_list(rii->fds);
1120 rii->fds = NULL;
1121 kfree(buf);
1122 return err;
1125 static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
1126 struct jffs2_inode_info *f,
1127 struct jffs2_raw_inode *latest_node)
1129 struct jffs2_readinode_info rii;
1130 uint32_t crc, new_size;
1131 size_t retlen;
1132 int ret;
1134 dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino,
1135 f->inocache->pino_nlink);
1137 memset(&rii, 0, sizeof(rii));
1139 /* Grab all nodes relevant to this ino */
1140 ret = jffs2_get_inode_nodes(c, f, &rii);
1142 if (ret) {
1143 JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
1144 if (f->inocache->state == INO_STATE_READING)
1145 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1146 return ret;
1149 ret = jffs2_build_inode_fragtree(c, f, &rii);
1150 if (ret) {
1151 JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
1152 f->inocache->ino, ret);
1153 if (f->inocache->state == INO_STATE_READING)
1154 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1155 jffs2_free_tmp_dnode_info_list(&rii.tn_root);
1156 /* FIXME: We could at least crc-check them all */
1157 if (rii.mdata_tn) {
1158 jffs2_free_full_dnode(rii.mdata_tn->fn);
1159 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1160 rii.mdata_tn = NULL;
1162 return ret;
1165 if (rii.mdata_tn) {
1166 if (rii.mdata_tn->fn->raw == rii.latest_ref) {
1167 f->metadata = rii.mdata_tn->fn;
1168 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1169 } else {
1170 jffs2_kill_tn(c, rii.mdata_tn);
1172 rii.mdata_tn = NULL;
1175 f->dents = rii.fds;
1177 jffs2_dbg_fragtree_paranoia_check_nolock(f);
1179 if (unlikely(!rii.latest_ref)) {
1180 /* No data nodes for this inode. */
1181 if (f->inocache->ino != 1) {
1182 JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
1183 if (!rii.fds) {
1184 if (f->inocache->state == INO_STATE_READING)
1185 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1186 return -EIO;
1188 JFFS2_NOTICE("but it has children so we fake some modes for it\n");
1190 latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
1191 latest_node->version = cpu_to_je32(0);
1192 latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
1193 latest_node->isize = cpu_to_je32(0);
1194 latest_node->gid = cpu_to_je16(0);
1195 latest_node->uid = cpu_to_je16(0);
1196 if (f->inocache->state == INO_STATE_READING)
1197 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1198 return 0;
1201 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
1202 if (ret || retlen != sizeof(*latest_node)) {
1203 JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
1204 ret, retlen, sizeof(*latest_node));
1205 /* FIXME: If this fails, there seems to be a memory leak. Find it. */
1206 return ret ? ret : -EIO;
1209 crc = crc32(0, latest_node, sizeof(*latest_node)-8);
1210 if (crc != je32_to_cpu(latest_node->node_crc)) {
1211 JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
1212 f->inocache->ino, ref_offset(rii.latest_ref));
1213 return -EIO;
1216 switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
1217 case S_IFDIR:
1218 if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
1219 /* The times in the latest_node are actually older than
1220 mctime in the latest dirent. Cheat. */
1221 latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
1223 break;
1226 case S_IFREG:
1227 /* If it was a regular file, truncate it to the latest node's isize */
1228 new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
1229 if (new_size != je32_to_cpu(latest_node->isize)) {
1230 JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n",
1231 f->inocache->ino, je32_to_cpu(latest_node->isize), new_size);
1232 latest_node->isize = cpu_to_je32(new_size);
1234 break;
1236 case S_IFLNK:
1237 /* Hack to work around broken isize in old symlink code.
1238 Remove this when dwmw2 comes to his senses and stops
1239 symlinks from being an entirely gratuitous special
1240 case. */
1241 if (!je32_to_cpu(latest_node->isize))
1242 latest_node->isize = latest_node->dsize;
1244 if (f->inocache->state != INO_STATE_CHECKING) {
1245 /* Symlink's inode data is the target path. Read it and
1246 * keep in RAM to facilitate quick follow symlink
1247 * operation. */
1248 uint32_t csize = je32_to_cpu(latest_node->csize);
1249 if (csize > JFFS2_MAX_NAME_LEN)
1250 return -ENAMETOOLONG;
1251 f->target = kmalloc(csize + 1, GFP_KERNEL);
1252 if (!f->target) {
1253 JFFS2_ERROR("can't allocate %u bytes of memory for the symlink target path cache\n", csize);
1254 return -ENOMEM;
1257 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
1258 csize, &retlen, (char *)f->target);
1260 if (ret || retlen != csize) {
1261 if (retlen != csize)
1262 ret = -EIO;
1263 kfree(f->target);
1264 f->target = NULL;
1265 return ret;
1268 f->target[csize] = '\0';
1269 dbg_readinode("symlink's target '%s' cached\n", f->target);
1272 /* fall through... */
1274 case S_IFBLK:
1275 case S_IFCHR:
1276 /* Certain inode types should have only one data node, and it's
1277 kept as the metadata node */
1278 if (f->metadata) {
1279 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
1280 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1281 return -EIO;
1283 if (!frag_first(&f->fragtree)) {
1284 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
1285 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1286 return -EIO;
1288 /* ASSERT: f->fraglist != NULL */
1289 if (frag_next(frag_first(&f->fragtree))) {
1290 JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
1291 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1292 /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
1293 return -EIO;
1295 /* OK. We're happy */
1296 f->metadata = frag_first(&f->fragtree)->node;
1297 jffs2_free_node_frag(frag_first(&f->fragtree));
1298 f->fragtree = RB_ROOT;
1299 break;
1301 if (f->inocache->state == INO_STATE_READING)
1302 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1304 return 0;
1307 /* Scan the list of all nodes present for this ino, build map of versions, etc. */
1308 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
1309 uint32_t ino, struct jffs2_raw_inode *latest_node)
1311 dbg_readinode("read inode #%u\n", ino);
1313 retry_inocache:
1314 spin_lock(&c->inocache_lock);
1315 f->inocache = jffs2_get_ino_cache(c, ino);
1317 if (f->inocache) {
1318 /* Check its state. We may need to wait before we can use it */
1319 switch(f->inocache->state) {
1320 case INO_STATE_UNCHECKED:
1321 case INO_STATE_CHECKEDABSENT:
1322 f->inocache->state = INO_STATE_READING;
1323 break;
1325 case INO_STATE_CHECKING:
1326 case INO_STATE_GC:
1327 /* If it's in either of these states, we need
1328 to wait for whoever's got it to finish and
1329 put it back. */
1330 dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
1331 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
1332 goto retry_inocache;
1334 case INO_STATE_READING:
1335 case INO_STATE_PRESENT:
1336 /* Eep. This should never happen. It can
1337 happen if Linux calls read_inode() again
1338 before clear_inode() has finished though. */
1339 JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
1340 /* Fail. That's probably better than allowing it to succeed */
1341 f->inocache = NULL;
1342 break;
1344 default:
1345 BUG();
1348 spin_unlock(&c->inocache_lock);
1350 if (!f->inocache && ino == 1) {
1351 /* Special case - no root inode on medium */
1352 f->inocache = jffs2_alloc_inode_cache();
1353 if (!f->inocache) {
1354 JFFS2_ERROR("cannot allocate inocache for root inode\n");
1355 return -ENOMEM;
1357 dbg_readinode("creating inocache for root inode\n");
1358 memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
1359 f->inocache->ino = f->inocache->pino_nlink = 1;
1360 f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
1361 f->inocache->state = INO_STATE_READING;
1362 jffs2_add_ino_cache(c, f->inocache);
1364 if (!f->inocache) {
1365 JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino);
1366 return -ENOENT;
1369 return jffs2_do_read_inode_internal(c, f, latest_node);
1372 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
1374 struct jffs2_raw_inode n;
1375 struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
1376 int ret;
1378 if (!f)
1379 return -ENOMEM;
1381 mutex_init(&f->sem);
1382 mutex_lock(&f->sem);
1383 f->inocache = ic;
1385 ret = jffs2_do_read_inode_internal(c, f, &n);
1386 mutex_unlock(&f->sem);
1387 jffs2_do_clear_inode(c, f);
1388 jffs2_xattr_do_crccheck_inode(c, ic);
1389 kfree (f);
1390 return ret;
1393 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
1395 struct jffs2_full_dirent *fd, *fds;
1396 int deleted;
1398 jffs2_xattr_delete_inode(c, f->inocache);
1399 mutex_lock(&f->sem);
1400 deleted = f->inocache && !f->inocache->pino_nlink;
1402 if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
1403 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
1405 if (f->metadata) {
1406 if (deleted)
1407 jffs2_mark_node_obsolete(c, f->metadata->raw);
1408 jffs2_free_full_dnode(f->metadata);
1411 jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
1413 if (f->target) {
1414 kfree(f->target);
1415 f->target = NULL;
1418 fds = f->dents;
1419 while(fds) {
1420 fd = fds;
1421 fds = fd->next;
1422 jffs2_free_full_dirent(fd);
1425 if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
1426 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1427 if (f->inocache->nodes == (void *)f->inocache)
1428 jffs2_del_ino_cache(c, f->inocache);
1431 mutex_unlock(&f->sem);