fs: create and use seq_show_option for escaping
[linux/fpc-iii.git] / include / asm-generic / pgtable.h
blob29c57b2cb344dfc0bd73034927bfa50848d6709b
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9 #include <linux/errno.h>
11 #if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
12 CONFIG_PGTABLE_LEVELS
13 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
14 #endif
17 * On almost all architectures and configurations, 0 can be used as the
18 * upper ceiling to free_pgtables(): on many architectures it has the same
19 * effect as using TASK_SIZE. However, there is one configuration which
20 * must impose a more careful limit, to avoid freeing kernel pgtables.
22 #ifndef USER_PGTABLES_CEILING
23 #define USER_PGTABLES_CEILING 0UL
24 #endif
26 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
27 extern int ptep_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pte_t *ptep,
29 pte_t entry, int dirty);
30 #endif
32 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
33 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
34 unsigned long address, pmd_t *pmdp,
35 pmd_t entry, int dirty);
36 #endif
38 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
39 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pte_t *ptep)
43 pte_t pte = *ptep;
44 int r = 1;
45 if (!pte_young(pte))
46 r = 0;
47 else
48 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
49 return r;
51 #endif
53 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
55 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56 unsigned long address,
57 pmd_t *pmdp)
59 pmd_t pmd = *pmdp;
60 int r = 1;
61 if (!pmd_young(pmd))
62 r = 0;
63 else
64 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
65 return r;
67 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
68 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
69 unsigned long address,
70 pmd_t *pmdp)
72 BUG();
73 return 0;
75 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
76 #endif
78 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
79 int ptep_clear_flush_young(struct vm_area_struct *vma,
80 unsigned long address, pte_t *ptep);
81 #endif
83 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
84 int pmdp_clear_flush_young(struct vm_area_struct *vma,
85 unsigned long address, pmd_t *pmdp);
86 #endif
88 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
89 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
90 unsigned long address,
91 pte_t *ptep)
93 pte_t pte = *ptep;
94 pte_clear(mm, address, ptep);
95 return pte;
97 #endif
99 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
101 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
102 unsigned long address,
103 pmd_t *pmdp)
105 pmd_t pmd = *pmdp;
106 pmd_clear(pmdp);
107 return pmd;
109 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
110 #endif
112 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
114 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
115 unsigned long address, pmd_t *pmdp,
116 int full)
118 return pmdp_huge_get_and_clear(mm, address, pmdp);
120 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
121 #endif
123 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
124 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
125 unsigned long address, pte_t *ptep,
126 int full)
128 pte_t pte;
129 pte = ptep_get_and_clear(mm, address, ptep);
130 return pte;
132 #endif
135 * Some architectures may be able to avoid expensive synchronization
136 * primitives when modifications are made to PTE's which are already
137 * not present, or in the process of an address space destruction.
139 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
140 static inline void pte_clear_not_present_full(struct mm_struct *mm,
141 unsigned long address,
142 pte_t *ptep,
143 int full)
145 pte_clear(mm, address, ptep);
147 #endif
149 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
150 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
151 unsigned long address,
152 pte_t *ptep);
153 #endif
155 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
156 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
157 unsigned long address,
158 pmd_t *pmdp);
159 #endif
161 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
162 struct mm_struct;
163 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
165 pte_t old_pte = *ptep;
166 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
168 #endif
170 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
172 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
173 unsigned long address, pmd_t *pmdp)
175 pmd_t old_pmd = *pmdp;
176 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
178 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
179 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
180 unsigned long address, pmd_t *pmdp)
182 BUG();
184 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
185 #endif
187 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
188 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
189 unsigned long address, pmd_t *pmdp);
190 #endif
192 #ifndef pmdp_collapse_flush
193 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
194 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
195 unsigned long address, pmd_t *pmdp);
196 #else
197 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
198 unsigned long address,
199 pmd_t *pmdp)
201 BUILD_BUG();
202 return *pmdp;
204 #define pmdp_collapse_flush pmdp_collapse_flush
205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
206 #endif
208 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
209 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
210 pgtable_t pgtable);
211 #endif
213 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
214 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
215 #endif
217 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
218 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
219 pmd_t *pmdp);
220 #endif
222 #ifndef __HAVE_ARCH_PTE_SAME
223 static inline int pte_same(pte_t pte_a, pte_t pte_b)
225 return pte_val(pte_a) == pte_val(pte_b);
227 #endif
229 #ifndef __HAVE_ARCH_PTE_UNUSED
231 * Some architectures provide facilities to virtualization guests
232 * so that they can flag allocated pages as unused. This allows the
233 * host to transparently reclaim unused pages. This function returns
234 * whether the pte's page is unused.
236 static inline int pte_unused(pte_t pte)
238 return 0;
240 #endif
242 #ifndef __HAVE_ARCH_PMD_SAME
243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
244 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
246 return pmd_val(pmd_a) == pmd_val(pmd_b);
248 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
249 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
251 BUG();
252 return 0;
254 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
255 #endif
257 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
258 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
259 #endif
261 #ifndef __HAVE_ARCH_MOVE_PTE
262 #define move_pte(pte, prot, old_addr, new_addr) (pte)
263 #endif
265 #ifndef pte_accessible
266 # define pte_accessible(mm, pte) ((void)(pte), 1)
267 #endif
269 #ifndef flush_tlb_fix_spurious_fault
270 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
271 #endif
273 #ifndef pgprot_noncached
274 #define pgprot_noncached(prot) (prot)
275 #endif
277 #ifndef pgprot_writecombine
278 #define pgprot_writecombine pgprot_noncached
279 #endif
281 #ifndef pgprot_writethrough
282 #define pgprot_writethrough pgprot_noncached
283 #endif
285 #ifndef pgprot_device
286 #define pgprot_device pgprot_noncached
287 #endif
289 #ifndef pgprot_modify
290 #define pgprot_modify pgprot_modify
291 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
293 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
294 newprot = pgprot_noncached(newprot);
295 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
296 newprot = pgprot_writecombine(newprot);
297 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
298 newprot = pgprot_device(newprot);
299 return newprot;
301 #endif
304 * When walking page tables, get the address of the next boundary,
305 * or the end address of the range if that comes earlier. Although no
306 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
309 #define pgd_addr_end(addr, end) \
310 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
311 (__boundary - 1 < (end) - 1)? __boundary: (end); \
314 #ifndef pud_addr_end
315 #define pud_addr_end(addr, end) \
316 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
317 (__boundary - 1 < (end) - 1)? __boundary: (end); \
319 #endif
321 #ifndef pmd_addr_end
322 #define pmd_addr_end(addr, end) \
323 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
324 (__boundary - 1 < (end) - 1)? __boundary: (end); \
326 #endif
329 * When walking page tables, we usually want to skip any p?d_none entries;
330 * and any p?d_bad entries - reporting the error before resetting to none.
331 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
333 void pgd_clear_bad(pgd_t *);
334 void pud_clear_bad(pud_t *);
335 void pmd_clear_bad(pmd_t *);
337 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
339 if (pgd_none(*pgd))
340 return 1;
341 if (unlikely(pgd_bad(*pgd))) {
342 pgd_clear_bad(pgd);
343 return 1;
345 return 0;
348 static inline int pud_none_or_clear_bad(pud_t *pud)
350 if (pud_none(*pud))
351 return 1;
352 if (unlikely(pud_bad(*pud))) {
353 pud_clear_bad(pud);
354 return 1;
356 return 0;
359 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
361 if (pmd_none(*pmd))
362 return 1;
363 if (unlikely(pmd_bad(*pmd))) {
364 pmd_clear_bad(pmd);
365 return 1;
367 return 0;
370 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
371 unsigned long addr,
372 pte_t *ptep)
375 * Get the current pte state, but zero it out to make it
376 * non-present, preventing the hardware from asynchronously
377 * updating it.
379 return ptep_get_and_clear(mm, addr, ptep);
382 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
383 unsigned long addr,
384 pte_t *ptep, pte_t pte)
387 * The pte is non-present, so there's no hardware state to
388 * preserve.
390 set_pte_at(mm, addr, ptep, pte);
393 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
395 * Start a pte protection read-modify-write transaction, which
396 * protects against asynchronous hardware modifications to the pte.
397 * The intention is not to prevent the hardware from making pte
398 * updates, but to prevent any updates it may make from being lost.
400 * This does not protect against other software modifications of the
401 * pte; the appropriate pte lock must be held over the transation.
403 * Note that this interface is intended to be batchable, meaning that
404 * ptep_modify_prot_commit may not actually update the pte, but merely
405 * queue the update to be done at some later time. The update must be
406 * actually committed before the pte lock is released, however.
408 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
409 unsigned long addr,
410 pte_t *ptep)
412 return __ptep_modify_prot_start(mm, addr, ptep);
416 * Commit an update to a pte, leaving any hardware-controlled bits in
417 * the PTE unmodified.
419 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
420 unsigned long addr,
421 pte_t *ptep, pte_t pte)
423 __ptep_modify_prot_commit(mm, addr, ptep, pte);
425 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
426 #endif /* CONFIG_MMU */
429 * A facility to provide lazy MMU batching. This allows PTE updates and
430 * page invalidations to be delayed until a call to leave lazy MMU mode
431 * is issued. Some architectures may benefit from doing this, and it is
432 * beneficial for both shadow and direct mode hypervisors, which may batch
433 * the PTE updates which happen during this window. Note that using this
434 * interface requires that read hazards be removed from the code. A read
435 * hazard could result in the direct mode hypervisor case, since the actual
436 * write to the page tables may not yet have taken place, so reads though
437 * a raw PTE pointer after it has been modified are not guaranteed to be
438 * up to date. This mode can only be entered and left under the protection of
439 * the page table locks for all page tables which may be modified. In the UP
440 * case, this is required so that preemption is disabled, and in the SMP case,
441 * it must synchronize the delayed page table writes properly on other CPUs.
443 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
444 #define arch_enter_lazy_mmu_mode() do {} while (0)
445 #define arch_leave_lazy_mmu_mode() do {} while (0)
446 #define arch_flush_lazy_mmu_mode() do {} while (0)
447 #endif
450 * A facility to provide batching of the reload of page tables and
451 * other process state with the actual context switch code for
452 * paravirtualized guests. By convention, only one of the batched
453 * update (lazy) modes (CPU, MMU) should be active at any given time,
454 * entry should never be nested, and entry and exits should always be
455 * paired. This is for sanity of maintaining and reasoning about the
456 * kernel code. In this case, the exit (end of the context switch) is
457 * in architecture-specific code, and so doesn't need a generic
458 * definition.
460 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
461 #define arch_start_context_switch(prev) do {} while (0)
462 #endif
464 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
465 static inline int pte_soft_dirty(pte_t pte)
467 return 0;
470 static inline int pmd_soft_dirty(pmd_t pmd)
472 return 0;
475 static inline pte_t pte_mksoft_dirty(pte_t pte)
477 return pte;
480 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
482 return pmd;
485 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
487 return pte;
490 static inline int pte_swp_soft_dirty(pte_t pte)
492 return 0;
495 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
497 return pte;
499 #endif
501 #ifndef __HAVE_PFNMAP_TRACKING
503 * Interfaces that can be used by architecture code to keep track of
504 * memory type of pfn mappings specified by the remap_pfn_range,
505 * vm_insert_pfn.
509 * track_pfn_remap is called when a _new_ pfn mapping is being established
510 * by remap_pfn_range() for physical range indicated by pfn and size.
512 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
513 unsigned long pfn, unsigned long addr,
514 unsigned long size)
516 return 0;
520 * track_pfn_insert is called when a _new_ single pfn is established
521 * by vm_insert_pfn().
523 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
524 unsigned long pfn)
526 return 0;
530 * track_pfn_copy is called when vma that is covering the pfnmap gets
531 * copied through copy_page_range().
533 static inline int track_pfn_copy(struct vm_area_struct *vma)
535 return 0;
539 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
540 * untrack can be called for a specific region indicated by pfn and size or
541 * can be for the entire vma (in which case pfn, size are zero).
543 static inline void untrack_pfn(struct vm_area_struct *vma,
544 unsigned long pfn, unsigned long size)
547 #else
548 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
549 unsigned long pfn, unsigned long addr,
550 unsigned long size);
551 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
552 unsigned long pfn);
553 extern int track_pfn_copy(struct vm_area_struct *vma);
554 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
555 unsigned long size);
556 #endif
558 #ifdef __HAVE_COLOR_ZERO_PAGE
559 static inline int is_zero_pfn(unsigned long pfn)
561 extern unsigned long zero_pfn;
562 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
563 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
566 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
568 #else
569 static inline int is_zero_pfn(unsigned long pfn)
571 extern unsigned long zero_pfn;
572 return pfn == zero_pfn;
575 static inline unsigned long my_zero_pfn(unsigned long addr)
577 extern unsigned long zero_pfn;
578 return zero_pfn;
580 #endif
582 #ifdef CONFIG_MMU
584 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
585 static inline int pmd_trans_huge(pmd_t pmd)
587 return 0;
589 static inline int pmd_trans_splitting(pmd_t pmd)
591 return 0;
593 #ifndef __HAVE_ARCH_PMD_WRITE
594 static inline int pmd_write(pmd_t pmd)
596 BUG();
597 return 0;
599 #endif /* __HAVE_ARCH_PMD_WRITE */
600 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
602 #ifndef pmd_read_atomic
603 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
606 * Depend on compiler for an atomic pmd read. NOTE: this is
607 * only going to work, if the pmdval_t isn't larger than
608 * an unsigned long.
610 return *pmdp;
612 #endif
614 #ifndef pmd_move_must_withdraw
615 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
616 spinlock_t *old_pmd_ptl)
619 * With split pmd lock we also need to move preallocated
620 * PTE page table if new_pmd is on different PMD page table.
622 return new_pmd_ptl != old_pmd_ptl;
624 #endif
627 * This function is meant to be used by sites walking pagetables with
628 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
629 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
630 * into a null pmd and the transhuge page fault can convert a null pmd
631 * into an hugepmd or into a regular pmd (if the hugepage allocation
632 * fails). While holding the mmap_sem in read mode the pmd becomes
633 * stable and stops changing under us only if it's not null and not a
634 * transhuge pmd. When those races occurs and this function makes a
635 * difference vs the standard pmd_none_or_clear_bad, the result is
636 * undefined so behaving like if the pmd was none is safe (because it
637 * can return none anyway). The compiler level barrier() is critically
638 * important to compute the two checks atomically on the same pmdval.
640 * For 32bit kernels with a 64bit large pmd_t this automatically takes
641 * care of reading the pmd atomically to avoid SMP race conditions
642 * against pmd_populate() when the mmap_sem is hold for reading by the
643 * caller (a special atomic read not done by "gcc" as in the generic
644 * version above, is also needed when THP is disabled because the page
645 * fault can populate the pmd from under us).
647 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
649 pmd_t pmdval = pmd_read_atomic(pmd);
651 * The barrier will stabilize the pmdval in a register or on
652 * the stack so that it will stop changing under the code.
654 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
655 * pmd_read_atomic is allowed to return a not atomic pmdval
656 * (for example pointing to an hugepage that has never been
657 * mapped in the pmd). The below checks will only care about
658 * the low part of the pmd with 32bit PAE x86 anyway, with the
659 * exception of pmd_none(). So the important thing is that if
660 * the low part of the pmd is found null, the high part will
661 * be also null or the pmd_none() check below would be
662 * confused.
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 barrier();
666 #endif
667 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
668 return 1;
669 if (unlikely(pmd_bad(pmdval))) {
670 pmd_clear_bad(pmd);
671 return 1;
673 return 0;
677 * This is a noop if Transparent Hugepage Support is not built into
678 * the kernel. Otherwise it is equivalent to
679 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
680 * places that already verified the pmd is not none and they want to
681 * walk ptes while holding the mmap sem in read mode (write mode don't
682 * need this). If THP is not enabled, the pmd can't go away under the
683 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
684 * run a pmd_trans_unstable before walking the ptes after
685 * split_huge_page_pmd returns (because it may have run when the pmd
686 * become null, but then a page fault can map in a THP and not a
687 * regular page).
689 static inline int pmd_trans_unstable(pmd_t *pmd)
691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
692 return pmd_none_or_trans_huge_or_clear_bad(pmd);
693 #else
694 return 0;
695 #endif
698 #ifndef CONFIG_NUMA_BALANCING
700 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
701 * the only case the kernel cares is for NUMA balancing and is only ever set
702 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
703 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
704 * is the responsibility of the caller to distinguish between PROT_NONE
705 * protections and NUMA hinting fault protections.
707 static inline int pte_protnone(pte_t pte)
709 return 0;
712 static inline int pmd_protnone(pmd_t pmd)
714 return 0;
716 #endif /* CONFIG_NUMA_BALANCING */
718 #endif /* CONFIG_MMU */
720 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
721 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
722 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
723 int pud_clear_huge(pud_t *pud);
724 int pmd_clear_huge(pmd_t *pmd);
725 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
726 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
728 return 0;
730 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
732 return 0;
734 static inline int pud_clear_huge(pud_t *pud)
736 return 0;
738 static inline int pmd_clear_huge(pmd_t *pmd)
740 return 0;
742 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
744 #endif /* !__ASSEMBLY__ */
746 #ifndef io_remap_pfn_range
747 #define io_remap_pfn_range remap_pfn_range
748 #endif
750 #endif /* _ASM_GENERIC_PGTABLE_H */