fs: create and use seq_show_option for escaping
[linux/fpc-iii.git] / kernel / locking / mcs_spinlock.h
blobfd91aaa4554c8be6cf5b981d7ac3022a8046e77e
1 /*
2 * MCS lock defines
4 * This file contains the main data structure and API definitions of MCS lock.
6 * The MCS lock (proposed by Mellor-Crummey and Scott) is a simple spin-lock
7 * with the desirable properties of being fair, and with each cpu trying
8 * to acquire the lock spinning on a local variable.
9 * It avoids expensive cache bouncings that common test-and-set spin-lock
10 * implementations incur.
12 #ifndef __LINUX_MCS_SPINLOCK_H
13 #define __LINUX_MCS_SPINLOCK_H
15 #include <asm/mcs_spinlock.h>
17 struct mcs_spinlock {
18 struct mcs_spinlock *next;
19 int locked; /* 1 if lock acquired */
20 int count; /* nesting count, see qspinlock.c */
23 #ifndef arch_mcs_spin_lock_contended
25 * Using smp_load_acquire() provides a memory barrier that ensures
26 * subsequent operations happen after the lock is acquired.
28 #define arch_mcs_spin_lock_contended(l) \
29 do { \
30 while (!(smp_load_acquire(l))) \
31 cpu_relax_lowlatency(); \
32 } while (0)
33 #endif
35 #ifndef arch_mcs_spin_unlock_contended
37 * smp_store_release() provides a memory barrier to ensure all
38 * operations in the critical section has been completed before
39 * unlocking.
41 #define arch_mcs_spin_unlock_contended(l) \
42 smp_store_release((l), 1)
43 #endif
46 * Note: the smp_load_acquire/smp_store_release pair is not
47 * sufficient to form a full memory barrier across
48 * cpus for many architectures (except x86) for mcs_unlock and mcs_lock.
49 * For applications that need a full barrier across multiple cpus
50 * with mcs_unlock and mcs_lock pair, smp_mb__after_unlock_lock() should be
51 * used after mcs_lock.
55 * In order to acquire the lock, the caller should declare a local node and
56 * pass a reference of the node to this function in addition to the lock.
57 * If the lock has already been acquired, then this will proceed to spin
58 * on this node->locked until the previous lock holder sets the node->locked
59 * in mcs_spin_unlock().
61 static inline
62 void mcs_spin_lock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
64 struct mcs_spinlock *prev;
66 /* Init node */
67 node->locked = 0;
68 node->next = NULL;
70 prev = xchg(lock, node);
71 if (likely(prev == NULL)) {
73 * Lock acquired, don't need to set node->locked to 1. Threads
74 * only spin on its own node->locked value for lock acquisition.
75 * However, since this thread can immediately acquire the lock
76 * and does not proceed to spin on its own node->locked, this
77 * value won't be used. If a debug mode is needed to
78 * audit lock status, then set node->locked value here.
80 return;
82 WRITE_ONCE(prev->next, node);
84 /* Wait until the lock holder passes the lock down. */
85 arch_mcs_spin_lock_contended(&node->locked);
89 * Releases the lock. The caller should pass in the corresponding node that
90 * was used to acquire the lock.
92 static inline
93 void mcs_spin_unlock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
95 struct mcs_spinlock *next = READ_ONCE(node->next);
97 if (likely(!next)) {
99 * Release the lock by setting it to NULL
101 if (likely(cmpxchg(lock, node, NULL) == node))
102 return;
103 /* Wait until the next pointer is set */
104 while (!(next = READ_ONCE(node->next)))
105 cpu_relax_lowlatency();
108 /* Pass lock to next waiter. */
109 arch_mcs_spin_unlock_contended(&next->locked);
112 #endif /* __LINUX_MCS_SPINLOCK_H */