usb: Avoid use-after-free by flushing endpoints early in usb_set_interface()
[linux/fpc-iii.git] / drivers / clocksource / cadence_ttc_timer.c
blobfbfbdec13b081837e3866ee06f8a9c231cce990c
1 /*
2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
4 * Copyright (C) 2011-2013 Xilinx
6 * based on arch/mips/kernel/time.c timer driver
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/clk.h>
19 #include <linux/interrupt.h>
20 #include <linux/clockchips.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
27 * This driver configures the 2 16/32-bit count-up timers as follows:
29 * T1: Timer 1, clocksource for generic timekeeping
30 * T2: Timer 2, clockevent source for hrtimers
31 * T3: Timer 3, <unused>
33 * The input frequency to the timer module for emulation is 2.5MHz which is
34 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
35 * the timers are clocked at 78.125KHz (12.8 us resolution).
37 * The input frequency to the timer module in silicon is configurable and
38 * obtained from device tree. The pre-scaler of 32 is used.
42 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
43 * and use same offsets for Timer 2
45 #define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */
46 #define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */
47 #define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */
48 #define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */
49 #define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */
50 #define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */
52 #define TTC_CNT_CNTRL_DISABLE_MASK 0x1
54 #define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */
55 #define TTC_CLK_CNTRL_PSV_MASK 0x1e
56 #define TTC_CLK_CNTRL_PSV_SHIFT 1
59 * Setup the timers to use pre-scaling, using a fixed value for now that will
60 * work across most input frequency, but it may need to be more dynamic
62 #define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
63 #define PRESCALE 2048 /* The exponent must match this */
64 #define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1)
65 #define CLK_CNTRL_PRESCALE_EN 1
66 #define CNT_CNTRL_RESET (1 << 4)
68 #define MAX_F_ERR 50
70 /**
71 * struct ttc_timer - This definition defines local timer structure
73 * @base_addr: Base address of timer
74 * @freq: Timer input clock frequency
75 * @clk: Associated clock source
76 * @clk_rate_change_nb Notifier block for clock rate changes
78 struct ttc_timer {
79 void __iomem *base_addr;
80 unsigned long freq;
81 struct clk *clk;
82 struct notifier_block clk_rate_change_nb;
85 #define to_ttc_timer(x) \
86 container_of(x, struct ttc_timer, clk_rate_change_nb)
88 struct ttc_timer_clocksource {
89 u32 scale_clk_ctrl_reg_old;
90 u32 scale_clk_ctrl_reg_new;
91 struct ttc_timer ttc;
92 struct clocksource cs;
95 #define to_ttc_timer_clksrc(x) \
96 container_of(x, struct ttc_timer_clocksource, cs)
98 struct ttc_timer_clockevent {
99 struct ttc_timer ttc;
100 struct clock_event_device ce;
103 #define to_ttc_timer_clkevent(x) \
104 container_of(x, struct ttc_timer_clockevent, ce)
106 static void __iomem *ttc_sched_clock_val_reg;
109 * ttc_set_interval - Set the timer interval value
111 * @timer: Pointer to the timer instance
112 * @cycles: Timer interval ticks
114 static void ttc_set_interval(struct ttc_timer *timer,
115 unsigned long cycles)
117 u32 ctrl_reg;
119 /* Disable the counter, set the counter value and re-enable counter */
120 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
121 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
122 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124 writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
127 * Reset the counter (0x10) so that it starts from 0, one-shot
128 * mode makes this needed for timing to be right.
130 ctrl_reg |= CNT_CNTRL_RESET;
131 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
132 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
136 * ttc_clock_event_interrupt - Clock event timer interrupt handler
138 * @irq: IRQ number of the Timer
139 * @dev_id: void pointer to the ttc_timer instance
141 * returns: Always IRQ_HANDLED - success
143 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145 struct ttc_timer_clockevent *ttce = dev_id;
146 struct ttc_timer *timer = &ttce->ttc;
148 /* Acknowledge the interrupt and call event handler */
149 readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
151 ttce->ce.event_handler(&ttce->ce);
153 return IRQ_HANDLED;
157 * __ttc_clocksource_read - Reads the timer counter register
159 * returns: Current timer counter register value
161 static cycle_t __ttc_clocksource_read(struct clocksource *cs)
163 struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165 return (cycle_t)readl_relaxed(timer->base_addr +
166 TTC_COUNT_VAL_OFFSET);
169 static u64 notrace ttc_sched_clock_read(void)
171 return readl_relaxed(ttc_sched_clock_val_reg);
175 * ttc_set_next_event - Sets the time interval for next event
177 * @cycles: Timer interval ticks
178 * @evt: Address of clock event instance
180 * returns: Always 0 - success
182 static int ttc_set_next_event(unsigned long cycles,
183 struct clock_event_device *evt)
185 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
186 struct ttc_timer *timer = &ttce->ttc;
188 ttc_set_interval(timer, cycles);
189 return 0;
193 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
195 * @evt: Address of clock event instance
197 static int ttc_shutdown(struct clock_event_device *evt)
199 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
200 struct ttc_timer *timer = &ttce->ttc;
201 u32 ctrl_reg;
203 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
204 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
205 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
206 return 0;
209 static int ttc_set_periodic(struct clock_event_device *evt)
211 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
212 struct ttc_timer *timer = &ttce->ttc;
214 ttc_set_interval(timer,
215 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
216 return 0;
219 static int ttc_resume(struct clock_event_device *evt)
221 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
222 struct ttc_timer *timer = &ttce->ttc;
223 u32 ctrl_reg;
225 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
227 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
228 return 0;
231 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
232 unsigned long event, void *data)
234 struct clk_notifier_data *ndata = data;
235 struct ttc_timer *ttc = to_ttc_timer(nb);
236 struct ttc_timer_clocksource *ttccs = container_of(ttc,
237 struct ttc_timer_clocksource, ttc);
239 switch (event) {
240 case PRE_RATE_CHANGE:
242 u32 psv;
243 unsigned long factor, rate_low, rate_high;
245 if (ndata->new_rate > ndata->old_rate) {
246 factor = DIV_ROUND_CLOSEST(ndata->new_rate,
247 ndata->old_rate);
248 rate_low = ndata->old_rate;
249 rate_high = ndata->new_rate;
250 } else {
251 factor = DIV_ROUND_CLOSEST(ndata->old_rate,
252 ndata->new_rate);
253 rate_low = ndata->new_rate;
254 rate_high = ndata->old_rate;
257 if (!is_power_of_2(factor))
258 return NOTIFY_BAD;
260 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
261 return NOTIFY_BAD;
263 factor = __ilog2_u32(factor);
266 * store timer clock ctrl register so we can restore it in case
267 * of an abort.
269 ttccs->scale_clk_ctrl_reg_old =
270 readl_relaxed(ttccs->ttc.base_addr +
271 TTC_CLK_CNTRL_OFFSET);
273 psv = (ttccs->scale_clk_ctrl_reg_old &
274 TTC_CLK_CNTRL_PSV_MASK) >>
275 TTC_CLK_CNTRL_PSV_SHIFT;
276 if (ndata->new_rate < ndata->old_rate)
277 psv -= factor;
278 else
279 psv += factor;
281 /* prescaler within legal range? */
282 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
283 return NOTIFY_BAD;
285 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
286 ~TTC_CLK_CNTRL_PSV_MASK;
287 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
290 /* scale down: adjust divider in post-change notification */
291 if (ndata->new_rate < ndata->old_rate)
292 return NOTIFY_DONE;
294 /* scale up: adjust divider now - before frequency change */
295 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
296 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
297 break;
299 case POST_RATE_CHANGE:
300 /* scale up: pre-change notification did the adjustment */
301 if (ndata->new_rate > ndata->old_rate)
302 return NOTIFY_OK;
304 /* scale down: adjust divider now - after frequency change */
305 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
306 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
307 break;
309 case ABORT_RATE_CHANGE:
310 /* we have to undo the adjustment in case we scale up */
311 if (ndata->new_rate < ndata->old_rate)
312 return NOTIFY_OK;
314 /* restore original register value */
315 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
316 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
317 /* fall through */
318 default:
319 return NOTIFY_DONE;
322 return NOTIFY_DONE;
325 static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
326 u32 timer_width)
328 struct ttc_timer_clocksource *ttccs;
329 int err;
331 ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
332 if (!ttccs)
333 return -ENOMEM;
335 ttccs->ttc.clk = clk;
337 err = clk_prepare_enable(ttccs->ttc.clk);
338 if (err) {
339 kfree(ttccs);
340 return err;
343 ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
345 ttccs->ttc.clk_rate_change_nb.notifier_call =
346 ttc_rate_change_clocksource_cb;
347 ttccs->ttc.clk_rate_change_nb.next = NULL;
349 err = clk_notifier_register(ttccs->ttc.clk,
350 &ttccs->ttc.clk_rate_change_nb);
351 if (err)
352 pr_warn("Unable to register clock notifier.\n");
354 ttccs->ttc.base_addr = base;
355 ttccs->cs.name = "ttc_clocksource";
356 ttccs->cs.rating = 200;
357 ttccs->cs.read = __ttc_clocksource_read;
358 ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
359 ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
362 * Setup the clock source counter to be an incrementing counter
363 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
364 * it by 32 also. Let it start running now.
366 writel_relaxed(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET);
367 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
368 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
369 writel_relaxed(CNT_CNTRL_RESET,
370 ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
372 err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
373 if (err) {
374 kfree(ttccs);
375 return err;
378 ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
379 sched_clock_register(ttc_sched_clock_read, timer_width,
380 ttccs->ttc.freq / PRESCALE);
382 return 0;
385 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
386 unsigned long event, void *data)
388 struct clk_notifier_data *ndata = data;
389 struct ttc_timer *ttc = to_ttc_timer(nb);
390 struct ttc_timer_clockevent *ttcce = container_of(ttc,
391 struct ttc_timer_clockevent, ttc);
393 switch (event) {
394 case POST_RATE_CHANGE:
395 /* update cached frequency */
396 ttc->freq = ndata->new_rate;
398 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
400 /* fall through */
401 case PRE_RATE_CHANGE:
402 case ABORT_RATE_CHANGE:
403 default:
404 return NOTIFY_DONE;
408 static int __init ttc_setup_clockevent(struct clk *clk,
409 void __iomem *base, u32 irq)
411 struct ttc_timer_clockevent *ttcce;
412 int err;
414 ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
415 if (!ttcce)
416 return -ENOMEM;
418 ttcce->ttc.clk = clk;
420 err = clk_prepare_enable(ttcce->ttc.clk);
421 if (err) {
422 kfree(ttcce);
423 return err;
426 ttcce->ttc.clk_rate_change_nb.notifier_call =
427 ttc_rate_change_clockevent_cb;
428 ttcce->ttc.clk_rate_change_nb.next = NULL;
430 err = clk_notifier_register(ttcce->ttc.clk,
431 &ttcce->ttc.clk_rate_change_nb);
432 if (err) {
433 pr_warn("Unable to register clock notifier.\n");
434 return err;
437 ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
439 ttcce->ttc.base_addr = base;
440 ttcce->ce.name = "ttc_clockevent";
441 ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
442 ttcce->ce.set_next_event = ttc_set_next_event;
443 ttcce->ce.set_state_shutdown = ttc_shutdown;
444 ttcce->ce.set_state_periodic = ttc_set_periodic;
445 ttcce->ce.set_state_oneshot = ttc_shutdown;
446 ttcce->ce.tick_resume = ttc_resume;
447 ttcce->ce.rating = 200;
448 ttcce->ce.irq = irq;
449 ttcce->ce.cpumask = cpu_possible_mask;
452 * Setup the clock event timer to be an interval timer which
453 * is prescaled by 32 using the interval interrupt. Leave it
454 * disabled for now.
456 writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
457 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
458 ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
459 writel_relaxed(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET);
461 err = request_irq(irq, ttc_clock_event_interrupt,
462 IRQF_TIMER, ttcce->ce.name, ttcce);
463 if (err) {
464 kfree(ttcce);
465 return err;
468 clockevents_config_and_register(&ttcce->ce,
469 ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
471 return 0;
475 * ttc_timer_init - Initialize the timer
477 * Initializes the timer hardware and register the clock source and clock event
478 * timers with Linux kernal timer framework
480 static int __init ttc_timer_init(struct device_node *timer)
482 unsigned int irq;
483 void __iomem *timer_baseaddr;
484 struct clk *clk_cs, *clk_ce;
485 static int initialized;
486 int clksel, ret;
487 u32 timer_width = 16;
489 if (initialized)
490 return 0;
492 initialized = 1;
495 * Get the 1st Triple Timer Counter (TTC) block from the device tree
496 * and use it. Note that the event timer uses the interrupt and it's the
497 * 2nd TTC hence the irq_of_parse_and_map(,1)
499 timer_baseaddr = of_iomap(timer, 0);
500 if (!timer_baseaddr) {
501 pr_err("ERROR: invalid timer base address\n");
502 return -ENXIO;
505 irq = irq_of_parse_and_map(timer, 1);
506 if (irq <= 0) {
507 pr_err("ERROR: invalid interrupt number\n");
508 return -EINVAL;
511 of_property_read_u32(timer, "timer-width", &timer_width);
513 clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
514 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
515 clk_cs = of_clk_get(timer, clksel);
516 if (IS_ERR(clk_cs)) {
517 pr_err("ERROR: timer input clock not found\n");
518 return PTR_ERR(clk_cs);
521 clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
522 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
523 clk_ce = of_clk_get(timer, clksel);
524 if (IS_ERR(clk_ce)) {
525 pr_err("ERROR: timer input clock not found\n");
526 return PTR_ERR(clk_ce);
529 ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
530 if (ret)
531 return ret;
533 ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
534 if (ret)
535 return ret;
537 pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
539 return 0;
542 CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);