2 * linux/arch/arm/kernel/setup.c
4 * Copyright (C) 1995-2001 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/efi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/stddef.h>
14 #include <linux/ioport.h>
15 #include <linux/delay.h>
16 #include <linux/utsname.h>
17 #include <linux/initrd.h>
18 #include <linux/console.h>
19 #include <linux/bootmem.h>
20 #include <linux/seq_file.h>
21 #include <linux/screen_info.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34 #include <linux/psci.h>
36 #include <asm/unified.h>
39 #include <asm/cputype.h>
42 #include <asm/early_ioremap.h>
43 #include <asm/fixmap.h>
44 #include <asm/procinfo.h>
46 #include <asm/sections.h>
47 #include <asm/setup.h>
48 #include <asm/smp_plat.h>
49 #include <asm/mach-types.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cachetype.h>
52 #include <asm/tlbflush.h>
53 #include <asm/xen/hypervisor.h>
56 #include <asm/mach/arch.h>
57 #include <asm/mach/irq.h>
58 #include <asm/mach/time.h>
59 #include <asm/system_info.h>
60 #include <asm/system_misc.h>
61 #include <asm/traps.h>
62 #include <asm/unwind.h>
63 #include <asm/memblock.h>
69 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
72 static int __init
fpe_setup(char *line
)
74 memcpy(fpe_type
, line
, 8);
78 __setup("fpe=", fpe_setup
);
81 extern void init_default_cache_policy(unsigned long);
82 extern void paging_init(const struct machine_desc
*desc
);
83 extern void early_mm_init(const struct machine_desc
*);
84 extern void adjust_lowmem_bounds(void);
85 extern enum reboot_mode reboot_mode
;
86 extern void setup_dma_zone(const struct machine_desc
*desc
);
88 unsigned int processor_id
;
89 EXPORT_SYMBOL(processor_id
);
90 unsigned int __machine_arch_type __read_mostly
;
91 EXPORT_SYMBOL(__machine_arch_type
);
92 unsigned int cacheid __read_mostly
;
93 EXPORT_SYMBOL(cacheid
);
95 unsigned int __atags_pointer __initdata
;
97 unsigned int system_rev
;
98 EXPORT_SYMBOL(system_rev
);
100 const char *system_serial
;
101 EXPORT_SYMBOL(system_serial
);
103 unsigned int system_serial_low
;
104 EXPORT_SYMBOL(system_serial_low
);
106 unsigned int system_serial_high
;
107 EXPORT_SYMBOL(system_serial_high
);
109 unsigned int elf_hwcap __read_mostly
;
110 EXPORT_SYMBOL(elf_hwcap
);
112 unsigned int elf_hwcap2 __read_mostly
;
113 EXPORT_SYMBOL(elf_hwcap2
);
117 struct processor processor __ro_after_init
;
118 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
119 struct processor
*cpu_vtable
[NR_CPUS
] = {
125 struct cpu_tlb_fns cpu_tlb __ro_after_init
;
128 struct cpu_user_fns cpu_user __ro_after_init
;
131 struct cpu_cache_fns cpu_cache __ro_after_init
;
133 #ifdef CONFIG_OUTER_CACHE
134 struct outer_cache_fns outer_cache __ro_after_init
;
135 EXPORT_SYMBOL(outer_cache
);
139 * Cached cpu_architecture() result for use by assembler code.
140 * C code should use the cpu_architecture() function instead of accessing this
143 int __cpu_architecture __read_mostly
= CPU_ARCH_UNKNOWN
;
150 } ____cacheline_aligned
;
152 #ifndef CONFIG_CPU_V7M
153 static struct stack stacks
[NR_CPUS
];
156 char elf_platform
[ELF_PLATFORM_SIZE
];
157 EXPORT_SYMBOL(elf_platform
);
159 static const char *cpu_name
;
160 static const char *machine_name
;
161 static char __initdata cmd_line
[COMMAND_LINE_SIZE
];
162 const struct machine_desc
*machine_desc __initdata
;
164 static union { char c
[4]; unsigned long l
; } endian_test __initdata
= { { 'l', '?', '?', 'b' } };
165 #define ENDIANNESS ((char)endian_test.l)
167 DEFINE_PER_CPU(struct cpuinfo_arm
, cpu_data
);
170 * Standard memory resources
172 static struct resource mem_res
[] = {
177 .flags
= IORESOURCE_MEM
180 .name
= "Kernel code",
183 .flags
= IORESOURCE_SYSTEM_RAM
186 .name
= "Kernel data",
189 .flags
= IORESOURCE_SYSTEM_RAM
193 #define video_ram mem_res[0]
194 #define kernel_code mem_res[1]
195 #define kernel_data mem_res[2]
197 static struct resource io_res
[] = {
202 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
208 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
214 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
218 #define lp0 io_res[0]
219 #define lp1 io_res[1]
220 #define lp2 io_res[2]
222 static const char *proc_arch
[] = {
242 #ifdef CONFIG_CPU_V7M
243 static int __get_cpu_architecture(void)
245 return CPU_ARCH_ARMv7M
;
248 static int __get_cpu_architecture(void)
252 if ((read_cpuid_id() & 0x0008f000) == 0) {
253 cpu_arch
= CPU_ARCH_UNKNOWN
;
254 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
255 cpu_arch
= (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T
: CPU_ARCH_ARMv3
;
256 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
257 cpu_arch
= (read_cpuid_id() >> 16) & 7;
259 cpu_arch
+= CPU_ARCH_ARMv3
;
260 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
261 /* Revised CPUID format. Read the Memory Model Feature
262 * Register 0 and check for VMSAv7 or PMSAv7 */
263 unsigned int mmfr0
= read_cpuid_ext(CPUID_EXT_MMFR0
);
264 if ((mmfr0
& 0x0000000f) >= 0x00000003 ||
265 (mmfr0
& 0x000000f0) >= 0x00000030)
266 cpu_arch
= CPU_ARCH_ARMv7
;
267 else if ((mmfr0
& 0x0000000f) == 0x00000002 ||
268 (mmfr0
& 0x000000f0) == 0x00000020)
269 cpu_arch
= CPU_ARCH_ARMv6
;
271 cpu_arch
= CPU_ARCH_UNKNOWN
;
273 cpu_arch
= CPU_ARCH_UNKNOWN
;
279 int __pure
cpu_architecture(void)
281 BUG_ON(__cpu_architecture
== CPU_ARCH_UNKNOWN
);
283 return __cpu_architecture
;
286 static int cpu_has_aliasing_icache(unsigned int arch
)
289 unsigned int id_reg
, num_sets
, line_size
;
291 /* PIPT caches never alias. */
292 if (icache_is_pipt())
295 /* arch specifies the register format */
298 set_csselr(CSSELR_ICACHE
| CSSELR_L1
);
300 id_reg
= read_ccsidr();
301 line_size
= 4 << ((id_reg
& 0x7) + 2);
302 num_sets
= ((id_reg
>> 13) & 0x7fff) + 1;
303 aliasing_icache
= (line_size
* num_sets
) > PAGE_SIZE
;
306 aliasing_icache
= read_cpuid_cachetype() & (1 << 11);
309 /* I-cache aliases will be handled by D-cache aliasing code */
313 return aliasing_icache
;
316 static void __init
cacheid_init(void)
318 unsigned int arch
= cpu_architecture();
320 if (arch
>= CPU_ARCH_ARMv6
) {
321 unsigned int cachetype
= read_cpuid_cachetype();
323 if ((arch
== CPU_ARCH_ARMv7M
) && !(cachetype
& 0xf000f)) {
325 } else if ((cachetype
& (7 << 29)) == 4 << 29) {
326 /* ARMv7 register format */
327 arch
= CPU_ARCH_ARMv7
;
328 cacheid
= CACHEID_VIPT_NONALIASING
;
329 switch (cachetype
& (3 << 14)) {
331 cacheid
|= CACHEID_ASID_TAGGED
;
334 cacheid
|= CACHEID_PIPT
;
338 arch
= CPU_ARCH_ARMv6
;
339 if (cachetype
& (1 << 23))
340 cacheid
= CACHEID_VIPT_ALIASING
;
342 cacheid
= CACHEID_VIPT_NONALIASING
;
344 if (cpu_has_aliasing_icache(arch
))
345 cacheid
|= CACHEID_VIPT_I_ALIASING
;
347 cacheid
= CACHEID_VIVT
;
350 pr_info("CPU: %s data cache, %s instruction cache\n",
351 cache_is_vivt() ? "VIVT" :
352 cache_is_vipt_aliasing() ? "VIPT aliasing" :
353 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
354 cache_is_vivt() ? "VIVT" :
355 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
356 icache_is_vipt_aliasing() ? "VIPT aliasing" :
357 icache_is_pipt() ? "PIPT" :
358 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
362 * These functions re-use the assembly code in head.S, which
363 * already provide the required functionality.
365 extern struct proc_info_list
*lookup_processor_type(unsigned int);
367 void __init
early_print(const char *str
, ...)
369 extern void printascii(const char *);
374 vsnprintf(buf
, sizeof(buf
), str
, ap
);
377 #ifdef CONFIG_DEBUG_LL
383 #ifdef CONFIG_ARM_PATCH_IDIV
385 static inline u32 __attribute_const__
sdiv_instruction(void)
387 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
388 /* "sdiv r0, r0, r1" */
389 u32 insn
= __opcode_thumb32_compose(0xfb90, 0xf0f1);
390 return __opcode_to_mem_thumb32(insn
);
393 /* "sdiv r0, r0, r1" */
394 return __opcode_to_mem_arm(0xe710f110);
397 static inline u32 __attribute_const__
udiv_instruction(void)
399 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
400 /* "udiv r0, r0, r1" */
401 u32 insn
= __opcode_thumb32_compose(0xfbb0, 0xf0f1);
402 return __opcode_to_mem_thumb32(insn
);
405 /* "udiv r0, r0, r1" */
406 return __opcode_to_mem_arm(0xe730f110);
409 static inline u32 __attribute_const__
bx_lr_instruction(void)
411 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
413 u32 insn
= __opcode_thumb32_compose(0x4770, 0x46c0);
414 return __opcode_to_mem_thumb32(insn
);
418 return __opcode_to_mem_arm(0xe12fff1e);
421 static void __init
patch_aeabi_idiv(void)
423 extern void __aeabi_uidiv(void);
424 extern void __aeabi_idiv(void);
428 mask
= IS_ENABLED(CONFIG_THUMB2_KERNEL
) ? HWCAP_IDIVT
: HWCAP_IDIVA
;
429 if (!(elf_hwcap
& mask
))
432 pr_info("CPU: div instructions available: patching division code\n");
434 fn_addr
= ((uintptr_t)&__aeabi_uidiv
) & ~1;
435 asm ("" : "+g" (fn_addr
));
436 ((u32
*)fn_addr
)[0] = udiv_instruction();
437 ((u32
*)fn_addr
)[1] = bx_lr_instruction();
438 flush_icache_range(fn_addr
, fn_addr
+ 8);
440 fn_addr
= ((uintptr_t)&__aeabi_idiv
) & ~1;
441 asm ("" : "+g" (fn_addr
));
442 ((u32
*)fn_addr
)[0] = sdiv_instruction();
443 ((u32
*)fn_addr
)[1] = bx_lr_instruction();
444 flush_icache_range(fn_addr
, fn_addr
+ 8);
448 static inline void patch_aeabi_idiv(void) { }
451 static void __init
cpuid_init_hwcaps(void)
456 if (cpu_architecture() < CPU_ARCH_ARMv7
)
459 block
= cpuid_feature_extract(CPUID_EXT_ISAR0
, 24);
461 elf_hwcap
|= HWCAP_IDIVA
;
463 elf_hwcap
|= HWCAP_IDIVT
;
465 /* LPAE implies atomic ldrd/strd instructions */
466 block
= cpuid_feature_extract(CPUID_EXT_MMFR0
, 0);
468 elf_hwcap
|= HWCAP_LPAE
;
470 /* check for supported v8 Crypto instructions */
471 isar5
= read_cpuid_ext(CPUID_EXT_ISAR5
);
473 block
= cpuid_feature_extract_field(isar5
, 4);
475 elf_hwcap2
|= HWCAP2_PMULL
;
477 elf_hwcap2
|= HWCAP2_AES
;
479 block
= cpuid_feature_extract_field(isar5
, 8);
481 elf_hwcap2
|= HWCAP2_SHA1
;
483 block
= cpuid_feature_extract_field(isar5
, 12);
485 elf_hwcap2
|= HWCAP2_SHA2
;
487 block
= cpuid_feature_extract_field(isar5
, 16);
489 elf_hwcap2
|= HWCAP2_CRC32
;
492 static void __init
elf_hwcap_fixup(void)
494 unsigned id
= read_cpuid_id();
497 * HWCAP_TLS is available only on 1136 r1p0 and later,
498 * see also kuser_get_tls_init.
500 if (read_cpuid_part() == ARM_CPU_PART_ARM1136
&&
501 ((id
>> 20) & 3) == 0) {
502 elf_hwcap
&= ~HWCAP_TLS
;
506 /* Verify if CPUID scheme is implemented */
507 if ((id
& 0x000f0000) != 0x000f0000)
511 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
512 * avoid advertising SWP; it may not be atomic with
513 * multiprocessing cores.
515 if (cpuid_feature_extract(CPUID_EXT_ISAR3
, 12) > 1 ||
516 (cpuid_feature_extract(CPUID_EXT_ISAR3
, 12) == 1 &&
517 cpuid_feature_extract(CPUID_EXT_ISAR4
, 20) >= 3))
518 elf_hwcap
&= ~HWCAP_SWP
;
522 * cpu_init - initialise one CPU.
524 * cpu_init sets up the per-CPU stacks.
526 void notrace
cpu_init(void)
528 #ifndef CONFIG_CPU_V7M
529 unsigned int cpu
= smp_processor_id();
530 struct stack
*stk
= &stacks
[cpu
];
532 if (cpu
>= NR_CPUS
) {
533 pr_crit("CPU%u: bad primary CPU number\n", cpu
);
538 * This only works on resume and secondary cores. For booting on the
539 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
541 set_my_cpu_offset(per_cpu_offset(cpu
));
546 * Define the placement constraint for the inline asm directive below.
547 * In Thumb-2, msr with an immediate value is not allowed.
549 #ifdef CONFIG_THUMB2_KERNEL
556 * setup stacks for re-entrant exception handlers
560 "add r14, %0, %2\n\t"
563 "add r14, %0, %4\n\t"
566 "add r14, %0, %6\n\t"
569 "add r14, %0, %8\n\t"
574 PLC (PSR_F_BIT
| PSR_I_BIT
| IRQ_MODE
),
575 "I" (offsetof(struct stack
, irq
[0])),
576 PLC (PSR_F_BIT
| PSR_I_BIT
| ABT_MODE
),
577 "I" (offsetof(struct stack
, abt
[0])),
578 PLC (PSR_F_BIT
| PSR_I_BIT
| UND_MODE
),
579 "I" (offsetof(struct stack
, und
[0])),
580 PLC (PSR_F_BIT
| PSR_I_BIT
| FIQ_MODE
),
581 "I" (offsetof(struct stack
, fiq
[0])),
582 PLC (PSR_F_BIT
| PSR_I_BIT
| SVC_MODE
)
587 u32 __cpu_logical_map
[NR_CPUS
] = { [0 ... NR_CPUS
-1] = MPIDR_INVALID
};
589 void __init
smp_setup_processor_id(void)
592 u32 mpidr
= is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK
: 0;
593 u32 cpu
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
595 cpu_logical_map(0) = cpu
;
596 for (i
= 1; i
< nr_cpu_ids
; ++i
)
597 cpu_logical_map(i
) = i
== cpu
? 0 : i
;
600 * clear __my_cpu_offset on boot CPU to avoid hang caused by
601 * using percpu variable early, for example, lockdep will
602 * access percpu variable inside lock_release
604 set_my_cpu_offset(0);
606 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr
);
609 struct mpidr_hash mpidr_hash
;
612 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
613 * level in order to build a linear index from an
614 * MPIDR value. Resulting algorithm is a collision
615 * free hash carried out through shifting and ORing
617 static void __init
smp_build_mpidr_hash(void)
620 u32 fs
[3], bits
[3], ls
, mask
= 0;
622 * Pre-scan the list of MPIDRS and filter out bits that do
623 * not contribute to affinity levels, ie they never toggle.
625 for_each_possible_cpu(i
)
626 mask
|= (cpu_logical_map(i
) ^ cpu_logical_map(0));
627 pr_debug("mask of set bits 0x%x\n", mask
);
629 * Find and stash the last and first bit set at all affinity levels to
630 * check how many bits are required to represent them.
632 for (i
= 0; i
< 3; i
++) {
633 affinity
= MPIDR_AFFINITY_LEVEL(mask
, i
);
635 * Find the MSB bit and LSB bits position
636 * to determine how many bits are required
637 * to express the affinity level.
640 fs
[i
] = affinity
? ffs(affinity
) - 1 : 0;
641 bits
[i
] = ls
- fs
[i
];
644 * An index can be created from the MPIDR by isolating the
645 * significant bits at each affinity level and by shifting
646 * them in order to compress the 24 bits values space to a
647 * compressed set of values. This is equivalent to hashing
648 * the MPIDR through shifting and ORing. It is a collision free
649 * hash though not minimal since some levels might contain a number
650 * of CPUs that is not an exact power of 2 and their bit
651 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
653 mpidr_hash
.shift_aff
[0] = fs
[0];
654 mpidr_hash
.shift_aff
[1] = MPIDR_LEVEL_BITS
+ fs
[1] - bits
[0];
655 mpidr_hash
.shift_aff
[2] = 2*MPIDR_LEVEL_BITS
+ fs
[2] -
657 mpidr_hash
.mask
= mask
;
658 mpidr_hash
.bits
= bits
[2] + bits
[1] + bits
[0];
659 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
660 mpidr_hash
.shift_aff
[0],
661 mpidr_hash
.shift_aff
[1],
662 mpidr_hash
.shift_aff
[2],
666 * 4x is an arbitrary value used to warn on a hash table much bigger
667 * than expected on most systems.
669 if (mpidr_hash_size() > 4 * num_possible_cpus())
670 pr_warn("Large number of MPIDR hash buckets detected\n");
671 sync_cache_w(&mpidr_hash
);
676 * locate processor in the list of supported processor types. The linker
677 * builds this table for us from the entries in arch/arm/mm/proc-*.S
679 struct proc_info_list
*lookup_processor(u32 midr
)
681 struct proc_info_list
*list
= lookup_processor_type(midr
);
684 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
685 smp_processor_id(), midr
);
687 /* can't use cpu_relax() here as it may require MMU setup */;
693 static void __init
setup_processor(void)
695 unsigned int midr
= read_cpuid_id();
696 struct proc_info_list
*list
= lookup_processor(midr
);
698 cpu_name
= list
->cpu_name
;
699 __cpu_architecture
= __get_cpu_architecture();
701 init_proc_vtable(list
->proc
);
703 cpu_tlb
= *list
->tlb
;
706 cpu_user
= *list
->user
;
709 cpu_cache
= *list
->cache
;
712 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
713 list
->cpu_name
, midr
, midr
& 15,
714 proc_arch
[cpu_architecture()], get_cr());
716 snprintf(init_utsname()->machine
, __NEW_UTS_LEN
+ 1, "%s%c",
717 list
->arch_name
, ENDIANNESS
);
718 snprintf(elf_platform
, ELF_PLATFORM_SIZE
, "%s%c",
719 list
->elf_name
, ENDIANNESS
);
720 elf_hwcap
= list
->elf_hwcap
;
725 #ifndef CONFIG_ARM_THUMB
726 elf_hwcap
&= ~(HWCAP_THUMB
| HWCAP_IDIVT
);
729 init_default_cache_policy(list
->__cpu_mm_mmu_flags
);
731 erratum_a15_798181_init();
739 void __init
dump_machine_table(void)
741 const struct machine_desc
*p
;
743 early_print("Available machine support:\n\nID (hex)\tNAME\n");
744 for_each_machine_desc(p
)
745 early_print("%08x\t%s\n", p
->nr
, p
->name
);
747 early_print("\nPlease check your kernel config and/or bootloader.\n");
750 /* can't use cpu_relax() here as it may require MMU setup */;
753 int __init
arm_add_memory(u64 start
, u64 size
)
758 * Ensure that start/size are aligned to a page boundary.
759 * Size is rounded down, start is rounded up.
761 aligned_start
= PAGE_ALIGN(start
);
762 if (aligned_start
> start
+ size
)
765 size
-= aligned_start
- start
;
767 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
768 if (aligned_start
> ULONG_MAX
) {
769 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
774 if (aligned_start
+ size
> ULONG_MAX
) {
775 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
778 * To ensure bank->start + bank->size is representable in
779 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
780 * This means we lose a page after masking.
782 size
= ULONG_MAX
- aligned_start
;
786 if (aligned_start
< PHYS_OFFSET
) {
787 if (aligned_start
+ size
<= PHYS_OFFSET
) {
788 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
789 aligned_start
, aligned_start
+ size
);
793 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
794 aligned_start
, (u64
)PHYS_OFFSET
);
796 size
-= PHYS_OFFSET
- aligned_start
;
797 aligned_start
= PHYS_OFFSET
;
800 start
= aligned_start
;
801 size
= size
& ~(phys_addr_t
)(PAGE_SIZE
- 1);
804 * Check whether this memory region has non-zero size or
805 * invalid node number.
810 memblock_add(start
, size
);
815 * Pick out the memory size. We look for mem=size@start,
816 * where start and size are "size[KkMm]"
819 static int __init
early_mem(char *p
)
821 static int usermem __initdata
= 0;
827 * If the user specifies memory size, we
828 * blow away any automatically generated
833 memblock_remove(memblock_start_of_DRAM(),
834 memblock_end_of_DRAM() - memblock_start_of_DRAM());
838 size
= memparse(p
, &endp
);
840 start
= memparse(endp
+ 1, NULL
);
842 arm_add_memory(start
, size
);
846 early_param("mem", early_mem
);
848 static void __init
request_standard_resources(const struct machine_desc
*mdesc
)
850 struct memblock_region
*region
;
851 struct resource
*res
;
853 kernel_code
.start
= virt_to_phys(_text
);
854 kernel_code
.end
= virt_to_phys(__init_begin
- 1);
855 kernel_data
.start
= virt_to_phys(_sdata
);
856 kernel_data
.end
= virt_to_phys(_end
- 1);
858 for_each_memblock(memory
, region
) {
859 phys_addr_t start
= __pfn_to_phys(memblock_region_memory_base_pfn(region
));
860 phys_addr_t end
= __pfn_to_phys(memblock_region_memory_end_pfn(region
)) - 1;
861 unsigned long boot_alias_start
;
864 * Some systems have a special memory alias which is only
865 * used for booting. We need to advertise this region to
866 * kexec-tools so they know where bootable RAM is located.
868 boot_alias_start
= phys_to_idmap(start
);
869 if (arm_has_idmap_alias() && boot_alias_start
!= IDMAP_INVALID_ADDR
) {
870 res
= memblock_virt_alloc(sizeof(*res
), 0);
871 res
->name
= "System RAM (boot alias)";
872 res
->start
= boot_alias_start
;
873 res
->end
= phys_to_idmap(end
);
874 res
->flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
875 request_resource(&iomem_resource
, res
);
878 res
= memblock_virt_alloc(sizeof(*res
), 0);
879 res
->name
= "System RAM";
882 res
->flags
= IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
;
884 request_resource(&iomem_resource
, res
);
886 if (kernel_code
.start
>= res
->start
&&
887 kernel_code
.end
<= res
->end
)
888 request_resource(res
, &kernel_code
);
889 if (kernel_data
.start
>= res
->start
&&
890 kernel_data
.end
<= res
->end
)
891 request_resource(res
, &kernel_data
);
894 if (mdesc
->video_start
) {
895 video_ram
.start
= mdesc
->video_start
;
896 video_ram
.end
= mdesc
->video_end
;
897 request_resource(&iomem_resource
, &video_ram
);
901 * Some machines don't have the possibility of ever
902 * possessing lp0, lp1 or lp2
904 if (mdesc
->reserve_lp0
)
905 request_resource(&ioport_resource
, &lp0
);
906 if (mdesc
->reserve_lp1
)
907 request_resource(&ioport_resource
, &lp1
);
908 if (mdesc
->reserve_lp2
)
909 request_resource(&ioport_resource
, &lp2
);
912 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
914 struct screen_info screen_info
= {
915 .orig_video_lines
= 30,
916 .orig_video_cols
= 80,
917 .orig_video_mode
= 0,
918 .orig_video_ega_bx
= 0,
919 .orig_video_isVGA
= 1,
920 .orig_video_points
= 8
924 static int __init
customize_machine(void)
927 * customizes platform devices, or adds new ones
928 * On DT based machines, we fall back to populating the
929 * machine from the device tree, if no callback is provided,
930 * otherwise we would always need an init_machine callback.
932 if (machine_desc
->init_machine
)
933 machine_desc
->init_machine();
937 arch_initcall(customize_machine
);
939 static int __init
init_machine_late(void)
941 struct device_node
*root
;
944 if (machine_desc
->init_late
)
945 machine_desc
->init_late();
947 root
= of_find_node_by_path("/");
949 ret
= of_property_read_string(root
, "serial-number",
952 system_serial
= NULL
;
956 system_serial
= kasprintf(GFP_KERNEL
, "%08x%08x",
962 late_initcall(init_machine_late
);
966 * The crash region must be aligned to 128MB to avoid
967 * zImage relocating below the reserved region.
969 #define CRASH_ALIGN (128 << 20)
971 static inline unsigned long long get_total_mem(void)
975 total
= max_low_pfn
- min_low_pfn
;
976 return total
<< PAGE_SHIFT
;
980 * reserve_crashkernel() - reserves memory are for crash kernel
982 * This function reserves memory area given in "crashkernel=" kernel command
983 * line parameter. The memory reserved is used by a dump capture kernel when
984 * primary kernel is crashing.
986 static void __init
reserve_crashkernel(void)
988 unsigned long long crash_size
, crash_base
;
989 unsigned long long total_mem
;
992 total_mem
= get_total_mem();
993 ret
= parse_crashkernel(boot_command_line
, total_mem
,
994 &crash_size
, &crash_base
);
998 if (crash_base
<= 0) {
999 unsigned long long crash_max
= idmap_to_phys((u32
)~0);
1000 unsigned long long lowmem_max
= __pa(high_memory
- 1) + 1;
1001 if (crash_max
> lowmem_max
)
1002 crash_max
= lowmem_max
;
1003 crash_base
= memblock_find_in_range(CRASH_ALIGN
, crash_max
,
1004 crash_size
, CRASH_ALIGN
);
1006 pr_err("crashkernel reservation failed - No suitable area found.\n");
1010 unsigned long long start
;
1012 start
= memblock_find_in_range(crash_base
,
1013 crash_base
+ crash_size
,
1014 crash_size
, SECTION_SIZE
);
1015 if (start
!= crash_base
) {
1016 pr_err("crashkernel reservation failed - memory is in use.\n");
1021 ret
= memblock_reserve(crash_base
, crash_size
);
1023 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1024 (unsigned long)crash_base
);
1028 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1029 (unsigned long)(crash_size
>> 20),
1030 (unsigned long)(crash_base
>> 20),
1031 (unsigned long)(total_mem
>> 20));
1033 /* The crashk resource must always be located in normal mem */
1034 crashk_res
.start
= crash_base
;
1035 crashk_res
.end
= crash_base
+ crash_size
- 1;
1036 insert_resource(&iomem_resource
, &crashk_res
);
1038 if (arm_has_idmap_alias()) {
1040 * If we have a special RAM alias for use at boot, we
1041 * need to advertise to kexec tools where the alias is.
1043 static struct resource crashk_boot_res
= {
1044 .name
= "Crash kernel (boot alias)",
1045 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
1048 crashk_boot_res
.start
= phys_to_idmap(crash_base
);
1049 crashk_boot_res
.end
= crashk_boot_res
.start
+ crash_size
- 1;
1050 insert_resource(&iomem_resource
, &crashk_boot_res
);
1054 static inline void reserve_crashkernel(void) {}
1055 #endif /* CONFIG_KEXEC */
1057 void __init
hyp_mode_check(void)
1059 #ifdef CONFIG_ARM_VIRT_EXT
1062 if (is_hyp_mode_available()) {
1063 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1064 pr_info("CPU: Virtualization extensions available.\n");
1065 } else if (is_hyp_mode_mismatched()) {
1066 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1067 __boot_cpu_mode
& MODE_MASK
);
1068 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1070 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1074 void __init
setup_arch(char **cmdline_p
)
1076 const struct machine_desc
*mdesc
;
1079 mdesc
= setup_machine_fdt(__atags_pointer
);
1081 mdesc
= setup_machine_tags(__atags_pointer
, __machine_arch_type
);
1082 machine_desc
= mdesc
;
1083 machine_name
= mdesc
->name
;
1084 dump_stack_set_arch_desc("%s", mdesc
->name
);
1086 if (mdesc
->reboot_mode
!= REBOOT_HARD
)
1087 reboot_mode
= mdesc
->reboot_mode
;
1089 init_mm
.start_code
= (unsigned long) _text
;
1090 init_mm
.end_code
= (unsigned long) _etext
;
1091 init_mm
.end_data
= (unsigned long) _edata
;
1092 init_mm
.brk
= (unsigned long) _end
;
1094 /* populate cmd_line too for later use, preserving boot_command_line */
1095 strlcpy(cmd_line
, boot_command_line
, COMMAND_LINE_SIZE
);
1096 *cmdline_p
= cmd_line
;
1098 early_fixmap_init();
1099 early_ioremap_init();
1101 parse_early_param();
1104 early_mm_init(mdesc
);
1106 setup_dma_zone(mdesc
);
1110 * Make sure the calculation for lowmem/highmem is set appropriately
1111 * before reserving/allocating any mmeory
1113 adjust_lowmem_bounds();
1114 arm_memblock_init(mdesc
);
1115 /* Memory may have been removed so recalculate the bounds. */
1116 adjust_lowmem_bounds();
1118 early_ioremap_reset();
1121 request_standard_resources(mdesc
);
1124 arm_pm_restart
= mdesc
->restart
;
1126 unflatten_device_tree();
1128 arm_dt_init_cpu_maps();
1132 if (!mdesc
->smp_init
|| !mdesc
->smp_init()) {
1133 if (psci_smp_available())
1134 smp_set_ops(&psci_smp_ops
);
1135 else if (mdesc
->smp
)
1136 smp_set_ops(mdesc
->smp
);
1139 smp_build_mpidr_hash();
1146 reserve_crashkernel();
1148 #ifdef CONFIG_MULTI_IRQ_HANDLER
1149 handle_arch_irq
= mdesc
->handle_irq
;
1153 #if defined(CONFIG_VGA_CONSOLE)
1154 conswitchp
= &vga_con
;
1155 #elif defined(CONFIG_DUMMY_CONSOLE)
1156 conswitchp
= &dummy_con
;
1160 if (mdesc
->init_early
)
1161 mdesc
->init_early();
1165 static int __init
topology_init(void)
1169 for_each_possible_cpu(cpu
) {
1170 struct cpuinfo_arm
*cpuinfo
= &per_cpu(cpu_data
, cpu
);
1171 cpuinfo
->cpu
.hotpluggable
= platform_can_hotplug_cpu(cpu
);
1172 register_cpu(&cpuinfo
->cpu
, cpu
);
1177 subsys_initcall(topology_init
);
1179 #ifdef CONFIG_HAVE_PROC_CPU
1180 static int __init
proc_cpu_init(void)
1182 struct proc_dir_entry
*res
;
1184 res
= proc_mkdir("cpu", NULL
);
1189 fs_initcall(proc_cpu_init
);
1192 static const char *hwcap_str
[] = {
1218 static const char *hwcap2_str
[] = {
1227 static int c_show(struct seq_file
*m
, void *v
)
1232 for_each_online_cpu(i
) {
1234 * glibc reads /proc/cpuinfo to determine the number of
1235 * online processors, looking for lines beginning with
1236 * "processor". Give glibc what it expects.
1238 seq_printf(m
, "processor\t: %d\n", i
);
1239 cpuid
= is_smp() ? per_cpu(cpu_data
, i
).cpuid
: read_cpuid_id();
1240 seq_printf(m
, "model name\t: %s rev %d (%s)\n",
1241 cpu_name
, cpuid
& 15, elf_platform
);
1243 #if defined(CONFIG_SMP)
1244 seq_printf(m
, "BogoMIPS\t: %lu.%02lu\n",
1245 per_cpu(cpu_data
, i
).loops_per_jiffy
/ (500000UL/HZ
),
1246 (per_cpu(cpu_data
, i
).loops_per_jiffy
/ (5000UL/HZ
)) % 100);
1248 seq_printf(m
, "BogoMIPS\t: %lu.%02lu\n",
1249 loops_per_jiffy
/ (500000/HZ
),
1250 (loops_per_jiffy
/ (5000/HZ
)) % 100);
1252 /* dump out the processor features */
1253 seq_puts(m
, "Features\t: ");
1255 for (j
= 0; hwcap_str
[j
]; j
++)
1256 if (elf_hwcap
& (1 << j
))
1257 seq_printf(m
, "%s ", hwcap_str
[j
]);
1259 for (j
= 0; hwcap2_str
[j
]; j
++)
1260 if (elf_hwcap2
& (1 << j
))
1261 seq_printf(m
, "%s ", hwcap2_str
[j
]);
1263 seq_printf(m
, "\nCPU implementer\t: 0x%02x\n", cpuid
>> 24);
1264 seq_printf(m
, "CPU architecture: %s\n",
1265 proc_arch
[cpu_architecture()]);
1267 if ((cpuid
& 0x0008f000) == 0x00000000) {
1269 seq_printf(m
, "CPU part\t: %07x\n", cpuid
>> 4);
1271 if ((cpuid
& 0x0008f000) == 0x00007000) {
1273 seq_printf(m
, "CPU variant\t: 0x%02x\n",
1274 (cpuid
>> 16) & 127);
1277 seq_printf(m
, "CPU variant\t: 0x%x\n",
1278 (cpuid
>> 20) & 15);
1280 seq_printf(m
, "CPU part\t: 0x%03x\n",
1281 (cpuid
>> 4) & 0xfff);
1283 seq_printf(m
, "CPU revision\t: %d\n\n", cpuid
& 15);
1286 seq_printf(m
, "Hardware\t: %s\n", machine_name
);
1287 seq_printf(m
, "Revision\t: %04x\n", system_rev
);
1288 seq_printf(m
, "Serial\t\t: %s\n", system_serial
);
1293 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1295 return *pos
< 1 ? (void *)1 : NULL
;
1298 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1304 static void c_stop(struct seq_file
*m
, void *v
)
1308 const struct seq_operations cpuinfo_op
= {