mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / arch / arm / kernel / smp.c
blobdc06483c26039aa90fe05bad880fbf0ac29b617f
1 /*
2 * linux/arch/arm/kernel/smp.c
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/nmi.h>
27 #include <linux/percpu.h>
28 #include <linux/clockchips.h>
29 #include <linux/completion.h>
30 #include <linux/cpufreq.h>
31 #include <linux/irq_work.h>
33 #include <linux/atomic.h>
34 #include <asm/bugs.h>
35 #include <asm/smp.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/exception.h>
40 #include <asm/idmap.h>
41 #include <asm/topology.h>
42 #include <asm/mmu_context.h>
43 #include <asm/pgtable.h>
44 #include <asm/pgalloc.h>
45 #include <asm/procinfo.h>
46 #include <asm/processor.h>
47 #include <asm/sections.h>
48 #include <asm/tlbflush.h>
49 #include <asm/ptrace.h>
50 #include <asm/smp_plat.h>
51 #include <asm/virt.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mpu.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ipi.h>
59 * as from 2.5, kernels no longer have an init_tasks structure
60 * so we need some other way of telling a new secondary core
61 * where to place its SVC stack
63 struct secondary_data secondary_data;
66 * control for which core is the next to come out of the secondary
67 * boot "holding pen"
69 volatile int pen_release = -1;
71 enum ipi_msg_type {
72 IPI_WAKEUP,
73 IPI_TIMER,
74 IPI_RESCHEDULE,
75 IPI_CALL_FUNC,
76 IPI_CPU_STOP,
77 IPI_IRQ_WORK,
78 IPI_COMPLETION,
80 * CPU_BACKTRACE is special and not included in NR_IPI
81 * or tracable with trace_ipi_*
83 IPI_CPU_BACKTRACE,
85 * SGI8-15 can be reserved by secure firmware, and thus may
86 * not be usable by the kernel. Please keep the above limited
87 * to at most 8 entries.
91 static DECLARE_COMPLETION(cpu_running);
93 static struct smp_operations smp_ops __ro_after_init;
95 void __init smp_set_ops(const struct smp_operations *ops)
97 if (ops)
98 smp_ops = *ops;
101 static unsigned long get_arch_pgd(pgd_t *pgd)
103 #ifdef CONFIG_ARM_LPAE
104 return __phys_to_pfn(virt_to_phys(pgd));
105 #else
106 return virt_to_phys(pgd);
107 #endif
110 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
111 static int secondary_biglittle_prepare(unsigned int cpu)
113 if (!cpu_vtable[cpu])
114 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
116 return cpu_vtable[cpu] ? 0 : -ENOMEM;
119 static void secondary_biglittle_init(void)
121 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
123 #else
124 static int secondary_biglittle_prepare(unsigned int cpu)
126 return 0;
129 static void secondary_biglittle_init(void)
132 #endif
134 int __cpu_up(unsigned int cpu, struct task_struct *idle)
136 int ret;
138 if (!smp_ops.smp_boot_secondary)
139 return -ENOSYS;
141 ret = secondary_biglittle_prepare(cpu);
142 if (ret)
143 return ret;
146 * We need to tell the secondary core where to find
147 * its stack and the page tables.
149 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
150 #ifdef CONFIG_ARM_MPU
151 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
152 #endif
154 #ifdef CONFIG_MMU
155 secondary_data.pgdir = virt_to_phys(idmap_pgd);
156 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
157 #endif
158 sync_cache_w(&secondary_data);
161 * Now bring the CPU into our world.
163 ret = smp_ops.smp_boot_secondary(cpu, idle);
164 if (ret == 0) {
166 * CPU was successfully started, wait for it
167 * to come online or time out.
169 wait_for_completion_timeout(&cpu_running,
170 msecs_to_jiffies(1000));
172 if (!cpu_online(cpu)) {
173 pr_crit("CPU%u: failed to come online\n", cpu);
174 ret = -EIO;
176 } else {
177 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
181 memset(&secondary_data, 0, sizeof(secondary_data));
182 return ret;
185 /* platform specific SMP operations */
186 void __init smp_init_cpus(void)
188 if (smp_ops.smp_init_cpus)
189 smp_ops.smp_init_cpus();
192 int platform_can_secondary_boot(void)
194 return !!smp_ops.smp_boot_secondary;
197 int platform_can_cpu_hotplug(void)
199 #ifdef CONFIG_HOTPLUG_CPU
200 if (smp_ops.cpu_kill)
201 return 1;
202 #endif
204 return 0;
207 #ifdef CONFIG_HOTPLUG_CPU
208 static int platform_cpu_kill(unsigned int cpu)
210 if (smp_ops.cpu_kill)
211 return smp_ops.cpu_kill(cpu);
212 return 1;
215 static int platform_cpu_disable(unsigned int cpu)
217 if (smp_ops.cpu_disable)
218 return smp_ops.cpu_disable(cpu);
220 return 0;
223 int platform_can_hotplug_cpu(unsigned int cpu)
225 /* cpu_die must be specified to support hotplug */
226 if (!smp_ops.cpu_die)
227 return 0;
229 if (smp_ops.cpu_can_disable)
230 return smp_ops.cpu_can_disable(cpu);
233 * By default, allow disabling all CPUs except the first one,
234 * since this is special on a lot of platforms, e.g. because
235 * of clock tick interrupts.
237 return cpu != 0;
241 * __cpu_disable runs on the processor to be shutdown.
243 int __cpu_disable(void)
245 unsigned int cpu = smp_processor_id();
246 int ret;
248 ret = platform_cpu_disable(cpu);
249 if (ret)
250 return ret;
253 * Take this CPU offline. Once we clear this, we can't return,
254 * and we must not schedule until we're ready to give up the cpu.
256 set_cpu_online(cpu, false);
259 * OK - migrate IRQs away from this CPU
261 irq_migrate_all_off_this_cpu();
264 * Flush user cache and TLB mappings, and then remove this CPU
265 * from the vm mask set of all processes.
267 * Caches are flushed to the Level of Unification Inner Shareable
268 * to write-back dirty lines to unified caches shared by all CPUs.
270 flush_cache_louis();
271 local_flush_tlb_all();
273 clear_tasks_mm_cpumask(cpu);
275 return 0;
278 static DECLARE_COMPLETION(cpu_died);
281 * called on the thread which is asking for a CPU to be shutdown -
282 * waits until shutdown has completed, or it is timed out.
284 void __cpu_die(unsigned int cpu)
286 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
287 pr_err("CPU%u: cpu didn't die\n", cpu);
288 return;
290 pr_debug("CPU%u: shutdown\n", cpu);
293 * platform_cpu_kill() is generally expected to do the powering off
294 * and/or cutting of clocks to the dying CPU. Optionally, this may
295 * be done by the CPU which is dying in preference to supporting
296 * this call, but that means there is _no_ synchronisation between
297 * the requesting CPU and the dying CPU actually losing power.
299 if (!platform_cpu_kill(cpu))
300 pr_err("CPU%u: unable to kill\n", cpu);
304 * Called from the idle thread for the CPU which has been shutdown.
306 * Note that we disable IRQs here, but do not re-enable them
307 * before returning to the caller. This is also the behaviour
308 * of the other hotplug-cpu capable cores, so presumably coming
309 * out of idle fixes this.
311 void arch_cpu_idle_dead(void)
313 unsigned int cpu = smp_processor_id();
315 idle_task_exit();
317 local_irq_disable();
320 * Flush the data out of the L1 cache for this CPU. This must be
321 * before the completion to ensure that data is safely written out
322 * before platform_cpu_kill() gets called - which may disable
323 * *this* CPU and power down its cache.
325 flush_cache_louis();
328 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
329 * this returns, power and/or clocks can be removed at any point
330 * from this CPU and its cache by platform_cpu_kill().
332 complete(&cpu_died);
335 * Ensure that the cache lines associated with that completion are
336 * written out. This covers the case where _this_ CPU is doing the
337 * powering down, to ensure that the completion is visible to the
338 * CPU waiting for this one.
340 flush_cache_louis();
343 * The actual CPU shutdown procedure is at least platform (if not
344 * CPU) specific. This may remove power, or it may simply spin.
346 * Platforms are generally expected *NOT* to return from this call,
347 * although there are some which do because they have no way to
348 * power down the CPU. These platforms are the _only_ reason we
349 * have a return path which uses the fragment of assembly below.
351 * The return path should not be used for platforms which can
352 * power off the CPU.
354 if (smp_ops.cpu_die)
355 smp_ops.cpu_die(cpu);
357 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
358 cpu);
361 * Do not return to the idle loop - jump back to the secondary
362 * cpu initialisation. There's some initialisation which needs
363 * to be repeated to undo the effects of taking the CPU offline.
365 __asm__("mov sp, %0\n"
366 " mov fp, #0\n"
367 " b secondary_start_kernel"
369 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
371 #endif /* CONFIG_HOTPLUG_CPU */
374 * Called by both boot and secondaries to move global data into
375 * per-processor storage.
377 static void smp_store_cpu_info(unsigned int cpuid)
379 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
381 cpu_info->loops_per_jiffy = loops_per_jiffy;
382 cpu_info->cpuid = read_cpuid_id();
384 store_cpu_topology(cpuid);
388 * This is the secondary CPU boot entry. We're using this CPUs
389 * idle thread stack, but a set of temporary page tables.
391 asmlinkage void secondary_start_kernel(void)
393 struct mm_struct *mm = &init_mm;
394 unsigned int cpu;
396 secondary_biglittle_init();
399 * The identity mapping is uncached (strongly ordered), so
400 * switch away from it before attempting any exclusive accesses.
402 cpu_switch_mm(mm->pgd, mm);
403 local_flush_bp_all();
404 enter_lazy_tlb(mm, current);
405 local_flush_tlb_all();
408 * All kernel threads share the same mm context; grab a
409 * reference and switch to it.
411 cpu = smp_processor_id();
412 mmgrab(mm);
413 current->active_mm = mm;
414 cpumask_set_cpu(cpu, mm_cpumask(mm));
416 cpu_init();
418 pr_debug("CPU%u: Booted secondary processor\n", cpu);
420 preempt_disable();
421 trace_hardirqs_off();
424 * Give the platform a chance to do its own initialisation.
426 if (smp_ops.smp_secondary_init)
427 smp_ops.smp_secondary_init(cpu);
429 notify_cpu_starting(cpu);
431 calibrate_delay();
433 smp_store_cpu_info(cpu);
436 * OK, now it's safe to let the boot CPU continue. Wait for
437 * the CPU migration code to notice that the CPU is online
438 * before we continue - which happens after __cpu_up returns.
440 set_cpu_online(cpu, true);
442 check_other_bugs();
444 complete(&cpu_running);
446 local_irq_enable();
447 local_fiq_enable();
448 local_abt_enable();
451 * OK, it's off to the idle thread for us
453 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
456 void __init smp_cpus_done(unsigned int max_cpus)
458 int cpu;
459 unsigned long bogosum = 0;
461 for_each_online_cpu(cpu)
462 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
464 printk(KERN_INFO "SMP: Total of %d processors activated "
465 "(%lu.%02lu BogoMIPS).\n",
466 num_online_cpus(),
467 bogosum / (500000/HZ),
468 (bogosum / (5000/HZ)) % 100);
470 hyp_mode_check();
473 void __init smp_prepare_boot_cpu(void)
475 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
478 void __init smp_prepare_cpus(unsigned int max_cpus)
480 unsigned int ncores = num_possible_cpus();
482 init_cpu_topology();
484 smp_store_cpu_info(smp_processor_id());
487 * are we trying to boot more cores than exist?
489 if (max_cpus > ncores)
490 max_cpus = ncores;
491 if (ncores > 1 && max_cpus) {
493 * Initialise the present map, which describes the set of CPUs
494 * actually populated at the present time. A platform should
495 * re-initialize the map in the platforms smp_prepare_cpus()
496 * if present != possible (e.g. physical hotplug).
498 init_cpu_present(cpu_possible_mask);
501 * Initialise the SCU if there are more than one CPU
502 * and let them know where to start.
504 if (smp_ops.smp_prepare_cpus)
505 smp_ops.smp_prepare_cpus(max_cpus);
509 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
511 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
513 if (!__smp_cross_call)
514 __smp_cross_call = fn;
517 static const char *ipi_types[NR_IPI] __tracepoint_string = {
518 #define S(x,s) [x] = s
519 S(IPI_WAKEUP, "CPU wakeup interrupts"),
520 S(IPI_TIMER, "Timer broadcast interrupts"),
521 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
522 S(IPI_CALL_FUNC, "Function call interrupts"),
523 S(IPI_CPU_STOP, "CPU stop interrupts"),
524 S(IPI_IRQ_WORK, "IRQ work interrupts"),
525 S(IPI_COMPLETION, "completion interrupts"),
528 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
530 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
531 __smp_cross_call(target, ipinr);
534 void show_ipi_list(struct seq_file *p, int prec)
536 unsigned int cpu, i;
538 for (i = 0; i < NR_IPI; i++) {
539 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
541 for_each_online_cpu(cpu)
542 seq_printf(p, "%10u ",
543 __get_irq_stat(cpu, ipi_irqs[i]));
545 seq_printf(p, " %s\n", ipi_types[i]);
549 u64 smp_irq_stat_cpu(unsigned int cpu)
551 u64 sum = 0;
552 int i;
554 for (i = 0; i < NR_IPI; i++)
555 sum += __get_irq_stat(cpu, ipi_irqs[i]);
557 return sum;
560 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
562 smp_cross_call(mask, IPI_CALL_FUNC);
565 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
567 smp_cross_call(mask, IPI_WAKEUP);
570 void arch_send_call_function_single_ipi(int cpu)
572 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
575 #ifdef CONFIG_IRQ_WORK
576 void arch_irq_work_raise(void)
578 if (arch_irq_work_has_interrupt())
579 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
581 #endif
583 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
584 void tick_broadcast(const struct cpumask *mask)
586 smp_cross_call(mask, IPI_TIMER);
588 #endif
590 static DEFINE_RAW_SPINLOCK(stop_lock);
593 * ipi_cpu_stop - handle IPI from smp_send_stop()
595 static void ipi_cpu_stop(unsigned int cpu)
597 if (system_state <= SYSTEM_RUNNING) {
598 raw_spin_lock(&stop_lock);
599 pr_crit("CPU%u: stopping\n", cpu);
600 dump_stack();
601 raw_spin_unlock(&stop_lock);
604 set_cpu_online(cpu, false);
606 local_fiq_disable();
607 local_irq_disable();
609 while (1) {
610 cpu_relax();
611 wfe();
615 static DEFINE_PER_CPU(struct completion *, cpu_completion);
617 int register_ipi_completion(struct completion *completion, int cpu)
619 per_cpu(cpu_completion, cpu) = completion;
620 return IPI_COMPLETION;
623 static void ipi_complete(unsigned int cpu)
625 complete(per_cpu(cpu_completion, cpu));
629 * Main handler for inter-processor interrupts
631 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
633 handle_IPI(ipinr, regs);
636 void handle_IPI(int ipinr, struct pt_regs *regs)
638 unsigned int cpu = smp_processor_id();
639 struct pt_regs *old_regs = set_irq_regs(regs);
641 if ((unsigned)ipinr < NR_IPI) {
642 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
643 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
646 switch (ipinr) {
647 case IPI_WAKEUP:
648 break;
650 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
651 case IPI_TIMER:
652 irq_enter();
653 tick_receive_broadcast();
654 irq_exit();
655 break;
656 #endif
658 case IPI_RESCHEDULE:
659 scheduler_ipi();
660 break;
662 case IPI_CALL_FUNC:
663 irq_enter();
664 generic_smp_call_function_interrupt();
665 irq_exit();
666 break;
668 case IPI_CPU_STOP:
669 irq_enter();
670 ipi_cpu_stop(cpu);
671 irq_exit();
672 break;
674 #ifdef CONFIG_IRQ_WORK
675 case IPI_IRQ_WORK:
676 irq_enter();
677 irq_work_run();
678 irq_exit();
679 break;
680 #endif
682 case IPI_COMPLETION:
683 irq_enter();
684 ipi_complete(cpu);
685 irq_exit();
686 break;
688 case IPI_CPU_BACKTRACE:
689 printk_nmi_enter();
690 irq_enter();
691 nmi_cpu_backtrace(regs);
692 irq_exit();
693 printk_nmi_exit();
694 break;
696 default:
697 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
698 cpu, ipinr);
699 break;
702 if ((unsigned)ipinr < NR_IPI)
703 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
704 set_irq_regs(old_regs);
707 void smp_send_reschedule(int cpu)
709 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
712 void smp_send_stop(void)
714 unsigned long timeout;
715 struct cpumask mask;
717 cpumask_copy(&mask, cpu_online_mask);
718 cpumask_clear_cpu(smp_processor_id(), &mask);
719 if (!cpumask_empty(&mask))
720 smp_cross_call(&mask, IPI_CPU_STOP);
722 /* Wait up to one second for other CPUs to stop */
723 timeout = USEC_PER_SEC;
724 while (num_online_cpus() > 1 && timeout--)
725 udelay(1);
727 if (num_online_cpus() > 1)
728 pr_warn("SMP: failed to stop secondary CPUs\n");
731 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
732 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
733 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
734 * kdump fails. So split out the panic_smp_self_stop() and add
735 * set_cpu_online(smp_processor_id(), false).
737 void panic_smp_self_stop(void)
739 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
740 smp_processor_id());
741 set_cpu_online(smp_processor_id(), false);
742 while (1)
743 cpu_relax();
747 * not supported here
749 int setup_profiling_timer(unsigned int multiplier)
751 return -EINVAL;
754 #ifdef CONFIG_CPU_FREQ
756 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
757 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
758 static unsigned long global_l_p_j_ref;
759 static unsigned long global_l_p_j_ref_freq;
761 static int cpufreq_callback(struct notifier_block *nb,
762 unsigned long val, void *data)
764 struct cpufreq_freqs *freq = data;
765 int cpu = freq->cpu;
767 if (freq->flags & CPUFREQ_CONST_LOOPS)
768 return NOTIFY_OK;
770 if (!per_cpu(l_p_j_ref, cpu)) {
771 per_cpu(l_p_j_ref, cpu) =
772 per_cpu(cpu_data, cpu).loops_per_jiffy;
773 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
774 if (!global_l_p_j_ref) {
775 global_l_p_j_ref = loops_per_jiffy;
776 global_l_p_j_ref_freq = freq->old;
780 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
781 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
782 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
783 global_l_p_j_ref_freq,
784 freq->new);
785 per_cpu(cpu_data, cpu).loops_per_jiffy =
786 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
787 per_cpu(l_p_j_ref_freq, cpu),
788 freq->new);
790 return NOTIFY_OK;
793 static struct notifier_block cpufreq_notifier = {
794 .notifier_call = cpufreq_callback,
797 static int __init register_cpufreq_notifier(void)
799 return cpufreq_register_notifier(&cpufreq_notifier,
800 CPUFREQ_TRANSITION_NOTIFIER);
802 core_initcall(register_cpufreq_notifier);
804 #endif
806 static void raise_nmi(cpumask_t *mask)
808 __smp_cross_call(mask, IPI_CPU_BACKTRACE);
811 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
813 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);