mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / arch / cris / arch-v10 / kernel / time.c
blob3d78373db2541b29603ff91521af06c0523fa757
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/arch/cris/arch-v10/kernel/time.c
5 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
6 * Copyright (C) 1999-2002 Axis Communications AB
8 */
10 #include <linux/timex.h>
11 #include <linux/time.h>
12 #include <linux/jiffies.h>
13 #include <linux/interrupt.h>
14 #include <linux/swap.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/irq_regs.h>
24 /* define this if you need to use print_timestamp */
25 /* it will make jiffies at 96 hz instead of 100 hz though */
26 #undef USE_CASCADE_TIMERS
28 unsigned long get_ns_in_jiffie(void)
30 unsigned char timer_count, t1;
31 unsigned short presc_count;
32 unsigned long ns;
33 unsigned long flags;
35 local_irq_save(flags);
36 timer_count = *R_TIMER0_DATA;
37 presc_count = *R_TIM_PRESC_STATUS;
38 /* presc_count might be wrapped */
39 t1 = *R_TIMER0_DATA;
41 if (timer_count != t1){
42 /* it wrapped, read prescaler again... */
43 presc_count = *R_TIM_PRESC_STATUS;
44 timer_count = t1;
46 local_irq_restore(flags);
47 if (presc_count >= PRESCALE_VALUE/2 ){
48 presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
49 } else {
50 presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
53 ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
54 ( (presc_count) * (1000000000/PRESCALE_FREQ));
55 return ns;
58 static u32 cris_v10_gettimeoffset(void)
60 u32 count;
62 /* The timer interrupt comes from Etrax timer 0. In order to get
63 * better precision, we check the current value. It might have
64 * underflowed already though.
66 count = *R_TIMER0_DATA;
68 /* Convert timer value to nsec */
69 return (TIMER0_DIV - count) * (NSEC_PER_SEC/HZ)/TIMER0_DIV;
72 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
74 * 3.10.4 Watchdog timer
76 * When the watchdog timer is started, it generates an NMI if the watchdog
77 * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
78 * stopped after an additional 3.3 ms, the watchdog resets the chip.
79 * The watchdog timer is stopped after reset. The watchdog timer is controlled
80 * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
81 * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
82 * described in the table below:
84 * Watchdog Value written:
85 * state: To enable: To key: Operation:
86 * -------- ---------- ------- ----------
87 * stopped 0 X No effect.
88 * stopped 1 key_val Start watchdog with key = key_val.
89 * started 0 ~key Stop watchdog
90 * started 1 ~key Restart watchdog with key = ~key.
91 * started X new_key_val Change key to new_key_val.
93 * Note: '~' is the bitwise NOT operator.
97 /* right now, starting the watchdog is the same as resetting it */
98 #define start_watchdog reset_watchdog
100 #ifdef CONFIG_ETRAX_WATCHDOG
101 static int watchdog_key = 0; /* arbitrary number */
102 #endif
104 /* number of pages to consider "out of memory". it is normal that the memory
105 * is used though, so put this really low.
108 #define WATCHDOG_MIN_FREE_PAGES 8
110 void reset_watchdog(void)
112 #if defined(CONFIG_ETRAX_WATCHDOG)
113 /* only keep watchdog happy as long as we have memory left! */
114 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
115 /* reset the watchdog with the inverse of the old key */
116 watchdog_key ^= 0x7; /* invert key, which is 3 bits */
117 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
118 IO_STATE(R_WATCHDOG, enable, start);
120 #endif
123 /* stop the watchdog - we still need the correct key */
125 void stop_watchdog(void)
127 #ifdef CONFIG_ETRAX_WATCHDOG
128 watchdog_key ^= 0x7; /* invert key, which is 3 bits */
129 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
130 IO_STATE(R_WATCHDOG, enable, stop);
131 #endif
135 extern void cris_do_profile(struct pt_regs *regs);
138 * timer_interrupt() needs to keep up the real-time clock,
139 * as well as call the "xtime_update()" routine every clocktick
141 static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
143 struct pt_regs *regs = get_irq_regs();
144 /* acknowledge the timer irq */
146 #ifdef USE_CASCADE_TIMERS
147 *R_TIMER_CTRL =
148 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
149 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
150 IO_STATE( R_TIMER_CTRL, i1, clr) |
151 IO_STATE( R_TIMER_CTRL, tm1, run) |
152 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
153 IO_STATE( R_TIMER_CTRL, i0, clr) |
154 IO_STATE( R_TIMER_CTRL, tm0, run) |
155 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
156 #else
157 *R_TIMER_CTRL = r_timer_ctrl_shadow | IO_STATE(R_TIMER_CTRL, i0, clr);
158 #endif
160 /* reset watchdog otherwise it resets us! */
161 reset_watchdog();
163 /* Update statistics. */
164 update_process_times(user_mode(regs));
166 /* call the real timer interrupt handler */
167 xtime_update(1);
169 cris_do_profile(regs); /* Save profiling information */
170 return IRQ_HANDLED;
173 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain */
175 static struct irqaction irq2 = {
176 .handler = timer_interrupt,
177 .flags = IRQF_SHARED,
178 .name = "timer",
181 void __init time_init(void)
183 arch_gettimeoffset = cris_v10_gettimeoffset;
185 /* probe for the RTC and read it if it exists
186 * Before the RTC can be probed the loops_per_usec variable needs
187 * to be initialized to make usleep work. A better value for
188 * loops_per_usec is calculated by the kernel later once the
189 * clock has started.
191 loops_per_usec = 50;
193 /* Setup the etrax timers
194 * Base frequency is 25000 hz, divider 250 -> 100 HZ
195 * In normal mode, we use timer0, so timer1 is free. In cascade
196 * mode (which we sometimes use for debugging) both timers are used.
197 * Remember that linux/timex.h contains #defines that rely on the
198 * timer settings below (hz and divide factor) !!!
201 #ifdef USE_CASCADE_TIMERS
202 *R_TIMER_CTRL =
203 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
204 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
205 IO_STATE( R_TIMER_CTRL, i1, nop) |
206 IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
207 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
208 IO_STATE( R_TIMER_CTRL, i0, nop) |
209 IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
210 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
212 *R_TIMER_CTRL = r_timer_ctrl_shadow =
213 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
214 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
215 IO_STATE( R_TIMER_CTRL, i1, nop) |
216 IO_STATE( R_TIMER_CTRL, tm1, run) |
217 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
218 IO_STATE( R_TIMER_CTRL, i0, nop) |
219 IO_STATE( R_TIMER_CTRL, tm0, run) |
220 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
221 #else
222 *R_TIMER_CTRL =
223 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
224 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
225 IO_STATE(R_TIMER_CTRL, i1, nop) |
226 IO_STATE(R_TIMER_CTRL, tm1, stop_ld) |
227 IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
228 IO_STATE(R_TIMER_CTRL, i0, nop) |
229 IO_STATE(R_TIMER_CTRL, tm0, stop_ld) |
230 IO_STATE(R_TIMER_CTRL, clksel0, flexible);
232 *R_TIMER_CTRL = r_timer_ctrl_shadow =
233 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
234 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
235 IO_STATE(R_TIMER_CTRL, i1, nop) |
236 IO_STATE(R_TIMER_CTRL, tm1, run) |
237 IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
238 IO_STATE(R_TIMER_CTRL, i0, nop) |
239 IO_STATE(R_TIMER_CTRL, tm0, run) |
240 IO_STATE(R_TIMER_CTRL, clksel0, flexible);
242 *R_TIMER_PRESCALE = PRESCALE_VALUE;
243 #endif
245 /* unmask the timer irq */
246 *R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, timer0, set);
248 /* now actually register the irq handler that calls timer_interrupt() */
249 setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
251 /* enable watchdog if we should use one */
252 #if defined(CONFIG_ETRAX_WATCHDOG)
253 printk("Enabling watchdog...\n");
254 start_watchdog();
256 /* If we use the hardware watchdog, we want to trap it as an NMI
257 and dump registers before it resets us. For this to happen, we
258 must set the "m" NMI enable flag (which once set, is unset only
259 when an NMI is taken).
261 The same goes for the external NMI, but that doesn't have any
262 driver or infrastructure support yet. */
263 asm ("setf m");
265 *R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
266 *R_VECT_MASK_SET = IO_STATE(R_VECT_MASK_SET, nmi, set);
267 #endif