1 // SPDX-License-Identifier: GPL-2.0
3 * Extensible Firmware Interface
5 * Based on Extensible Firmware Interface Specification version 0.9
8 * Copyright (C) 1999 VA Linux Systems
9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
11 * David Mosberger-Tang <davidm@hpl.hp.com>
12 * Stephane Eranian <eranian@hpl.hp.com>
13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14 * Bjorn Helgaas <bjorn.helgaas@hp.com>
16 * All EFI Runtime Services are not implemented yet as EFI only
17 * supports physical mode addressing on SoftSDV. This is to be fixed
18 * in a future version. --drummond 1999-07-20
20 * Implemented EFI runtime services and virtual mode calls. --davidm
22 * Goutham Rao: <goutham.rao@intel.com>
23 * Skip non-WB memory and ignore empty memory ranges.
25 #include <linux/module.h>
26 #include <linux/bootmem.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
38 #include <asm/kregs.h>
39 #include <asm/meminit.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/tlbflush.h>
48 static __initdata
unsigned long palo_phys
;
50 static __initdata efi_config_table_type_t arch_tables
[] = {
51 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID
, "PALO", &palo_phys
},
55 extern efi_status_t
efi_call_phys (void *, ...);
57 static efi_runtime_services_t
*runtime
;
58 static u64 mem_limit
= ~0UL, max_addr
= ~0UL, min_addr
= 0UL;
60 #define efi_call_virt(f, args...) (*(f))(args)
62 #define STUB_GET_TIME(prefix, adjust_arg) \
64 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
66 struct ia64_fpreg fr[6]; \
67 efi_time_cap_t *atc = NULL; \
71 atc = adjust_arg(tc); \
72 ia64_save_scratch_fpregs(fr); \
73 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
74 adjust_arg(tm), atc); \
75 ia64_load_scratch_fpregs(fr); \
79 #define STUB_SET_TIME(prefix, adjust_arg) \
81 prefix##_set_time (efi_time_t *tm) \
83 struct ia64_fpreg fr[6]; \
86 ia64_save_scratch_fpregs(fr); \
87 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
89 ia64_load_scratch_fpregs(fr); \
93 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
95 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
98 struct ia64_fpreg fr[6]; \
101 ia64_save_scratch_fpregs(fr); \
102 ret = efi_call_##prefix( \
103 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
104 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
105 ia64_load_scratch_fpregs(fr); \
109 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
110 static efi_status_t \
111 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
113 struct ia64_fpreg fr[6]; \
114 efi_time_t *atm = NULL; \
118 atm = adjust_arg(tm); \
119 ia64_save_scratch_fpregs(fr); \
120 ret = efi_call_##prefix( \
121 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
123 ia64_load_scratch_fpregs(fr); \
127 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
128 static efi_status_t \
129 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
130 unsigned long *data_size, void *data) \
132 struct ia64_fpreg fr[6]; \
137 aattr = adjust_arg(attr); \
138 ia64_save_scratch_fpregs(fr); \
139 ret = efi_call_##prefix( \
140 (efi_get_variable_t *) __va(runtime->get_variable), \
141 adjust_arg(name), adjust_arg(vendor), aattr, \
142 adjust_arg(data_size), adjust_arg(data)); \
143 ia64_load_scratch_fpregs(fr); \
147 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
148 static efi_status_t \
149 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
150 efi_guid_t *vendor) \
152 struct ia64_fpreg fr[6]; \
155 ia64_save_scratch_fpregs(fr); \
156 ret = efi_call_##prefix( \
157 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
158 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
159 ia64_load_scratch_fpregs(fr); \
163 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
164 static efi_status_t \
165 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
166 u32 attr, unsigned long data_size, \
169 struct ia64_fpreg fr[6]; \
172 ia64_save_scratch_fpregs(fr); \
173 ret = efi_call_##prefix( \
174 (efi_set_variable_t *) __va(runtime->set_variable), \
175 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
177 ia64_load_scratch_fpregs(fr); \
181 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
182 static efi_status_t \
183 prefix##_get_next_high_mono_count (u32 *count) \
185 struct ia64_fpreg fr[6]; \
188 ia64_save_scratch_fpregs(fr); \
189 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
190 __va(runtime->get_next_high_mono_count), \
191 adjust_arg(count)); \
192 ia64_load_scratch_fpregs(fr); \
196 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
198 prefix##_reset_system (int reset_type, efi_status_t status, \
199 unsigned long data_size, efi_char16_t *data) \
201 struct ia64_fpreg fr[6]; \
202 efi_char16_t *adata = NULL; \
205 adata = adjust_arg(data); \
207 ia64_save_scratch_fpregs(fr); \
209 (efi_reset_system_t *) __va(runtime->reset_system), \
210 reset_type, status, data_size, adata); \
211 /* should not return, but just in case... */ \
212 ia64_load_scratch_fpregs(fr); \
215 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
217 STUB_GET_TIME(phys
, phys_ptr
)
218 STUB_SET_TIME(phys
, phys_ptr
)
219 STUB_GET_WAKEUP_TIME(phys
, phys_ptr
)
220 STUB_SET_WAKEUP_TIME(phys
, phys_ptr
)
221 STUB_GET_VARIABLE(phys
, phys_ptr
)
222 STUB_GET_NEXT_VARIABLE(phys
, phys_ptr
)
223 STUB_SET_VARIABLE(phys
, phys_ptr
)
224 STUB_GET_NEXT_HIGH_MONO_COUNT(phys
, phys_ptr
)
225 STUB_RESET_SYSTEM(phys
, phys_ptr
)
229 STUB_GET_TIME(virt
, id
)
230 STUB_SET_TIME(virt
, id
)
231 STUB_GET_WAKEUP_TIME(virt
, id
)
232 STUB_SET_WAKEUP_TIME(virt
, id
)
233 STUB_GET_VARIABLE(virt
, id
)
234 STUB_GET_NEXT_VARIABLE(virt
, id
)
235 STUB_SET_VARIABLE(virt
, id
)
236 STUB_GET_NEXT_HIGH_MONO_COUNT(virt
, id
)
237 STUB_RESET_SYSTEM(virt
, id
)
240 efi_gettimeofday (struct timespec64
*ts
)
244 if ((*efi
.get_time
)(&tm
, NULL
) != EFI_SUCCESS
) {
245 memset(ts
, 0, sizeof(*ts
));
249 ts
->tv_sec
= mktime64(tm
.year
, tm
.month
, tm
.day
,
250 tm
.hour
, tm
.minute
, tm
.second
);
251 ts
->tv_nsec
= tm
.nanosecond
;
255 is_memory_available (efi_memory_desc_t
*md
)
257 if (!(md
->attribute
& EFI_MEMORY_WB
))
261 case EFI_LOADER_CODE
:
262 case EFI_LOADER_DATA
:
263 case EFI_BOOT_SERVICES_CODE
:
264 case EFI_BOOT_SERVICES_DATA
:
265 case EFI_CONVENTIONAL_MEMORY
:
271 typedef struct kern_memdesc
{
277 static kern_memdesc_t
*kern_memmap
;
279 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
282 kmd_end(kern_memdesc_t
*kmd
)
284 return (kmd
->start
+ (kmd
->num_pages
<< EFI_PAGE_SHIFT
));
288 efi_md_end(efi_memory_desc_t
*md
)
290 return (md
->phys_addr
+ efi_md_size(md
));
294 efi_wb(efi_memory_desc_t
*md
)
296 return (md
->attribute
& EFI_MEMORY_WB
);
300 efi_uc(efi_memory_desc_t
*md
)
302 return (md
->attribute
& EFI_MEMORY_UC
);
306 walk (efi_freemem_callback_t callback
, void *arg
, u64 attr
)
309 u64 start
, end
, voff
;
311 voff
= (attr
== EFI_MEMORY_WB
) ? PAGE_OFFSET
: __IA64_UNCACHED_OFFSET
;
312 for (k
= kern_memmap
; k
->start
!= ~0UL; k
++) {
313 if (k
->attribute
!= attr
)
315 start
= PAGE_ALIGN(k
->start
);
316 end
= (k
->start
+ (k
->num_pages
<< EFI_PAGE_SHIFT
)) & PAGE_MASK
;
318 if ((*callback
)(start
+ voff
, end
+ voff
, arg
) < 0)
324 * Walk the EFI memory map and call CALLBACK once for each EFI memory
325 * descriptor that has memory that is available for OS use.
328 efi_memmap_walk (efi_freemem_callback_t callback
, void *arg
)
330 walk(callback
, arg
, EFI_MEMORY_WB
);
334 * Walk the EFI memory map and call CALLBACK once for each EFI memory
335 * descriptor that has memory that is available for uncached allocator.
338 efi_memmap_walk_uc (efi_freemem_callback_t callback
, void *arg
)
340 walk(callback
, arg
, EFI_MEMORY_UC
);
344 * Look for the PAL_CODE region reported by EFI and map it using an
345 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
346 * Abstraction Layer chapter 11 in ADAG
349 efi_get_pal_addr (void)
351 void *efi_map_start
, *efi_map_end
, *p
;
352 efi_memory_desc_t
*md
;
354 int pal_code_count
= 0;
357 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
358 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
359 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
361 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
363 if (md
->type
!= EFI_PAL_CODE
)
366 if (++pal_code_count
> 1) {
367 printk(KERN_ERR
"Too many EFI Pal Code memory ranges, "
368 "dropped @ %llx\n", md
->phys_addr
);
372 * The only ITLB entry in region 7 that is used is the one
373 * installed by __start(). That entry covers a 64MB range.
375 mask
= ~((1 << KERNEL_TR_PAGE_SHIFT
) - 1);
376 vaddr
= PAGE_OFFSET
+ md
->phys_addr
;
379 * We must check that the PAL mapping won't overlap with the
382 * PAL code is guaranteed to be aligned on a power of 2 between
383 * 4k and 256KB and that only one ITR is needed to map it. This
384 * implies that the PAL code is always aligned on its size,
385 * i.e., the closest matching page size supported by the TLB.
386 * Therefore PAL code is guaranteed never to cross a 64MB unless
387 * it is bigger than 64MB (very unlikely!). So for now the
388 * following test is enough to determine whether or not we need
389 * a dedicated ITR for the PAL code.
391 if ((vaddr
& mask
) == (KERNEL_START
& mask
)) {
392 printk(KERN_INFO
"%s: no need to install ITR for PAL code\n",
397 if (efi_md_size(md
) > IA64_GRANULE_SIZE
)
398 panic("Whoa! PAL code size bigger than a granule!");
401 mask
= ~((1 << IA64_GRANULE_SHIFT
) - 1);
403 printk(KERN_INFO
"CPU %d: mapping PAL code "
404 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
405 smp_processor_id(), md
->phys_addr
,
406 md
->phys_addr
+ efi_md_size(md
),
407 vaddr
& mask
, (vaddr
& mask
) + IA64_GRANULE_SIZE
);
409 return __va(md
->phys_addr
);
411 printk(KERN_WARNING
"%s: no PAL-code memory-descriptor found\n",
417 static u8 __init
palo_checksum(u8
*buffer
, u32 length
)
420 u8
*end
= buffer
+ length
;
423 sum
= (u8
) (sum
+ *(buffer
++));
429 * Parse and handle PALO table which is published at:
430 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
432 static void __init
handle_palo(unsigned long phys_addr
)
434 struct palo_table
*palo
= __va(phys_addr
);
437 if (strncmp(palo
->signature
, PALO_SIG
, sizeof(PALO_SIG
) - 1)) {
438 printk(KERN_INFO
"PALO signature incorrect.\n");
442 checksum
= palo_checksum((u8
*)palo
, palo
->length
);
444 printk(KERN_INFO
"PALO checksum incorrect.\n");
448 setup_ptcg_sem(palo
->max_tlb_purges
, NPTCG_FROM_PALO
);
452 efi_map_pal_code (void)
454 void *pal_vaddr
= efi_get_pal_addr ();
461 * Cannot write to CRx with PSR.ic=1
463 psr
= ia64_clear_ic();
464 ia64_itr(0x1, IA64_TR_PALCODE
,
465 GRANULEROUNDDOWN((unsigned long) pal_vaddr
),
466 pte_val(pfn_pte(__pa(pal_vaddr
) >> PAGE_SHIFT
, PAGE_KERNEL
)),
468 ia64_set_psr(psr
); /* restore psr */
474 void *efi_map_start
, *efi_map_end
;
477 char *cp
, vendor
[100] = "unknown";
480 set_bit(EFI_BOOT
, &efi
.flags
);
481 set_bit(EFI_64BIT
, &efi
.flags
);
484 * It's too early to be able to use the standard kernel command line
487 for (cp
= boot_command_line
; *cp
; ) {
488 if (memcmp(cp
, "mem=", 4) == 0) {
489 mem_limit
= memparse(cp
+ 4, &cp
);
490 } else if (memcmp(cp
, "max_addr=", 9) == 0) {
491 max_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
492 } else if (memcmp(cp
, "min_addr=", 9) == 0) {
493 min_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
495 while (*cp
!= ' ' && *cp
)
502 printk(KERN_INFO
"Ignoring memory below %lluMB\n",
504 if (max_addr
!= ~0UL)
505 printk(KERN_INFO
"Ignoring memory above %lluMB\n",
508 efi
.systab
= __va(ia64_boot_param
->efi_systab
);
511 * Verify the EFI Table
513 if (efi
.systab
== NULL
)
514 panic("Whoa! Can't find EFI system table.\n");
515 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
)
516 panic("Whoa! EFI system table signature incorrect\n");
517 if ((efi
.systab
->hdr
.revision
>> 16) == 0)
518 printk(KERN_WARNING
"Warning: EFI system table version "
519 "%d.%02d, expected 1.00 or greater\n",
520 efi
.systab
->hdr
.revision
>> 16,
521 efi
.systab
->hdr
.revision
& 0xffff);
523 /* Show what we know for posterity */
524 c16
= __va(efi
.systab
->fw_vendor
);
526 for (i
= 0;i
< (int) sizeof(vendor
) - 1 && *c16
; ++i
)
531 printk(KERN_INFO
"EFI v%u.%.02u by %s:",
532 efi
.systab
->hdr
.revision
>> 16,
533 efi
.systab
->hdr
.revision
& 0xffff, vendor
);
535 palo_phys
= EFI_INVALID_TABLE_ADDR
;
537 if (efi_config_init(arch_tables
) != 0)
540 if (palo_phys
!= EFI_INVALID_TABLE_ADDR
)
541 handle_palo(palo_phys
);
543 runtime
= __va(efi
.systab
->runtime
);
544 efi
.get_time
= phys_get_time
;
545 efi
.set_time
= phys_set_time
;
546 efi
.get_wakeup_time
= phys_get_wakeup_time
;
547 efi
.set_wakeup_time
= phys_set_wakeup_time
;
548 efi
.get_variable
= phys_get_variable
;
549 efi
.get_next_variable
= phys_get_next_variable
;
550 efi
.set_variable
= phys_set_variable
;
551 efi
.get_next_high_mono_count
= phys_get_next_high_mono_count
;
552 efi
.reset_system
= phys_reset_system
;
554 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
555 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
556 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
559 /* print EFI memory map: */
561 efi_memory_desc_t
*md
;
564 for (i
= 0, p
= efi_map_start
; p
< efi_map_end
;
565 ++i
, p
+= efi_desc_size
)
572 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
574 if ((size
>> 40) > 0) {
577 } else if ((size
>> 30) > 0) {
580 } else if ((size
>> 20) > 0) {
588 printk("mem%02d: %s "
589 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
590 i
, efi_md_typeattr_format(buf
, sizeof(buf
), md
),
592 md
->phys_addr
+ efi_md_size(md
), size
, unit
);
598 efi_enter_virtual_mode();
602 efi_enter_virtual_mode (void)
604 void *efi_map_start
, *efi_map_end
, *p
;
605 efi_memory_desc_t
*md
;
609 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
610 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
611 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
613 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
615 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
617 * Some descriptors have multiple bits set, so the
618 * order of the tests is relevant.
620 if (md
->attribute
& EFI_MEMORY_WB
) {
621 md
->virt_addr
= (u64
) __va(md
->phys_addr
);
622 } else if (md
->attribute
& EFI_MEMORY_UC
) {
623 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
624 } else if (md
->attribute
& EFI_MEMORY_WC
) {
626 md
->virt_addr
= ia64_remap(md
->phys_addr
,
634 printk(KERN_INFO
"EFI_MEMORY_WC mapping\n");
635 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
637 } else if (md
->attribute
& EFI_MEMORY_WT
) {
639 md
->virt_addr
= ia64_remap(md
->phys_addr
,
647 printk(KERN_INFO
"EFI_MEMORY_WT mapping\n");
648 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
654 status
= efi_call_phys(__va(runtime
->set_virtual_address_map
),
655 ia64_boot_param
->efi_memmap_size
,
657 ia64_boot_param
->efi_memdesc_version
,
658 ia64_boot_param
->efi_memmap
);
659 if (status
!= EFI_SUCCESS
) {
660 printk(KERN_WARNING
"warning: unable to switch EFI into "
661 "virtual mode (status=%lu)\n", status
);
665 set_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
668 * Now that EFI is in virtual mode, we call the EFI functions more
671 efi
.get_time
= virt_get_time
;
672 efi
.set_time
= virt_set_time
;
673 efi
.get_wakeup_time
= virt_get_wakeup_time
;
674 efi
.set_wakeup_time
= virt_set_wakeup_time
;
675 efi
.get_variable
= virt_get_variable
;
676 efi
.get_next_variable
= virt_get_next_variable
;
677 efi
.set_variable
= virt_set_variable
;
678 efi
.get_next_high_mono_count
= virt_get_next_high_mono_count
;
679 efi
.reset_system
= virt_reset_system
;
683 * Walk the EFI memory map looking for the I/O port range. There can only be
684 * one entry of this type, other I/O port ranges should be described via ACPI.
687 efi_get_iobase (void)
689 void *efi_map_start
, *efi_map_end
, *p
;
690 efi_memory_desc_t
*md
;
693 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
694 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
695 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
697 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
699 if (md
->type
== EFI_MEMORY_MAPPED_IO_PORT_SPACE
) {
700 if (md
->attribute
& EFI_MEMORY_UC
)
701 return md
->phys_addr
;
707 static struct kern_memdesc
*
708 kern_memory_descriptor (unsigned long phys_addr
)
710 struct kern_memdesc
*md
;
712 for (md
= kern_memmap
; md
->start
!= ~0UL; md
++) {
713 if (phys_addr
- md
->start
< (md
->num_pages
<< EFI_PAGE_SHIFT
))
719 static efi_memory_desc_t
*
720 efi_memory_descriptor (unsigned long phys_addr
)
722 void *efi_map_start
, *efi_map_end
, *p
;
723 efi_memory_desc_t
*md
;
726 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
727 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
728 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
730 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
733 if (phys_addr
- md
->phys_addr
< efi_md_size(md
))
740 efi_memmap_intersects (unsigned long phys_addr
, unsigned long size
)
742 void *efi_map_start
, *efi_map_end
, *p
;
743 efi_memory_desc_t
*md
;
747 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
748 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
749 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
751 end
= phys_addr
+ size
;
753 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
755 if (md
->phys_addr
< end
&& efi_md_end(md
) > phys_addr
)
762 efi_mem_type (unsigned long phys_addr
)
764 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
772 efi_mem_attributes (unsigned long phys_addr
)
774 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
777 return md
->attribute
;
780 EXPORT_SYMBOL(efi_mem_attributes
);
783 efi_mem_attribute (unsigned long phys_addr
, unsigned long size
)
785 unsigned long end
= phys_addr
+ size
;
786 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
793 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
794 * the kernel that firmware needs this region mapped.
796 attr
= md
->attribute
& ~EFI_MEMORY_RUNTIME
;
798 unsigned long md_end
= efi_md_end(md
);
803 md
= efi_memory_descriptor(md_end
);
804 if (!md
|| (md
->attribute
& ~EFI_MEMORY_RUNTIME
) != attr
)
807 return 0; /* never reached */
811 kern_mem_attribute (unsigned long phys_addr
, unsigned long size
)
813 unsigned long end
= phys_addr
+ size
;
814 struct kern_memdesc
*md
;
818 * This is a hack for ioremap calls before we set up kern_memmap.
819 * Maybe we should do efi_memmap_init() earlier instead.
822 attr
= efi_mem_attribute(phys_addr
, size
);
823 if (attr
& EFI_MEMORY_WB
)
824 return EFI_MEMORY_WB
;
828 md
= kern_memory_descriptor(phys_addr
);
832 attr
= md
->attribute
;
834 unsigned long md_end
= kmd_end(md
);
839 md
= kern_memory_descriptor(md_end
);
840 if (!md
|| md
->attribute
!= attr
)
843 return 0; /* never reached */
845 EXPORT_SYMBOL(kern_mem_attribute
);
848 valid_phys_addr_range (phys_addr_t phys_addr
, unsigned long size
)
853 * /dev/mem reads and writes use copy_to_user(), which implicitly
854 * uses a granule-sized kernel identity mapping. It's really
855 * only safe to do this for regions in kern_memmap. For more
856 * details, see Documentation/ia64/aliasing.txt.
858 attr
= kern_mem_attribute(phys_addr
, size
);
859 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
865 valid_mmap_phys_addr_range (unsigned long pfn
, unsigned long size
)
867 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
870 attr
= efi_mem_attribute(phys_addr
, size
);
873 * /dev/mem mmap uses normal user pages, so we don't need the entire
874 * granule, but the entire region we're mapping must support the same
877 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
881 * Intel firmware doesn't tell us about all the MMIO regions, so
882 * in general we have to allow mmap requests. But if EFI *does*
883 * tell us about anything inside this region, we should deny it.
884 * The user can always map a smaller region to avoid the overlap.
886 if (efi_memmap_intersects(phys_addr
, size
))
893 phys_mem_access_prot(struct file
*file
, unsigned long pfn
, unsigned long size
,
896 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
900 * For /dev/mem mmap, we use user mappings, but if the region is
901 * in kern_memmap (and hence may be covered by a kernel mapping),
902 * we must use the same attribute as the kernel mapping.
904 attr
= kern_mem_attribute(phys_addr
, size
);
905 if (attr
& EFI_MEMORY_WB
)
906 return pgprot_cacheable(vma_prot
);
907 else if (attr
& EFI_MEMORY_UC
)
908 return pgprot_noncached(vma_prot
);
911 * Some chipsets don't support UC access to memory. If
912 * WB is supported, we prefer that.
914 if (efi_mem_attribute(phys_addr
, size
) & EFI_MEMORY_WB
)
915 return pgprot_cacheable(vma_prot
);
917 return pgprot_noncached(vma_prot
);
921 efi_uart_console_only(void)
924 char *s
, name
[] = "ConOut";
925 efi_guid_t guid
= EFI_GLOBAL_VARIABLE_GUID
;
926 efi_char16_t
*utf16
, name_utf16
[32];
927 unsigned char data
[1024];
928 unsigned long size
= sizeof(data
);
929 struct efi_generic_dev_path
*hdr
, *end_addr
;
932 /* Convert to UTF-16 */
936 *utf16
++ = *s
++ & 0x7f;
939 status
= efi
.get_variable(name_utf16
, &guid
, NULL
, &size
, data
);
940 if (status
!= EFI_SUCCESS
) {
941 printk(KERN_ERR
"No EFI %s variable?\n", name
);
945 hdr
= (struct efi_generic_dev_path
*) data
;
946 end_addr
= (struct efi_generic_dev_path
*) ((u8
*) data
+ size
);
947 while (hdr
< end_addr
) {
948 if (hdr
->type
== EFI_DEV_MSG
&&
949 hdr
->sub_type
== EFI_DEV_MSG_UART
)
951 else if (hdr
->type
== EFI_DEV_END_PATH
||
952 hdr
->type
== EFI_DEV_END_PATH2
) {
955 if (hdr
->sub_type
== EFI_DEV_END_ENTIRE
)
959 hdr
= (struct efi_generic_dev_path
*)((u8
*) hdr
+ hdr
->length
);
961 printk(KERN_ERR
"Malformed %s value\n", name
);
966 * Look for the first granule aligned memory descriptor memory
967 * that is big enough to hold EFI memory map. Make sure this
968 * descriptor is at least granule sized so it does not get trimmed
970 struct kern_memdesc
*
971 find_memmap_space (void)
973 u64 contig_low
=0, contig_high
=0;
975 void *efi_map_start
, *efi_map_end
, *p
, *q
;
976 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
977 u64 space_needed
, efi_desc_size
;
978 unsigned long total_mem
= 0;
980 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
981 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
982 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
985 * Worst case: we need 3 kernel descriptors for each efi descriptor
986 * (if every entry has a WB part in the middle, and UC head and tail),
987 * plus one for the end marker.
989 space_needed
= sizeof(kern_memdesc_t
) *
990 (3 * (ia64_boot_param
->efi_memmap_size
/efi_desc_size
) + 1);
992 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
997 if (pmd
== NULL
|| !efi_wb(pmd
) ||
998 efi_md_end(pmd
) != md
->phys_addr
) {
999 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
1000 contig_high
= efi_md_end(md
);
1001 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
1002 q
+= efi_desc_size
) {
1004 if (!efi_wb(check_md
))
1006 if (contig_high
!= check_md
->phys_addr
)
1008 contig_high
= efi_md_end(check_md
);
1010 contig_high
= GRANULEROUNDDOWN(contig_high
);
1012 if (!is_memory_available(md
) || md
->type
== EFI_LOADER_DATA
)
1015 /* Round ends inward to granule boundaries */
1016 as
= max(contig_low
, md
->phys_addr
);
1017 ae
= min(contig_high
, efi_md_end(md
));
1019 /* keep within max_addr= and min_addr= command line arg */
1020 as
= max(as
, min_addr
);
1021 ae
= min(ae
, max_addr
);
1025 /* avoid going over mem= command line arg */
1026 if (total_mem
+ (ae
- as
) > mem_limit
)
1027 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1032 if (ae
- as
> space_needed
)
1035 if (p
>= efi_map_end
)
1036 panic("Can't allocate space for kernel memory descriptors");
1042 * Walk the EFI memory map and gather all memory available for kernel
1043 * to use. We can allocate partial granules only if the unavailable
1044 * parts exist, and are WB.
1047 efi_memmap_init(u64
*s
, u64
*e
)
1049 struct kern_memdesc
*k
, *prev
= NULL
;
1050 u64 contig_low
=0, contig_high
=0;
1052 void *efi_map_start
, *efi_map_end
, *p
, *q
;
1053 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
1055 unsigned long total_mem
= 0;
1057 k
= kern_memmap
= find_memmap_space();
1059 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1060 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1061 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1063 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
1067 (md
->type
== EFI_CONVENTIONAL_MEMORY
||
1068 md
->type
== EFI_BOOT_SERVICES_DATA
)) {
1069 k
->attribute
= EFI_MEMORY_UC
;
1070 k
->start
= md
->phys_addr
;
1071 k
->num_pages
= md
->num_pages
;
1076 if (pmd
== NULL
|| !efi_wb(pmd
) ||
1077 efi_md_end(pmd
) != md
->phys_addr
) {
1078 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
1079 contig_high
= efi_md_end(md
);
1080 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
1081 q
+= efi_desc_size
) {
1083 if (!efi_wb(check_md
))
1085 if (contig_high
!= check_md
->phys_addr
)
1087 contig_high
= efi_md_end(check_md
);
1089 contig_high
= GRANULEROUNDDOWN(contig_high
);
1091 if (!is_memory_available(md
))
1095 * Round ends inward to granule boundaries
1096 * Give trimmings to uncached allocator
1098 if (md
->phys_addr
< contig_low
) {
1099 lim
= min(efi_md_end(md
), contig_low
);
1101 if (k
> kern_memmap
&&
1102 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1103 kmd_end(k
-1) == md
->phys_addr
) {
1105 (lim
- md
->phys_addr
)
1108 k
->attribute
= EFI_MEMORY_UC
;
1109 k
->start
= md
->phys_addr
;
1110 k
->num_pages
= (lim
- md
->phys_addr
)
1119 if (efi_md_end(md
) > contig_high
) {
1120 lim
= max(md
->phys_addr
, contig_high
);
1122 if (lim
== md
->phys_addr
&& k
> kern_memmap
&&
1123 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1124 kmd_end(k
-1) == md
->phys_addr
) {
1125 (k
-1)->num_pages
+= md
->num_pages
;
1127 k
->attribute
= EFI_MEMORY_UC
;
1129 k
->num_pages
= (efi_md_end(md
) - lim
)
1136 ae
= efi_md_end(md
);
1138 /* keep within max_addr= and min_addr= command line arg */
1139 as
= max(as
, min_addr
);
1140 ae
= min(ae
, max_addr
);
1144 /* avoid going over mem= command line arg */
1145 if (total_mem
+ (ae
- as
) > mem_limit
)
1146 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1150 if (prev
&& kmd_end(prev
) == md
->phys_addr
) {
1151 prev
->num_pages
+= (ae
- as
) >> EFI_PAGE_SHIFT
;
1152 total_mem
+= ae
- as
;
1155 k
->attribute
= EFI_MEMORY_WB
;
1157 k
->num_pages
= (ae
- as
) >> EFI_PAGE_SHIFT
;
1158 total_mem
+= ae
- as
;
1161 k
->start
= ~0L; /* end-marker */
1163 /* reserve the memory we are using for kern_memmap */
1164 *s
= (u64
)kern_memmap
;
1171 efi_initialize_iomem_resources(struct resource
*code_resource
,
1172 struct resource
*data_resource
,
1173 struct resource
*bss_resource
)
1175 struct resource
*res
;
1176 void *efi_map_start
, *efi_map_end
, *p
;
1177 efi_memory_desc_t
*md
;
1180 unsigned long flags
, desc
;
1182 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1183 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1184 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1188 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1191 if (md
->num_pages
== 0) /* should not happen */
1194 flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
1195 desc
= IORES_DESC_NONE
;
1199 case EFI_MEMORY_MAPPED_IO
:
1200 case EFI_MEMORY_MAPPED_IO_PORT_SPACE
:
1203 case EFI_LOADER_CODE
:
1204 case EFI_LOADER_DATA
:
1205 case EFI_BOOT_SERVICES_DATA
:
1206 case EFI_BOOT_SERVICES_CODE
:
1207 case EFI_CONVENTIONAL_MEMORY
:
1208 if (md
->attribute
& EFI_MEMORY_WP
) {
1209 name
= "System ROM";
1210 flags
|= IORESOURCE_READONLY
;
1211 } else if (md
->attribute
== EFI_MEMORY_UC
) {
1212 name
= "Uncached RAM";
1214 name
= "System RAM";
1215 flags
|= IORESOURCE_SYSRAM
;
1219 case EFI_ACPI_MEMORY_NVS
:
1220 name
= "ACPI Non-volatile Storage";
1221 desc
= IORES_DESC_ACPI_NV_STORAGE
;
1224 case EFI_UNUSABLE_MEMORY
:
1226 flags
|= IORESOURCE_DISABLED
;
1229 case EFI_PERSISTENT_MEMORY
:
1230 name
= "Persistent Memory";
1231 desc
= IORES_DESC_PERSISTENT_MEMORY
;
1234 case EFI_RESERVED_TYPE
:
1235 case EFI_RUNTIME_SERVICES_CODE
:
1236 case EFI_RUNTIME_SERVICES_DATA
:
1237 case EFI_ACPI_RECLAIM_MEMORY
:
1243 if ((res
= kzalloc(sizeof(struct resource
),
1244 GFP_KERNEL
)) == NULL
) {
1246 "failed to allocate resource for iomem\n");
1251 res
->start
= md
->phys_addr
;
1252 res
->end
= md
->phys_addr
+ efi_md_size(md
) - 1;
1256 if (insert_resource(&iomem_resource
, res
) < 0)
1260 * We don't know which region contains
1261 * kernel data so we try it repeatedly and
1262 * let the resource manager test it.
1264 insert_resource(res
, code_resource
);
1265 insert_resource(res
, data_resource
);
1266 insert_resource(res
, bss_resource
);
1268 insert_resource(res
, &efi_memmap_res
);
1269 insert_resource(res
, &boot_param_res
);
1270 if (crashk_res
.end
> crashk_res
.start
)
1271 insert_resource(res
, &crashk_res
);
1278 /* find a block of memory aligned to 64M exclude reserved regions
1279 rsvd_regions are sorted
1281 unsigned long __init
1282 kdump_find_rsvd_region (unsigned long size
, struct rsvd_region
*r
, int n
)
1286 u64 alignment
= 1UL << _PAGE_SIZE_64M
;
1287 void *efi_map_start
, *efi_map_end
, *p
;
1288 efi_memory_desc_t
*md
;
1291 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1292 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1293 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1295 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1299 start
= ALIGN(md
->phys_addr
, alignment
);
1300 end
= efi_md_end(md
);
1301 for (i
= 0; i
< n
; i
++) {
1302 if (__pa(r
[i
].start
) >= start
&& __pa(r
[i
].end
) < end
) {
1303 if (__pa(r
[i
].start
) > start
+ size
)
1305 start
= ALIGN(__pa(r
[i
].end
), alignment
);
1307 __pa(r
[i
+1].start
) < start
+ size
)
1313 if (end
> start
+ size
)
1318 "Cannot reserve 0x%lx byte of memory for crashdump\n", size
);
1323 #ifdef CONFIG_CRASH_DUMP
1324 /* locate the size find a the descriptor at a certain address */
1325 unsigned long __init
1326 vmcore_find_descriptor_size (unsigned long address
)
1328 void *efi_map_start
, *efi_map_end
, *p
;
1329 efi_memory_desc_t
*md
;
1331 unsigned long ret
= 0;
1333 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1334 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1335 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1337 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1339 if (efi_wb(md
) && md
->type
== EFI_LOADER_DATA
1340 && md
->phys_addr
== address
) {
1341 ret
= efi_md_size(md
);
1347 printk(KERN_WARNING
"Cannot locate EFI vmcore descriptor\n");