2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/interrupt.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/smp.h>
39 #include <linux/pagemap.h>
40 #include <linux/mount.h>
41 #include <linux/bitops.h>
42 #include <linux/capability.h>
43 #include <linux/rcupdate.h>
44 #include <linux/completion.h>
45 #include <linux/tracehook.h>
46 #include <linux/slab.h>
47 #include <linux/cpu.h>
49 #include <asm/errno.h>
50 #include <asm/intrinsics.h>
52 #include <asm/perfmon.h>
53 #include <asm/processor.h>
54 #include <asm/signal.h>
55 #include <linux/uaccess.h>
56 #include <asm/delay.h>
60 * perfmon context state
62 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
63 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
64 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
65 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
67 #define PFM_INVALID_ACTIVATION (~0UL)
69 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
70 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
73 * depth of message queue
75 #define PFM_MAX_MSGS 32
76 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
79 * type of a PMU register (bitmask).
81 * bit0 : register implemented
84 * bit4 : pmc has pmc.pm
85 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
86 * bit6-7 : register type
89 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
90 #define PFM_REG_IMPL 0x1 /* register implemented */
91 #define PFM_REG_END 0x2 /* end marker */
92 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
93 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
94 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
95 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
96 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
98 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
99 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
101 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
103 /* i assumed unsigned */
104 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
105 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
107 /* XXX: these assume that register i is implemented */
108 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
109 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
110 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
111 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
113 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
114 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
115 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
116 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
118 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
119 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
121 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
122 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
123 #define PFM_CTX_TASK(h) (h)->ctx_task
125 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
127 /* XXX: does not support more than 64 PMDs */
128 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
129 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
131 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
133 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
134 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
135 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
136 #define PFM_CODE_RR 0 /* requesting code range restriction */
137 #define PFM_DATA_RR 1 /* requestion data range restriction */
139 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
140 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
141 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
143 #define RDEP(x) (1UL<<(x))
146 * context protection macros
148 * - we need to protect against CPU concurrency (spin_lock)
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
151 * - we need to protect against PMU overflow interrupts (local_irq_disable)
153 * spin_lock_irqsave()/spin_unlock_irqrestore():
154 * in SMP: local_irq_disable + spin_lock
155 * in UP : local_irq_disable
157 * spin_lock()/spin_lock():
158 * in UP : removed automatically
159 * in SMP: protect against context accesses from other CPU. interrupts
160 * are not masked. This is useful for the PMU interrupt handler
161 * because we know we will not get PMU concurrency in that code.
163 #define PROTECT_CTX(c, f) \
165 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 spin_lock_irqsave(&(c)->ctx_lock, f); \
167 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
170 #define UNPROTECT_CTX(c, f) \
172 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
173 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
176 #define PROTECT_CTX_NOPRINT(c, f) \
178 spin_lock_irqsave(&(c)->ctx_lock, f); \
182 #define UNPROTECT_CTX_NOPRINT(c, f) \
184 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
188 #define PROTECT_CTX_NOIRQ(c) \
190 spin_lock(&(c)->ctx_lock); \
193 #define UNPROTECT_CTX_NOIRQ(c) \
195 spin_unlock(&(c)->ctx_lock); \
201 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
202 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
203 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
205 #else /* !CONFIG_SMP */
206 #define SET_ACTIVATION(t) do {} while(0)
207 #define GET_ACTIVATION(t) do {} while(0)
208 #define INC_ACTIVATION(t) do {} while(0)
209 #endif /* CONFIG_SMP */
211 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
212 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
213 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
215 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
216 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
218 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
221 * cmp0 must be the value of pmc0
223 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
225 #define PFMFS_MAGIC 0xa0b4d889
230 #define PFM_DEBUGGING 1
234 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
237 #define DPRINT_ovfl(a) \
239 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
244 * 64-bit software counter structure
246 * the next_reset_type is applied to the next call to pfm_reset_regs()
249 unsigned long val
; /* virtual 64bit counter value */
250 unsigned long lval
; /* last reset value */
251 unsigned long long_reset
; /* reset value on sampling overflow */
252 unsigned long short_reset
; /* reset value on overflow */
253 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
254 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
255 unsigned long seed
; /* seed for random-number generator */
256 unsigned long mask
; /* mask for random-number generator */
257 unsigned int flags
; /* notify/do not notify */
258 unsigned long eventid
; /* overflow event identifier */
265 unsigned int block
:1; /* when 1, task will blocked on user notifications */
266 unsigned int system
:1; /* do system wide monitoring */
267 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
268 unsigned int is_sampling
:1; /* true if using a custom format */
269 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
270 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
271 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
272 unsigned int no_msg
:1; /* no message sent on overflow */
273 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
274 unsigned int reserved
:22;
275 } pfm_context_flags_t
;
277 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
278 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
279 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
283 * perfmon context: encapsulates all the state of a monitoring session
286 typedef struct pfm_context
{
287 spinlock_t ctx_lock
; /* context protection */
289 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
290 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
292 struct task_struct
*ctx_task
; /* task to which context is attached */
294 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
296 struct completion ctx_restart_done
; /* use for blocking notification mode */
298 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
299 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
300 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
302 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
303 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
304 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
306 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
308 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
309 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
310 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
311 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
313 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
315 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
316 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
318 unsigned long ctx_saved_psr_up
; /* only contains psr.up value */
320 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
321 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
322 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
324 int ctx_fd
; /* file descriptor used my this context */
325 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
327 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
328 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
329 unsigned long ctx_smpl_size
; /* size of sampling buffer */
330 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
332 wait_queue_head_t ctx_msgq_wait
;
333 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
336 struct fasync_struct
*ctx_async_queue
;
338 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
342 * magic number used to verify that structure is really
345 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
347 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
350 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
351 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
353 #define SET_LAST_CPU(ctx, v) do {} while(0)
354 #define GET_LAST_CPU(ctx) do {} while(0)
358 #define ctx_fl_block ctx_flags.block
359 #define ctx_fl_system ctx_flags.system
360 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
361 #define ctx_fl_is_sampling ctx_flags.is_sampling
362 #define ctx_fl_excl_idle ctx_flags.excl_idle
363 #define ctx_fl_going_zombie ctx_flags.going_zombie
364 #define ctx_fl_trap_reason ctx_flags.trap_reason
365 #define ctx_fl_no_msg ctx_flags.no_msg
366 #define ctx_fl_can_restart ctx_flags.can_restart
368 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
369 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
372 * global information about all sessions
373 * mostly used to synchronize between system wide and per-process
376 spinlock_t pfs_lock
; /* lock the structure */
378 unsigned int pfs_task_sessions
; /* number of per task sessions */
379 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
380 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
381 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
382 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
386 * information about a PMC or PMD.
387 * dep_pmd[]: a bitmask of dependent PMD registers
388 * dep_pmc[]: a bitmask of dependent PMC registers
390 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
394 unsigned long default_value
; /* power-on default value */
395 unsigned long reserved_mask
; /* bitmask of reserved bits */
396 pfm_reg_check_t read_check
;
397 pfm_reg_check_t write_check
;
398 unsigned long dep_pmd
[4];
399 unsigned long dep_pmc
[4];
402 /* assume cnum is a valid monitor */
403 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
406 * This structure is initialized at boot time and contains
407 * a description of the PMU main characteristics.
409 * If the probe function is defined, detection is based
410 * on its return value:
411 * - 0 means recognized PMU
412 * - anything else means not supported
413 * When the probe function is not defined, then the pmu_family field
414 * is used and it must match the host CPU family such that:
415 * - cpu->family & config->pmu_family != 0
418 unsigned long ovfl_val
; /* overflow value for counters */
420 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
421 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
423 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
424 unsigned int num_pmds
; /* number of PMDS: computed at init time */
425 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
426 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
428 char *pmu_name
; /* PMU family name */
429 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
430 unsigned int flags
; /* pmu specific flags */
431 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
432 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
433 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
434 int (*probe
)(void); /* customized probe routine */
435 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
440 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
443 * debug register related type definitions
446 unsigned long ibr_mask
:56;
447 unsigned long ibr_plm
:4;
448 unsigned long ibr_ig
:3;
449 unsigned long ibr_x
:1;
453 unsigned long dbr_mask
:56;
454 unsigned long dbr_plm
:4;
455 unsigned long dbr_ig
:2;
456 unsigned long dbr_w
:1;
457 unsigned long dbr_r
:1;
468 * perfmon command descriptions
471 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
474 unsigned int cmd_narg
;
476 int (*cmd_getsize
)(void *arg
, size_t *sz
);
479 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
480 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
481 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
482 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
485 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
486 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
487 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
488 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
489 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
491 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
494 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
495 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
496 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
498 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
499 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
500 unsigned long pfm_smpl_handler_calls
;
501 unsigned long pfm_smpl_handler_cycles
;
502 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
506 * perfmon internal variables
508 static pfm_stats_t pfm_stats
[NR_CPUS
];
509 static pfm_session_t pfm_sessions
; /* global sessions information */
511 static DEFINE_SPINLOCK(pfm_alt_install_check
);
512 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
514 static struct proc_dir_entry
*perfmon_dir
;
515 static pfm_uuid_t pfm_null_uuid
= {0,};
517 static spinlock_t pfm_buffer_fmt_lock
;
518 static LIST_HEAD(pfm_buffer_fmt_list
);
520 static pmu_config_t
*pmu_conf
;
522 /* sysctl() controls */
523 pfm_sysctl_t pfm_sysctl
;
524 EXPORT_SYMBOL(pfm_sysctl
);
526 static struct ctl_table pfm_ctl_table
[] = {
529 .data
= &pfm_sysctl
.debug
,
530 .maxlen
= sizeof(int),
532 .proc_handler
= proc_dointvec
,
535 .procname
= "debug_ovfl",
536 .data
= &pfm_sysctl
.debug_ovfl
,
537 .maxlen
= sizeof(int),
539 .proc_handler
= proc_dointvec
,
542 .procname
= "fastctxsw",
543 .data
= &pfm_sysctl
.fastctxsw
,
544 .maxlen
= sizeof(int),
546 .proc_handler
= proc_dointvec
,
549 .procname
= "expert_mode",
550 .data
= &pfm_sysctl
.expert_mode
,
551 .maxlen
= sizeof(int),
553 .proc_handler
= proc_dointvec
,
557 static struct ctl_table pfm_sysctl_dir
[] = {
559 .procname
= "perfmon",
561 .child
= pfm_ctl_table
,
565 static struct ctl_table pfm_sysctl_root
[] = {
567 .procname
= "kernel",
569 .child
= pfm_sysctl_dir
,
573 static struct ctl_table_header
*pfm_sysctl_header
;
575 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
577 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
578 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
581 pfm_put_task(struct task_struct
*task
)
583 if (task
!= current
) put_task_struct(task
);
587 pfm_reserve_page(unsigned long a
)
589 SetPageReserved(vmalloc_to_page((void *)a
));
592 pfm_unreserve_page(unsigned long a
)
594 ClearPageReserved(vmalloc_to_page((void*)a
));
597 static inline unsigned long
598 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
600 spin_lock(&(x
)->ctx_lock
);
605 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
607 spin_unlock(&(x
)->ctx_lock
);
610 /* forward declaration */
611 static const struct dentry_operations pfmfs_dentry_operations
;
613 static struct dentry
*
614 pfmfs_mount(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
)
616 return mount_pseudo(fs_type
, "pfm:", NULL
, &pfmfs_dentry_operations
,
620 static struct file_system_type pfm_fs_type
= {
622 .mount
= pfmfs_mount
,
623 .kill_sb
= kill_anon_super
,
625 MODULE_ALIAS_FS("pfmfs");
627 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
628 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
629 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
630 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
631 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
634 /* forward declaration */
635 static const struct file_operations pfm_file_ops
;
638 * forward declarations
641 static void pfm_lazy_save_regs (struct task_struct
*ta
);
644 void dump_pmu_state(const char *);
645 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
647 #include "perfmon_itanium.h"
648 #include "perfmon_mckinley.h"
649 #include "perfmon_montecito.h"
650 #include "perfmon_generic.h"
652 static pmu_config_t
*pmu_confs
[]={
656 &pmu_conf_gen
, /* must be last */
661 static int pfm_end_notify_user(pfm_context_t
*ctx
);
664 pfm_clear_psr_pp(void)
666 ia64_rsm(IA64_PSR_PP
);
673 ia64_ssm(IA64_PSR_PP
);
678 pfm_clear_psr_up(void)
680 ia64_rsm(IA64_PSR_UP
);
687 ia64_ssm(IA64_PSR_UP
);
691 static inline unsigned long
695 tmp
= ia64_getreg(_IA64_REG_PSR
);
701 pfm_set_psr_l(unsigned long val
)
703 ia64_setreg(_IA64_REG_PSR_L
, val
);
715 pfm_unfreeze_pmu(void)
722 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
726 for (i
=0; i
< nibrs
; i
++) {
727 ia64_set_ibr(i
, ibrs
[i
]);
728 ia64_dv_serialize_instruction();
734 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
738 for (i
=0; i
< ndbrs
; i
++) {
739 ia64_set_dbr(i
, dbrs
[i
]);
740 ia64_dv_serialize_data();
746 * PMD[i] must be a counter. no check is made
748 static inline unsigned long
749 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
751 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
755 * PMD[i] must be a counter. no check is made
758 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
760 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
762 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
764 * writing to unimplemented part is ignore, so we do not need to
767 ia64_set_pmd(i
, val
& ovfl_val
);
771 pfm_get_new_msg(pfm_context_t
*ctx
)
775 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
777 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
778 if (next
== ctx
->ctx_msgq_head
) return NULL
;
780 idx
= ctx
->ctx_msgq_tail
;
781 ctx
->ctx_msgq_tail
= next
;
783 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
785 return ctx
->ctx_msgq
+idx
;
789 pfm_get_next_msg(pfm_context_t
*ctx
)
793 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
795 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
800 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
805 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
807 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
813 pfm_reset_msgq(pfm_context_t
*ctx
)
815 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
816 DPRINT(("ctx=%p msgq reset\n", ctx
));
820 pfm_rvmalloc(unsigned long size
)
825 size
= PAGE_ALIGN(size
);
828 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
829 addr
= (unsigned long)mem
;
831 pfm_reserve_page(addr
);
840 pfm_rvfree(void *mem
, unsigned long size
)
845 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
846 addr
= (unsigned long) mem
;
847 while ((long) size
> 0) {
848 pfm_unreserve_page(addr
);
857 static pfm_context_t
*
858 pfm_context_alloc(int ctx_flags
)
863 * allocate context descriptor
864 * must be able to free with interrupts disabled
866 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
868 DPRINT(("alloc ctx @%p\n", ctx
));
871 * init context protection lock
873 spin_lock_init(&ctx
->ctx_lock
);
876 * context is unloaded
878 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
881 * initialization of context's flags
883 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
884 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
885 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
887 * will move to set properties
888 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
892 * init restart semaphore to locked
894 init_completion(&ctx
->ctx_restart_done
);
897 * activation is used in SMP only
899 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
900 SET_LAST_CPU(ctx
, -1);
903 * initialize notification message queue
905 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
906 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
907 init_waitqueue_head(&ctx
->ctx_zombieq
);
914 pfm_context_free(pfm_context_t
*ctx
)
917 DPRINT(("free ctx @%p\n", ctx
));
923 pfm_mask_monitoring(struct task_struct
*task
)
925 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
926 unsigned long mask
, val
, ovfl_mask
;
929 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task
)));
931 ovfl_mask
= pmu_conf
->ovfl_val
;
933 * monitoring can only be masked as a result of a valid
934 * counter overflow. In UP, it means that the PMU still
935 * has an owner. Note that the owner can be different
936 * from the current task. However the PMU state belongs
938 * In SMP, a valid overflow only happens when task is
939 * current. Therefore if we come here, we know that
940 * the PMU state belongs to the current task, therefore
941 * we can access the live registers.
943 * So in both cases, the live register contains the owner's
944 * state. We can ONLY touch the PMU registers and NOT the PSR.
946 * As a consequence to this call, the ctx->th_pmds[] array
947 * contains stale information which must be ignored
948 * when context is reloaded AND monitoring is active (see
951 mask
= ctx
->ctx_used_pmds
[0];
952 for (i
= 0; mask
; i
++, mask
>>=1) {
953 /* skip non used pmds */
954 if ((mask
& 0x1) == 0) continue;
955 val
= ia64_get_pmd(i
);
957 if (PMD_IS_COUNTING(i
)) {
959 * we rebuild the full 64 bit value of the counter
961 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
963 ctx
->ctx_pmds
[i
].val
= val
;
965 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
967 ctx
->ctx_pmds
[i
].val
,
971 * mask monitoring by setting the privilege level to 0
972 * we cannot use psr.pp/psr.up for this, it is controlled by
975 * if task is current, modify actual registers, otherwise modify
976 * thread save state, i.e., what will be restored in pfm_load_regs()
978 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
979 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
980 if ((mask
& 0x1) == 0UL) continue;
981 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
982 ctx
->th_pmcs
[i
] &= ~0xfUL
;
983 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
986 * make all of this visible
992 * must always be done with task == current
994 * context must be in MASKED state when calling
997 pfm_restore_monitoring(struct task_struct
*task
)
999 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
1000 unsigned long mask
, ovfl_mask
;
1001 unsigned long psr
, val
;
1004 is_system
= ctx
->ctx_fl_system
;
1005 ovfl_mask
= pmu_conf
->ovfl_val
;
1007 if (task
!= current
) {
1008 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task_pid_nr(task
), task_pid_nr(current
));
1011 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
1012 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
1013 task_pid_nr(task
), task_pid_nr(current
), ctx
->ctx_state
);
1016 psr
= pfm_get_psr();
1018 * monitoring is masked via the PMC.
1019 * As we restore their value, we do not want each counter to
1020 * restart right away. We stop monitoring using the PSR,
1021 * restore the PMC (and PMD) and then re-establish the psr
1022 * as it was. Note that there can be no pending overflow at
1023 * this point, because monitoring was MASKED.
1025 * system-wide session are pinned and self-monitoring
1027 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1028 /* disable dcr pp */
1029 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
1035 * first, we restore the PMD
1037 mask
= ctx
->ctx_used_pmds
[0];
1038 for (i
= 0; mask
; i
++, mask
>>=1) {
1039 /* skip non used pmds */
1040 if ((mask
& 0x1) == 0) continue;
1042 if (PMD_IS_COUNTING(i
)) {
1044 * we split the 64bit value according to
1047 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1048 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1050 val
= ctx
->ctx_pmds
[i
].val
;
1052 ia64_set_pmd(i
, val
);
1054 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1056 ctx
->ctx_pmds
[i
].val
,
1062 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1063 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1064 if ((mask
& 0x1) == 0UL) continue;
1065 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1066 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1067 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068 task_pid_nr(task
), i
, ctx
->th_pmcs
[i
]));
1073 * must restore DBR/IBR because could be modified while masked
1074 * XXX: need to optimize
1076 if (ctx
->ctx_fl_using_dbreg
) {
1077 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1078 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1084 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1086 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1093 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1099 for (i
=0; mask
; i
++, mask
>>=1) {
1100 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1105 * reload from thread state (used for ctxw only)
1108 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1111 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1113 for (i
=0; mask
; i
++, mask
>>=1) {
1114 if ((mask
& 0x1) == 0) continue;
1115 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1116 ia64_set_pmd(i
, val
);
1122 * propagate PMD from context to thread-state
1125 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1127 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1128 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1132 DPRINT(("mask=0x%lx\n", mask
));
1134 for (i
=0; mask
; i
++, mask
>>=1) {
1136 val
= ctx
->ctx_pmds
[i
].val
;
1139 * We break up the 64 bit value into 2 pieces
1140 * the lower bits go to the machine state in the
1141 * thread (will be reloaded on ctxsw in).
1142 * The upper part stays in the soft-counter.
1144 if (PMD_IS_COUNTING(i
)) {
1145 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1148 ctx
->th_pmds
[i
] = val
;
1150 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1153 ctx
->ctx_pmds
[i
].val
));
1158 * propagate PMC from context to thread-state
1161 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1163 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1166 DPRINT(("mask=0x%lx\n", mask
));
1168 for (i
=0; mask
; i
++, mask
>>=1) {
1169 /* masking 0 with ovfl_val yields 0 */
1170 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1171 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1178 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1182 for (i
=0; mask
; i
++, mask
>>=1) {
1183 if ((mask
& 0x1) == 0) continue;
1184 ia64_set_pmc(i
, pmcs
[i
]);
1190 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1192 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1196 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1199 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1204 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1207 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1213 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1217 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1222 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1226 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1231 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1234 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1239 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1242 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1246 static pfm_buffer_fmt_t
*
1247 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1249 struct list_head
* pos
;
1250 pfm_buffer_fmt_t
* entry
;
1252 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1253 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1254 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1261 * find a buffer format based on its uuid
1263 static pfm_buffer_fmt_t
*
1264 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1266 pfm_buffer_fmt_t
* fmt
;
1267 spin_lock(&pfm_buffer_fmt_lock
);
1268 fmt
= __pfm_find_buffer_fmt(uuid
);
1269 spin_unlock(&pfm_buffer_fmt_lock
);
1274 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1278 /* some sanity checks */
1279 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1281 /* we need at least a handler */
1282 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1285 * XXX: need check validity of fmt_arg_size
1288 spin_lock(&pfm_buffer_fmt_lock
);
1290 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1291 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1295 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1296 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1299 spin_unlock(&pfm_buffer_fmt_lock
);
1302 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1305 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1307 pfm_buffer_fmt_t
*fmt
;
1310 spin_lock(&pfm_buffer_fmt_lock
);
1312 fmt
= __pfm_find_buffer_fmt(uuid
);
1314 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1318 list_del_init(&fmt
->fmt_list
);
1319 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1322 spin_unlock(&pfm_buffer_fmt_lock
);
1326 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1329 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1331 unsigned long flags
;
1333 * validity checks on cpu_mask have been done upstream
1337 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338 pfm_sessions
.pfs_sys_sessions
,
1339 pfm_sessions
.pfs_task_sessions
,
1340 pfm_sessions
.pfs_sys_use_dbregs
,
1346 * cannot mix system wide and per-task sessions
1348 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1349 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350 pfm_sessions
.pfs_task_sessions
));
1354 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1356 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1358 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1360 pfm_sessions
.pfs_sys_sessions
++ ;
1363 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1364 pfm_sessions
.pfs_task_sessions
++;
1367 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368 pfm_sessions
.pfs_sys_sessions
,
1369 pfm_sessions
.pfs_task_sessions
,
1370 pfm_sessions
.pfs_sys_use_dbregs
,
1375 * Force idle() into poll mode
1377 cpu_idle_poll_ctrl(true);
1384 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385 task_pid_nr(pfm_sessions
.pfs_sys_session
[cpu
]),
1395 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1397 unsigned long flags
;
1399 * validity checks on cpu_mask have been done upstream
1403 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404 pfm_sessions
.pfs_sys_sessions
,
1405 pfm_sessions
.pfs_task_sessions
,
1406 pfm_sessions
.pfs_sys_use_dbregs
,
1412 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1414 * would not work with perfmon+more than one bit in cpu_mask
1416 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1417 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1418 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1420 pfm_sessions
.pfs_sys_use_dbregs
--;
1423 pfm_sessions
.pfs_sys_sessions
--;
1425 pfm_sessions
.pfs_task_sessions
--;
1427 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428 pfm_sessions
.pfs_sys_sessions
,
1429 pfm_sessions
.pfs_task_sessions
,
1430 pfm_sessions
.pfs_sys_use_dbregs
,
1434 /* Undo forced polling. Last session reenables pal_halt */
1435 cpu_idle_poll_ctrl(false);
1443 * removes virtual mapping of the sampling buffer.
1444 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445 * a PROTECT_CTX() section.
1448 pfm_remove_smpl_mapping(void *vaddr
, unsigned long size
)
1450 struct task_struct
*task
= current
;
1454 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1455 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task
), task
->mm
);
1459 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1462 * does the actual unmapping
1464 r
= vm_munmap((unsigned long)vaddr
, size
);
1467 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task
), vaddr
, size
);
1470 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1476 * free actual physical storage used by sampling buffer
1480 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1482 pfm_buffer_fmt_t
*fmt
;
1484 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1487 * we won't use the buffer format anymore
1489 fmt
= ctx
->ctx_buf_fmt
;
1491 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1494 ctx
->ctx_smpl_vaddr
));
1496 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1501 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1503 ctx
->ctx_smpl_hdr
= NULL
;
1504 ctx
->ctx_smpl_size
= 0UL;
1509 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current
));
1515 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1517 if (fmt
== NULL
) return;
1519 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1524 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525 * no real gain from having the whole whorehouse mounted. So we don't need
1526 * any operations on the root directory. However, we need a non-trivial
1527 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1529 static struct vfsmount
*pfmfs_mnt __read_mostly
;
1534 int err
= register_filesystem(&pfm_fs_type
);
1536 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1537 err
= PTR_ERR(pfmfs_mnt
);
1538 if (IS_ERR(pfmfs_mnt
))
1539 unregister_filesystem(&pfm_fs_type
);
1547 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1552 unsigned long flags
;
1553 DECLARE_WAITQUEUE(wait
, current
);
1554 if (PFM_IS_FILE(filp
) == 0) {
1555 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1559 ctx
= filp
->private_data
;
1561 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current
));
1566 * check even when there is no message
1568 if (size
< sizeof(pfm_msg_t
)) {
1569 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1573 PROTECT_CTX(ctx
, flags
);
1576 * put ourselves on the wait queue
1578 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1586 set_current_state(TASK_INTERRUPTIBLE
);
1588 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1591 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1593 UNPROTECT_CTX(ctx
, flags
);
1596 * check non-blocking read
1599 if(filp
->f_flags
& O_NONBLOCK
) break;
1602 * check pending signals
1604 if(signal_pending(current
)) {
1609 * no message, so wait
1613 PROTECT_CTX(ctx
, flags
);
1615 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current
), ret
));
1616 set_current_state(TASK_RUNNING
);
1617 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1619 if (ret
< 0) goto abort
;
1622 msg
= pfm_get_next_msg(ctx
);
1624 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, task_pid_nr(current
));
1628 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1631 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1634 UNPROTECT_CTX(ctx
, flags
);
1640 pfm_write(struct file
*file
, const char __user
*ubuf
,
1641 size_t size
, loff_t
*ppos
)
1643 DPRINT(("pfm_write called\n"));
1648 pfm_poll(struct file
*filp
, poll_table
* wait
)
1651 unsigned long flags
;
1652 unsigned int mask
= 0;
1654 if (PFM_IS_FILE(filp
) == 0) {
1655 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1659 ctx
= filp
->private_data
;
1661 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current
));
1666 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1668 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1670 PROTECT_CTX(ctx
, flags
);
1672 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1673 mask
= POLLIN
| POLLRDNORM
;
1675 UNPROTECT_CTX(ctx
, flags
);
1677 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1683 pfm_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1685 DPRINT(("pfm_ioctl called\n"));
1690 * interrupt cannot be masked when coming here
1693 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1697 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1699 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700 task_pid_nr(current
),
1703 ctx
->ctx_async_queue
, ret
));
1709 pfm_fasync(int fd
, struct file
*filp
, int on
)
1714 if (PFM_IS_FILE(filp
) == 0) {
1715 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current
));
1719 ctx
= filp
->private_data
;
1721 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current
));
1725 * we cannot mask interrupts during this call because this may
1726 * may go to sleep if memory is not readily avalaible.
1728 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729 * done in caller. Serialization of this function is ensured by caller.
1731 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1734 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1737 ctx
->ctx_async_queue
, ret
));
1744 * this function is exclusively called from pfm_close().
1745 * The context is not protected at that time, nor are interrupts
1746 * on the remote CPU. That's necessary to avoid deadlocks.
1749 pfm_syswide_force_stop(void *info
)
1751 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1752 struct pt_regs
*regs
= task_pt_regs(current
);
1753 struct task_struct
*owner
;
1754 unsigned long flags
;
1757 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1758 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1760 smp_processor_id());
1763 owner
= GET_PMU_OWNER();
1764 if (owner
!= ctx
->ctx_task
) {
1765 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1767 task_pid_nr(owner
), task_pid_nr(ctx
->ctx_task
));
1770 if (GET_PMU_CTX() != ctx
) {
1771 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1773 GET_PMU_CTX(), ctx
);
1777 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx
->ctx_task
)));
1779 * the context is already protected in pfm_close(), we simply
1780 * need to mask interrupts to avoid a PMU interrupt race on
1783 local_irq_save(flags
);
1785 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1787 DPRINT(("context_unload returned %d\n", ret
));
1791 * unmask interrupts, PMU interrupts are now spurious here
1793 local_irq_restore(flags
);
1797 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1801 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1802 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 1);
1803 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1805 #endif /* CONFIG_SMP */
1808 * called for each close(). Partially free resources.
1809 * When caller is self-monitoring, the context is unloaded.
1812 pfm_flush(struct file
*filp
, fl_owner_t id
)
1815 struct task_struct
*task
;
1816 struct pt_regs
*regs
;
1817 unsigned long flags
;
1818 unsigned long smpl_buf_size
= 0UL;
1819 void *smpl_buf_vaddr
= NULL
;
1820 int state
, is_system
;
1822 if (PFM_IS_FILE(filp
) == 0) {
1823 DPRINT(("bad magic for\n"));
1827 ctx
= filp
->private_data
;
1829 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current
));
1834 * remove our file from the async queue, if we use this mode.
1835 * This can be done without the context being protected. We come
1836 * here when the context has become unreachable by other tasks.
1838 * We may still have active monitoring at this point and we may
1839 * end up in pfm_overflow_handler(). However, fasync_helper()
1840 * operates with interrupts disabled and it cleans up the
1841 * queue. If the PMU handler is called prior to entering
1842 * fasync_helper() then it will send a signal. If it is
1843 * invoked after, it will find an empty queue and no
1844 * signal will be sent. In both case, we are safe
1846 PROTECT_CTX(ctx
, flags
);
1848 state
= ctx
->ctx_state
;
1849 is_system
= ctx
->ctx_fl_system
;
1851 task
= PFM_CTX_TASK(ctx
);
1852 regs
= task_pt_regs(task
);
1854 DPRINT(("ctx_state=%d is_current=%d\n",
1856 task
== current
? 1 : 0));
1859 * if state == UNLOADED, then task is NULL
1863 * we must stop and unload because we are losing access to the context.
1865 if (task
== current
) {
1868 * the task IS the owner but it migrated to another CPU: that's bad
1869 * but we must handle this cleanly. Unfortunately, the kernel does
1870 * not provide a mechanism to block migration (while the context is loaded).
1872 * We need to release the resource on the ORIGINAL cpu.
1874 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1876 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1878 * keep context protected but unmask interrupt for IPI
1880 local_irq_restore(flags
);
1882 pfm_syswide_cleanup_other_cpu(ctx
);
1885 * restore interrupt masking
1887 local_irq_save(flags
);
1890 * context is unloaded at this point
1893 #endif /* CONFIG_SMP */
1896 DPRINT(("forcing unload\n"));
1898 * stop and unload, returning with state UNLOADED
1899 * and session unreserved.
1901 pfm_context_unload(ctx
, NULL
, 0, regs
);
1903 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1908 * remove virtual mapping, if any, for the calling task.
1909 * cannot reset ctx field until last user is calling close().
1911 * ctx_smpl_vaddr must never be cleared because it is needed
1912 * by every task with access to the context
1914 * When called from do_exit(), the mm context is gone already, therefore
1915 * mm is NULL, i.e., the VMA is already gone and we do not have to
1918 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1919 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1920 smpl_buf_size
= ctx
->ctx_smpl_size
;
1923 UNPROTECT_CTX(ctx
, flags
);
1926 * if there was a mapping, then we systematically remove it
1927 * at this point. Cannot be done inside critical section
1928 * because some VM function reenables interrupts.
1931 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(smpl_buf_vaddr
, smpl_buf_size
);
1936 * called either on explicit close() or from exit_files().
1937 * Only the LAST user of the file gets to this point, i.e., it is
1940 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1941 * (fput()),i.e, last task to access the file. Nobody else can access the
1942 * file at this point.
1944 * When called from exit_files(), the VMA has been freed because exit_mm()
1945 * is executed before exit_files().
1947 * When called from exit_files(), the current task is not yet ZOMBIE but we
1948 * flush the PMU state to the context.
1951 pfm_close(struct inode
*inode
, struct file
*filp
)
1954 struct task_struct
*task
;
1955 struct pt_regs
*regs
;
1956 DECLARE_WAITQUEUE(wait
, current
);
1957 unsigned long flags
;
1958 unsigned long smpl_buf_size
= 0UL;
1959 void *smpl_buf_addr
= NULL
;
1960 int free_possible
= 1;
1961 int state
, is_system
;
1963 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1965 if (PFM_IS_FILE(filp
) == 0) {
1966 DPRINT(("bad magic\n"));
1970 ctx
= filp
->private_data
;
1972 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current
));
1976 PROTECT_CTX(ctx
, flags
);
1978 state
= ctx
->ctx_state
;
1979 is_system
= ctx
->ctx_fl_system
;
1981 task
= PFM_CTX_TASK(ctx
);
1982 regs
= task_pt_regs(task
);
1984 DPRINT(("ctx_state=%d is_current=%d\n",
1986 task
== current
? 1 : 0));
1989 * if task == current, then pfm_flush() unloaded the context
1991 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1994 * context is loaded/masked and task != current, we need to
1995 * either force an unload or go zombie
1999 * The task is currently blocked or will block after an overflow.
2000 * we must force it to wakeup to get out of the
2001 * MASKED state and transition to the unloaded state by itself.
2003 * This situation is only possible for per-task mode
2005 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
2008 * set a "partial" zombie state to be checked
2009 * upon return from down() in pfm_handle_work().
2011 * We cannot use the ZOMBIE state, because it is checked
2012 * by pfm_load_regs() which is called upon wakeup from down().
2013 * In such case, it would free the context and then we would
2014 * return to pfm_handle_work() which would access the
2015 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016 * but visible to pfm_handle_work().
2018 * For some window of time, we have a zombie context with
2019 * ctx_state = MASKED and not ZOMBIE
2021 ctx
->ctx_fl_going_zombie
= 1;
2024 * force task to wake up from MASKED state
2026 complete(&ctx
->ctx_restart_done
);
2028 DPRINT(("waking up ctx_state=%d\n", state
));
2031 * put ourself to sleep waiting for the other
2032 * task to report completion
2034 * the context is protected by mutex, therefore there
2035 * is no risk of being notified of completion before
2036 * begin actually on the waitq.
2038 set_current_state(TASK_INTERRUPTIBLE
);
2039 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2041 UNPROTECT_CTX(ctx
, flags
);
2044 * XXX: check for signals :
2045 * - ok for explicit close
2046 * - not ok when coming from exit_files()
2051 PROTECT_CTX(ctx
, flags
);
2054 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2055 set_current_state(TASK_RUNNING
);
2058 * context is unloaded at this point
2060 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2062 else if (task
!= current
) {
2065 * switch context to zombie state
2067 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2069 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task
)));
2071 * cannot free the context on the spot. deferred until
2072 * the task notices the ZOMBIE state
2076 pfm_context_unload(ctx
, NULL
, 0, regs
);
2081 /* reload state, may have changed during opening of critical section */
2082 state
= ctx
->ctx_state
;
2085 * the context is still attached to a task (possibly current)
2086 * we cannot destroy it right now
2090 * we must free the sampling buffer right here because
2091 * we cannot rely on it being cleaned up later by the
2092 * monitored task. It is not possible to free vmalloc'ed
2093 * memory in pfm_load_regs(). Instead, we remove the buffer
2094 * now. should there be subsequent PMU overflow originally
2095 * meant for sampling, the will be converted to spurious
2096 * and that's fine because the monitoring tools is gone anyway.
2098 if (ctx
->ctx_smpl_hdr
) {
2099 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2100 smpl_buf_size
= ctx
->ctx_smpl_size
;
2101 /* no more sampling */
2102 ctx
->ctx_smpl_hdr
= NULL
;
2103 ctx
->ctx_fl_is_sampling
= 0;
2106 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2112 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2115 * UNLOADED that the session has already been unreserved.
2117 if (state
== PFM_CTX_ZOMBIE
) {
2118 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2122 * disconnect file descriptor from context must be done
2125 filp
->private_data
= NULL
;
2128 * if we free on the spot, the context is now completely unreachable
2129 * from the callers side. The monitored task side is also cut, so we
2132 * If we have a deferred free, only the caller side is disconnected.
2134 UNPROTECT_CTX(ctx
, flags
);
2137 * All memory free operations (especially for vmalloc'ed memory)
2138 * MUST be done with interrupts ENABLED.
2140 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2143 * return the memory used by the context
2145 if (free_possible
) pfm_context_free(ctx
);
2150 static const struct file_operations pfm_file_ops
= {
2151 .llseek
= no_llseek
,
2155 .unlocked_ioctl
= pfm_ioctl
,
2156 .fasync
= pfm_fasync
,
2157 .release
= pfm_close
,
2161 static char *pfmfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2163 return dynamic_dname(dentry
, buffer
, buflen
, "pfm:[%lu]",
2164 d_inode(dentry
)->i_ino
);
2167 static const struct dentry_operations pfmfs_dentry_operations
= {
2168 .d_delete
= always_delete_dentry
,
2169 .d_dname
= pfmfs_dname
,
2173 static struct file
*
2174 pfm_alloc_file(pfm_context_t
*ctx
)
2177 struct inode
*inode
;
2179 struct qstr
this = { .name
= "" };
2182 * allocate a new inode
2184 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2186 return ERR_PTR(-ENOMEM
);
2188 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2190 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2191 inode
->i_uid
= current_fsuid();
2192 inode
->i_gid
= current_fsgid();
2195 * allocate a new dcache entry
2197 path
.dentry
= d_alloc(pfmfs_mnt
->mnt_root
, &this);
2200 return ERR_PTR(-ENOMEM
);
2202 path
.mnt
= mntget(pfmfs_mnt
);
2204 d_add(path
.dentry
, inode
);
2206 file
= alloc_file(&path
, FMODE_READ
, &pfm_file_ops
);
2212 file
->f_flags
= O_RDONLY
;
2213 file
->private_data
= ctx
;
2219 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2221 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2224 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2227 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2238 * allocate a sampling buffer and remaps it into the user address space of the task
2241 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2243 struct mm_struct
*mm
= task
->mm
;
2244 struct vm_area_struct
*vma
= NULL
;
2250 * the fixed header + requested size and align to page boundary
2252 size
= PAGE_ALIGN(rsize
);
2254 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2257 * check requested size to avoid Denial-of-service attacks
2258 * XXX: may have to refine this test
2259 * Check against address space limit.
2261 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2264 if (size
> task_rlimit(task
, RLIMIT_MEMLOCK
))
2268 * We do the easy to undo allocations first.
2270 * pfm_rvmalloc(), clears the buffer, so there is no leak
2272 smpl_buf
= pfm_rvmalloc(size
);
2273 if (smpl_buf
== NULL
) {
2274 DPRINT(("Can't allocate sampling buffer\n"));
2278 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2281 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2283 DPRINT(("Cannot allocate vma\n"));
2286 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2289 * partially initialize the vma for the sampling buffer
2292 vma
->vm_file
= get_file(filp
);
2293 vma
->vm_flags
= VM_READ
|VM_MAYREAD
|VM_DONTEXPAND
|VM_DONTDUMP
;
2294 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2297 * Now we have everything we need and we can initialize
2298 * and connect all the data structures
2301 ctx
->ctx_smpl_hdr
= smpl_buf
;
2302 ctx
->ctx_smpl_size
= size
; /* aligned size */
2305 * Let's do the difficult operations next.
2307 * now we atomically find some area in the address space and
2308 * remap the buffer in it.
2310 down_write(&task
->mm
->mmap_sem
);
2312 /* find some free area in address space, must have mmap sem held */
2313 vma
->vm_start
= get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
);
2314 if (IS_ERR_VALUE(vma
->vm_start
)) {
2315 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2316 up_write(&task
->mm
->mmap_sem
);
2319 vma
->vm_end
= vma
->vm_start
+ size
;
2320 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2322 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2324 /* can only be applied to current task, need to have the mm semaphore held when called */
2325 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2326 DPRINT(("Can't remap buffer\n"));
2327 up_write(&task
->mm
->mmap_sem
);
2332 * now insert the vma in the vm list for the process, must be
2333 * done with mmap lock held
2335 insert_vm_struct(mm
, vma
);
2337 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma_pages(vma
));
2338 up_write(&task
->mm
->mmap_sem
);
2341 * keep track of user level virtual address
2343 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2344 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2349 kmem_cache_free(vm_area_cachep
, vma
);
2351 pfm_rvfree(smpl_buf
, size
);
2357 * XXX: do something better here
2360 pfm_bad_permissions(struct task_struct
*task
)
2362 const struct cred
*tcred
;
2363 kuid_t uid
= current_uid();
2364 kgid_t gid
= current_gid();
2368 tcred
= __task_cred(task
);
2370 /* inspired by ptrace_attach() */
2371 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2372 from_kuid(&init_user_ns
, uid
),
2373 from_kgid(&init_user_ns
, gid
),
2374 from_kuid(&init_user_ns
, tcred
->euid
),
2375 from_kuid(&init_user_ns
, tcred
->suid
),
2376 from_kuid(&init_user_ns
, tcred
->uid
),
2377 from_kgid(&init_user_ns
, tcred
->egid
),
2378 from_kgid(&init_user_ns
, tcred
->sgid
)));
2380 ret
= ((!uid_eq(uid
, tcred
->euid
))
2381 || (!uid_eq(uid
, tcred
->suid
))
2382 || (!uid_eq(uid
, tcred
->uid
))
2383 || (!gid_eq(gid
, tcred
->egid
))
2384 || (!gid_eq(gid
, tcred
->sgid
))
2385 || (!gid_eq(gid
, tcred
->gid
))) && !capable(CAP_SYS_PTRACE
);
2392 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2398 ctx_flags
= pfx
->ctx_flags
;
2400 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2403 * cannot block in this mode
2405 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2406 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2411 /* probably more to add here */
2417 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2418 unsigned int cpu
, pfarg_context_t
*arg
)
2420 pfm_buffer_fmt_t
*fmt
= NULL
;
2421 unsigned long size
= 0UL;
2423 void *fmt_arg
= NULL
;
2425 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2427 /* invoke and lock buffer format, if found */
2428 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2430 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task
)));
2435 * buffer argument MUST be contiguous to pfarg_context_t
2437 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2439 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2441 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task
), ctx_flags
, cpu
, fmt_arg
, ret
));
2443 if (ret
) goto error
;
2445 /* link buffer format and context */
2446 ctx
->ctx_buf_fmt
= fmt
;
2447 ctx
->ctx_fl_is_sampling
= 1; /* assume record() is defined */
2450 * check if buffer format wants to use perfmon buffer allocation/mapping service
2452 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2453 if (ret
) goto error
;
2457 * buffer is always remapped into the caller's address space
2459 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2460 if (ret
) goto error
;
2462 /* keep track of user address of buffer */
2463 arg
->ctx_smpl_vaddr
= uaddr
;
2465 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2472 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2477 * install reset values for PMC.
2479 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2480 if (PMC_IS_IMPL(i
) == 0) continue;
2481 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2482 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2485 * PMD registers are set to 0UL when the context in memset()
2489 * On context switched restore, we must restore ALL pmc and ALL pmd even
2490 * when they are not actively used by the task. In UP, the incoming process
2491 * may otherwise pick up left over PMC, PMD state from the previous process.
2492 * As opposed to PMD, stale PMC can cause harm to the incoming
2493 * process because they may change what is being measured.
2494 * Therefore, we must systematically reinstall the entire
2495 * PMC state. In SMP, the same thing is possible on the
2496 * same CPU but also on between 2 CPUs.
2498 * The problem with PMD is information leaking especially
2499 * to user level when psr.sp=0
2501 * There is unfortunately no easy way to avoid this problem
2502 * on either UP or SMP. This definitively slows down the
2503 * pfm_load_regs() function.
2507 * bitmask of all PMCs accessible to this context
2509 * PMC0 is treated differently.
2511 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2514 * bitmask of all PMDs that are accessible to this context
2516 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2518 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2521 * useful in case of re-enable after disable
2523 ctx
->ctx_used_ibrs
[0] = 0UL;
2524 ctx
->ctx_used_dbrs
[0] = 0UL;
2528 pfm_ctx_getsize(void *arg
, size_t *sz
)
2530 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2531 pfm_buffer_fmt_t
*fmt
;
2535 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2537 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2539 DPRINT(("cannot find buffer format\n"));
2542 /* get just enough to copy in user parameters */
2543 *sz
= fmt
->fmt_arg_size
;
2544 DPRINT(("arg_size=%lu\n", *sz
));
2552 * cannot attach if :
2554 * - task not owned by caller
2555 * - task incompatible with context mode
2558 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2561 * no kernel task or task not owner by caller
2563 if (task
->mm
== NULL
) {
2564 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task
)));
2567 if (pfm_bad_permissions(task
)) {
2568 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task
)));
2572 * cannot block in self-monitoring mode
2574 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2575 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task
)));
2579 if (task
->exit_state
== EXIT_ZOMBIE
) {
2580 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task
)));
2585 * always ok for self
2587 if (task
== current
) return 0;
2589 if (!task_is_stopped_or_traced(task
)) {
2590 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task
), task
->state
));
2594 * make sure the task is off any CPU
2596 wait_task_inactive(task
, 0);
2598 /* more to come... */
2604 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2606 struct task_struct
*p
= current
;
2609 /* XXX: need to add more checks here */
2610 if (pid
< 2) return -EPERM
;
2612 if (pid
!= task_pid_vnr(current
)) {
2614 read_lock(&tasklist_lock
);
2616 p
= find_task_by_vpid(pid
);
2618 /* make sure task cannot go away while we operate on it */
2619 if (p
) get_task_struct(p
);
2621 read_unlock(&tasklist_lock
);
2623 if (p
== NULL
) return -ESRCH
;
2626 ret
= pfm_task_incompatible(ctx
, p
);
2629 } else if (p
!= current
) {
2638 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2640 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2647 /* let's check the arguments first */
2648 ret
= pfarg_is_sane(current
, req
);
2652 ctx_flags
= req
->ctx_flags
;
2656 fd
= get_unused_fd_flags(0);
2660 ctx
= pfm_context_alloc(ctx_flags
);
2664 filp
= pfm_alloc_file(ctx
);
2666 ret
= PTR_ERR(filp
);
2670 req
->ctx_fd
= ctx
->ctx_fd
= fd
;
2673 * does the user want to sample?
2675 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2676 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2681 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2686 ctx
->ctx_fl_excl_idle
,
2691 * initialize soft PMU state
2693 pfm_reset_pmu_state(ctx
);
2695 fd_install(fd
, filp
);
2700 path
= filp
->f_path
;
2704 if (ctx
->ctx_buf_fmt
) {
2705 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2708 pfm_context_free(ctx
);
2715 static inline unsigned long
2716 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2718 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2719 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2720 extern unsigned long carta_random32 (unsigned long seed
);
2722 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2723 new_seed
= carta_random32(old_seed
);
2724 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2725 if ((mask
>> 32) != 0)
2726 /* construct a full 64-bit random value: */
2727 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2728 reg
->seed
= new_seed
;
2735 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2737 unsigned long mask
= ovfl_regs
[0];
2738 unsigned long reset_others
= 0UL;
2743 * now restore reset value on sampling overflowed counters
2745 mask
>>= PMU_FIRST_COUNTER
;
2746 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2748 if ((mask
& 0x1UL
) == 0UL) continue;
2750 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2751 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2753 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2757 * Now take care of resetting the other registers
2759 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2761 if ((reset_others
& 0x1) == 0) continue;
2763 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2765 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2766 is_long_reset
? "long" : "short", i
, val
));
2771 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2773 unsigned long mask
= ovfl_regs
[0];
2774 unsigned long reset_others
= 0UL;
2778 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2780 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2781 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2786 * now restore reset value on sampling overflowed counters
2788 mask
>>= PMU_FIRST_COUNTER
;
2789 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2791 if ((mask
& 0x1UL
) == 0UL) continue;
2793 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2794 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2796 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2798 pfm_write_soft_counter(ctx
, i
, val
);
2802 * Now take care of resetting the other registers
2804 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2806 if ((reset_others
& 0x1) == 0) continue;
2808 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2810 if (PMD_IS_COUNTING(i
)) {
2811 pfm_write_soft_counter(ctx
, i
, val
);
2813 ia64_set_pmd(i
, val
);
2815 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2816 is_long_reset
? "long" : "short", i
, val
));
2822 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2824 struct task_struct
*task
;
2825 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2826 unsigned long value
, pmc_pm
;
2827 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2828 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2829 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2830 int is_monitor
, is_counting
, state
;
2832 pfm_reg_check_t wr_func
;
2833 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2835 state
= ctx
->ctx_state
;
2836 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2837 is_system
= ctx
->ctx_fl_system
;
2838 task
= ctx
->ctx_task
;
2839 impl_pmds
= pmu_conf
->impl_pmds
[0];
2841 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2845 * In system wide and when the context is loaded, access can only happen
2846 * when the caller is running on the CPU being monitored by the session.
2847 * It does not have to be the owner (ctx_task) of the context per se.
2849 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2850 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2853 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2855 expert_mode
= pfm_sysctl
.expert_mode
;
2857 for (i
= 0; i
< count
; i
++, req
++) {
2859 cnum
= req
->reg_num
;
2860 reg_flags
= req
->reg_flags
;
2861 value
= req
->reg_value
;
2862 smpl_pmds
= req
->reg_smpl_pmds
[0];
2863 reset_pmds
= req
->reg_reset_pmds
[0];
2867 if (cnum
>= PMU_MAX_PMCS
) {
2868 DPRINT(("pmc%u is invalid\n", cnum
));
2872 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2873 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2874 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2875 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2878 * we reject all non implemented PMC as well
2879 * as attempts to modify PMC[0-3] which are used
2880 * as status registers by the PMU
2882 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2883 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2886 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2888 * If the PMC is a monitor, then if the value is not the default:
2889 * - system-wide session: PMCx.pm=1 (privileged monitor)
2890 * - per-task : PMCx.pm=0 (user monitor)
2892 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2893 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2902 * enforce generation of overflow interrupt. Necessary on all
2905 value
|= 1 << PMU_PMC_OI
;
2907 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2908 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2911 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2913 /* verify validity of smpl_pmds */
2914 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2915 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2919 /* verify validity of reset_pmds */
2920 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2921 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2925 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2926 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2929 /* eventid on non-counting monitors are ignored */
2933 * execute write checker, if any
2935 if (likely(expert_mode
== 0 && wr_func
)) {
2936 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2937 if (ret
) goto error
;
2942 * no error on this register
2944 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2947 * Now we commit the changes to the software state
2951 * update overflow information
2955 * full flag update each time a register is programmed
2957 ctx
->ctx_pmds
[cnum
].flags
= flags
;
2959 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
2960 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
2961 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
2964 * Mark all PMDS to be accessed as used.
2966 * We do not keep track of PMC because we have to
2967 * systematically restore ALL of them.
2969 * We do not update the used_monitors mask, because
2970 * if we have not programmed them, then will be in
2971 * a quiescent state, therefore we will not need to
2972 * mask/restore then when context is MASKED.
2974 CTX_USED_PMD(ctx
, reset_pmds
);
2975 CTX_USED_PMD(ctx
, smpl_pmds
);
2977 * make sure we do not try to reset on
2978 * restart because we have established new values
2980 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
2983 * Needed in case the user does not initialize the equivalent
2984 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2985 * possible leak here.
2987 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
2990 * keep track of the monitor PMC that we are using.
2991 * we save the value of the pmc in ctx_pmcs[] and if
2992 * the monitoring is not stopped for the context we also
2993 * place it in the saved state area so that it will be
2994 * picked up later by the context switch code.
2996 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2998 * The value in th_pmcs[] may be modified on overflow, i.e., when
2999 * monitoring needs to be stopped.
3001 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3004 * update context state
3006 ctx
->ctx_pmcs
[cnum
] = value
;
3010 * write thread state
3012 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
3015 * write hardware register if we can
3017 if (can_access_pmu
) {
3018 ia64_set_pmc(cnum
, value
);
3023 * per-task SMP only here
3025 * we are guaranteed that the task is not running on the other CPU,
3026 * we indicate that this PMD will need to be reloaded if the task
3027 * is rescheduled on the CPU it ran last on.
3029 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3034 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3040 ctx
->ctx_all_pmcs
[0],
3041 ctx
->ctx_used_pmds
[0],
3042 ctx
->ctx_pmds
[cnum
].eventid
,
3045 ctx
->ctx_reload_pmcs
[0],
3046 ctx
->ctx_used_monitors
[0],
3047 ctx
->ctx_ovfl_regs
[0]));
3051 * make sure the changes are visible
3053 if (can_access_pmu
) ia64_srlz_d();
3057 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3062 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3064 struct task_struct
*task
;
3065 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3066 unsigned long value
, hw_value
, ovfl_mask
;
3068 int i
, can_access_pmu
= 0, state
;
3069 int is_counting
, is_loaded
, is_system
, expert_mode
;
3071 pfm_reg_check_t wr_func
;
3074 state
= ctx
->ctx_state
;
3075 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3076 is_system
= ctx
->ctx_fl_system
;
3077 ovfl_mask
= pmu_conf
->ovfl_val
;
3078 task
= ctx
->ctx_task
;
3080 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3083 * on both UP and SMP, we can only write to the PMC when the task is
3084 * the owner of the local PMU.
3086 if (likely(is_loaded
)) {
3088 * In system wide and when the context is loaded, access can only happen
3089 * when the caller is running on the CPU being monitored by the session.
3090 * It does not have to be the owner (ctx_task) of the context per se.
3092 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3093 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3096 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3098 expert_mode
= pfm_sysctl
.expert_mode
;
3100 for (i
= 0; i
< count
; i
++, req
++) {
3102 cnum
= req
->reg_num
;
3103 value
= req
->reg_value
;
3105 if (!PMD_IS_IMPL(cnum
)) {
3106 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3109 is_counting
= PMD_IS_COUNTING(cnum
);
3110 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3113 * execute write checker, if any
3115 if (unlikely(expert_mode
== 0 && wr_func
)) {
3116 unsigned long v
= value
;
3118 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3119 if (ret
) goto abort_mission
;
3126 * no error on this register
3128 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3131 * now commit changes to software state
3136 * update virtualized (64bits) counter
3140 * write context state
3142 ctx
->ctx_pmds
[cnum
].lval
= value
;
3145 * when context is load we use the split value
3148 hw_value
= value
& ovfl_mask
;
3149 value
= value
& ~ovfl_mask
;
3153 * update reset values (not just for counters)
3155 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3156 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3159 * update randomization parameters (not just for counters)
3161 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3162 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3165 * update context value
3167 ctx
->ctx_pmds
[cnum
].val
= value
;
3170 * Keep track of what we use
3172 * We do not keep track of PMC because we have to
3173 * systematically restore ALL of them.
3175 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3178 * mark this PMD register used as well
3180 CTX_USED_PMD(ctx
, RDEP(cnum
));
3183 * make sure we do not try to reset on
3184 * restart because we have established new values
3186 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3187 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3192 * write thread state
3194 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3197 * write hardware register if we can
3199 if (can_access_pmu
) {
3200 ia64_set_pmd(cnum
, hw_value
);
3204 * we are guaranteed that the task is not running on the other CPU,
3205 * we indicate that this PMD will need to be reloaded if the task
3206 * is rescheduled on the CPU it ran last on.
3208 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3213 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3214 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3220 ctx
->ctx_pmds
[cnum
].val
,
3221 ctx
->ctx_pmds
[cnum
].short_reset
,
3222 ctx
->ctx_pmds
[cnum
].long_reset
,
3223 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3224 ctx
->ctx_pmds
[cnum
].seed
,
3225 ctx
->ctx_pmds
[cnum
].mask
,
3226 ctx
->ctx_used_pmds
[0],
3227 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3228 ctx
->ctx_reload_pmds
[0],
3229 ctx
->ctx_all_pmds
[0],
3230 ctx
->ctx_ovfl_regs
[0]));
3234 * make changes visible
3236 if (can_access_pmu
) ia64_srlz_d();
3242 * for now, we have only one possibility for error
3244 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3249 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3250 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3251 * interrupt is delivered during the call, it will be kept pending until we leave, making
3252 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3253 * guaranteed to return consistent data to the user, it may simply be old. It is not
3254 * trivial to treat the overflow while inside the call because you may end up in
3255 * some module sampling buffer code causing deadlocks.
3258 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3260 struct task_struct
*task
;
3261 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3262 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3263 unsigned int cnum
, reg_flags
= 0;
3264 int i
, can_access_pmu
= 0, state
;
3265 int is_loaded
, is_system
, is_counting
, expert_mode
;
3267 pfm_reg_check_t rd_func
;
3270 * access is possible when loaded only for
3271 * self-monitoring tasks or in UP mode
3274 state
= ctx
->ctx_state
;
3275 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3276 is_system
= ctx
->ctx_fl_system
;
3277 ovfl_mask
= pmu_conf
->ovfl_val
;
3278 task
= ctx
->ctx_task
;
3280 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3282 if (likely(is_loaded
)) {
3284 * In system wide and when the context is loaded, access can only happen
3285 * when the caller is running on the CPU being monitored by the session.
3286 * It does not have to be the owner (ctx_task) of the context per se.
3288 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3289 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3293 * this can be true when not self-monitoring only in UP
3295 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3297 if (can_access_pmu
) ia64_srlz_d();
3299 expert_mode
= pfm_sysctl
.expert_mode
;
3301 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3307 * on both UP and SMP, we can only read the PMD from the hardware register when
3308 * the task is the owner of the local PMU.
3311 for (i
= 0; i
< count
; i
++, req
++) {
3313 cnum
= req
->reg_num
;
3314 reg_flags
= req
->reg_flags
;
3316 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3318 * we can only read the register that we use. That includes
3319 * the one we explicitly initialize AND the one we want included
3320 * in the sampling buffer (smpl_regs).
3322 * Having this restriction allows optimization in the ctxsw routine
3323 * without compromising security (leaks)
3325 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3327 sval
= ctx
->ctx_pmds
[cnum
].val
;
3328 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3329 is_counting
= PMD_IS_COUNTING(cnum
);
3332 * If the task is not the current one, then we check if the
3333 * PMU state is still in the local live register due to lazy ctxsw.
3334 * If true, then we read directly from the registers.
3336 if (can_access_pmu
){
3337 val
= ia64_get_pmd(cnum
);
3340 * context has been saved
3341 * if context is zombie, then task does not exist anymore.
3342 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3344 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3346 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3350 * XXX: need to check for overflow when loaded
3357 * execute read checker, if any
3359 if (unlikely(expert_mode
== 0 && rd_func
)) {
3360 unsigned long v
= val
;
3361 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3362 if (ret
) goto error
;
3367 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3369 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3372 * update register return value, abort all if problem during copy.
3373 * we only modify the reg_flags field. no check mode is fine because
3374 * access has been verified upfront in sys_perfmonctl().
3376 req
->reg_value
= val
;
3377 req
->reg_flags
= reg_flags
;
3378 req
->reg_last_reset_val
= lval
;
3384 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3389 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3393 if (req
== NULL
) return -EINVAL
;
3395 ctx
= GET_PMU_CTX();
3397 if (ctx
== NULL
) return -EINVAL
;
3400 * for now limit to current task, which is enough when calling
3401 * from overflow handler
3403 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3405 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3407 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3410 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3414 if (req
== NULL
) return -EINVAL
;
3416 ctx
= GET_PMU_CTX();
3418 if (ctx
== NULL
) return -EINVAL
;
3421 * for now limit to current task, which is enough when calling
3422 * from overflow handler
3424 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3426 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3428 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3431 * Only call this function when a process it trying to
3432 * write the debug registers (reading is always allowed)
3435 pfm_use_debug_registers(struct task_struct
*task
)
3437 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3438 unsigned long flags
;
3441 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3443 DPRINT(("called for [%d]\n", task_pid_nr(task
)));
3448 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3451 * Even on SMP, we do not need to use an atomic here because
3452 * the only way in is via ptrace() and this is possible only when the
3453 * process is stopped. Even in the case where the ctxsw out is not totally
3454 * completed by the time we come here, there is no way the 'stopped' process
3455 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3456 * So this is always safe.
3458 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3463 * We cannot allow setting breakpoints when system wide monitoring
3464 * sessions are using the debug registers.
3466 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3469 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3471 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3472 pfm_sessions
.pfs_ptrace_use_dbregs
,
3473 pfm_sessions
.pfs_sys_use_dbregs
,
3474 task_pid_nr(task
), ret
));
3482 * This function is called for every task that exits with the
3483 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3484 * able to use the debug registers for debugging purposes via
3485 * ptrace(). Therefore we know it was not using them for
3486 * performance monitoring, so we only decrement the number
3487 * of "ptraced" debug register users to keep the count up to date
3490 pfm_release_debug_registers(struct task_struct
*task
)
3492 unsigned long flags
;
3495 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3498 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3499 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task
));
3502 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3511 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3513 struct task_struct
*task
;
3514 pfm_buffer_fmt_t
*fmt
;
3515 pfm_ovfl_ctrl_t rst_ctrl
;
3516 int state
, is_system
;
3519 state
= ctx
->ctx_state
;
3520 fmt
= ctx
->ctx_buf_fmt
;
3521 is_system
= ctx
->ctx_fl_system
;
3522 task
= PFM_CTX_TASK(ctx
);
3525 case PFM_CTX_MASKED
:
3527 case PFM_CTX_LOADED
:
3528 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3530 case PFM_CTX_UNLOADED
:
3531 case PFM_CTX_ZOMBIE
:
3532 DPRINT(("invalid state=%d\n", state
));
3535 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3540 * In system wide and when the context is loaded, access can only happen
3541 * when the caller is running on the CPU being monitored by the session.
3542 * It does not have to be the owner (ctx_task) of the context per se.
3544 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3545 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3550 if (unlikely(task
== NULL
)) {
3551 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", task_pid_nr(current
));
3555 if (task
== current
|| is_system
) {
3557 fmt
= ctx
->ctx_buf_fmt
;
3559 DPRINT(("restarting self %d ovfl=0x%lx\n",
3561 ctx
->ctx_ovfl_regs
[0]));
3563 if (CTX_HAS_SMPL(ctx
)) {
3565 prefetch(ctx
->ctx_smpl_hdr
);
3567 rst_ctrl
.bits
.mask_monitoring
= 0;
3568 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3570 if (state
== PFM_CTX_LOADED
)
3571 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3573 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3575 rst_ctrl
.bits
.mask_monitoring
= 0;
3576 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3580 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3581 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3583 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3584 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task
)));
3586 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3588 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task
)));
3590 // cannot use pfm_stop_monitoring(task, regs);
3594 * clear overflowed PMD mask to remove any stale information
3596 ctx
->ctx_ovfl_regs
[0] = 0UL;
3599 * back to LOADED state
3601 ctx
->ctx_state
= PFM_CTX_LOADED
;
3604 * XXX: not really useful for self monitoring
3606 ctx
->ctx_fl_can_restart
= 0;
3612 * restart another task
3616 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3617 * one is seen by the task.
3619 if (state
== PFM_CTX_MASKED
) {
3620 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3622 * will prevent subsequent restart before this one is
3623 * seen by other task
3625 ctx
->ctx_fl_can_restart
= 0;
3629 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3630 * the task is blocked or on its way to block. That's the normal
3631 * restart path. If the monitoring is not masked, then the task
3632 * can be actively monitoring and we cannot directly intervene.
3633 * Therefore we use the trap mechanism to catch the task and
3634 * force it to reset the buffer/reset PMDs.
3636 * if non-blocking, then we ensure that the task will go into
3637 * pfm_handle_work() before returning to user mode.
3639 * We cannot explicitly reset another task, it MUST always
3640 * be done by the task itself. This works for system wide because
3641 * the tool that is controlling the session is logically doing
3642 * "self-monitoring".
3644 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3645 DPRINT(("unblocking [%d]\n", task_pid_nr(task
)));
3646 complete(&ctx
->ctx_restart_done
);
3648 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task
)));
3650 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3652 PFM_SET_WORK_PENDING(task
, 1);
3654 set_notify_resume(task
);
3657 * XXX: send reschedule if task runs on another CPU
3664 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3666 unsigned int m
= *(unsigned int *)arg
;
3668 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3670 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3673 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3674 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3680 * arg can be NULL and count can be zero for this function
3683 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3685 struct thread_struct
*thread
= NULL
;
3686 struct task_struct
*task
;
3687 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3688 unsigned long flags
;
3693 int i
, can_access_pmu
= 0;
3694 int is_system
, is_loaded
;
3696 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3698 state
= ctx
->ctx_state
;
3699 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3700 is_system
= ctx
->ctx_fl_system
;
3701 task
= ctx
->ctx_task
;
3703 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3706 * on both UP and SMP, we can only write to the PMC when the task is
3707 * the owner of the local PMU.
3710 thread
= &task
->thread
;
3712 * In system wide and when the context is loaded, access can only happen
3713 * when the caller is running on the CPU being monitored by the session.
3714 * It does not have to be the owner (ctx_task) of the context per se.
3716 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3717 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3720 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3724 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3725 * ensuring that no real breakpoint can be installed via this call.
3727 * IMPORTANT: regs can be NULL in this function
3730 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3733 * don't bother if we are loaded and task is being debugged
3735 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3736 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task
)));
3741 * check for debug registers in system wide mode
3743 * If though a check is done in pfm_context_load(),
3744 * we must repeat it here, in case the registers are
3745 * written after the context is loaded
3750 if (first_time
&& is_system
) {
3751 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3754 pfm_sessions
.pfs_sys_use_dbregs
++;
3759 if (ret
!= 0) return ret
;
3762 * mark ourself as user of the debug registers for
3765 ctx
->ctx_fl_using_dbreg
= 1;
3768 * clear hardware registers to make sure we don't
3769 * pick up stale state.
3771 * for a system wide session, we do not use
3772 * thread.dbr, thread.ibr because this process
3773 * never leaves the current CPU and the state
3774 * is shared by all processes running on it
3776 if (first_time
&& can_access_pmu
) {
3777 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task
)));
3778 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3779 ia64_set_ibr(i
, 0UL);
3780 ia64_dv_serialize_instruction();
3783 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3784 ia64_set_dbr(i
, 0UL);
3785 ia64_dv_serialize_data();
3791 * Now install the values into the registers
3793 for (i
= 0; i
< count
; i
++, req
++) {
3795 rnum
= req
->dbreg_num
;
3796 dbreg
.val
= req
->dbreg_value
;
3800 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3801 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3802 rnum
, dbreg
.val
, mode
, i
, count
));
3808 * make sure we do not install enabled breakpoint
3811 if (mode
== PFM_CODE_RR
)
3812 dbreg
.ibr
.ibr_x
= 0;
3814 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3817 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3820 * Debug registers, just like PMC, can only be modified
3821 * by a kernel call. Moreover, perfmon() access to those
3822 * registers are centralized in this routine. The hardware
3823 * does not modify the value of these registers, therefore,
3824 * if we save them as they are written, we can avoid having
3825 * to save them on context switch out. This is made possible
3826 * by the fact that when perfmon uses debug registers, ptrace()
3827 * won't be able to modify them concurrently.
3829 if (mode
== PFM_CODE_RR
) {
3830 CTX_USED_IBR(ctx
, rnum
);
3832 if (can_access_pmu
) {
3833 ia64_set_ibr(rnum
, dbreg
.val
);
3834 ia64_dv_serialize_instruction();
3837 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3839 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3840 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3842 CTX_USED_DBR(ctx
, rnum
);
3844 if (can_access_pmu
) {
3845 ia64_set_dbr(rnum
, dbreg
.val
);
3846 ia64_dv_serialize_data();
3848 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3850 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3851 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3859 * in case it was our first attempt, we undo the global modifications
3863 if (ctx
->ctx_fl_system
) {
3864 pfm_sessions
.pfs_sys_use_dbregs
--;
3867 ctx
->ctx_fl_using_dbreg
= 0;
3870 * install error return flag
3872 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3878 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3880 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3884 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3886 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3890 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3894 if (req
== NULL
) return -EINVAL
;
3896 ctx
= GET_PMU_CTX();
3898 if (ctx
== NULL
) return -EINVAL
;
3901 * for now limit to current task, which is enough when calling
3902 * from overflow handler
3904 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3906 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3908 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3911 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3915 if (req
== NULL
) return -EINVAL
;
3917 ctx
= GET_PMU_CTX();
3919 if (ctx
== NULL
) return -EINVAL
;
3922 * for now limit to current task, which is enough when calling
3923 * from overflow handler
3925 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3927 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3929 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3933 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3935 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3937 req
->ft_version
= PFM_VERSION
;
3942 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3944 struct pt_regs
*tregs
;
3945 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3946 int state
, is_system
;
3948 state
= ctx
->ctx_state
;
3949 is_system
= ctx
->ctx_fl_system
;
3952 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3954 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
3957 * In system wide and when the context is loaded, access can only happen
3958 * when the caller is running on the CPU being monitored by the session.
3959 * It does not have to be the owner (ctx_task) of the context per se.
3961 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3962 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3965 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3966 task_pid_nr(PFM_CTX_TASK(ctx
)),
3970 * in system mode, we need to update the PMU directly
3971 * and the user level state of the caller, which may not
3972 * necessarily be the creator of the context.
3976 * Update local PMU first
3980 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
3984 * update local cpuinfo
3986 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
3989 * stop monitoring, does srlz.i
3994 * stop monitoring in the caller
3996 ia64_psr(regs
)->pp
= 0;
4004 if (task
== current
) {
4005 /* stop monitoring at kernel level */
4009 * stop monitoring at the user level
4011 ia64_psr(regs
)->up
= 0;
4013 tregs
= task_pt_regs(task
);
4016 * stop monitoring at the user level
4018 ia64_psr(tregs
)->up
= 0;
4021 * monitoring disabled in kernel at next reschedule
4023 ctx
->ctx_saved_psr_up
= 0;
4024 DPRINT(("task=[%d]\n", task_pid_nr(task
)));
4031 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4033 struct pt_regs
*tregs
;
4034 int state
, is_system
;
4036 state
= ctx
->ctx_state
;
4037 is_system
= ctx
->ctx_fl_system
;
4039 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4042 * In system wide and when the context is loaded, access can only happen
4043 * when the caller is running on the CPU being monitored by the session.
4044 * It does not have to be the owner (ctx_task) of the context per se.
4046 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4047 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4052 * in system mode, we need to update the PMU directly
4053 * and the user level state of the caller, which may not
4054 * necessarily be the creator of the context.
4059 * set user level psr.pp for the caller
4061 ia64_psr(regs
)->pp
= 1;
4064 * now update the local PMU and cpuinfo
4066 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4069 * start monitoring at kernel level
4074 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4084 if (ctx
->ctx_task
== current
) {
4086 /* start monitoring at kernel level */
4090 * activate monitoring at user level
4092 ia64_psr(regs
)->up
= 1;
4095 tregs
= task_pt_regs(ctx
->ctx_task
);
4098 * start monitoring at the kernel level the next
4099 * time the task is scheduled
4101 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4104 * activate monitoring at user level
4106 ia64_psr(tregs
)->up
= 1;
4112 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4114 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4119 for (i
= 0; i
< count
; i
++, req
++) {
4121 cnum
= req
->reg_num
;
4123 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4125 req
->reg_value
= PMC_DFL_VAL(cnum
);
4127 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4129 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4134 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4139 pfm_check_task_exist(pfm_context_t
*ctx
)
4141 struct task_struct
*g
, *t
;
4144 read_lock(&tasklist_lock
);
4146 do_each_thread (g
, t
) {
4147 if (t
->thread
.pfm_context
== ctx
) {
4151 } while_each_thread (g
, t
);
4153 read_unlock(&tasklist_lock
);
4155 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4161 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4163 struct task_struct
*task
;
4164 struct thread_struct
*thread
;
4165 struct pfm_context_t
*old
;
4166 unsigned long flags
;
4168 struct task_struct
*owner_task
= NULL
;
4170 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4171 unsigned long *pmcs_source
, *pmds_source
;
4174 int state
, is_system
, set_dbregs
= 0;
4176 state
= ctx
->ctx_state
;
4177 is_system
= ctx
->ctx_fl_system
;
4179 * can only load from unloaded or terminated state
4181 if (state
!= PFM_CTX_UNLOADED
) {
4182 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4188 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4190 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4191 DPRINT(("cannot use blocking mode on self\n"));
4195 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4197 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4204 * system wide is self monitoring only
4206 if (is_system
&& task
!= current
) {
4207 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4212 thread
= &task
->thread
;
4216 * cannot load a context which is using range restrictions,
4217 * into a task that is being debugged.
4219 if (ctx
->ctx_fl_using_dbreg
) {
4220 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4222 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4228 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4229 DPRINT(("cannot load [%d] dbregs in use\n",
4230 task_pid_nr(task
)));
4233 pfm_sessions
.pfs_sys_use_dbregs
++;
4234 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task
), pfm_sessions
.pfs_sys_use_dbregs
));
4241 if (ret
) goto error
;
4245 * SMP system-wide monitoring implies self-monitoring.
4247 * The programming model expects the task to
4248 * be pinned on a CPU throughout the session.
4249 * Here we take note of the current CPU at the
4250 * time the context is loaded. No call from
4251 * another CPU will be allowed.
4253 * The pinning via shed_setaffinity()
4254 * must be done by the calling task prior
4257 * systemwide: keep track of CPU this session is supposed to run on
4259 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4263 * now reserve the session
4265 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4266 if (ret
) goto error
;
4269 * task is necessarily stopped at this point.
4271 * If the previous context was zombie, then it got removed in
4272 * pfm_save_regs(). Therefore we should not see it here.
4273 * If we see a context, then this is an active context
4275 * XXX: needs to be atomic
4277 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4278 thread
->pfm_context
, ctx
));
4281 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4283 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4287 pfm_reset_msgq(ctx
);
4289 ctx
->ctx_state
= PFM_CTX_LOADED
;
4292 * link context to task
4294 ctx
->ctx_task
= task
;
4298 * we load as stopped
4300 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4301 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4303 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4305 thread
->flags
|= IA64_THREAD_PM_VALID
;
4309 * propagate into thread-state
4311 pfm_copy_pmds(task
, ctx
);
4312 pfm_copy_pmcs(task
, ctx
);
4314 pmcs_source
= ctx
->th_pmcs
;
4315 pmds_source
= ctx
->th_pmds
;
4318 * always the case for system-wide
4320 if (task
== current
) {
4322 if (is_system
== 0) {
4324 /* allow user level control */
4325 ia64_psr(regs
)->sp
= 0;
4326 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task
)));
4328 SET_LAST_CPU(ctx
, smp_processor_id());
4330 SET_ACTIVATION(ctx
);
4333 * push the other task out, if any
4335 owner_task
= GET_PMU_OWNER();
4336 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4340 * load all PMD from ctx to PMU (as opposed to thread state)
4341 * restore all PMC from ctx to PMU
4343 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4344 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4346 ctx
->ctx_reload_pmcs
[0] = 0UL;
4347 ctx
->ctx_reload_pmds
[0] = 0UL;
4350 * guaranteed safe by earlier check against DBG_VALID
4352 if (ctx
->ctx_fl_using_dbreg
) {
4353 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4354 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4359 SET_PMU_OWNER(task
, ctx
);
4361 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task
)));
4364 * when not current, task MUST be stopped, so this is safe
4366 regs
= task_pt_regs(task
);
4368 /* force a full reload */
4369 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4370 SET_LAST_CPU(ctx
, -1);
4372 /* initial saved psr (stopped) */
4373 ctx
->ctx_saved_psr_up
= 0UL;
4374 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4380 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4383 * we must undo the dbregs setting (for system-wide)
4385 if (ret
&& set_dbregs
) {
4387 pfm_sessions
.pfs_sys_use_dbregs
--;
4391 * release task, there is now a link with the context
4393 if (is_system
== 0 && task
!= current
) {
4397 ret
= pfm_check_task_exist(ctx
);
4399 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4400 ctx
->ctx_task
= NULL
;
4408 * in this function, we do not need to increase the use count
4409 * for the task via get_task_struct(), because we hold the
4410 * context lock. If the task were to disappear while having
4411 * a context attached, it would go through pfm_exit_thread()
4412 * which also grabs the context lock and would therefore be blocked
4413 * until we are here.
4415 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4418 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4420 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4421 struct pt_regs
*tregs
;
4422 int prev_state
, is_system
;
4425 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task_pid_nr(task
) : -1));
4427 prev_state
= ctx
->ctx_state
;
4428 is_system
= ctx
->ctx_fl_system
;
4431 * unload only when necessary
4433 if (prev_state
== PFM_CTX_UNLOADED
) {
4434 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4439 * clear psr and dcr bits
4441 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4442 if (ret
) return ret
;
4444 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4447 * in system mode, we need to update the PMU directly
4448 * and the user level state of the caller, which may not
4449 * necessarily be the creator of the context.
4456 * local PMU is taken care of in pfm_stop()
4458 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4459 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4462 * save PMDs in context
4465 pfm_flush_pmds(current
, ctx
);
4468 * at this point we are done with the PMU
4469 * so we can unreserve the resource.
4471 if (prev_state
!= PFM_CTX_ZOMBIE
)
4472 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4475 * disconnect context from task
4477 task
->thread
.pfm_context
= NULL
;
4479 * disconnect task from context
4481 ctx
->ctx_task
= NULL
;
4484 * There is nothing more to cleanup here.
4492 tregs
= task
== current
? regs
: task_pt_regs(task
);
4494 if (task
== current
) {
4496 * cancel user level control
4498 ia64_psr(regs
)->sp
= 1;
4500 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task
)));
4503 * save PMDs to context
4506 pfm_flush_pmds(task
, ctx
);
4509 * at this point we are done with the PMU
4510 * so we can unreserve the resource.
4512 * when state was ZOMBIE, we have already unreserved.
4514 if (prev_state
!= PFM_CTX_ZOMBIE
)
4515 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4518 * reset activation counter and psr
4520 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4521 SET_LAST_CPU(ctx
, -1);
4524 * PMU state will not be restored
4526 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4529 * break links between context and task
4531 task
->thread
.pfm_context
= NULL
;
4532 ctx
->ctx_task
= NULL
;
4534 PFM_SET_WORK_PENDING(task
, 0);
4536 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4537 ctx
->ctx_fl_can_restart
= 0;
4538 ctx
->ctx_fl_going_zombie
= 0;
4540 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task
)));
4547 * called only from exit_thread()
4548 * we come here only if the task has a context attached (loaded or masked)
4551 pfm_exit_thread(struct task_struct
*task
)
4554 unsigned long flags
;
4555 struct pt_regs
*regs
= task_pt_regs(task
);
4559 ctx
= PFM_GET_CTX(task
);
4561 PROTECT_CTX(ctx
, flags
);
4563 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task_pid_nr(task
)));
4565 state
= ctx
->ctx_state
;
4567 case PFM_CTX_UNLOADED
:
4569 * only comes to this function if pfm_context is not NULL, i.e., cannot
4570 * be in unloaded state
4572 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task
));
4574 case PFM_CTX_LOADED
:
4575 case PFM_CTX_MASKED
:
4576 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4578 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4580 DPRINT(("ctx unloaded for current state was %d\n", state
));
4582 pfm_end_notify_user(ctx
);
4584 case PFM_CTX_ZOMBIE
:
4585 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4587 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4592 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task
), state
);
4595 UNPROTECT_CTX(ctx
, flags
);
4597 { u64 psr
= pfm_get_psr();
4598 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4599 BUG_ON(GET_PMU_OWNER());
4600 BUG_ON(ia64_psr(regs
)->up
);
4601 BUG_ON(ia64_psr(regs
)->pp
);
4605 * All memory free operations (especially for vmalloc'ed memory)
4606 * MUST be done with interrupts ENABLED.
4608 if (free_ok
) pfm_context_free(ctx
);
4612 * functions MUST be listed in the increasing order of their index (see permfon.h)
4614 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4615 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4616 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4617 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4618 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4620 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4621 /* 0 */PFM_CMD_NONE
,
4622 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4623 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4624 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4625 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4626 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4627 /* 6 */PFM_CMD_NONE
,
4628 /* 7 */PFM_CMD_NONE
,
4629 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4630 /* 9 */PFM_CMD_NONE
,
4631 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4632 /* 11 */PFM_CMD_NONE
,
4633 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4634 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4635 /* 14 */PFM_CMD_NONE
,
4636 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4637 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4638 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4639 /* 18 */PFM_CMD_NONE
,
4640 /* 19 */PFM_CMD_NONE
,
4641 /* 20 */PFM_CMD_NONE
,
4642 /* 21 */PFM_CMD_NONE
,
4643 /* 22 */PFM_CMD_NONE
,
4644 /* 23 */PFM_CMD_NONE
,
4645 /* 24 */PFM_CMD_NONE
,
4646 /* 25 */PFM_CMD_NONE
,
4647 /* 26 */PFM_CMD_NONE
,
4648 /* 27 */PFM_CMD_NONE
,
4649 /* 28 */PFM_CMD_NONE
,
4650 /* 29 */PFM_CMD_NONE
,
4651 /* 30 */PFM_CMD_NONE
,
4652 /* 31 */PFM_CMD_NONE
,
4653 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4654 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4656 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4659 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4661 struct task_struct
*task
;
4662 int state
, old_state
;
4665 state
= ctx
->ctx_state
;
4666 task
= ctx
->ctx_task
;
4669 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4673 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4677 task
->state
, PFM_CMD_STOPPED(cmd
)));
4680 * self-monitoring always ok.
4682 * for system-wide the caller can either be the creator of the
4683 * context (to one to which the context is attached to) OR
4684 * a task running on the same CPU as the session.
4686 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4689 * we are monitoring another thread
4692 case PFM_CTX_UNLOADED
:
4694 * if context is UNLOADED we are safe to go
4697 case PFM_CTX_ZOMBIE
:
4699 * no command can operate on a zombie context
4701 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4703 case PFM_CTX_MASKED
:
4705 * PMU state has been saved to software even though
4706 * the thread may still be running.
4708 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4712 * context is LOADED or MASKED. Some commands may need to have
4715 * We could lift this restriction for UP but it would mean that
4716 * the user has no guarantee the task would not run between
4717 * two successive calls to perfmonctl(). That's probably OK.
4718 * If this user wants to ensure the task does not run, then
4719 * the task must be stopped.
4721 if (PFM_CMD_STOPPED(cmd
)) {
4722 if (!task_is_stopped_or_traced(task
)) {
4723 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task
)));
4727 * task is now stopped, wait for ctxsw out
4729 * This is an interesting point in the code.
4730 * We need to unprotect the context because
4731 * the pfm_save_regs() routines needs to grab
4732 * the same lock. There are danger in doing
4733 * this because it leaves a window open for
4734 * another task to get access to the context
4735 * and possibly change its state. The one thing
4736 * that is not possible is for the context to disappear
4737 * because we are protected by the VFS layer, i.e.,
4738 * get_fd()/put_fd().
4742 UNPROTECT_CTX(ctx
, flags
);
4744 wait_task_inactive(task
, 0);
4746 PROTECT_CTX(ctx
, flags
);
4749 * we must recheck to verify if state has changed
4751 if (ctx
->ctx_state
!= old_state
) {
4752 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4760 * system-call entry point (must return long)
4763 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4765 struct fd f
= {NULL
, 0};
4766 pfm_context_t
*ctx
= NULL
;
4767 unsigned long flags
= 0UL;
4768 void *args_k
= NULL
;
4769 long ret
; /* will expand int return types */
4770 size_t base_sz
, sz
, xtra_sz
= 0;
4771 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4772 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4773 int (*getsize
)(void *arg
, size_t *sz
);
4774 #define PFM_MAX_ARGSIZE 4096
4777 * reject any call if perfmon was disabled at initialization
4779 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4781 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4782 DPRINT(("invalid cmd=%d\n", cmd
));
4786 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4787 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4788 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4789 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4790 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4792 if (unlikely(func
== NULL
)) {
4793 DPRINT(("invalid cmd=%d\n", cmd
));
4797 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4805 * check if number of arguments matches what the command expects
4807 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4811 sz
= xtra_sz
+ base_sz
*count
;
4813 * limit abuse to min page size
4815 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4816 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", task_pid_nr(current
), sz
);
4821 * allocate default-sized argument buffer
4823 if (likely(count
&& args_k
== NULL
)) {
4824 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4825 if (args_k
== NULL
) return -ENOMEM
;
4833 * assume sz = 0 for command without parameters
4835 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4836 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4841 * check if command supports extra parameters
4843 if (completed_args
== 0 && getsize
) {
4845 * get extra parameters size (based on main argument)
4847 ret
= (*getsize
)(args_k
, &xtra_sz
);
4848 if (ret
) goto error_args
;
4852 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4854 /* retry if necessary */
4855 if (likely(xtra_sz
)) goto restart_args
;
4858 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4863 if (unlikely(f
.file
== NULL
)) {
4864 DPRINT(("invalid fd %d\n", fd
));
4867 if (unlikely(PFM_IS_FILE(f
.file
) == 0)) {
4868 DPRINT(("fd %d not related to perfmon\n", fd
));
4872 ctx
= f
.file
->private_data
;
4873 if (unlikely(ctx
== NULL
)) {
4874 DPRINT(("no context for fd %d\n", fd
));
4877 prefetch(&ctx
->ctx_state
);
4879 PROTECT_CTX(ctx
, flags
);
4882 * check task is stopped
4884 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4885 if (unlikely(ret
)) goto abort_locked
;
4888 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4894 DPRINT(("context unlocked\n"));
4895 UNPROTECT_CTX(ctx
, flags
);
4898 /* copy argument back to user, if needed */
4899 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4907 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4913 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4915 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4916 pfm_ovfl_ctrl_t rst_ctrl
;
4920 state
= ctx
->ctx_state
;
4922 * Unlock sampling buffer and reset index atomically
4923 * XXX: not really needed when blocking
4925 if (CTX_HAS_SMPL(ctx
)) {
4927 rst_ctrl
.bits
.mask_monitoring
= 0;
4928 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4930 if (state
== PFM_CTX_LOADED
)
4931 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4933 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4935 rst_ctrl
.bits
.mask_monitoring
= 0;
4936 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4940 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4941 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4943 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4944 DPRINT(("resuming monitoring\n"));
4945 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4947 DPRINT(("stopping monitoring\n"));
4948 //pfm_stop_monitoring(current, regs);
4950 ctx
->ctx_state
= PFM_CTX_LOADED
;
4955 * context MUST BE LOCKED when calling
4956 * can only be called for current
4959 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
4963 DPRINT(("entering for [%d]\n", task_pid_nr(current
)));
4965 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4967 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current
), ret
);
4971 * and wakeup controlling task, indicating we are now disconnected
4973 wake_up_interruptible(&ctx
->ctx_zombieq
);
4976 * given that context is still locked, the controlling
4977 * task will only get access when we return from
4978 * pfm_handle_work().
4982 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
4985 * pfm_handle_work() can be called with interrupts enabled
4986 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4987 * call may sleep, therefore we must re-enable interrupts
4988 * to avoid deadlocks. It is safe to do so because this function
4989 * is called ONLY when returning to user level (pUStk=1), in which case
4990 * there is no risk of kernel stack overflow due to deep
4991 * interrupt nesting.
4994 pfm_handle_work(void)
4997 struct pt_regs
*regs
;
4998 unsigned long flags
, dummy_flags
;
4999 unsigned long ovfl_regs
;
5000 unsigned int reason
;
5003 ctx
= PFM_GET_CTX(current
);
5005 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n",
5006 task_pid_nr(current
));
5010 PROTECT_CTX(ctx
, flags
);
5012 PFM_SET_WORK_PENDING(current
, 0);
5014 regs
= task_pt_regs(current
);
5017 * extract reason for being here and clear
5019 reason
= ctx
->ctx_fl_trap_reason
;
5020 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5021 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5023 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5026 * must be done before we check for simple-reset mode
5028 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
)
5031 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5032 if (reason
== PFM_TRAP_REASON_RESET
)
5036 * restore interrupt mask to what it was on entry.
5037 * Could be enabled/diasbled.
5039 UNPROTECT_CTX(ctx
, flags
);
5042 * force interrupt enable because of down_interruptible()
5046 DPRINT(("before block sleeping\n"));
5049 * may go through without blocking on SMP systems
5050 * if restart has been received already by the time we call down()
5052 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5054 DPRINT(("after block sleeping ret=%d\n", ret
));
5057 * lock context and mask interrupts again
5058 * We save flags into a dummy because we may have
5059 * altered interrupts mask compared to entry in this
5062 PROTECT_CTX(ctx
, dummy_flags
);
5065 * we need to read the ovfl_regs only after wake-up
5066 * because we may have had pfm_write_pmds() in between
5067 * and that can changed PMD values and therefore
5068 * ovfl_regs is reset for these new PMD values.
5070 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5072 if (ctx
->ctx_fl_going_zombie
) {
5074 DPRINT(("context is zombie, bailing out\n"));
5075 pfm_context_force_terminate(ctx
, regs
);
5079 * in case of interruption of down() we don't restart anything
5085 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5086 ctx
->ctx_ovfl_regs
[0] = 0UL;
5090 * restore flags as they were upon entry
5092 UNPROTECT_CTX(ctx
, flags
);
5096 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5098 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5099 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5103 DPRINT(("waking up somebody\n"));
5105 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5108 * safe, we are not in intr handler, nor in ctxsw when
5111 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5117 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5119 pfm_msg_t
*msg
= NULL
;
5121 if (ctx
->ctx_fl_no_msg
== 0) {
5122 msg
= pfm_get_new_msg(ctx
);
5124 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5128 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5129 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5130 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5131 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5132 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5133 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5134 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5135 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5138 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5144 return pfm_notify_user(ctx
, msg
);
5148 pfm_end_notify_user(pfm_context_t
*ctx
)
5152 msg
= pfm_get_new_msg(ctx
);
5154 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5158 memset(msg
, 0, sizeof(*msg
));
5160 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5161 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5162 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5164 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5169 return pfm_notify_user(ctx
, msg
);
5173 * main overflow processing routine.
5174 * it can be called from the interrupt path or explicitly during the context switch code
5176 static void pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
,
5177 unsigned long pmc0
, struct pt_regs
*regs
)
5179 pfm_ovfl_arg_t
*ovfl_arg
;
5181 unsigned long old_val
, ovfl_val
, new_val
;
5182 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5183 unsigned long tstamp
;
5184 pfm_ovfl_ctrl_t ovfl_ctrl
;
5185 unsigned int i
, has_smpl
;
5186 int must_notify
= 0;
5188 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5191 * sanity test. Should never happen
5193 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5195 tstamp
= ia64_get_itc();
5196 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5197 ovfl_val
= pmu_conf
->ovfl_val
;
5198 has_smpl
= CTX_HAS_SMPL(ctx
);
5200 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5201 "used_pmds=0x%lx\n",
5203 task
? task_pid_nr(task
): -1,
5204 (regs
? regs
->cr_iip
: 0),
5205 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5206 ctx
->ctx_used_pmds
[0]));
5210 * first we update the virtual counters
5211 * assume there was a prior ia64_srlz_d() issued
5213 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5215 /* skip pmd which did not overflow */
5216 if ((mask
& 0x1) == 0) continue;
5219 * Note that the pmd is not necessarily 0 at this point as qualified events
5220 * may have happened before the PMU was frozen. The residual count is not
5221 * taken into consideration here but will be with any read of the pmd via
5224 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5225 new_val
+= 1 + ovfl_val
;
5226 ctx
->ctx_pmds
[i
].val
= new_val
;
5229 * check for overflow condition
5231 if (likely(old_val
> new_val
)) {
5232 ovfl_pmds
|= 1UL << i
;
5233 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5236 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5240 ia64_get_pmd(i
) & ovfl_val
,
5246 * there was no 64-bit overflow, nothing else to do
5248 if (ovfl_pmds
== 0UL) return;
5251 * reset all control bits
5257 * if a sampling format module exists, then we "cache" the overflow by
5258 * calling the module's handler() routine.
5261 unsigned long start_cycles
, end_cycles
;
5262 unsigned long pmd_mask
;
5264 int this_cpu
= smp_processor_id();
5266 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5267 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5269 prefetch(ctx
->ctx_smpl_hdr
);
5271 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5275 if ((pmd_mask
& 0x1) == 0) continue;
5277 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5278 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5279 ovfl_arg
->active_set
= 0;
5280 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5281 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5283 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5284 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5285 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5288 * copy values of pmds of interest. Sampling format may copy them
5289 * into sampling buffer.
5292 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5293 if ((smpl_pmds
& 0x1) == 0) continue;
5294 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5295 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5299 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5301 start_cycles
= ia64_get_itc();
5304 * call custom buffer format record (handler) routine
5306 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5308 end_cycles
= ia64_get_itc();
5311 * For those controls, we take the union because they have
5312 * an all or nothing behavior.
5314 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5315 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5316 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5318 * build the bitmask of pmds to reset now
5320 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5322 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5325 * when the module cannot handle the rest of the overflows, we abort right here
5327 if (ret
&& pmd_mask
) {
5328 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5329 pmd_mask
<<PMU_FIRST_COUNTER
));
5332 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5334 ovfl_pmds
&= ~reset_pmds
;
5337 * when no sampling module is used, then the default
5338 * is to notify on overflow if requested by user
5340 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5341 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5342 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5343 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5345 * if needed, we reset all overflowed pmds
5347 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5350 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5353 * reset the requested PMD registers using the short reset values
5356 unsigned long bm
= reset_pmds
;
5357 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5360 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5362 * keep track of what to reset when unblocking
5364 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5367 * check for blocking context
5369 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5371 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5374 * set the perfmon specific checking pending work for the task
5376 PFM_SET_WORK_PENDING(task
, 1);
5379 * when coming from ctxsw, current still points to the
5380 * previous task, therefore we must work with task and not current.
5382 set_notify_resume(task
);
5385 * defer until state is changed (shorten spin window). the context is locked
5386 * anyway, so the signal receiver would come spin for nothing.
5391 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5392 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5393 PFM_GET_WORK_PENDING(task
),
5394 ctx
->ctx_fl_trap_reason
,
5397 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5399 * in case monitoring must be stopped, we toggle the psr bits
5401 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5402 pfm_mask_monitoring(task
);
5403 ctx
->ctx_state
= PFM_CTX_MASKED
;
5404 ctx
->ctx_fl_can_restart
= 1;
5408 * send notification now
5410 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5415 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5417 task
? task_pid_nr(task
) : -1,
5423 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5424 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5425 * come here as zombie only if the task is the current task. In which case, we
5426 * can access the PMU hardware directly.
5428 * Note that zombies do have PM_VALID set. So here we do the minimal.
5430 * In case the context was zombified it could not be reclaimed at the time
5431 * the monitoring program exited. At this point, the PMU reservation has been
5432 * returned, the sampiing buffer has been freed. We must convert this call
5433 * into a spurious interrupt. However, we must also avoid infinite overflows
5434 * by stopping monitoring for this task. We can only come here for a per-task
5435 * context. All we need to do is to stop monitoring using the psr bits which
5436 * are always task private. By re-enabling secure montioring, we ensure that
5437 * the monitored task will not be able to re-activate monitoring.
5438 * The task will eventually be context switched out, at which point the context
5439 * will be reclaimed (that includes releasing ownership of the PMU).
5441 * So there might be a window of time where the number of per-task session is zero
5442 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5443 * context. This is safe because if a per-task session comes in, it will push this one
5444 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5445 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5446 * also push our zombie context out.
5448 * Overall pretty hairy stuff....
5450 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task_pid_nr(task
): -1));
5452 ia64_psr(regs
)->up
= 0;
5453 ia64_psr(regs
)->sp
= 1;
5458 pfm_do_interrupt_handler(void *arg
, struct pt_regs
*regs
)
5460 struct task_struct
*task
;
5462 unsigned long flags
;
5464 int this_cpu
= smp_processor_id();
5467 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5470 * srlz.d done before arriving here
5472 pmc0
= ia64_get_pmc(0);
5474 task
= GET_PMU_OWNER();
5475 ctx
= GET_PMU_CTX();
5478 * if we have some pending bits set
5479 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5481 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5483 * we assume that pmc0.fr is always set here
5487 if (!ctx
) goto report_spurious1
;
5489 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5490 goto report_spurious2
;
5492 PROTECT_CTX_NOPRINT(ctx
, flags
);
5494 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5496 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5499 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5503 * keep it unfrozen at all times
5510 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5511 this_cpu
, task_pid_nr(task
));
5515 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5523 pfm_interrupt_handler(int irq
, void *arg
)
5525 unsigned long start_cycles
, total_cycles
;
5526 unsigned long min
, max
;
5529 struct pt_regs
*regs
= get_irq_regs();
5531 this_cpu
= get_cpu();
5532 if (likely(!pfm_alt_intr_handler
)) {
5533 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5534 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5536 start_cycles
= ia64_get_itc();
5538 ret
= pfm_do_interrupt_handler(arg
, regs
);
5540 total_cycles
= ia64_get_itc();
5543 * don't measure spurious interrupts
5545 if (likely(ret
== 0)) {
5546 total_cycles
-= start_cycles
;
5548 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5549 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5551 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5555 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5563 * /proc/perfmon interface, for debug only
5566 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5569 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5572 return PFM_PROC_SHOW_HEADER
;
5575 while (*pos
<= nr_cpu_ids
) {
5576 if (cpu_online(*pos
- 1)) {
5577 return (void *)*pos
;
5585 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5588 return pfm_proc_start(m
, pos
);
5592 pfm_proc_stop(struct seq_file
*m
, void *v
)
5597 pfm_proc_show_header(struct seq_file
*m
)
5599 struct list_head
* pos
;
5600 pfm_buffer_fmt_t
* entry
;
5601 unsigned long flags
;
5604 "perfmon version : %u.%u\n"
5607 "expert mode : %s\n"
5608 "ovfl_mask : 0x%lx\n"
5609 "PMU flags : 0x%x\n",
5610 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5612 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5613 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5620 "proc_sessions : %u\n"
5621 "sys_sessions : %u\n"
5622 "sys_use_dbregs : %u\n"
5623 "ptrace_use_dbregs : %u\n",
5624 pfm_sessions
.pfs_task_sessions
,
5625 pfm_sessions
.pfs_sys_sessions
,
5626 pfm_sessions
.pfs_sys_use_dbregs
,
5627 pfm_sessions
.pfs_ptrace_use_dbregs
);
5631 spin_lock(&pfm_buffer_fmt_lock
);
5633 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5634 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5635 seq_printf(m
, "format : %16phD %s\n",
5636 entry
->fmt_uuid
, entry
->fmt_name
);
5638 spin_unlock(&pfm_buffer_fmt_lock
);
5643 pfm_proc_show(struct seq_file
*m
, void *v
)
5649 if (v
== PFM_PROC_SHOW_HEADER
) {
5650 pfm_proc_show_header(m
);
5654 /* show info for CPU (v - 1) */
5658 "CPU%-2d overflow intrs : %lu\n"
5659 "CPU%-2d overflow cycles : %lu\n"
5660 "CPU%-2d overflow min : %lu\n"
5661 "CPU%-2d overflow max : %lu\n"
5662 "CPU%-2d smpl handler calls : %lu\n"
5663 "CPU%-2d smpl handler cycles : %lu\n"
5664 "CPU%-2d spurious intrs : %lu\n"
5665 "CPU%-2d replay intrs : %lu\n"
5666 "CPU%-2d syst_wide : %d\n"
5667 "CPU%-2d dcr_pp : %d\n"
5668 "CPU%-2d exclude idle : %d\n"
5669 "CPU%-2d owner : %d\n"
5670 "CPU%-2d context : %p\n"
5671 "CPU%-2d activations : %lu\n",
5672 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5673 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5674 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5675 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5676 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5677 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5678 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5679 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5680 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5681 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5682 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5683 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5684 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5685 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5687 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5689 psr
= pfm_get_psr();
5694 "CPU%-2d psr : 0x%lx\n"
5695 "CPU%-2d pmc0 : 0x%lx\n",
5697 cpu
, ia64_get_pmc(0));
5699 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5700 if (PMC_IS_COUNTING(i
) == 0) continue;
5702 "CPU%-2d pmc%u : 0x%lx\n"
5703 "CPU%-2d pmd%u : 0x%lx\n",
5704 cpu
, i
, ia64_get_pmc(i
),
5705 cpu
, i
, ia64_get_pmd(i
));
5711 const struct seq_operations pfm_seq_ops
= {
5712 .start
= pfm_proc_start
,
5713 .next
= pfm_proc_next
,
5714 .stop
= pfm_proc_stop
,
5715 .show
= pfm_proc_show
5719 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5721 return seq_open(file
, &pfm_seq_ops
);
5726 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5727 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5728 * is active or inactive based on mode. We must rely on the value in
5729 * local_cpu_data->pfm_syst_info
5732 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5734 struct pt_regs
*regs
;
5736 unsigned long dcr_pp
;
5738 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5741 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5742 * on every CPU, so we can rely on the pid to identify the idle task.
5744 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5745 regs
= task_pt_regs(task
);
5746 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5750 * if monitoring has started
5753 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5755 * context switching in?
5758 /* mask monitoring for the idle task */
5759 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5765 * context switching out
5766 * restore monitoring for next task
5768 * Due to inlining this odd if-then-else construction generates
5771 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5780 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5782 struct task_struct
*task
= ctx
->ctx_task
;
5784 ia64_psr(regs
)->up
= 0;
5785 ia64_psr(regs
)->sp
= 1;
5787 if (GET_PMU_OWNER() == task
) {
5788 DPRINT(("cleared ownership for [%d]\n",
5789 task_pid_nr(ctx
->ctx_task
)));
5790 SET_PMU_OWNER(NULL
, NULL
);
5794 * disconnect the task from the context and vice-versa
5796 PFM_SET_WORK_PENDING(task
, 0);
5798 task
->thread
.pfm_context
= NULL
;
5799 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5801 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task
)));
5806 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5809 pfm_save_regs(struct task_struct
*task
)
5812 unsigned long flags
;
5816 ctx
= PFM_GET_CTX(task
);
5817 if (ctx
== NULL
) return;
5820 * we always come here with interrupts ALREADY disabled by
5821 * the scheduler. So we simply need to protect against concurrent
5822 * access, not CPU concurrency.
5824 flags
= pfm_protect_ctx_ctxsw(ctx
);
5826 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5827 struct pt_regs
*regs
= task_pt_regs(task
);
5831 pfm_force_cleanup(ctx
, regs
);
5833 BUG_ON(ctx
->ctx_smpl_hdr
);
5835 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5837 pfm_context_free(ctx
);
5842 * save current PSR: needed because we modify it
5845 psr
= pfm_get_psr();
5847 BUG_ON(psr
& (IA64_PSR_I
));
5851 * This is the last instruction which may generate an overflow
5853 * We do not need to set psr.sp because, it is irrelevant in kernel.
5854 * It will be restored from ipsr when going back to user level
5859 * keep a copy of psr.up (for reload)
5861 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5864 * release ownership of this PMU.
5865 * PM interrupts are masked, so nothing
5868 SET_PMU_OWNER(NULL
, NULL
);
5871 * we systematically save the PMD as we have no
5872 * guarantee we will be schedule at that same
5875 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5878 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5879 * we will need it on the restore path to check
5880 * for pending overflow.
5882 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5885 * unfreeze PMU if had pending overflows
5887 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5890 * finally, allow context access.
5891 * interrupts will still be masked after this call.
5893 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5896 #else /* !CONFIG_SMP */
5898 pfm_save_regs(struct task_struct
*task
)
5903 ctx
= PFM_GET_CTX(task
);
5904 if (ctx
== NULL
) return;
5907 * save current PSR: needed because we modify it
5909 psr
= pfm_get_psr();
5911 BUG_ON(psr
& (IA64_PSR_I
));
5915 * This is the last instruction which may generate an overflow
5917 * We do not need to set psr.sp because, it is irrelevant in kernel.
5918 * It will be restored from ipsr when going back to user level
5923 * keep a copy of psr.up (for reload)
5925 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5929 pfm_lazy_save_regs (struct task_struct
*task
)
5932 unsigned long flags
;
5934 { u64 psr
= pfm_get_psr();
5935 BUG_ON(psr
& IA64_PSR_UP
);
5938 ctx
= PFM_GET_CTX(task
);
5941 * we need to mask PMU overflow here to
5942 * make sure that we maintain pmc0 until
5943 * we save it. overflow interrupts are
5944 * treated as spurious if there is no
5947 * XXX: I don't think this is necessary
5949 PROTECT_CTX(ctx
,flags
);
5952 * release ownership of this PMU.
5953 * must be done before we save the registers.
5955 * after this call any PMU interrupt is treated
5958 SET_PMU_OWNER(NULL
, NULL
);
5961 * save all the pmds we use
5963 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5966 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5967 * it is needed to check for pended overflow
5968 * on the restore path
5970 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5973 * unfreeze PMU if had pending overflows
5975 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5978 * now get can unmask PMU interrupts, they will
5979 * be treated as purely spurious and we will not
5980 * lose any information
5982 UNPROTECT_CTX(ctx
,flags
);
5984 #endif /* CONFIG_SMP */
5988 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5991 pfm_load_regs (struct task_struct
*task
)
5994 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
5995 unsigned long flags
;
5997 int need_irq_resend
;
5999 ctx
= PFM_GET_CTX(task
);
6000 if (unlikely(ctx
== NULL
)) return;
6002 BUG_ON(GET_PMU_OWNER());
6005 * possible on unload
6007 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6010 * we always come here with interrupts ALREADY disabled by
6011 * the scheduler. So we simply need to protect against concurrent
6012 * access, not CPU concurrency.
6014 flags
= pfm_protect_ctx_ctxsw(ctx
);
6015 psr
= pfm_get_psr();
6017 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6019 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6020 BUG_ON(psr
& IA64_PSR_I
);
6022 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6023 struct pt_regs
*regs
= task_pt_regs(task
);
6025 BUG_ON(ctx
->ctx_smpl_hdr
);
6027 pfm_force_cleanup(ctx
, regs
);
6029 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6032 * this one (kmalloc'ed) is fine with interrupts disabled
6034 pfm_context_free(ctx
);
6040 * we restore ALL the debug registers to avoid picking up
6043 if (ctx
->ctx_fl_using_dbreg
) {
6044 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6045 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6048 * retrieve saved psr.up
6050 psr_up
= ctx
->ctx_saved_psr_up
;
6053 * if we were the last user of the PMU on that CPU,
6054 * then nothing to do except restore psr
6056 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6059 * retrieve partial reload masks (due to user modifications)
6061 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6062 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6066 * To avoid leaking information to the user level when psr.sp=0,
6067 * we must reload ALL implemented pmds (even the ones we don't use).
6068 * In the kernel we only allow PFM_READ_PMDS on registers which
6069 * we initialized or requested (sampling) so there is no risk there.
6071 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6074 * ALL accessible PMCs are systematically reloaded, unused registers
6075 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6076 * up stale configuration.
6078 * PMC0 is never in the mask. It is always restored separately.
6080 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6083 * when context is MASKED, we will restore PMC with plm=0
6084 * and PMD with stale information, but that's ok, nothing
6087 * XXX: optimize here
6089 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6090 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6093 * check for pending overflow at the time the state
6096 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6098 * reload pmc0 with the overflow information
6099 * On McKinley PMU, this will trigger a PMU interrupt
6101 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6103 ctx
->th_pmcs
[0] = 0UL;
6106 * will replay the PMU interrupt
6108 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6110 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6114 * we just did a reload, so we reset the partial reload fields
6116 ctx
->ctx_reload_pmcs
[0] = 0UL;
6117 ctx
->ctx_reload_pmds
[0] = 0UL;
6119 SET_LAST_CPU(ctx
, smp_processor_id());
6122 * dump activation value for this PMU
6126 * record current activation for this context
6128 SET_ACTIVATION(ctx
);
6131 * establish new ownership.
6133 SET_PMU_OWNER(task
, ctx
);
6136 * restore the psr.up bit. measurement
6138 * no PMU interrupt can happen at this point
6139 * because we still have interrupts disabled.
6141 if (likely(psr_up
)) pfm_set_psr_up();
6144 * allow concurrent access to context
6146 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6148 #else /* !CONFIG_SMP */
6150 * reload PMU state for UP kernels
6151 * in 2.5 we come here with interrupts disabled
6154 pfm_load_regs (struct task_struct
*task
)
6157 struct task_struct
*owner
;
6158 unsigned long pmd_mask
, pmc_mask
;
6160 int need_irq_resend
;
6162 owner
= GET_PMU_OWNER();
6163 ctx
= PFM_GET_CTX(task
);
6164 psr
= pfm_get_psr();
6166 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6167 BUG_ON(psr
& IA64_PSR_I
);
6170 * we restore ALL the debug registers to avoid picking up
6173 * This must be done even when the task is still the owner
6174 * as the registers may have been modified via ptrace()
6175 * (not perfmon) by the previous task.
6177 if (ctx
->ctx_fl_using_dbreg
) {
6178 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6179 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6183 * retrieved saved psr.up
6185 psr_up
= ctx
->ctx_saved_psr_up
;
6186 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6189 * short path, our state is still there, just
6190 * need to restore psr and we go
6192 * we do not touch either PMC nor PMD. the psr is not touched
6193 * by the overflow_handler. So we are safe w.r.t. to interrupt
6194 * concurrency even without interrupt masking.
6196 if (likely(owner
== task
)) {
6197 if (likely(psr_up
)) pfm_set_psr_up();
6202 * someone else is still using the PMU, first push it out and
6203 * then we'll be able to install our stuff !
6205 * Upon return, there will be no owner for the current PMU
6207 if (owner
) pfm_lazy_save_regs(owner
);
6210 * To avoid leaking information to the user level when psr.sp=0,
6211 * we must reload ALL implemented pmds (even the ones we don't use).
6212 * In the kernel we only allow PFM_READ_PMDS on registers which
6213 * we initialized or requested (sampling) so there is no risk there.
6215 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6218 * ALL accessible PMCs are systematically reloaded, unused registers
6219 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6220 * up stale configuration.
6222 * PMC0 is never in the mask. It is always restored separately
6224 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6226 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6227 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6230 * check for pending overflow at the time the state
6233 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6235 * reload pmc0 with the overflow information
6236 * On McKinley PMU, this will trigger a PMU interrupt
6238 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6241 ctx
->th_pmcs
[0] = 0UL;
6244 * will replay the PMU interrupt
6246 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6248 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6252 * establish new ownership.
6254 SET_PMU_OWNER(task
, ctx
);
6257 * restore the psr.up bit. measurement
6259 * no PMU interrupt can happen at this point
6260 * because we still have interrupts disabled.
6262 if (likely(psr_up
)) pfm_set_psr_up();
6264 #endif /* CONFIG_SMP */
6267 * this function assumes monitoring is stopped
6270 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6273 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6274 int i
, can_access_pmu
= 0;
6278 * is the caller the task being monitored (or which initiated the
6279 * session for system wide measurements)
6281 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6284 * can access PMU is task is the owner of the PMU state on the current CPU
6285 * or if we are running on the CPU bound to the context in system-wide mode
6286 * (that is not necessarily the task the context is attached to in this mode).
6287 * In system-wide we always have can_access_pmu true because a task running on an
6288 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6290 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6291 if (can_access_pmu
) {
6293 * Mark the PMU as not owned
6294 * This will cause the interrupt handler to do nothing in case an overflow
6295 * interrupt was in-flight
6296 * This also guarantees that pmc0 will contain the final state
6297 * It virtually gives us full control on overflow processing from that point
6300 SET_PMU_OWNER(NULL
, NULL
);
6301 DPRINT(("releasing ownership\n"));
6304 * read current overflow status:
6306 * we are guaranteed to read the final stable state
6309 pmc0
= ia64_get_pmc(0); /* slow */
6312 * reset freeze bit, overflow status information destroyed
6316 pmc0
= ctx
->th_pmcs
[0];
6318 * clear whatever overflow status bits there were
6320 ctx
->th_pmcs
[0] = 0;
6322 ovfl_val
= pmu_conf
->ovfl_val
;
6324 * we save all the used pmds
6325 * we take care of overflows for counting PMDs
6327 * XXX: sampling situation is not taken into account here
6329 mask2
= ctx
->ctx_used_pmds
[0];
6331 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6333 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6335 /* skip non used pmds */
6336 if ((mask2
& 0x1) == 0) continue;
6339 * can access PMU always true in system wide mode
6341 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6343 if (PMD_IS_COUNTING(i
)) {
6344 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6347 ctx
->ctx_pmds
[i
].val
,
6351 * we rebuild the full 64 bit value of the counter
6353 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6356 * now everything is in ctx_pmds[] and we need
6357 * to clear the saved context from save_regs() such that
6358 * pfm_read_pmds() gets the correct value
6363 * take care of overflow inline
6365 if (pmc0
& (1UL << i
)) {
6366 val
+= 1 + ovfl_val
;
6367 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task
), i
));
6371 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task
), i
, val
, pmd_val
));
6373 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6375 ctx
->ctx_pmds
[i
].val
= val
;
6379 static struct irqaction perfmon_irqaction
= {
6380 .handler
= pfm_interrupt_handler
,
6385 pfm_alt_save_pmu_state(void *data
)
6387 struct pt_regs
*regs
;
6389 regs
= task_pt_regs(current
);
6391 DPRINT(("called\n"));
6394 * should not be necessary but
6395 * let's take not risk
6399 ia64_psr(regs
)->pp
= 0;
6402 * This call is required
6403 * May cause a spurious interrupt on some processors
6411 pfm_alt_restore_pmu_state(void *data
)
6413 struct pt_regs
*regs
;
6415 regs
= task_pt_regs(current
);
6417 DPRINT(("called\n"));
6420 * put PMU back in state expected
6425 ia64_psr(regs
)->pp
= 0;
6428 * perfmon runs with PMU unfrozen at all times
6436 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6441 /* some sanity checks */
6442 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6444 /* do the easy test first */
6445 if (pfm_alt_intr_handler
) return -EBUSY
;
6447 /* one at a time in the install or remove, just fail the others */
6448 if (!spin_trylock(&pfm_alt_install_check
)) {
6452 /* reserve our session */
6453 for_each_online_cpu(reserve_cpu
) {
6454 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6455 if (ret
) goto cleanup_reserve
;
6458 /* save the current system wide pmu states */
6459 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 1);
6461 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6462 goto cleanup_reserve
;
6465 /* officially change to the alternate interrupt handler */
6466 pfm_alt_intr_handler
= hdl
;
6468 spin_unlock(&pfm_alt_install_check
);
6473 for_each_online_cpu(i
) {
6474 /* don't unreserve more than we reserved */
6475 if (i
>= reserve_cpu
) break;
6477 pfm_unreserve_session(NULL
, 1, i
);
6480 spin_unlock(&pfm_alt_install_check
);
6484 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6487 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6492 if (hdl
== NULL
) return -EINVAL
;
6494 /* cannot remove someone else's handler! */
6495 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6497 /* one at a time in the install or remove, just fail the others */
6498 if (!spin_trylock(&pfm_alt_install_check
)) {
6502 pfm_alt_intr_handler
= NULL
;
6504 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 1);
6506 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6509 for_each_online_cpu(i
) {
6510 pfm_unreserve_session(NULL
, 1, i
);
6513 spin_unlock(&pfm_alt_install_check
);
6517 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6520 * perfmon initialization routine, called from the initcall() table
6522 static int init_pfm_fs(void);
6530 family
= local_cpu_data
->family
;
6535 if ((*p
)->probe() == 0) goto found
;
6536 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6547 static const struct file_operations pfm_proc_fops
= {
6548 .open
= pfm_proc_open
,
6550 .llseek
= seq_lseek
,
6551 .release
= seq_release
,
6557 unsigned int n
, n_counters
, i
;
6559 printk("perfmon: version %u.%u IRQ %u\n",
6562 IA64_PERFMON_VECTOR
);
6564 if (pfm_probe_pmu()) {
6565 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6566 local_cpu_data
->family
);
6571 * compute the number of implemented PMD/PMC from the
6572 * description tables
6575 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6576 if (PMC_IS_IMPL(i
) == 0) continue;
6577 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6580 pmu_conf
->num_pmcs
= n
;
6582 n
= 0; n_counters
= 0;
6583 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6584 if (PMD_IS_IMPL(i
) == 0) continue;
6585 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6587 if (PMD_IS_COUNTING(i
)) n_counters
++;
6589 pmu_conf
->num_pmds
= n
;
6590 pmu_conf
->num_counters
= n_counters
;
6593 * sanity checks on the number of debug registers
6595 if (pmu_conf
->use_rr_dbregs
) {
6596 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6597 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6601 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6602 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6608 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6612 pmu_conf
->num_counters
,
6613 ffz(pmu_conf
->ovfl_val
));
6616 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6617 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6623 * create /proc/perfmon (mostly for debugging purposes)
6625 perfmon_dir
= proc_create("perfmon", S_IRUGO
, NULL
, &pfm_proc_fops
);
6626 if (perfmon_dir
== NULL
) {
6627 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6633 * create /proc/sys/kernel/perfmon (for debugging purposes)
6635 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6638 * initialize all our spinlocks
6640 spin_lock_init(&pfm_sessions
.pfs_lock
);
6641 spin_lock_init(&pfm_buffer_fmt_lock
);
6645 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6650 __initcall(pfm_init
);
6653 * this function is called before pfm_init()
6656 pfm_init_percpu (void)
6658 static int first_time
=1;
6660 * make sure no measurement is active
6661 * (may inherit programmed PMCs from EFI).
6667 * we run with the PMU not frozen at all times
6672 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6676 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6681 * used for debug purposes only
6684 dump_pmu_state(const char *from
)
6686 struct task_struct
*task
;
6687 struct pt_regs
*regs
;
6689 unsigned long psr
, dcr
, info
, flags
;
6692 local_irq_save(flags
);
6694 this_cpu
= smp_processor_id();
6695 regs
= task_pt_regs(current
);
6696 info
= PFM_CPUINFO_GET();
6697 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6699 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6700 local_irq_restore(flags
);
6704 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6707 task_pid_nr(current
),
6711 task
= GET_PMU_OWNER();
6712 ctx
= GET_PMU_CTX();
6714 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task_pid_nr(task
) : -1, ctx
);
6716 psr
= pfm_get_psr();
6718 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6721 psr
& IA64_PSR_PP
? 1 : 0,
6722 psr
& IA64_PSR_UP
? 1 : 0,
6723 dcr
& IA64_DCR_PP
? 1 : 0,
6726 ia64_psr(regs
)->pp
);
6728 ia64_psr(regs
)->up
= 0;
6729 ia64_psr(regs
)->pp
= 0;
6731 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6732 if (PMC_IS_IMPL(i
) == 0) continue;
6733 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6736 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6737 if (PMD_IS_IMPL(i
) == 0) continue;
6738 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6742 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6745 ctx
->ctx_smpl_vaddr
,
6749 ctx
->ctx_saved_psr_up
);
6751 local_irq_restore(flags
);
6755 * called from process.c:copy_thread(). task is new child.
6758 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6760 struct thread_struct
*thread
;
6762 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task
)));
6764 thread
= &task
->thread
;
6767 * cut links inherited from parent (current)
6769 thread
->pfm_context
= NULL
;
6771 PFM_SET_WORK_PENDING(task
, 0);
6774 * the psr bits are already set properly in copy_threads()
6777 #else /* !CONFIG_PERFMON */
6779 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6783 #endif /* CONFIG_PERFMON */