mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / arch / ia64 / pci / pci.c
blobf5ec736100ee6a6a036b6b5b3fa024125aa43154
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/pci-acpi.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
26 #include <asm/machvec.h>
27 #include <asm/page.h>
28 #include <asm/io.h>
29 #include <asm/sal.h>
30 #include <asm/smp.h>
31 #include <asm/irq.h>
32 #include <asm/hw_irq.h>
35 * Low-level SAL-based PCI configuration access functions. Note that SAL
36 * calls are already serialized (via sal_lock), so we don't need another
37 * synchronization mechanism here.
40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
41 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
43 /* SAL 3.2 adds support for extended config space. */
45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
46 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49 int reg, int len, u32 *value)
51 u64 addr, data = 0;
52 int mode, result;
54 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55 return -EINVAL;
57 if ((seg | reg) <= 255) {
58 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59 mode = 0;
60 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62 mode = 1;
63 } else {
64 return -EINVAL;
67 result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 if (result != 0)
69 return -EINVAL;
71 *value = (u32) data;
72 return 0;
75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76 int reg, int len, u32 value)
78 u64 addr;
79 int mode, result;
81 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82 return -EINVAL;
84 if ((seg | reg) <= 255) {
85 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86 mode = 0;
87 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89 mode = 1;
90 } else {
91 return -EINVAL;
93 result = ia64_sal_pci_config_write(addr, mode, len, value);
94 if (result != 0)
95 return -EINVAL;
96 return 0;
99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100 int size, u32 *value)
102 return raw_pci_read(pci_domain_nr(bus), bus->number,
103 devfn, where, size, value);
106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107 int size, u32 value)
109 return raw_pci_write(pci_domain_nr(bus), bus->number,
110 devfn, where, size, value);
113 struct pci_ops pci_root_ops = {
114 .read = pci_read,
115 .write = pci_write,
118 struct pci_root_info {
119 struct acpi_pci_root_info common;
120 struct pci_controller controller;
121 struct list_head io_resources;
124 static unsigned int new_space(u64 phys_base, int sparse)
126 u64 mmio_base;
127 int i;
129 if (phys_base == 0)
130 return 0; /* legacy I/O port space */
132 mmio_base = (u64) ioremap(phys_base, 0);
133 for (i = 0; i < num_io_spaces; i++)
134 if (io_space[i].mmio_base == mmio_base &&
135 io_space[i].sparse == sparse)
136 return i;
138 if (num_io_spaces == MAX_IO_SPACES) {
139 pr_err("PCI: Too many IO port spaces "
140 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
141 return ~0;
144 i = num_io_spaces++;
145 io_space[i].mmio_base = mmio_base;
146 io_space[i].sparse = sparse;
148 return i;
151 static int add_io_space(struct device *dev, struct pci_root_info *info,
152 struct resource_entry *entry)
154 struct resource_entry *iospace;
155 struct resource *resource, *res = entry->res;
156 char *name;
157 unsigned long base, min, max, base_port;
158 unsigned int sparse = 0, space_nr, len;
160 len = strlen(info->common.name) + 32;
161 iospace = resource_list_create_entry(NULL, len);
162 if (!iospace) {
163 dev_err(dev, "PCI: No memory for %s I/O port space\n",
164 info->common.name);
165 return -ENOMEM;
168 if (res->flags & IORESOURCE_IO_SPARSE)
169 sparse = 1;
170 space_nr = new_space(entry->offset, sparse);
171 if (space_nr == ~0)
172 goto free_resource;
174 name = (char *)(iospace + 1);
175 min = res->start - entry->offset;
176 max = res->end - entry->offset;
177 base = __pa(io_space[space_nr].mmio_base);
178 base_port = IO_SPACE_BASE(space_nr);
179 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->common.name,
180 base_port + min, base_port + max);
183 * The SDM guarantees the legacy 0-64K space is sparse, but if the
184 * mapping is done by the processor (not the bridge), ACPI may not
185 * mark it as sparse.
187 if (space_nr == 0)
188 sparse = 1;
190 resource = iospace->res;
191 resource->name = name;
192 resource->flags = IORESOURCE_MEM;
193 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
194 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
195 if (insert_resource(&iomem_resource, resource)) {
196 dev_err(dev,
197 "can't allocate host bridge io space resource %pR\n",
198 resource);
199 goto free_resource;
202 entry->offset = base_port;
203 res->start = min + base_port;
204 res->end = max + base_port;
205 resource_list_add_tail(iospace, &info->io_resources);
207 return 0;
209 free_resource:
210 resource_list_free_entry(iospace);
211 return -ENOSPC;
215 * An IO port or MMIO resource assigned to a PCI host bridge may be
216 * consumed by the host bridge itself or available to its child
217 * bus/devices. The ACPI specification defines a bit (Producer/Consumer)
218 * to tell whether the resource is consumed by the host bridge itself,
219 * but firmware hasn't used that bit consistently, so we can't rely on it.
221 * On x86 and IA64 platforms, all IO port and MMIO resources are assumed
222 * to be available to child bus/devices except one special case:
223 * IO port [0xCF8-0xCFF] is consumed by the host bridge itself
224 * to access PCI configuration space.
226 * So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF].
228 static bool resource_is_pcicfg_ioport(struct resource *res)
230 return (res->flags & IORESOURCE_IO) &&
231 res->start == 0xCF8 && res->end == 0xCFF;
234 static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci)
236 struct device *dev = &ci->bridge->dev;
237 struct pci_root_info *info;
238 struct resource *res;
239 struct resource_entry *entry, *tmp;
240 int status;
242 status = acpi_pci_probe_root_resources(ci);
243 if (status > 0) {
244 info = container_of(ci, struct pci_root_info, common);
245 resource_list_for_each_entry_safe(entry, tmp, &ci->resources) {
246 res = entry->res;
247 if (res->flags & IORESOURCE_MEM) {
249 * HP's firmware has a hack to work around a
250 * Windows bug. Ignore these tiny memory ranges.
252 if (resource_size(res) <= 16) {
253 resource_list_del(entry);
254 insert_resource(&iomem_resource,
255 entry->res);
256 resource_list_add_tail(entry,
257 &info->io_resources);
259 } else if (res->flags & IORESOURCE_IO) {
260 if (resource_is_pcicfg_ioport(entry->res))
261 resource_list_destroy_entry(entry);
262 else if (add_io_space(dev, info, entry))
263 resource_list_destroy_entry(entry);
268 return status;
271 static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci)
273 struct pci_root_info *info;
274 struct resource_entry *entry, *tmp;
276 info = container_of(ci, struct pci_root_info, common);
277 resource_list_for_each_entry_safe(entry, tmp, &info->io_resources) {
278 release_resource(entry->res);
279 resource_list_destroy_entry(entry);
281 kfree(info);
284 static struct acpi_pci_root_ops pci_acpi_root_ops = {
285 .pci_ops = &pci_root_ops,
286 .release_info = pci_acpi_root_release_info,
287 .prepare_resources = pci_acpi_root_prepare_resources,
290 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
292 struct acpi_device *device = root->device;
293 struct pci_root_info *info;
295 info = kzalloc(sizeof(*info), GFP_KERNEL);
296 if (!info) {
297 dev_err(&device->dev,
298 "pci_bus %04x:%02x: ignored (out of memory)\n",
299 root->segment, (int)root->secondary.start);
300 return NULL;
303 info->controller.segment = root->segment;
304 info->controller.companion = device;
305 info->controller.node = acpi_get_node(device->handle);
306 INIT_LIST_HEAD(&info->io_resources);
307 return acpi_pci_root_create(root, &pci_acpi_root_ops,
308 &info->common, &info->controller);
311 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
314 * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
315 * here, pci_create_root_bus() has been called by someone else and
316 * sysdata is likely to be different from what we expect. Let it go in
317 * that case.
319 if (!bridge->dev.parent) {
320 struct pci_controller *controller = bridge->bus->sysdata;
321 ACPI_COMPANION_SET(&bridge->dev, controller->companion);
323 return 0;
326 void pcibios_fixup_device_resources(struct pci_dev *dev)
328 int idx;
330 if (!dev->bus)
331 return;
333 for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
334 struct resource *r = &dev->resource[idx];
336 if (!r->flags || r->parent || !r->start)
337 continue;
339 pci_claim_resource(dev, idx);
342 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
344 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
346 int idx;
348 if (!dev->bus)
349 return;
351 for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
352 struct resource *r = &dev->resource[idx];
354 if (!r->flags || r->parent || !r->start)
355 continue;
357 pci_claim_bridge_resource(dev, idx);
362 * Called after each bus is probed, but before its children are examined.
364 void pcibios_fixup_bus(struct pci_bus *b)
366 struct pci_dev *dev;
368 if (b->self) {
369 pci_read_bridge_bases(b);
370 pcibios_fixup_bridge_resources(b->self);
372 list_for_each_entry(dev, &b->devices, bus_list)
373 pcibios_fixup_device_resources(dev);
374 platform_pci_fixup_bus(b);
377 void pcibios_add_bus(struct pci_bus *bus)
379 acpi_pci_add_bus(bus);
382 void pcibios_remove_bus(struct pci_bus *bus)
384 acpi_pci_remove_bus(bus);
387 void pcibios_set_master (struct pci_dev *dev)
389 /* No special bus mastering setup handling */
393 pcibios_enable_device (struct pci_dev *dev, int mask)
395 int ret;
397 ret = pci_enable_resources(dev, mask);
398 if (ret < 0)
399 return ret;
401 if (!dev->msi_enabled)
402 return acpi_pci_irq_enable(dev);
403 return 0;
406 void
407 pcibios_disable_device (struct pci_dev *dev)
409 BUG_ON(atomic_read(&dev->enable_cnt));
410 if (!dev->msi_enabled)
411 acpi_pci_irq_disable(dev);
415 * ia64_pci_get_legacy_mem - generic legacy mem routine
416 * @bus: bus to get legacy memory base address for
418 * Find the base of legacy memory for @bus. This is typically the first
419 * megabyte of bus address space for @bus or is simply 0 on platforms whose
420 * chipsets support legacy I/O and memory routing. Returns the base address
421 * or an error pointer if an error occurred.
423 * This is the ia64 generic version of this routine. Other platforms
424 * are free to override it with a machine vector.
426 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
428 return (char *)__IA64_UNCACHED_OFFSET;
432 * pci_mmap_legacy_page_range - map legacy memory space to userland
433 * @bus: bus whose legacy space we're mapping
434 * @vma: vma passed in by mmap
436 * Map legacy memory space for this device back to userspace using a machine
437 * vector to get the base address.
440 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
441 enum pci_mmap_state mmap_state)
443 unsigned long size = vma->vm_end - vma->vm_start;
444 pgprot_t prot;
445 char *addr;
447 /* We only support mmap'ing of legacy memory space */
448 if (mmap_state != pci_mmap_mem)
449 return -ENOSYS;
452 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
453 * for more details.
455 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
456 return -EINVAL;
457 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
458 vma->vm_page_prot);
460 addr = pci_get_legacy_mem(bus);
461 if (IS_ERR(addr))
462 return PTR_ERR(addr);
464 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
465 vma->vm_page_prot = prot;
467 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
468 size, vma->vm_page_prot))
469 return -EAGAIN;
471 return 0;
475 * ia64_pci_legacy_read - read from legacy I/O space
476 * @bus: bus to read
477 * @port: legacy port value
478 * @val: caller allocated storage for returned value
479 * @size: number of bytes to read
481 * Simply reads @size bytes from @port and puts the result in @val.
483 * Again, this (and the write routine) are generic versions that can be
484 * overridden by the platform. This is necessary on platforms that don't
485 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
487 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
489 int ret = size;
491 switch (size) {
492 case 1:
493 *val = inb(port);
494 break;
495 case 2:
496 *val = inw(port);
497 break;
498 case 4:
499 *val = inl(port);
500 break;
501 default:
502 ret = -EINVAL;
503 break;
506 return ret;
510 * ia64_pci_legacy_write - perform a legacy I/O write
511 * @bus: bus pointer
512 * @port: port to write
513 * @val: value to write
514 * @size: number of bytes to write from @val
516 * Simply writes @size bytes of @val to @port.
518 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
520 int ret = size;
522 switch (size) {
523 case 1:
524 outb(val, port);
525 break;
526 case 2:
527 outw(val, port);
528 break;
529 case 4:
530 outl(val, port);
531 break;
532 default:
533 ret = -EINVAL;
534 break;
537 return ret;
541 * set_pci_cacheline_size - determine cacheline size for PCI devices
543 * We want to use the line-size of the outer-most cache. We assume
544 * that this line-size is the same for all CPUs.
546 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
548 static void __init set_pci_dfl_cacheline_size(void)
550 unsigned long levels, unique_caches;
551 long status;
552 pal_cache_config_info_t cci;
554 status = ia64_pal_cache_summary(&levels, &unique_caches);
555 if (status != 0) {
556 pr_err("%s: ia64_pal_cache_summary() failed "
557 "(status=%ld)\n", __func__, status);
558 return;
561 status = ia64_pal_cache_config_info(levels - 1,
562 /* cache_type (data_or_unified)= */ 2, &cci);
563 if (status != 0) {
564 pr_err("%s: ia64_pal_cache_config_info() failed "
565 "(status=%ld)\n", __func__, status);
566 return;
568 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
571 u64 ia64_dma_get_required_mask(struct device *dev)
573 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
574 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
575 u64 mask;
577 if (!high_totalram) {
578 /* convert to mask just covering totalram */
579 low_totalram = (1 << (fls(low_totalram) - 1));
580 low_totalram += low_totalram - 1;
581 mask = low_totalram;
582 } else {
583 high_totalram = (1 << (fls(high_totalram) - 1));
584 high_totalram += high_totalram - 1;
585 mask = (((u64)high_totalram) << 32) + 0xffffffff;
587 return mask;
589 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
591 u64 dma_get_required_mask(struct device *dev)
593 return platform_dma_get_required_mask(dev);
595 EXPORT_SYMBOL_GPL(dma_get_required_mask);
597 static int __init pcibios_init(void)
599 set_pci_dfl_cacheline_size();
600 return 0;
603 subsys_initcall(pcibios_init);