mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / arch / tile / kernel / pci.c
blobbbf81579b1f84f7fbbc3738bb14b511a65134f1a
1 /*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/irq.h>
24 #include <linux/io.h>
25 #include <linux/uaccess.h>
26 #include <linux/export.h>
28 #include <asm/processor.h>
29 #include <asm/sections.h>
30 #include <asm/byteorder.h>
31 #include <asm/hv_driver.h>
32 #include <hv/drv_pcie_rc_intf.h>
36 * Initialization flow and process
37 * -------------------------------
39 * This files contains the routines to search for PCI buses,
40 * enumerate the buses, and configure any attached devices.
42 * There are two entry points here:
43 * 1) tile_pci_init
44 * This sets up the pci_controller structs, and opens the
45 * FDs to the hypervisor. This is called from setup_arch() early
46 * in the boot process.
47 * 2) pcibios_init
48 * This probes the PCI bus(es) for any attached hardware. It's
49 * called by subsys_initcall. All of the real work is done by the
50 * generic Linux PCI layer.
54 static int pci_probe = 1;
57 * This flag tells if the platform is TILEmpower that needs
58 * special configuration for the PLX switch chip.
60 int __ro_after_init tile_plx_gen1;
62 static struct pci_controller controllers[TILE_NUM_PCIE];
63 static int num_controllers;
64 static int pci_scan_flags[TILE_NUM_PCIE];
66 static struct pci_ops tile_cfg_ops;
70 * Open a FD to the hypervisor PCI device.
72 * controller_id is the controller number, config type is 0 or 1 for
73 * config0 or config1 operations.
75 static int tile_pcie_open(int controller_id, int config_type)
77 char filename[32];
78 int fd;
80 sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
82 fd = hv_dev_open((HV_VirtAddr)filename, 0);
84 return fd;
89 * Get the IRQ numbers from the HV and set up the handlers for them.
91 static int tile_init_irqs(int controller_id, struct pci_controller *controller)
93 char filename[32];
94 int fd;
95 int ret;
96 int x;
97 struct pcie_rc_config rc_config;
99 sprintf(filename, "pcie/%d/ctl", controller_id);
100 fd = hv_dev_open((HV_VirtAddr)filename, 0);
101 if (fd < 0) {
102 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
103 return -1;
105 ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
106 sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
107 hv_dev_close(fd);
108 if (ret != sizeof(rc_config)) {
109 pr_err("PCI: wanted %zd bytes, got %d\n",
110 sizeof(rc_config), ret);
111 return -1;
113 /* Record irq_base so that we can map INTx to IRQ # later. */
114 controller->irq_base = rc_config.intr;
116 for (x = 0; x < 4; x++)
117 tile_irq_activate(rc_config.intr + x,
118 TILE_IRQ_HW_CLEAR);
120 if (rc_config.plx_gen1)
121 controller->plx_gen1 = 1;
123 return 0;
127 * First initialization entry point, called from setup_arch().
129 * Find valid controllers and fill in pci_controller structs for each
130 * of them.
132 * Returns the number of controllers discovered.
134 int __init tile_pci_init(void)
136 int i;
138 if (!pci_probe) {
139 pr_info("PCI: disabled by boot argument\n");
140 return 0;
143 pr_info("PCI: Searching for controllers...\n");
145 /* Re-init number of PCIe controllers to support hot-plug feature. */
146 num_controllers = 0;
148 /* Do any configuration we need before using the PCIe */
150 for (i = 0; i < TILE_NUM_PCIE; i++) {
152 * To see whether we need a real config op based on
153 * the results of pcibios_init(), to support PCIe hot-plug.
155 if (pci_scan_flags[i] == 0) {
156 int hv_cfg_fd0 = -1;
157 int hv_cfg_fd1 = -1;
158 int hv_mem_fd = -1;
159 char name[32];
160 struct pci_controller *controller;
163 * Open the fd to the HV. If it fails then this
164 * device doesn't exist.
166 hv_cfg_fd0 = tile_pcie_open(i, 0);
167 if (hv_cfg_fd0 < 0)
168 continue;
169 hv_cfg_fd1 = tile_pcie_open(i, 1);
170 if (hv_cfg_fd1 < 0) {
171 pr_err("PCI: Couldn't open config fd to HV for controller %d\n",
173 goto err_cont;
176 sprintf(name, "pcie/%d/mem", i);
177 hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
178 if (hv_mem_fd < 0) {
179 pr_err("PCI: Could not open mem fd to HV!\n");
180 goto err_cont;
183 pr_info("PCI: Found PCI controller #%d\n", i);
185 controller = &controllers[i];
187 controller->index = i;
188 controller->hv_cfg_fd[0] = hv_cfg_fd0;
189 controller->hv_cfg_fd[1] = hv_cfg_fd1;
190 controller->hv_mem_fd = hv_mem_fd;
191 controller->last_busno = 0xff;
192 controller->ops = &tile_cfg_ops;
194 num_controllers++;
195 continue;
197 err_cont:
198 if (hv_cfg_fd0 >= 0)
199 hv_dev_close(hv_cfg_fd0);
200 if (hv_cfg_fd1 >= 0)
201 hv_dev_close(hv_cfg_fd1);
202 if (hv_mem_fd >= 0)
203 hv_dev_close(hv_mem_fd);
204 continue;
209 * Before using the PCIe, see if we need to do any platform-specific
210 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
212 for (i = 0; i < num_controllers; i++) {
213 struct pci_controller *controller = &controllers[i];
215 if (controller->plx_gen1)
216 tile_plx_gen1 = 1;
219 return num_controllers;
223 * (pin - 1) converts from the PCI standard's [1:4] convention to
224 * a normal [0:3] range.
226 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
228 struct pci_controller *controller =
229 (struct pci_controller *)dev->sysdata;
230 return (pin - 1) + controller->irq_base;
234 static void fixup_read_and_payload_sizes(void)
236 struct pci_dev *dev = NULL;
237 int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
238 int max_read_size = PCI_EXP_DEVCTL_READRQ_512B;
239 u16 new_values;
241 /* Scan for the smallest maximum payload size. */
242 for_each_pci_dev(dev) {
243 if (!pci_is_pcie(dev))
244 continue;
246 if (dev->pcie_mpss < smallest_max_payload)
247 smallest_max_payload = dev->pcie_mpss;
250 /* Now, set the max_payload_size for all devices to that value. */
251 new_values = max_read_size | (smallest_max_payload << 5);
252 for_each_pci_dev(dev)
253 pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
254 PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ,
255 new_values);
260 * Second PCI initialization entry point, called by subsys_initcall.
262 * The controllers have been set up by the time we get here, by a call to
263 * tile_pci_init.
265 int __init pcibios_init(void)
267 struct pci_host_bridge *bridge;
268 int i;
270 pr_info("PCI: Probing PCI hardware\n");
273 * Delay a bit in case devices aren't ready. Some devices are
274 * known to require at least 20ms here, but we use a more
275 * conservative value.
277 msleep(250);
279 /* Scan all of the recorded PCI controllers. */
280 for (i = 0; i < TILE_NUM_PCIE; i++) {
282 * Do real pcibios init ops if the controller is initialized
283 * by tile_pci_init() successfully and not initialized by
284 * pcibios_init() yet to support PCIe hot-plug.
286 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
287 struct pci_controller *controller = &controllers[i];
288 struct pci_bus *bus;
289 LIST_HEAD(resources);
291 if (tile_init_irqs(i, controller)) {
292 pr_err("PCI: Could not initialize IRQs\n");
293 continue;
296 pr_info("PCI: initializing controller #%d\n", i);
298 pci_add_resource(&resources, &ioport_resource);
299 pci_add_resource(&resources, &iomem_resource);
301 bridge = pci_alloc_host_bridge(0);
302 if (!bridge)
303 break;
305 list_splice_init(&resources, &bridge->windows);
306 bridge->dev.parent = NULL;
307 bridge->sysdata = controller;
308 bridge->busnr = 0;
309 bridge->ops = controller->ops;
310 bridge->swizzle_irq = pci_common_swizzle;
311 bridge->map_irq = tile_map_irq;
313 pci_scan_root_bus_bridge(bridge);
314 bus = bridge->bus;
315 controller->root_bus = bus;
316 controller->last_busno = bus->busn_res.end;
321 * This comes from the generic Linux PCI driver.
323 * It allocates all of the resources (I/O memory, etc)
324 * associated with the devices read in above.
326 pci_assign_unassigned_resources();
328 /* Configure the max_read_size and max_payload_size values. */
329 fixup_read_and_payload_sizes();
331 /* Record the I/O resources in the PCI controller structure. */
332 for (i = 0; i < TILE_NUM_PCIE; i++) {
334 * Do real pcibios init ops if the controller is initialized
335 * by tile_pci_init() successfully and not initialized by
336 * pcibios_init() yet to support PCIe hot-plug.
338 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
339 struct pci_bus *root_bus = controllers[i].root_bus;
340 struct pci_bus *next_bus;
341 struct pci_dev *dev;
343 pci_bus_add_devices(root_bus);
345 list_for_each_entry(dev, &root_bus->devices, bus_list) {
347 * Find the PCI host controller, ie. the 1st
348 * bridge.
350 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
351 (PCI_SLOT(dev->devfn) == 0)) {
352 next_bus = dev->subordinate;
353 controllers[i].mem_resources[0] =
354 *next_bus->resource[0];
355 controllers[i].mem_resources[1] =
356 *next_bus->resource[1];
357 controllers[i].mem_resources[2] =
358 *next_bus->resource[2];
360 /* Setup flags. */
361 pci_scan_flags[i] = 1;
363 break;
369 return 0;
371 subsys_initcall(pcibios_init);
373 void pcibios_set_master(struct pci_dev *dev)
375 /* No special bus mastering setup handling. */
378 /* Process any "pci=" kernel boot arguments. */
379 char *__init pcibios_setup(char *str)
381 if (!strcmp(str, "off")) {
382 pci_probe = 0;
383 return NULL;
385 return str;
389 * Enable memory and/or address decoding, as appropriate, for the
390 * device described by the 'dev' struct.
392 * This is called from the generic PCI layer, and can be called
393 * for bridges or endpoints.
395 int pcibios_enable_device(struct pci_dev *dev, int mask)
397 u16 cmd, old_cmd;
398 u8 header_type;
399 int i;
400 struct resource *r;
402 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
404 pci_read_config_word(dev, PCI_COMMAND, &cmd);
405 old_cmd = cmd;
406 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
408 * For bridges, we enable both memory and I/O decoding
409 * in call cases.
411 cmd |= PCI_COMMAND_IO;
412 cmd |= PCI_COMMAND_MEMORY;
413 } else {
415 * For endpoints, we enable memory and/or I/O decoding
416 * only if they have a memory resource of that type.
418 for (i = 0; i < 6; i++) {
419 r = &dev->resource[i];
420 if (r->flags & IORESOURCE_UNSET) {
421 pr_err("PCI: Device %s not available because of resource collisions\n",
422 pci_name(dev));
423 return -EINVAL;
425 if (r->flags & IORESOURCE_IO)
426 cmd |= PCI_COMMAND_IO;
427 if (r->flags & IORESOURCE_MEM)
428 cmd |= PCI_COMMAND_MEMORY;
433 * We only write the command if it changed.
435 if (cmd != old_cmd)
436 pci_write_config_word(dev, PCI_COMMAND, cmd);
437 return 0;
440 /****************************************************************
442 * Tile PCI config space read/write routines
444 ****************************************************************/
447 * These are the normal read and write ops
448 * These are expanded with macros from pci_bus_read_config_byte() etc.
450 * devfn is the combined PCI slot & function.
452 * offset is in bytes, from the start of config space for the
453 * specified bus & slot.
456 static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
457 int size, u32 *val)
459 struct pci_controller *controller = bus->sysdata;
460 int busnum = bus->number & 0xff;
461 int slot = (devfn >> 3) & 0x1f;
462 int function = devfn & 0x7;
463 u32 addr;
464 int config_mode = 1;
467 * There is no bridge between the Tile and bus 0, so we
468 * use config0 to talk to bus 0.
470 * If we're talking to a bus other than zero then we
471 * must have found a bridge.
473 if (busnum == 0) {
475 * We fake an empty slot for (busnum == 0) && (slot > 0),
476 * since there is only one slot on bus 0.
478 if (slot) {
479 *val = 0xFFFFFFFF;
480 return 0;
482 config_mode = 0;
485 addr = busnum << 20; /* Bus in 27:20 */
486 addr |= slot << 15; /* Slot (device) in 19:15 */
487 addr |= function << 12; /* Function is in 14:12 */
488 addr |= (offset & 0xFFF); /* byte address in 0:11 */
490 return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
491 (HV_VirtAddr)(val), size, addr);
496 * See tile_cfg_read() for relevant comments.
497 * Note that "val" is the value to write, not a pointer to that value.
499 static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
500 int size, u32 val)
502 struct pci_controller *controller = bus->sysdata;
503 int busnum = bus->number & 0xff;
504 int slot = (devfn >> 3) & 0x1f;
505 int function = devfn & 0x7;
506 u32 addr;
507 int config_mode = 1;
508 HV_VirtAddr valp = (HV_VirtAddr)&val;
511 * For bus 0 slot 0 we use config 0 accesses.
513 if (busnum == 0) {
515 * We fake an empty slot for (busnum == 0) && (slot > 0),
516 * since there is only one slot on bus 0.
518 if (slot)
519 return 0;
520 config_mode = 0;
523 addr = busnum << 20; /* Bus in 27:20 */
524 addr |= slot << 15; /* Slot (device) in 19:15 */
525 addr |= function << 12; /* Function is in 14:12 */
526 addr |= (offset & 0xFFF); /* byte address in 0:11 */
528 #ifdef __BIG_ENDIAN
529 /* Point to the correct part of the 32-bit "val". */
530 valp += 4 - size;
531 #endif
533 return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
534 valp, size, addr);
538 static struct pci_ops tile_cfg_ops = {
539 .read = tile_cfg_read,
540 .write = tile_cfg_write,
545 * In the following, each PCI controller's mem_resources[1]
546 * represents its (non-prefetchable) PCI memory resource.
547 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
548 * prefetchable PCI memory resources, respectively.
549 * For more details, see pci_setup_bridge() in setup-bus.c.
550 * By comparing the target PCI memory address against the
551 * end address of controller 0, we can determine the controller
552 * that should accept the PCI memory access.
554 #define TILE_READ(size, type) \
555 type _tile_read##size(unsigned long addr) \
557 type val; \
558 int idx = 0; \
559 if (addr > controllers[0].mem_resources[1].end && \
560 addr > controllers[0].mem_resources[2].end) \
561 idx = 1; \
562 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
563 (HV_VirtAddr)(&val), sizeof(type), addr)) \
564 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
565 sizeof(type), addr); \
566 return val; \
568 EXPORT_SYMBOL(_tile_read##size)
570 TILE_READ(b, u8);
571 TILE_READ(w, u16);
572 TILE_READ(l, u32);
573 TILE_READ(q, u64);
575 #define TILE_WRITE(size, type) \
576 void _tile_write##size(type val, unsigned long addr) \
578 int idx = 0; \
579 if (addr > controllers[0].mem_resources[1].end && \
580 addr > controllers[0].mem_resources[2].end) \
581 idx = 1; \
582 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
583 (HV_VirtAddr)(&val), sizeof(type), addr)) \
584 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
585 sizeof(type), addr); \
587 EXPORT_SYMBOL(_tile_write##size)
589 TILE_WRITE(b, u8);
590 TILE_WRITE(w, u16);
591 TILE_WRITE(l, u32);
592 TILE_WRITE(q, u64);