2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
14 * Support the cycle counter clocksource and tile timer clock event device.
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/clocksource.h>
20 #include <linux/clockchips.h>
21 #include <linux/hardirq.h>
22 #include <linux/sched.h>
23 #include <linux/sched/clock.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/timekeeper_internal.h>
28 #include <asm/irq_regs.h>
29 #include <asm/traps.h>
31 #include <hv/hypervisor.h>
32 #include <arch/interrupts.h>
33 #include <arch/spr_def.h>
37 * Define the cycle counter clock source.
40 /* How many cycles per second we are running at. */
41 static cycles_t cycles_per_sec __ro_after_init
;
43 cycles_t
get_clock_rate(void)
45 return cycles_per_sec
;
48 #if CHIP_HAS_SPLIT_CYCLE()
49 cycles_t
get_cycles(void)
51 unsigned int high
= __insn_mfspr(SPR_CYCLE_HIGH
);
52 unsigned int low
= __insn_mfspr(SPR_CYCLE_LOW
);
53 unsigned int high2
= __insn_mfspr(SPR_CYCLE_HIGH
);
55 while (unlikely(high
!= high2
)) {
56 low
= __insn_mfspr(SPR_CYCLE_LOW
);
58 high2
= __insn_mfspr(SPR_CYCLE_HIGH
);
61 return (((cycles_t
)high
) << 32) | low
;
63 EXPORT_SYMBOL(get_cycles
);
67 * We use a relatively small shift value so that sched_clock()
68 * won't wrap around very often.
70 #define SCHED_CLOCK_SHIFT 10
72 static unsigned long sched_clock_mult __ro_after_init
;
74 static cycles_t
clocksource_get_cycles(struct clocksource
*cs
)
79 static struct clocksource cycle_counter_cs
= {
80 .name
= "cycle counter",
82 .read
= clocksource_get_cycles
,
83 .mask
= CLOCKSOURCE_MASK(64),
84 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
88 * Called very early from setup_arch() to set cycles_per_sec.
89 * We initialize it early so we can use it to set up loops_per_jiffy.
91 void __init
setup_clock(void)
93 cycles_per_sec
= hv_sysconf(HV_SYSCONF_CPU_SPEED
);
95 clocksource_hz2mult(cycles_per_sec
, SCHED_CLOCK_SHIFT
);
98 void __init
calibrate_delay(void)
100 loops_per_jiffy
= get_clock_rate() / HZ
;
101 pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
102 loops_per_jiffy
/ (500000 / HZ
),
103 (loops_per_jiffy
/ (5000 / HZ
)) % 100, loops_per_jiffy
);
106 /* Called fairly late in init/main.c, but before we go smp. */
107 void __init
time_init(void)
109 /* Initialize and register the clock source. */
110 clocksource_register_hz(&cycle_counter_cs
, cycles_per_sec
);
112 /* Start up the tile-timer interrupt source on the boot cpu. */
117 * Define the tile timer clock event device. The timer is driven by
118 * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
119 * counter, plus bit 31, which signifies that the counter has wrapped
120 * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be
121 * raised as long as bit 31 is set.
123 * The TILE_MINSEC value represents the largest range of real-time
124 * we can possibly cover with the timer, based on MAX_TICK combined
125 * with the slowest reasonable clock rate we might run at.
128 #define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */
129 #define TILE_MINSEC 5 /* timer covers no more than 5 seconds */
131 static int tile_timer_set_next_event(unsigned long ticks
,
132 struct clock_event_device
*evt
)
134 BUG_ON(ticks
> MAX_TICK
);
135 __insn_mtspr(SPR_TILE_TIMER_CONTROL
, ticks
);
136 arch_local_irq_unmask_now(INT_TILE_TIMER
);
141 * Whenever anyone tries to change modes, we just mask interrupts
142 * and wait for the next event to get set.
144 static int tile_timer_shutdown(struct clock_event_device
*evt
)
146 arch_local_irq_mask_now(INT_TILE_TIMER
);
151 * Set min_delta_ns to 1 microsecond, since it takes about
152 * that long to fire the interrupt.
154 static DEFINE_PER_CPU(struct clock_event_device
, tile_timer
) = {
155 .name
= "tile timer",
156 .features
= CLOCK_EVT_FEAT_ONESHOT
,
157 .min_delta_ns
= 1000,
158 .min_delta_ticks
= 1,
159 .max_delta_ticks
= MAX_TICK
,
162 .set_next_event
= tile_timer_set_next_event
,
163 .set_state_shutdown
= tile_timer_shutdown
,
164 .set_state_oneshot
= tile_timer_shutdown
,
165 .set_state_oneshot_stopped
= tile_timer_shutdown
,
166 .tick_resume
= tile_timer_shutdown
,
169 void setup_tile_timer(void)
171 struct clock_event_device
*evt
= this_cpu_ptr(&tile_timer
);
173 /* Fill in fields that are speed-specific. */
174 clockevents_calc_mult_shift(evt
, cycles_per_sec
, TILE_MINSEC
);
175 evt
->max_delta_ns
= clockevent_delta2ns(MAX_TICK
, evt
);
177 /* Mark as being for this cpu only. */
178 evt
->cpumask
= cpumask_of(smp_processor_id());
180 /* Start out with timer not firing. */
181 arch_local_irq_mask_now(INT_TILE_TIMER
);
183 /* Register tile timer. */
184 clockevents_register_device(evt
);
187 /* Called from the interrupt vector. */
188 void do_timer_interrupt(struct pt_regs
*regs
, int fault_num
)
190 struct pt_regs
*old_regs
= set_irq_regs(regs
);
191 struct clock_event_device
*evt
= this_cpu_ptr(&tile_timer
);
194 * Mask the timer interrupt here, since we are a oneshot timer
195 * and there are now by definition no events pending.
197 arch_local_irq_mask(INT_TILE_TIMER
);
199 /* Track time spent here in an interrupt context */
202 /* Track interrupt count. */
203 __this_cpu_inc(irq_stat
.irq_timer_count
);
205 /* Call the generic timer handler */
206 evt
->event_handler(evt
);
209 * Track time spent against the current process again and
210 * process any softirqs if they are waiting.
214 set_irq_regs(old_regs
);
218 * Scheduler clock - returns current time in nanosec units.
219 * Note that with LOCKDEP, this is called during lockdep_init(), and
220 * we will claim that sched_clock() is zero for a little while, until
221 * we run setup_clock(), above.
223 unsigned long long sched_clock(void)
225 return mult_frac(get_cycles(),
226 sched_clock_mult
, 1ULL << SCHED_CLOCK_SHIFT
);
229 int setup_profiling_timer(unsigned int multiplier
)
235 * Use the tile timer to convert nsecs to core clock cycles, relying
236 * on it having the same frequency as SPR_CYCLE.
238 cycles_t
ns2cycles(unsigned long nsecs
)
241 * We do not have to disable preemption here as each core has the same
244 struct clock_event_device
*dev
= raw_cpu_ptr(&tile_timer
);
247 * as in clocksource.h and x86's timer.h, we split the calculation
248 * into 2 parts to avoid unecessary overflow of the intermediate
249 * value. This will not lead to any loss of precision.
251 u64 quot
= (u64
)nsecs
>> dev
->shift
;
252 u64 rem
= (u64
)nsecs
& ((1ULL << dev
->shift
) - 1);
253 return quot
* dev
->mult
+ ((rem
* dev
->mult
) >> dev
->shift
);
256 void update_vsyscall_tz(void)
258 write_seqcount_begin(&vdso_data
->tz_seq
);
259 vdso_data
->tz_minuteswest
= sys_tz
.tz_minuteswest
;
260 vdso_data
->tz_dsttime
= sys_tz
.tz_dsttime
;
261 write_seqcount_end(&vdso_data
->tz_seq
);
264 void update_vsyscall(struct timekeeper
*tk
)
266 if (tk
->tkr_mono
.clock
!= &cycle_counter_cs
)
269 write_seqcount_begin(&vdso_data
->tb_seq
);
271 vdso_data
->cycle_last
= tk
->tkr_mono
.cycle_last
;
272 vdso_data
->mask
= tk
->tkr_mono
.mask
;
273 vdso_data
->mult
= tk
->tkr_mono
.mult
;
274 vdso_data
->shift
= tk
->tkr_mono
.shift
;
276 vdso_data
->wall_time_sec
= tk
->xtime_sec
;
277 vdso_data
->wall_time_snsec
= tk
->tkr_mono
.xtime_nsec
;
279 vdso_data
->monotonic_time_sec
= tk
->xtime_sec
280 + tk
->wall_to_monotonic
.tv_sec
;
281 vdso_data
->monotonic_time_snsec
= tk
->tkr_mono
.xtime_nsec
282 + ((u64
)tk
->wall_to_monotonic
.tv_nsec
283 << tk
->tkr_mono
.shift
);
284 while (vdso_data
->monotonic_time_snsec
>=
285 (((u64
)NSEC_PER_SEC
) << tk
->tkr_mono
.shift
)) {
286 vdso_data
->monotonic_time_snsec
-=
287 ((u64
)NSEC_PER_SEC
) << tk
->tkr_mono
.shift
;
288 vdso_data
->monotonic_time_sec
++;
291 vdso_data
->wall_time_coarse_sec
= tk
->xtime_sec
;
292 vdso_data
->wall_time_coarse_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>>
295 vdso_data
->monotonic_time_coarse_sec
=
296 vdso_data
->wall_time_coarse_sec
+ tk
->wall_to_monotonic
.tv_sec
;
297 vdso_data
->monotonic_time_coarse_nsec
=
298 vdso_data
->wall_time_coarse_nsec
+ tk
->wall_to_monotonic
.tv_nsec
;
300 while (vdso_data
->monotonic_time_coarse_nsec
>= NSEC_PER_SEC
) {
301 vdso_data
->monotonic_time_coarse_nsec
-= NSEC_PER_SEC
;
302 vdso_data
->monotonic_time_coarse_sec
++;
305 write_seqcount_end(&vdso_data
->tb_seq
);