2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 #include <asm/irq_regs.h>
15 #include <linux/hardirq.h>
16 #include <linux/pkeys.h>
18 #define CREATE_TRACE_POINTS
19 #include <asm/trace/fpu.h>
22 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
23 * depending on the FPU hardware format:
25 union fpregs_state init_fpstate __read_mostly
;
28 * Track whether the kernel is using the FPU state
33 * - by IRQ context code to potentially use the FPU
36 * - to debug kernel_fpu_begin()/end() correctness
38 static DEFINE_PER_CPU(bool, in_kernel_fpu
);
41 * Track which context is using the FPU on the CPU:
43 DEFINE_PER_CPU(struct fpu
*, fpu_fpregs_owner_ctx
);
45 static void kernel_fpu_disable(void)
47 WARN_ON_FPU(this_cpu_read(in_kernel_fpu
));
48 this_cpu_write(in_kernel_fpu
, true);
51 static void kernel_fpu_enable(void)
53 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu
));
54 this_cpu_write(in_kernel_fpu
, false);
57 static bool kernel_fpu_disabled(void)
59 return this_cpu_read(in_kernel_fpu
);
62 static bool interrupted_kernel_fpu_idle(void)
64 return !kernel_fpu_disabled();
68 * Were we in user mode (or vm86 mode) when we were
71 * Doing kernel_fpu_begin/end() is ok if we are running
72 * in an interrupt context from user mode - we'll just
73 * save the FPU state as required.
75 static bool interrupted_user_mode(void)
77 struct pt_regs
*regs
= get_irq_regs();
78 return regs
&& user_mode(regs
);
82 * Can we use the FPU in kernel mode with the
83 * whole "kernel_fpu_begin/end()" sequence?
85 * It's always ok in process context (ie "not interrupt")
86 * but it is sometimes ok even from an irq.
88 bool irq_fpu_usable(void)
90 return !in_interrupt() ||
91 interrupted_user_mode() ||
92 interrupted_kernel_fpu_idle();
94 EXPORT_SYMBOL(irq_fpu_usable
);
96 static void __kernel_fpu_begin(void)
98 struct fpu
*fpu
= ¤t
->thread
.fpu
;
100 WARN_ON_FPU(!irq_fpu_usable());
102 kernel_fpu_disable();
104 if (fpu
->initialized
) {
106 * Ignore return value -- we don't care if reg state
109 copy_fpregs_to_fpstate(fpu
);
111 __cpu_invalidate_fpregs_state();
115 static void __kernel_fpu_end(void)
117 struct fpu
*fpu
= ¤t
->thread
.fpu
;
119 if (fpu
->initialized
)
120 copy_kernel_to_fpregs(&fpu
->state
);
125 void kernel_fpu_begin(void)
128 __kernel_fpu_begin();
130 EXPORT_SYMBOL_GPL(kernel_fpu_begin
);
132 void kernel_fpu_end(void)
137 EXPORT_SYMBOL_GPL(kernel_fpu_end
);
140 * Save the FPU state (mark it for reload if necessary):
142 * This only ever gets called for the current task.
144 void fpu__save(struct fpu
*fpu
)
146 WARN_ON_FPU(fpu
!= ¤t
->thread
.fpu
);
149 trace_x86_fpu_before_save(fpu
);
150 if (fpu
->initialized
) {
151 if (!copy_fpregs_to_fpstate(fpu
)) {
152 copy_kernel_to_fpregs(&fpu
->state
);
155 trace_x86_fpu_after_save(fpu
);
158 EXPORT_SYMBOL_GPL(fpu__save
);
161 * Legacy x87 fpstate state init:
163 static inline void fpstate_init_fstate(struct fregs_state
*fp
)
165 fp
->cwd
= 0xffff037fu
;
166 fp
->swd
= 0xffff0000u
;
167 fp
->twd
= 0xffffffffu
;
168 fp
->fos
= 0xffff0000u
;
171 void fpstate_init(union fpregs_state
*state
)
173 if (!static_cpu_has(X86_FEATURE_FPU
)) {
174 fpstate_init_soft(&state
->soft
);
178 memset(state
, 0, fpu_kernel_xstate_size
);
180 if (static_cpu_has(X86_FEATURE_XSAVES
))
181 fpstate_init_xstate(&state
->xsave
);
182 if (static_cpu_has(X86_FEATURE_FXSR
))
183 fpstate_init_fxstate(&state
->fxsave
);
185 fpstate_init_fstate(&state
->fsave
);
187 EXPORT_SYMBOL_GPL(fpstate_init
);
189 int fpu__copy(struct fpu
*dst_fpu
, struct fpu
*src_fpu
)
191 dst_fpu
->last_cpu
= -1;
193 if (!src_fpu
->initialized
|| !static_cpu_has(X86_FEATURE_FPU
))
196 WARN_ON_FPU(src_fpu
!= ¤t
->thread
.fpu
);
199 * Don't let 'init optimized' areas of the XSAVE area
200 * leak into the child task:
202 memset(&dst_fpu
->state
.xsave
, 0, fpu_kernel_xstate_size
);
205 * Save current FPU registers directly into the child
206 * FPU context, without any memory-to-memory copying.
208 * ( The function 'fails' in the FNSAVE case, which destroys
209 * register contents so we have to copy them back. )
211 if (!copy_fpregs_to_fpstate(dst_fpu
)) {
212 memcpy(&src_fpu
->state
, &dst_fpu
->state
, fpu_kernel_xstate_size
);
213 copy_kernel_to_fpregs(&src_fpu
->state
);
216 trace_x86_fpu_copy_src(src_fpu
);
217 trace_x86_fpu_copy_dst(dst_fpu
);
223 * Activate the current task's in-memory FPU context,
224 * if it has not been used before:
226 void fpu__initialize(struct fpu
*fpu
)
228 WARN_ON_FPU(fpu
!= ¤t
->thread
.fpu
);
230 if (!fpu
->initialized
) {
231 fpstate_init(&fpu
->state
);
232 trace_x86_fpu_init_state(fpu
);
234 trace_x86_fpu_activate_state(fpu
);
235 /* Safe to do for the current task: */
236 fpu
->initialized
= 1;
239 EXPORT_SYMBOL_GPL(fpu__initialize
);
242 * This function must be called before we read a task's fpstate.
244 * There's two cases where this gets called:
246 * - for the current task (when coredumping), in which case we have
247 * to save the latest FPU registers into the fpstate,
249 * - or it's called for stopped tasks (ptrace), in which case the
250 * registers were already saved by the context-switch code when
251 * the task scheduled out - we only have to initialize the registers
252 * if they've never been initialized.
254 * If the task has used the FPU before then save it.
256 void fpu__prepare_read(struct fpu
*fpu
)
258 if (fpu
== ¤t
->thread
.fpu
) {
261 if (!fpu
->initialized
) {
262 fpstate_init(&fpu
->state
);
263 trace_x86_fpu_init_state(fpu
);
265 trace_x86_fpu_activate_state(fpu
);
266 /* Safe to do for current and for stopped child tasks: */
267 fpu
->initialized
= 1;
273 * This function must be called before we write a task's fpstate.
275 * If the task has used the FPU before then invalidate any cached FPU registers.
276 * If the task has not used the FPU before then initialize its fpstate.
278 * After this function call, after registers in the fpstate are
279 * modified and the child task has woken up, the child task will
280 * restore the modified FPU state from the modified context. If we
281 * didn't clear its cached status here then the cached in-registers
282 * state pending on its former CPU could be restored, corrupting
285 void fpu__prepare_write(struct fpu
*fpu
)
288 * Only stopped child tasks can be used to modify the FPU
289 * state in the fpstate buffer:
291 WARN_ON_FPU(fpu
== ¤t
->thread
.fpu
);
293 if (fpu
->initialized
) {
294 /* Invalidate any cached state: */
295 __fpu_invalidate_fpregs_state(fpu
);
297 fpstate_init(&fpu
->state
);
298 trace_x86_fpu_init_state(fpu
);
300 trace_x86_fpu_activate_state(fpu
);
301 /* Safe to do for stopped child tasks: */
302 fpu
->initialized
= 1;
307 * 'fpu__restore()' is called to copy FPU registers from
308 * the FPU fpstate to the live hw registers and to activate
309 * access to the hardware registers, so that FPU instructions
310 * can be used afterwards.
312 * Must be called with kernel preemption disabled (for example
313 * with local interrupts disabled, as it is in the case of
314 * do_device_not_available()).
316 void fpu__restore(struct fpu
*fpu
)
318 fpu__initialize(fpu
);
320 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
321 kernel_fpu_disable();
322 trace_x86_fpu_before_restore(fpu
);
323 fpregs_activate(fpu
);
324 copy_kernel_to_fpregs(&fpu
->state
);
325 trace_x86_fpu_after_restore(fpu
);
328 EXPORT_SYMBOL_GPL(fpu__restore
);
331 * Drops current FPU state: deactivates the fpregs and
332 * the fpstate. NOTE: it still leaves previous contents
333 * in the fpregs in the eager-FPU case.
335 * This function can be used in cases where we know that
336 * a state-restore is coming: either an explicit one,
339 void fpu__drop(struct fpu
*fpu
)
343 if (fpu
== ¤t
->thread
.fpu
) {
344 if (fpu
->initialized
) {
345 /* Ignore delayed exceptions from user space */
346 asm volatile("1: fwait\n"
348 _ASM_EXTABLE(1b
, 2b
));
349 fpregs_deactivate(fpu
);
353 fpu
->initialized
= 0;
355 trace_x86_fpu_dropped(fpu
);
361 * Clear FPU registers by setting them up from
364 static inline void copy_init_fpstate_to_fpregs(void)
367 copy_kernel_to_xregs(&init_fpstate
.xsave
, -1);
368 else if (static_cpu_has(X86_FEATURE_FXSR
))
369 copy_kernel_to_fxregs(&init_fpstate
.fxsave
);
371 copy_kernel_to_fregs(&init_fpstate
.fsave
);
373 if (boot_cpu_has(X86_FEATURE_OSPKE
))
374 copy_init_pkru_to_fpregs();
378 * Clear the FPU state back to init state.
380 * Called by sys_execve(), by the signal handler code and by various
383 void fpu__clear(struct fpu
*fpu
)
385 WARN_ON_FPU(fpu
!= ¤t
->thread
.fpu
); /* Almost certainly an anomaly */
390 * Make sure fpstate is cleared and initialized.
392 if (static_cpu_has(X86_FEATURE_FPU
)) {
394 fpu__initialize(fpu
);
396 copy_init_fpstate_to_fpregs();
402 * x87 math exception handling:
405 int fpu__exception_code(struct fpu
*fpu
, int trap_nr
)
409 if (trap_nr
== X86_TRAP_MF
) {
410 unsigned short cwd
, swd
;
412 * (~cwd & swd) will mask out exceptions that are not set to unmasked
413 * status. 0x3f is the exception bits in these regs, 0x200 is the
414 * C1 reg you need in case of a stack fault, 0x040 is the stack
415 * fault bit. We should only be taking one exception at a time,
416 * so if this combination doesn't produce any single exception,
417 * then we have a bad program that isn't synchronizing its FPU usage
418 * and it will suffer the consequences since we won't be able to
419 * fully reproduce the context of the exception.
421 if (boot_cpu_has(X86_FEATURE_FXSR
)) {
422 cwd
= fpu
->state
.fxsave
.cwd
;
423 swd
= fpu
->state
.fxsave
.swd
;
425 cwd
= (unsigned short)fpu
->state
.fsave
.cwd
;
426 swd
= (unsigned short)fpu
->state
.fsave
.swd
;
432 * The SIMD FPU exceptions are handled a little differently, as there
433 * is only a single status/control register. Thus, to determine which
434 * unmasked exception was caught we must mask the exception mask bits
435 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
437 unsigned short mxcsr
= MXCSR_DEFAULT
;
439 if (boot_cpu_has(X86_FEATURE_XMM
))
440 mxcsr
= fpu
->state
.fxsave
.mxcsr
;
442 err
= ~(mxcsr
>> 7) & mxcsr
;
445 if (err
& 0x001) { /* Invalid op */
447 * swd & 0x240 == 0x040: Stack Underflow
448 * swd & 0x240 == 0x240: Stack Overflow
449 * User must clear the SF bit (0x40) if set
452 } else if (err
& 0x004) { /* Divide by Zero */
454 } else if (err
& 0x008) { /* Overflow */
456 } else if (err
& 0x012) { /* Denormal, Underflow */
458 } else if (err
& 0x020) { /* Precision */
463 * If we're using IRQ 13, or supposedly even some trap
464 * X86_TRAP_MF implementations, it's possible
465 * we get a spurious trap, which is not an error.