mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / arch / x86 / kernel / fpu / core.c
blob2e5003fef51a9392ecca9d413f7f6558095ea9c7
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 #include <asm/irq_regs.h>
15 #include <linux/hardirq.h>
16 #include <linux/pkeys.h>
18 #define CREATE_TRACE_POINTS
19 #include <asm/trace/fpu.h>
22 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
23 * depending on the FPU hardware format:
25 union fpregs_state init_fpstate __read_mostly;
28 * Track whether the kernel is using the FPU state
29 * currently.
31 * This flag is used:
33 * - by IRQ context code to potentially use the FPU
34 * if it's unused.
36 * - to debug kernel_fpu_begin()/end() correctness
38 static DEFINE_PER_CPU(bool, in_kernel_fpu);
41 * Track which context is using the FPU on the CPU:
43 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45 static void kernel_fpu_disable(void)
47 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
48 this_cpu_write(in_kernel_fpu, true);
51 static void kernel_fpu_enable(void)
53 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
54 this_cpu_write(in_kernel_fpu, false);
57 static bool kernel_fpu_disabled(void)
59 return this_cpu_read(in_kernel_fpu);
62 static bool interrupted_kernel_fpu_idle(void)
64 return !kernel_fpu_disabled();
68 * Were we in user mode (or vm86 mode) when we were
69 * interrupted?
71 * Doing kernel_fpu_begin/end() is ok if we are running
72 * in an interrupt context from user mode - we'll just
73 * save the FPU state as required.
75 static bool interrupted_user_mode(void)
77 struct pt_regs *regs = get_irq_regs();
78 return regs && user_mode(regs);
82 * Can we use the FPU in kernel mode with the
83 * whole "kernel_fpu_begin/end()" sequence?
85 * It's always ok in process context (ie "not interrupt")
86 * but it is sometimes ok even from an irq.
88 bool irq_fpu_usable(void)
90 return !in_interrupt() ||
91 interrupted_user_mode() ||
92 interrupted_kernel_fpu_idle();
94 EXPORT_SYMBOL(irq_fpu_usable);
96 static void __kernel_fpu_begin(void)
98 struct fpu *fpu = &current->thread.fpu;
100 WARN_ON_FPU(!irq_fpu_usable());
102 kernel_fpu_disable();
104 if (fpu->initialized) {
106 * Ignore return value -- we don't care if reg state
107 * is clobbered.
109 copy_fpregs_to_fpstate(fpu);
110 } else {
111 __cpu_invalidate_fpregs_state();
115 static void __kernel_fpu_end(void)
117 struct fpu *fpu = &current->thread.fpu;
119 if (fpu->initialized)
120 copy_kernel_to_fpregs(&fpu->state);
122 kernel_fpu_enable();
125 void kernel_fpu_begin(void)
127 preempt_disable();
128 __kernel_fpu_begin();
130 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
132 void kernel_fpu_end(void)
134 __kernel_fpu_end();
135 preempt_enable();
137 EXPORT_SYMBOL_GPL(kernel_fpu_end);
140 * Save the FPU state (mark it for reload if necessary):
142 * This only ever gets called for the current task.
144 void fpu__save(struct fpu *fpu)
146 WARN_ON_FPU(fpu != &current->thread.fpu);
148 preempt_disable();
149 trace_x86_fpu_before_save(fpu);
150 if (fpu->initialized) {
151 if (!copy_fpregs_to_fpstate(fpu)) {
152 copy_kernel_to_fpregs(&fpu->state);
155 trace_x86_fpu_after_save(fpu);
156 preempt_enable();
158 EXPORT_SYMBOL_GPL(fpu__save);
161 * Legacy x87 fpstate state init:
163 static inline void fpstate_init_fstate(struct fregs_state *fp)
165 fp->cwd = 0xffff037fu;
166 fp->swd = 0xffff0000u;
167 fp->twd = 0xffffffffu;
168 fp->fos = 0xffff0000u;
171 void fpstate_init(union fpregs_state *state)
173 if (!static_cpu_has(X86_FEATURE_FPU)) {
174 fpstate_init_soft(&state->soft);
175 return;
178 memset(state, 0, fpu_kernel_xstate_size);
180 if (static_cpu_has(X86_FEATURE_XSAVES))
181 fpstate_init_xstate(&state->xsave);
182 if (static_cpu_has(X86_FEATURE_FXSR))
183 fpstate_init_fxstate(&state->fxsave);
184 else
185 fpstate_init_fstate(&state->fsave);
187 EXPORT_SYMBOL_GPL(fpstate_init);
189 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
191 dst_fpu->last_cpu = -1;
193 if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
194 return 0;
196 WARN_ON_FPU(src_fpu != &current->thread.fpu);
199 * Don't let 'init optimized' areas of the XSAVE area
200 * leak into the child task:
202 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
205 * Save current FPU registers directly into the child
206 * FPU context, without any memory-to-memory copying.
208 * ( The function 'fails' in the FNSAVE case, which destroys
209 * register contents so we have to copy them back. )
211 if (!copy_fpregs_to_fpstate(dst_fpu)) {
212 memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
213 copy_kernel_to_fpregs(&src_fpu->state);
216 trace_x86_fpu_copy_src(src_fpu);
217 trace_x86_fpu_copy_dst(dst_fpu);
219 return 0;
223 * Activate the current task's in-memory FPU context,
224 * if it has not been used before:
226 void fpu__initialize(struct fpu *fpu)
228 WARN_ON_FPU(fpu != &current->thread.fpu);
230 if (!fpu->initialized) {
231 fpstate_init(&fpu->state);
232 trace_x86_fpu_init_state(fpu);
234 trace_x86_fpu_activate_state(fpu);
235 /* Safe to do for the current task: */
236 fpu->initialized = 1;
239 EXPORT_SYMBOL_GPL(fpu__initialize);
242 * This function must be called before we read a task's fpstate.
244 * There's two cases where this gets called:
246 * - for the current task (when coredumping), in which case we have
247 * to save the latest FPU registers into the fpstate,
249 * - or it's called for stopped tasks (ptrace), in which case the
250 * registers were already saved by the context-switch code when
251 * the task scheduled out - we only have to initialize the registers
252 * if they've never been initialized.
254 * If the task has used the FPU before then save it.
256 void fpu__prepare_read(struct fpu *fpu)
258 if (fpu == &current->thread.fpu) {
259 fpu__save(fpu);
260 } else {
261 if (!fpu->initialized) {
262 fpstate_init(&fpu->state);
263 trace_x86_fpu_init_state(fpu);
265 trace_x86_fpu_activate_state(fpu);
266 /* Safe to do for current and for stopped child tasks: */
267 fpu->initialized = 1;
273 * This function must be called before we write a task's fpstate.
275 * If the task has used the FPU before then invalidate any cached FPU registers.
276 * If the task has not used the FPU before then initialize its fpstate.
278 * After this function call, after registers in the fpstate are
279 * modified and the child task has woken up, the child task will
280 * restore the modified FPU state from the modified context. If we
281 * didn't clear its cached status here then the cached in-registers
282 * state pending on its former CPU could be restored, corrupting
283 * the modifications.
285 void fpu__prepare_write(struct fpu *fpu)
288 * Only stopped child tasks can be used to modify the FPU
289 * state in the fpstate buffer:
291 WARN_ON_FPU(fpu == &current->thread.fpu);
293 if (fpu->initialized) {
294 /* Invalidate any cached state: */
295 __fpu_invalidate_fpregs_state(fpu);
296 } else {
297 fpstate_init(&fpu->state);
298 trace_x86_fpu_init_state(fpu);
300 trace_x86_fpu_activate_state(fpu);
301 /* Safe to do for stopped child tasks: */
302 fpu->initialized = 1;
307 * 'fpu__restore()' is called to copy FPU registers from
308 * the FPU fpstate to the live hw registers and to activate
309 * access to the hardware registers, so that FPU instructions
310 * can be used afterwards.
312 * Must be called with kernel preemption disabled (for example
313 * with local interrupts disabled, as it is in the case of
314 * do_device_not_available()).
316 void fpu__restore(struct fpu *fpu)
318 fpu__initialize(fpu);
320 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
321 kernel_fpu_disable();
322 trace_x86_fpu_before_restore(fpu);
323 fpregs_activate(fpu);
324 copy_kernel_to_fpregs(&fpu->state);
325 trace_x86_fpu_after_restore(fpu);
326 kernel_fpu_enable();
328 EXPORT_SYMBOL_GPL(fpu__restore);
331 * Drops current FPU state: deactivates the fpregs and
332 * the fpstate. NOTE: it still leaves previous contents
333 * in the fpregs in the eager-FPU case.
335 * This function can be used in cases where we know that
336 * a state-restore is coming: either an explicit one,
337 * or a reschedule.
339 void fpu__drop(struct fpu *fpu)
341 preempt_disable();
343 if (fpu == &current->thread.fpu) {
344 if (fpu->initialized) {
345 /* Ignore delayed exceptions from user space */
346 asm volatile("1: fwait\n"
347 "2:\n"
348 _ASM_EXTABLE(1b, 2b));
349 fpregs_deactivate(fpu);
353 fpu->initialized = 0;
355 trace_x86_fpu_dropped(fpu);
357 preempt_enable();
361 * Clear FPU registers by setting them up from
362 * the init fpstate:
364 static inline void copy_init_fpstate_to_fpregs(void)
366 if (use_xsave())
367 copy_kernel_to_xregs(&init_fpstate.xsave, -1);
368 else if (static_cpu_has(X86_FEATURE_FXSR))
369 copy_kernel_to_fxregs(&init_fpstate.fxsave);
370 else
371 copy_kernel_to_fregs(&init_fpstate.fsave);
373 if (boot_cpu_has(X86_FEATURE_OSPKE))
374 copy_init_pkru_to_fpregs();
378 * Clear the FPU state back to init state.
380 * Called by sys_execve(), by the signal handler code and by various
381 * error paths.
383 void fpu__clear(struct fpu *fpu)
385 WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
387 fpu__drop(fpu);
390 * Make sure fpstate is cleared and initialized.
392 if (static_cpu_has(X86_FEATURE_FPU)) {
393 preempt_disable();
394 fpu__initialize(fpu);
395 user_fpu_begin();
396 copy_init_fpstate_to_fpregs();
397 preempt_enable();
402 * x87 math exception handling:
405 int fpu__exception_code(struct fpu *fpu, int trap_nr)
407 int err;
409 if (trap_nr == X86_TRAP_MF) {
410 unsigned short cwd, swd;
412 * (~cwd & swd) will mask out exceptions that are not set to unmasked
413 * status. 0x3f is the exception bits in these regs, 0x200 is the
414 * C1 reg you need in case of a stack fault, 0x040 is the stack
415 * fault bit. We should only be taking one exception at a time,
416 * so if this combination doesn't produce any single exception,
417 * then we have a bad program that isn't synchronizing its FPU usage
418 * and it will suffer the consequences since we won't be able to
419 * fully reproduce the context of the exception.
421 if (boot_cpu_has(X86_FEATURE_FXSR)) {
422 cwd = fpu->state.fxsave.cwd;
423 swd = fpu->state.fxsave.swd;
424 } else {
425 cwd = (unsigned short)fpu->state.fsave.cwd;
426 swd = (unsigned short)fpu->state.fsave.swd;
429 err = swd & ~cwd;
430 } else {
432 * The SIMD FPU exceptions are handled a little differently, as there
433 * is only a single status/control register. Thus, to determine which
434 * unmasked exception was caught we must mask the exception mask bits
435 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
437 unsigned short mxcsr = MXCSR_DEFAULT;
439 if (boot_cpu_has(X86_FEATURE_XMM))
440 mxcsr = fpu->state.fxsave.mxcsr;
442 err = ~(mxcsr >> 7) & mxcsr;
445 if (err & 0x001) { /* Invalid op */
447 * swd & 0x240 == 0x040: Stack Underflow
448 * swd & 0x240 == 0x240: Stack Overflow
449 * User must clear the SF bit (0x40) if set
451 return FPE_FLTINV;
452 } else if (err & 0x004) { /* Divide by Zero */
453 return FPE_FLTDIV;
454 } else if (err & 0x008) { /* Overflow */
455 return FPE_FLTOVF;
456 } else if (err & 0x012) { /* Denormal, Underflow */
457 return FPE_FLTUND;
458 } else if (err & 0x020) { /* Precision */
459 return FPE_FLTRES;
463 * If we're using IRQ 13, or supposedly even some trap
464 * X86_TRAP_MF implementations, it's possible
465 * we get a spurious trap, which is not an error.
467 return 0;