mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / arch / x86 / kvm / x86.c
blob79fa55de635cc9968de380ab71fb13bbce18d570
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
93 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
94 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
110 unsigned int min_timer_period_us = 500;
111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
113 static bool __read_mostly kvmclock_periodic_sync = true;
114 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
116 bool __read_mostly kvm_has_tsc_control;
117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
118 u32 __read_mostly kvm_max_guest_tsc_khz;
119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
120 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
122 u64 __read_mostly kvm_max_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
124 u64 __read_mostly kvm_default_tsc_scaling_ratio;
125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
128 static u32 __read_mostly tsc_tolerance_ppm = 250;
129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
132 unsigned int __read_mostly lapic_timer_advance_ns = 0;
133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
135 static bool __read_mostly vector_hashing = true;
136 module_param(vector_hashing, bool, S_IRUGO);
138 #define KVM_NR_SHARED_MSRS 16
140 struct kvm_shared_msrs_global {
141 int nr;
142 u32 msrs[KVM_NR_SHARED_MSRS];
145 struct kvm_shared_msrs {
146 struct user_return_notifier urn;
147 bool registered;
148 struct kvm_shared_msr_values {
149 u64 host;
150 u64 curr;
151 } values[KVM_NR_SHARED_MSRS];
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed) },
159 { "pf_guest", VCPU_STAT(pf_guest) },
160 { "tlb_flush", VCPU_STAT(tlb_flush) },
161 { "invlpg", VCPU_STAT(invlpg) },
162 { "exits", VCPU_STAT(exits) },
163 { "io_exits", VCPU_STAT(io_exits) },
164 { "mmio_exits", VCPU_STAT(mmio_exits) },
165 { "signal_exits", VCPU_STAT(signal_exits) },
166 { "irq_window", VCPU_STAT(irq_window_exits) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits) },
168 { "halt_exits", VCPU_STAT(halt_exits) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 { "hypercalls", VCPU_STAT(hypercalls) },
174 { "request_irq", VCPU_STAT(request_irq_exits) },
175 { "irq_exits", VCPU_STAT(irq_exits) },
176 { "host_state_reload", VCPU_STAT(host_state_reload) },
177 { "efer_reload", VCPU_STAT(efer_reload) },
178 { "fpu_reload", VCPU_STAT(fpu_reload) },
179 { "insn_emulation", VCPU_STAT(insn_emulation) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 { "irq_injections", VCPU_STAT(irq_injections) },
182 { "nmi_injections", VCPU_STAT(nmi_injections) },
183 { "req_event", VCPU_STAT(req_event) },
184 { "l1d_flush", VCPU_STAT(l1d_flush) },
185 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189 { "mmu_flooded", VM_STAT(mmu_flooded) },
190 { "mmu_recycled", VM_STAT(mmu_recycled) },
191 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192 { "mmu_unsync", VM_STAT(mmu_unsync) },
193 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194 { "largepages", VM_STAT(lpages, .mode = 0444) },
195 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
196 { "max_mmu_page_hash_collisions",
197 VM_STAT(max_mmu_page_hash_collisions) },
198 { NULL }
201 u64 __read_mostly host_xcr0;
203 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
205 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
207 int i;
208 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
209 vcpu->arch.apf.gfns[i] = ~0;
212 static void kvm_on_user_return(struct user_return_notifier *urn)
214 unsigned slot;
215 struct kvm_shared_msrs *locals
216 = container_of(urn, struct kvm_shared_msrs, urn);
217 struct kvm_shared_msr_values *values;
218 unsigned long flags;
221 * Disabling irqs at this point since the following code could be
222 * interrupted and executed through kvm_arch_hardware_disable()
224 local_irq_save(flags);
225 if (locals->registered) {
226 locals->registered = false;
227 user_return_notifier_unregister(urn);
229 local_irq_restore(flags);
230 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
231 values = &locals->values[slot];
232 if (values->host != values->curr) {
233 wrmsrl(shared_msrs_global.msrs[slot], values->host);
234 values->curr = values->host;
239 static void shared_msr_update(unsigned slot, u32 msr)
241 u64 value;
242 unsigned int cpu = smp_processor_id();
243 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
245 /* only read, and nobody should modify it at this time,
246 * so don't need lock */
247 if (slot >= shared_msrs_global.nr) {
248 printk(KERN_ERR "kvm: invalid MSR slot!");
249 return;
251 rdmsrl_safe(msr, &value);
252 smsr->values[slot].host = value;
253 smsr->values[slot].curr = value;
256 void kvm_define_shared_msr(unsigned slot, u32 msr)
258 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
259 shared_msrs_global.msrs[slot] = msr;
260 if (slot >= shared_msrs_global.nr)
261 shared_msrs_global.nr = slot + 1;
263 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
265 static void kvm_shared_msr_cpu_online(void)
267 unsigned i;
269 for (i = 0; i < shared_msrs_global.nr; ++i)
270 shared_msr_update(i, shared_msrs_global.msrs[i]);
273 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
275 unsigned int cpu = smp_processor_id();
276 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277 int err;
279 value = (value & mask) | (smsr->values[slot].host & ~mask);
280 if (value == smsr->values[slot].curr)
281 return 0;
282 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
283 if (err)
284 return 1;
286 smsr->values[slot].curr = value;
287 if (!smsr->registered) {
288 smsr->urn.on_user_return = kvm_on_user_return;
289 user_return_notifier_register(&smsr->urn);
290 smsr->registered = true;
292 return 0;
294 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296 static void drop_user_return_notifiers(void)
298 unsigned int cpu = smp_processor_id();
299 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301 if (smsr->registered)
302 kvm_on_user_return(&smsr->urn);
305 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 return vcpu->arch.apic_base;
309 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
313 return kvm_apic_mode(kvm_get_apic_base(vcpu));
315 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
317 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
319 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
320 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
321 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
322 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
324 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
325 return 1;
326 if (!msr_info->host_initiated) {
327 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
328 return 1;
329 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
330 return 1;
333 kvm_lapic_set_base(vcpu, msr_info->data);
334 return 0;
336 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
338 asmlinkage __visible void kvm_spurious_fault(void)
340 /* Fault while not rebooting. We want the trace. */
341 BUG();
343 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
345 #define EXCPT_BENIGN 0
346 #define EXCPT_CONTRIBUTORY 1
347 #define EXCPT_PF 2
349 static int exception_class(int vector)
351 switch (vector) {
352 case PF_VECTOR:
353 return EXCPT_PF;
354 case DE_VECTOR:
355 case TS_VECTOR:
356 case NP_VECTOR:
357 case SS_VECTOR:
358 case GP_VECTOR:
359 return EXCPT_CONTRIBUTORY;
360 default:
361 break;
363 return EXCPT_BENIGN;
366 #define EXCPT_FAULT 0
367 #define EXCPT_TRAP 1
368 #define EXCPT_ABORT 2
369 #define EXCPT_INTERRUPT 3
371 static int exception_type(int vector)
373 unsigned int mask;
375 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
376 return EXCPT_INTERRUPT;
378 mask = 1 << vector;
380 /* #DB is trap, as instruction watchpoints are handled elsewhere */
381 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
382 return EXCPT_TRAP;
384 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
385 return EXCPT_ABORT;
387 /* Reserved exceptions will result in fault */
388 return EXCPT_FAULT;
391 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
392 unsigned nr, bool has_error, u32 error_code,
393 bool reinject)
395 u32 prev_nr;
396 int class1, class2;
398 kvm_make_request(KVM_REQ_EVENT, vcpu);
400 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
401 queue:
402 if (has_error && !is_protmode(vcpu))
403 has_error = false;
404 if (reinject) {
406 * On vmentry, vcpu->arch.exception.pending is only
407 * true if an event injection was blocked by
408 * nested_run_pending. In that case, however,
409 * vcpu_enter_guest requests an immediate exit,
410 * and the guest shouldn't proceed far enough to
411 * need reinjection.
413 WARN_ON_ONCE(vcpu->arch.exception.pending);
414 vcpu->arch.exception.injected = true;
415 } else {
416 vcpu->arch.exception.pending = true;
417 vcpu->arch.exception.injected = false;
419 vcpu->arch.exception.has_error_code = has_error;
420 vcpu->arch.exception.nr = nr;
421 vcpu->arch.exception.error_code = error_code;
422 return;
425 /* to check exception */
426 prev_nr = vcpu->arch.exception.nr;
427 if (prev_nr == DF_VECTOR) {
428 /* triple fault -> shutdown */
429 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
430 return;
432 class1 = exception_class(prev_nr);
433 class2 = exception_class(nr);
434 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
435 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
437 * Generate double fault per SDM Table 5-5. Set
438 * exception.pending = true so that the double fault
439 * can trigger a nested vmexit.
441 vcpu->arch.exception.pending = true;
442 vcpu->arch.exception.injected = false;
443 vcpu->arch.exception.has_error_code = true;
444 vcpu->arch.exception.nr = DF_VECTOR;
445 vcpu->arch.exception.error_code = 0;
446 } else
447 /* replace previous exception with a new one in a hope
448 that instruction re-execution will regenerate lost
449 exception */
450 goto queue;
453 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
455 kvm_multiple_exception(vcpu, nr, false, 0, false);
457 EXPORT_SYMBOL_GPL(kvm_queue_exception);
459 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
461 kvm_multiple_exception(vcpu, nr, false, 0, true);
463 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
465 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
467 if (err)
468 kvm_inject_gp(vcpu, 0);
469 else
470 return kvm_skip_emulated_instruction(vcpu);
472 return 1;
474 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
476 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
478 ++vcpu->stat.pf_guest;
479 vcpu->arch.exception.nested_apf =
480 is_guest_mode(vcpu) && fault->async_page_fault;
481 if (vcpu->arch.exception.nested_apf)
482 vcpu->arch.apf.nested_apf_token = fault->address;
483 else
484 vcpu->arch.cr2 = fault->address;
485 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
487 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
489 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
491 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
492 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
493 else
494 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
496 return fault->nested_page_fault;
499 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
501 atomic_inc(&vcpu->arch.nmi_queued);
502 kvm_make_request(KVM_REQ_NMI, vcpu);
504 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
506 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
508 kvm_multiple_exception(vcpu, nr, true, error_code, false);
510 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
512 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
514 kvm_multiple_exception(vcpu, nr, true, error_code, true);
516 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
519 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
520 * a #GP and return false.
522 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
524 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
525 return true;
526 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
527 return false;
529 EXPORT_SYMBOL_GPL(kvm_require_cpl);
531 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
533 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
534 return true;
536 kvm_queue_exception(vcpu, UD_VECTOR);
537 return false;
539 EXPORT_SYMBOL_GPL(kvm_require_dr);
542 * This function will be used to read from the physical memory of the currently
543 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
544 * can read from guest physical or from the guest's guest physical memory.
546 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
547 gfn_t ngfn, void *data, int offset, int len,
548 u32 access)
550 struct x86_exception exception;
551 gfn_t real_gfn;
552 gpa_t ngpa;
554 ngpa = gfn_to_gpa(ngfn);
555 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
556 if (real_gfn == UNMAPPED_GVA)
557 return -EFAULT;
559 real_gfn = gpa_to_gfn(real_gfn);
561 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
563 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
565 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
566 void *data, int offset, int len, u32 access)
568 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
569 data, offset, len, access);
572 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
574 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
575 rsvd_bits(1, 2);
579 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
581 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
583 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
584 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
585 int i;
586 int ret;
587 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
589 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
590 offset * sizeof(u64), sizeof(pdpte),
591 PFERR_USER_MASK|PFERR_WRITE_MASK);
592 if (ret < 0) {
593 ret = 0;
594 goto out;
596 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
597 if ((pdpte[i] & PT_PRESENT_MASK) &&
598 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
599 ret = 0;
600 goto out;
603 ret = 1;
605 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
606 __set_bit(VCPU_EXREG_PDPTR,
607 (unsigned long *)&vcpu->arch.regs_avail);
608 __set_bit(VCPU_EXREG_PDPTR,
609 (unsigned long *)&vcpu->arch.regs_dirty);
610 out:
612 return ret;
614 EXPORT_SYMBOL_GPL(load_pdptrs);
616 bool pdptrs_changed(struct kvm_vcpu *vcpu)
618 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
619 bool changed = true;
620 int offset;
621 gfn_t gfn;
622 int r;
624 if (!is_pae_paging(vcpu))
625 return false;
627 if (!test_bit(VCPU_EXREG_PDPTR,
628 (unsigned long *)&vcpu->arch.regs_avail))
629 return true;
631 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
632 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
633 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
634 PFERR_USER_MASK | PFERR_WRITE_MASK);
635 if (r < 0)
636 goto out;
637 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
638 out:
640 return changed;
642 EXPORT_SYMBOL_GPL(pdptrs_changed);
644 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
646 unsigned long old_cr0 = kvm_read_cr0(vcpu);
647 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
649 cr0 |= X86_CR0_ET;
651 #ifdef CONFIG_X86_64
652 if (cr0 & 0xffffffff00000000UL)
653 return 1;
654 #endif
656 cr0 &= ~CR0_RESERVED_BITS;
658 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
659 return 1;
661 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
662 return 1;
664 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
665 #ifdef CONFIG_X86_64
666 if ((vcpu->arch.efer & EFER_LME)) {
667 int cs_db, cs_l;
669 if (!is_pae(vcpu))
670 return 1;
671 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
672 if (cs_l)
673 return 1;
674 } else
675 #endif
676 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
677 kvm_read_cr3(vcpu)))
678 return 1;
681 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
682 return 1;
684 kvm_x86_ops->set_cr0(vcpu, cr0);
686 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
687 kvm_clear_async_pf_completion_queue(vcpu);
688 kvm_async_pf_hash_reset(vcpu);
691 if ((cr0 ^ old_cr0) & update_bits)
692 kvm_mmu_reset_context(vcpu);
694 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
695 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
696 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
697 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
699 return 0;
701 EXPORT_SYMBOL_GPL(kvm_set_cr0);
703 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
705 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
707 EXPORT_SYMBOL_GPL(kvm_lmsw);
709 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
711 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
712 !vcpu->guest_xcr0_loaded) {
713 /* kvm_set_xcr() also depends on this */
714 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
715 vcpu->guest_xcr0_loaded = 1;
719 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
721 if (vcpu->guest_xcr0_loaded) {
722 if (vcpu->arch.xcr0 != host_xcr0)
723 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
724 vcpu->guest_xcr0_loaded = 0;
728 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
730 u64 xcr0 = xcr;
731 u64 old_xcr0 = vcpu->arch.xcr0;
732 u64 valid_bits;
734 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
735 if (index != XCR_XFEATURE_ENABLED_MASK)
736 return 1;
737 if (!(xcr0 & XFEATURE_MASK_FP))
738 return 1;
739 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
740 return 1;
743 * Do not allow the guest to set bits that we do not support
744 * saving. However, xcr0 bit 0 is always set, even if the
745 * emulated CPU does not support XSAVE (see fx_init).
747 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
748 if (xcr0 & ~valid_bits)
749 return 1;
751 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
752 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
753 return 1;
755 if (xcr0 & XFEATURE_MASK_AVX512) {
756 if (!(xcr0 & XFEATURE_MASK_YMM))
757 return 1;
758 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
759 return 1;
761 vcpu->arch.xcr0 = xcr0;
763 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
764 kvm_update_cpuid(vcpu);
765 return 0;
768 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
770 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
771 __kvm_set_xcr(vcpu, index, xcr)) {
772 kvm_inject_gp(vcpu, 0);
773 return 1;
775 return 0;
777 EXPORT_SYMBOL_GPL(kvm_set_xcr);
779 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
781 unsigned long old_cr4 = kvm_read_cr4(vcpu);
782 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
783 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
785 if (cr4 & CR4_RESERVED_BITS)
786 return 1;
788 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
789 return 1;
791 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
792 return 1;
794 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
795 return 1;
797 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
798 return 1;
800 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
801 return 1;
803 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
804 return 1;
806 if (is_long_mode(vcpu)) {
807 if (!(cr4 & X86_CR4_PAE))
808 return 1;
809 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
810 return 1;
811 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
812 && ((cr4 ^ old_cr4) & pdptr_bits)
813 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
814 kvm_read_cr3(vcpu)))
815 return 1;
817 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
818 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
819 return 1;
821 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
822 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
823 return 1;
826 if (kvm_x86_ops->set_cr4(vcpu, cr4))
827 return 1;
829 if (((cr4 ^ old_cr4) & pdptr_bits) ||
830 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
831 kvm_mmu_reset_context(vcpu);
833 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
834 kvm_update_cpuid(vcpu);
836 return 0;
838 EXPORT_SYMBOL_GPL(kvm_set_cr4);
840 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
842 #ifdef CONFIG_X86_64
843 cr3 &= ~CR3_PCID_INVD;
844 #endif
846 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
847 kvm_mmu_sync_roots(vcpu);
848 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
849 return 0;
852 if (is_long_mode(vcpu) &&
853 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
854 return 1;
855 else if (is_pae_paging(vcpu) &&
856 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
857 return 1;
859 vcpu->arch.cr3 = cr3;
860 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
861 kvm_mmu_new_cr3(vcpu);
862 return 0;
864 EXPORT_SYMBOL_GPL(kvm_set_cr3);
866 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
868 if (cr8 & CR8_RESERVED_BITS)
869 return 1;
870 if (lapic_in_kernel(vcpu))
871 kvm_lapic_set_tpr(vcpu, cr8);
872 else
873 vcpu->arch.cr8 = cr8;
874 return 0;
876 EXPORT_SYMBOL_GPL(kvm_set_cr8);
878 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
880 if (lapic_in_kernel(vcpu))
881 return kvm_lapic_get_cr8(vcpu);
882 else
883 return vcpu->arch.cr8;
885 EXPORT_SYMBOL_GPL(kvm_get_cr8);
887 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
889 int i;
891 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
892 for (i = 0; i < KVM_NR_DB_REGS; i++)
893 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
894 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
898 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
900 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
901 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
904 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
906 unsigned long dr7;
908 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
909 dr7 = vcpu->arch.guest_debug_dr7;
910 else
911 dr7 = vcpu->arch.dr7;
912 kvm_x86_ops->set_dr7(vcpu, dr7);
913 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
914 if (dr7 & DR7_BP_EN_MASK)
915 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
918 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
920 u64 fixed = DR6_FIXED_1;
922 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
923 fixed |= DR6_RTM;
924 return fixed;
927 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
929 size_t size = ARRAY_SIZE(vcpu->arch.db);
931 switch (dr) {
932 case 0 ... 3:
933 vcpu->arch.db[array_index_nospec(dr, size)] = val;
934 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
935 vcpu->arch.eff_db[dr] = val;
936 break;
937 case 4:
938 /* fall through */
939 case 6:
940 if (val & 0xffffffff00000000ULL)
941 return -1; /* #GP */
942 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
943 kvm_update_dr6(vcpu);
944 break;
945 case 5:
946 /* fall through */
947 default: /* 7 */
948 if (val & 0xffffffff00000000ULL)
949 return -1; /* #GP */
950 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
951 kvm_update_dr7(vcpu);
952 break;
955 return 0;
958 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
960 if (__kvm_set_dr(vcpu, dr, val)) {
961 kvm_inject_gp(vcpu, 0);
962 return 1;
964 return 0;
966 EXPORT_SYMBOL_GPL(kvm_set_dr);
968 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
970 size_t size = ARRAY_SIZE(vcpu->arch.db);
972 switch (dr) {
973 case 0 ... 3:
974 *val = vcpu->arch.db[array_index_nospec(dr, size)];
975 break;
976 case 4:
977 /* fall through */
978 case 6:
979 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
980 *val = vcpu->arch.dr6;
981 else
982 *val = kvm_x86_ops->get_dr6(vcpu);
983 break;
984 case 5:
985 /* fall through */
986 default: /* 7 */
987 *val = vcpu->arch.dr7;
988 break;
990 return 0;
992 EXPORT_SYMBOL_GPL(kvm_get_dr);
994 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
996 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
997 u64 data;
998 int err;
1000 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1001 if (err)
1002 return err;
1003 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1004 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1005 return err;
1007 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1010 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1011 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1013 * This list is modified at module load time to reflect the
1014 * capabilities of the host cpu. This capabilities test skips MSRs that are
1015 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1016 * may depend on host virtualization features rather than host cpu features.
1019 static u32 msrs_to_save[] = {
1020 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1021 MSR_STAR,
1022 #ifdef CONFIG_X86_64
1023 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1024 #endif
1025 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1026 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1027 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1030 static unsigned num_msrs_to_save;
1032 static u32 emulated_msrs[] = {
1033 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1034 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1035 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1036 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1037 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1038 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1039 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1040 HV_X64_MSR_RESET,
1041 HV_X64_MSR_VP_INDEX,
1042 HV_X64_MSR_VP_RUNTIME,
1043 HV_X64_MSR_SCONTROL,
1044 HV_X64_MSR_STIMER0_CONFIG,
1045 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1046 MSR_KVM_PV_EOI_EN,
1048 MSR_IA32_TSC_ADJUST,
1049 MSR_IA32_TSCDEADLINE,
1050 MSR_IA32_MISC_ENABLE,
1051 MSR_IA32_MCG_STATUS,
1052 MSR_IA32_MCG_CTL,
1053 MSR_IA32_MCG_EXT_CTL,
1054 MSR_IA32_SMBASE,
1055 MSR_PLATFORM_INFO,
1056 MSR_MISC_FEATURES_ENABLES,
1057 MSR_AMD64_VIRT_SPEC_CTRL,
1060 static unsigned num_emulated_msrs;
1063 * List of msr numbers which are used to expose MSR-based features that
1064 * can be used by a hypervisor to validate requested CPU features.
1066 static u32 msr_based_features[] = {
1067 MSR_F10H_DECFG,
1068 MSR_IA32_UCODE_REV,
1069 MSR_IA32_ARCH_CAPABILITIES,
1072 static unsigned int num_msr_based_features;
1074 u64 kvm_get_arch_capabilities(void)
1076 u64 data;
1078 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1081 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1082 * the nested hypervisor runs with NX huge pages. If it is not,
1083 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1084 * L1 guests, so it need not worry about its own (L2) guests.
1086 data |= ARCH_CAP_PSCHANGE_MC_NO;
1089 * If we're doing cache flushes (either "always" or "cond")
1090 * we will do one whenever the guest does a vmlaunch/vmresume.
1091 * If an outer hypervisor is doing the cache flush for us
1092 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1093 * capability to the guest too, and if EPT is disabled we're not
1094 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1095 * require a nested hypervisor to do a flush of its own.
1097 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1098 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1100 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1101 data |= ARCH_CAP_RDCL_NO;
1102 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1103 data |= ARCH_CAP_SSB_NO;
1104 if (!boot_cpu_has_bug(X86_BUG_MDS))
1105 data |= ARCH_CAP_MDS_NO;
1108 * On TAA affected systems, export MDS_NO=0 when:
1109 * - TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
1110 * - Updated microcode is present. This is detected by
1111 * the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
1112 * that VERW clears CPU buffers.
1114 * When MDS_NO=0 is exported, guests deploy clear CPU buffer
1115 * mitigation and don't complain:
1117 * "Vulnerable: Clear CPU buffers attempted, no microcode"
1119 * If TSX is disabled on the system, guests are also mitigated against
1120 * TAA and clear CPU buffer mitigation is not required for guests.
1122 if (!boot_cpu_has(X86_FEATURE_RTM))
1123 data &= ~ARCH_CAP_TAA_NO;
1124 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1125 data |= ARCH_CAP_TAA_NO;
1126 else if (data & ARCH_CAP_TSX_CTRL_MSR)
1127 data &= ~ARCH_CAP_MDS_NO;
1129 /* KVM does not emulate MSR_IA32_TSX_CTRL. */
1130 data &= ~ARCH_CAP_TSX_CTRL_MSR;
1131 return data;
1134 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1136 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1138 switch (msr->index) {
1139 case MSR_IA32_ARCH_CAPABILITIES:
1140 msr->data = kvm_get_arch_capabilities();
1141 break;
1142 case MSR_IA32_UCODE_REV:
1143 rdmsrl_safe(msr->index, &msr->data);
1144 break;
1145 default:
1146 if (kvm_x86_ops->get_msr_feature(msr))
1147 return 1;
1149 return 0;
1152 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1154 struct kvm_msr_entry msr;
1155 int r;
1157 msr.index = index;
1158 r = kvm_get_msr_feature(&msr);
1159 if (r)
1160 return r;
1162 *data = msr.data;
1164 return 0;
1167 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1169 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1170 return false;
1172 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1173 return false;
1175 return true;
1178 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1180 if (efer & efer_reserved_bits)
1181 return false;
1183 return __kvm_valid_efer(vcpu, efer);
1185 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1187 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1189 u64 old_efer = vcpu->arch.efer;
1190 u64 efer = msr_info->data;
1192 if (efer & efer_reserved_bits)
1193 return 1;
1195 if (!msr_info->host_initiated) {
1196 if (!__kvm_valid_efer(vcpu, efer))
1197 return 1;
1199 if (is_paging(vcpu) &&
1200 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1201 return 1;
1204 efer &= ~EFER_LMA;
1205 efer |= vcpu->arch.efer & EFER_LMA;
1207 kvm_x86_ops->set_efer(vcpu, efer);
1209 /* Update reserved bits */
1210 if ((efer ^ old_efer) & EFER_NX)
1211 kvm_mmu_reset_context(vcpu);
1213 return 0;
1216 void kvm_enable_efer_bits(u64 mask)
1218 efer_reserved_bits &= ~mask;
1220 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1223 * Writes msr value into into the appropriate "register".
1224 * Returns 0 on success, non-0 otherwise.
1225 * Assumes vcpu_load() was already called.
1227 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1229 switch (msr->index) {
1230 case MSR_FS_BASE:
1231 case MSR_GS_BASE:
1232 case MSR_KERNEL_GS_BASE:
1233 case MSR_CSTAR:
1234 case MSR_LSTAR:
1235 if (is_noncanonical_address(msr->data, vcpu))
1236 return 1;
1237 break;
1238 case MSR_IA32_SYSENTER_EIP:
1239 case MSR_IA32_SYSENTER_ESP:
1241 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1242 * non-canonical address is written on Intel but not on
1243 * AMD (which ignores the top 32-bits, because it does
1244 * not implement 64-bit SYSENTER).
1246 * 64-bit code should hence be able to write a non-canonical
1247 * value on AMD. Making the address canonical ensures that
1248 * vmentry does not fail on Intel after writing a non-canonical
1249 * value, and that something deterministic happens if the guest
1250 * invokes 64-bit SYSENTER.
1252 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1254 return kvm_x86_ops->set_msr(vcpu, msr);
1256 EXPORT_SYMBOL_GPL(kvm_set_msr);
1259 * Adapt set_msr() to msr_io()'s calling convention
1261 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1263 struct msr_data msr;
1264 int r;
1266 msr.index = index;
1267 msr.host_initiated = true;
1268 r = kvm_get_msr(vcpu, &msr);
1269 if (r)
1270 return r;
1272 *data = msr.data;
1273 return 0;
1276 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1278 struct msr_data msr;
1280 msr.data = *data;
1281 msr.index = index;
1282 msr.host_initiated = true;
1283 return kvm_set_msr(vcpu, &msr);
1286 #ifdef CONFIG_X86_64
1287 struct pvclock_gtod_data {
1288 seqcount_t seq;
1290 struct { /* extract of a clocksource struct */
1291 int vclock_mode;
1292 u64 cycle_last;
1293 u64 mask;
1294 u32 mult;
1295 u32 shift;
1296 } clock;
1298 u64 boot_ns;
1299 u64 nsec_base;
1300 u64 wall_time_sec;
1303 static struct pvclock_gtod_data pvclock_gtod_data;
1305 static void update_pvclock_gtod(struct timekeeper *tk)
1307 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1308 u64 boot_ns;
1310 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1312 write_seqcount_begin(&vdata->seq);
1314 /* copy pvclock gtod data */
1315 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1316 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1317 vdata->clock.mask = tk->tkr_mono.mask;
1318 vdata->clock.mult = tk->tkr_mono.mult;
1319 vdata->clock.shift = tk->tkr_mono.shift;
1321 vdata->boot_ns = boot_ns;
1322 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1324 vdata->wall_time_sec = tk->xtime_sec;
1326 write_seqcount_end(&vdata->seq);
1328 #endif
1330 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1333 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1334 * vcpu_enter_guest. This function is only called from
1335 * the physical CPU that is running vcpu.
1337 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1340 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1342 int version;
1343 int r;
1344 struct pvclock_wall_clock wc;
1345 struct timespec64 boot;
1347 if (!wall_clock)
1348 return;
1350 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1351 if (r)
1352 return;
1354 if (version & 1)
1355 ++version; /* first time write, random junk */
1357 ++version;
1359 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1360 return;
1363 * The guest calculates current wall clock time by adding
1364 * system time (updated by kvm_guest_time_update below) to the
1365 * wall clock specified here. guest system time equals host
1366 * system time for us, thus we must fill in host boot time here.
1368 getboottime64(&boot);
1370 if (kvm->arch.kvmclock_offset) {
1371 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1372 boot = timespec64_sub(boot, ts);
1374 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1375 wc.nsec = boot.tv_nsec;
1376 wc.version = version;
1378 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1380 version++;
1381 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1384 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1386 do_shl32_div32(dividend, divisor);
1387 return dividend;
1390 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1391 s8 *pshift, u32 *pmultiplier)
1393 uint64_t scaled64;
1394 int32_t shift = 0;
1395 uint64_t tps64;
1396 uint32_t tps32;
1398 tps64 = base_hz;
1399 scaled64 = scaled_hz;
1400 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1401 tps64 >>= 1;
1402 shift--;
1405 tps32 = (uint32_t)tps64;
1406 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1407 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1408 scaled64 >>= 1;
1409 else
1410 tps32 <<= 1;
1411 shift++;
1414 *pshift = shift;
1415 *pmultiplier = div_frac(scaled64, tps32);
1417 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1418 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1421 #ifdef CONFIG_X86_64
1422 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1423 #endif
1425 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1426 static unsigned long max_tsc_khz;
1428 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1430 u64 v = (u64)khz * (1000000 + ppm);
1431 do_div(v, 1000000);
1432 return v;
1435 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1437 u64 ratio;
1439 /* Guest TSC same frequency as host TSC? */
1440 if (!scale) {
1441 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1442 return 0;
1445 /* TSC scaling supported? */
1446 if (!kvm_has_tsc_control) {
1447 if (user_tsc_khz > tsc_khz) {
1448 vcpu->arch.tsc_catchup = 1;
1449 vcpu->arch.tsc_always_catchup = 1;
1450 return 0;
1451 } else {
1452 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1453 return -1;
1457 /* TSC scaling required - calculate ratio */
1458 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1459 user_tsc_khz, tsc_khz);
1461 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1462 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1463 user_tsc_khz);
1464 return -1;
1467 vcpu->arch.tsc_scaling_ratio = ratio;
1468 return 0;
1471 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1473 u32 thresh_lo, thresh_hi;
1474 int use_scaling = 0;
1476 /* tsc_khz can be zero if TSC calibration fails */
1477 if (user_tsc_khz == 0) {
1478 /* set tsc_scaling_ratio to a safe value */
1479 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1480 return -1;
1483 /* Compute a scale to convert nanoseconds in TSC cycles */
1484 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1485 &vcpu->arch.virtual_tsc_shift,
1486 &vcpu->arch.virtual_tsc_mult);
1487 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1490 * Compute the variation in TSC rate which is acceptable
1491 * within the range of tolerance and decide if the
1492 * rate being applied is within that bounds of the hardware
1493 * rate. If so, no scaling or compensation need be done.
1495 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1496 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1497 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1498 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1499 use_scaling = 1;
1501 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1504 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1506 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1507 vcpu->arch.virtual_tsc_mult,
1508 vcpu->arch.virtual_tsc_shift);
1509 tsc += vcpu->arch.this_tsc_write;
1510 return tsc;
1513 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1515 #ifdef CONFIG_X86_64
1516 bool vcpus_matched;
1517 struct kvm_arch *ka = &vcpu->kvm->arch;
1518 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1520 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1521 atomic_read(&vcpu->kvm->online_vcpus));
1524 * Once the masterclock is enabled, always perform request in
1525 * order to update it.
1527 * In order to enable masterclock, the host clocksource must be TSC
1528 * and the vcpus need to have matched TSCs. When that happens,
1529 * perform request to enable masterclock.
1531 if (ka->use_master_clock ||
1532 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1533 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1535 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1536 atomic_read(&vcpu->kvm->online_vcpus),
1537 ka->use_master_clock, gtod->clock.vclock_mode);
1538 #endif
1541 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1543 u64 curr_offset = vcpu->arch.tsc_offset;
1544 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1548 * Multiply tsc by a fixed point number represented by ratio.
1550 * The most significant 64-N bits (mult) of ratio represent the
1551 * integral part of the fixed point number; the remaining N bits
1552 * (frac) represent the fractional part, ie. ratio represents a fixed
1553 * point number (mult + frac * 2^(-N)).
1555 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1557 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1559 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1562 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1564 u64 _tsc = tsc;
1565 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1567 if (ratio != kvm_default_tsc_scaling_ratio)
1568 _tsc = __scale_tsc(ratio, tsc);
1570 return _tsc;
1572 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1574 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1576 u64 tsc;
1578 tsc = kvm_scale_tsc(vcpu, rdtsc());
1580 return target_tsc - tsc;
1583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1585 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1587 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1589 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1591 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1592 vcpu->arch.tsc_offset = offset;
1595 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1597 struct kvm *kvm = vcpu->kvm;
1598 u64 offset, ns, elapsed;
1599 unsigned long flags;
1600 bool matched;
1601 bool already_matched;
1602 u64 data = msr->data;
1603 bool synchronizing = false;
1605 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1606 offset = kvm_compute_tsc_offset(vcpu, data);
1607 ns = ktime_get_boot_ns();
1608 elapsed = ns - kvm->arch.last_tsc_nsec;
1610 if (vcpu->arch.virtual_tsc_khz) {
1611 if (data == 0 && msr->host_initiated) {
1613 * detection of vcpu initialization -- need to sync
1614 * with other vCPUs. This particularly helps to keep
1615 * kvm_clock stable after CPU hotplug
1617 synchronizing = true;
1618 } else {
1619 u64 tsc_exp = kvm->arch.last_tsc_write +
1620 nsec_to_cycles(vcpu, elapsed);
1621 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1623 * Special case: TSC write with a small delta (1 second)
1624 * of virtual cycle time against real time is
1625 * interpreted as an attempt to synchronize the CPU.
1627 synchronizing = data < tsc_exp + tsc_hz &&
1628 data + tsc_hz > tsc_exp;
1633 * For a reliable TSC, we can match TSC offsets, and for an unstable
1634 * TSC, we add elapsed time in this computation. We could let the
1635 * compensation code attempt to catch up if we fall behind, but
1636 * it's better to try to match offsets from the beginning.
1638 if (synchronizing &&
1639 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1640 if (!check_tsc_unstable()) {
1641 offset = kvm->arch.cur_tsc_offset;
1642 pr_debug("kvm: matched tsc offset for %llu\n", data);
1643 } else {
1644 u64 delta = nsec_to_cycles(vcpu, elapsed);
1645 data += delta;
1646 offset = kvm_compute_tsc_offset(vcpu, data);
1647 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1649 matched = true;
1650 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1651 } else {
1653 * We split periods of matched TSC writes into generations.
1654 * For each generation, we track the original measured
1655 * nanosecond time, offset, and write, so if TSCs are in
1656 * sync, we can match exact offset, and if not, we can match
1657 * exact software computation in compute_guest_tsc()
1659 * These values are tracked in kvm->arch.cur_xxx variables.
1661 kvm->arch.cur_tsc_generation++;
1662 kvm->arch.cur_tsc_nsec = ns;
1663 kvm->arch.cur_tsc_write = data;
1664 kvm->arch.cur_tsc_offset = offset;
1665 matched = false;
1666 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1667 kvm->arch.cur_tsc_generation, data);
1671 * We also track th most recent recorded KHZ, write and time to
1672 * allow the matching interval to be extended at each write.
1674 kvm->arch.last_tsc_nsec = ns;
1675 kvm->arch.last_tsc_write = data;
1676 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1678 vcpu->arch.last_guest_tsc = data;
1680 /* Keep track of which generation this VCPU has synchronized to */
1681 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1682 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1683 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1685 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1686 update_ia32_tsc_adjust_msr(vcpu, offset);
1688 kvm_vcpu_write_tsc_offset(vcpu, offset);
1689 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1691 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1692 if (!matched) {
1693 kvm->arch.nr_vcpus_matched_tsc = 0;
1694 } else if (!already_matched) {
1695 kvm->arch.nr_vcpus_matched_tsc++;
1698 kvm_track_tsc_matching(vcpu);
1699 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1702 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1704 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1705 s64 adjustment)
1707 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1710 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1712 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1713 WARN_ON(adjustment < 0);
1714 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1715 adjust_tsc_offset_guest(vcpu, adjustment);
1718 #ifdef CONFIG_X86_64
1720 static u64 read_tsc(void)
1722 u64 ret = (u64)rdtsc_ordered();
1723 u64 last = pvclock_gtod_data.clock.cycle_last;
1725 if (likely(ret >= last))
1726 return ret;
1729 * GCC likes to generate cmov here, but this branch is extremely
1730 * predictable (it's just a function of time and the likely is
1731 * very likely) and there's a data dependence, so force GCC
1732 * to generate a branch instead. I don't barrier() because
1733 * we don't actually need a barrier, and if this function
1734 * ever gets inlined it will generate worse code.
1736 asm volatile ("");
1737 return last;
1740 static inline u64 vgettsc(u64 *cycle_now)
1742 long v;
1743 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1745 *cycle_now = read_tsc();
1747 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1748 return v * gtod->clock.mult;
1751 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1753 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1754 unsigned long seq;
1755 int mode;
1756 u64 ns;
1758 do {
1759 seq = read_seqcount_begin(&gtod->seq);
1760 mode = gtod->clock.vclock_mode;
1761 ns = gtod->nsec_base;
1762 ns += vgettsc(cycle_now);
1763 ns >>= gtod->clock.shift;
1764 ns += gtod->boot_ns;
1765 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1766 *t = ns;
1768 return mode;
1771 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1773 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1774 unsigned long seq;
1775 int mode;
1776 u64 ns;
1778 do {
1779 seq = read_seqcount_begin(&gtod->seq);
1780 mode = gtod->clock.vclock_mode;
1781 ts->tv_sec = gtod->wall_time_sec;
1782 ns = gtod->nsec_base;
1783 ns += vgettsc(cycle_now);
1784 ns >>= gtod->clock.shift;
1785 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1787 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1788 ts->tv_nsec = ns;
1790 return mode;
1793 /* returns true if host is using tsc clocksource */
1794 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1796 /* checked again under seqlock below */
1797 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1798 return false;
1800 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1803 /* returns true if host is using tsc clocksource */
1804 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1805 u64 *cycle_now)
1807 /* checked again under seqlock below */
1808 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1809 return false;
1811 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1813 #endif
1817 * Assuming a stable TSC across physical CPUS, and a stable TSC
1818 * across virtual CPUs, the following condition is possible.
1819 * Each numbered line represents an event visible to both
1820 * CPUs at the next numbered event.
1822 * "timespecX" represents host monotonic time. "tscX" represents
1823 * RDTSC value.
1825 * VCPU0 on CPU0 | VCPU1 on CPU1
1827 * 1. read timespec0,tsc0
1828 * 2. | timespec1 = timespec0 + N
1829 * | tsc1 = tsc0 + M
1830 * 3. transition to guest | transition to guest
1831 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1832 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1833 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1835 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1837 * - ret0 < ret1
1838 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1839 * ...
1840 * - 0 < N - M => M < N
1842 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1843 * always the case (the difference between two distinct xtime instances
1844 * might be smaller then the difference between corresponding TSC reads,
1845 * when updating guest vcpus pvclock areas).
1847 * To avoid that problem, do not allow visibility of distinct
1848 * system_timestamp/tsc_timestamp values simultaneously: use a master
1849 * copy of host monotonic time values. Update that master copy
1850 * in lockstep.
1852 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1856 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1858 #ifdef CONFIG_X86_64
1859 struct kvm_arch *ka = &kvm->arch;
1860 int vclock_mode;
1861 bool host_tsc_clocksource, vcpus_matched;
1863 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1864 atomic_read(&kvm->online_vcpus));
1867 * If the host uses TSC clock, then passthrough TSC as stable
1868 * to the guest.
1870 host_tsc_clocksource = kvm_get_time_and_clockread(
1871 &ka->master_kernel_ns,
1872 &ka->master_cycle_now);
1874 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1875 && !ka->backwards_tsc_observed
1876 && !ka->boot_vcpu_runs_old_kvmclock;
1878 if (ka->use_master_clock)
1879 atomic_set(&kvm_guest_has_master_clock, 1);
1881 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1882 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1883 vcpus_matched);
1884 #endif
1887 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1889 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1892 static void kvm_gen_update_masterclock(struct kvm *kvm)
1894 #ifdef CONFIG_X86_64
1895 int i;
1896 struct kvm_vcpu *vcpu;
1897 struct kvm_arch *ka = &kvm->arch;
1899 spin_lock(&ka->pvclock_gtod_sync_lock);
1900 kvm_make_mclock_inprogress_request(kvm);
1901 /* no guest entries from this point */
1902 pvclock_update_vm_gtod_copy(kvm);
1904 kvm_for_each_vcpu(i, vcpu, kvm)
1905 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1907 /* guest entries allowed */
1908 kvm_for_each_vcpu(i, vcpu, kvm)
1909 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1911 spin_unlock(&ka->pvclock_gtod_sync_lock);
1912 #endif
1915 u64 get_kvmclock_ns(struct kvm *kvm)
1917 struct kvm_arch *ka = &kvm->arch;
1918 struct pvclock_vcpu_time_info hv_clock;
1919 u64 ret;
1921 spin_lock(&ka->pvclock_gtod_sync_lock);
1922 if (!ka->use_master_clock) {
1923 spin_unlock(&ka->pvclock_gtod_sync_lock);
1924 return ktime_get_boot_ns() + ka->kvmclock_offset;
1927 hv_clock.tsc_timestamp = ka->master_cycle_now;
1928 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1929 spin_unlock(&ka->pvclock_gtod_sync_lock);
1931 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1932 get_cpu();
1934 if (__this_cpu_read(cpu_tsc_khz)) {
1935 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1936 &hv_clock.tsc_shift,
1937 &hv_clock.tsc_to_system_mul);
1938 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1939 } else
1940 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1942 put_cpu();
1944 return ret;
1947 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1949 struct kvm_vcpu_arch *vcpu = &v->arch;
1950 struct pvclock_vcpu_time_info guest_hv_clock;
1952 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1953 &guest_hv_clock, sizeof(guest_hv_clock))))
1954 return;
1956 /* This VCPU is paused, but it's legal for a guest to read another
1957 * VCPU's kvmclock, so we really have to follow the specification where
1958 * it says that version is odd if data is being modified, and even after
1959 * it is consistent.
1961 * Version field updates must be kept separate. This is because
1962 * kvm_write_guest_cached might use a "rep movs" instruction, and
1963 * writes within a string instruction are weakly ordered. So there
1964 * are three writes overall.
1966 * As a small optimization, only write the version field in the first
1967 * and third write. The vcpu->pv_time cache is still valid, because the
1968 * version field is the first in the struct.
1970 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1972 if (guest_hv_clock.version & 1)
1973 ++guest_hv_clock.version; /* first time write, random junk */
1975 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1976 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1977 &vcpu->hv_clock,
1978 sizeof(vcpu->hv_clock.version));
1980 smp_wmb();
1982 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1983 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1985 if (vcpu->pvclock_set_guest_stopped_request) {
1986 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1987 vcpu->pvclock_set_guest_stopped_request = false;
1990 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1992 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1993 &vcpu->hv_clock,
1994 sizeof(vcpu->hv_clock));
1996 smp_wmb();
1998 vcpu->hv_clock.version++;
1999 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2000 &vcpu->hv_clock,
2001 sizeof(vcpu->hv_clock.version));
2004 static int kvm_guest_time_update(struct kvm_vcpu *v)
2006 unsigned long flags, tgt_tsc_khz;
2007 struct kvm_vcpu_arch *vcpu = &v->arch;
2008 struct kvm_arch *ka = &v->kvm->arch;
2009 s64 kernel_ns;
2010 u64 tsc_timestamp, host_tsc;
2011 u8 pvclock_flags;
2012 bool use_master_clock;
2014 kernel_ns = 0;
2015 host_tsc = 0;
2018 * If the host uses TSC clock, then passthrough TSC as stable
2019 * to the guest.
2021 spin_lock(&ka->pvclock_gtod_sync_lock);
2022 use_master_clock = ka->use_master_clock;
2023 if (use_master_clock) {
2024 host_tsc = ka->master_cycle_now;
2025 kernel_ns = ka->master_kernel_ns;
2027 spin_unlock(&ka->pvclock_gtod_sync_lock);
2029 /* Keep irq disabled to prevent changes to the clock */
2030 local_irq_save(flags);
2031 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2032 if (unlikely(tgt_tsc_khz == 0)) {
2033 local_irq_restore(flags);
2034 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2035 return 1;
2037 if (!use_master_clock) {
2038 host_tsc = rdtsc();
2039 kernel_ns = ktime_get_boot_ns();
2042 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2045 * We may have to catch up the TSC to match elapsed wall clock
2046 * time for two reasons, even if kvmclock is used.
2047 * 1) CPU could have been running below the maximum TSC rate
2048 * 2) Broken TSC compensation resets the base at each VCPU
2049 * entry to avoid unknown leaps of TSC even when running
2050 * again on the same CPU. This may cause apparent elapsed
2051 * time to disappear, and the guest to stand still or run
2052 * very slowly.
2054 if (vcpu->tsc_catchup) {
2055 u64 tsc = compute_guest_tsc(v, kernel_ns);
2056 if (tsc > tsc_timestamp) {
2057 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2058 tsc_timestamp = tsc;
2062 local_irq_restore(flags);
2064 /* With all the info we got, fill in the values */
2066 if (kvm_has_tsc_control)
2067 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2069 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2070 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2071 &vcpu->hv_clock.tsc_shift,
2072 &vcpu->hv_clock.tsc_to_system_mul);
2073 vcpu->hw_tsc_khz = tgt_tsc_khz;
2076 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2077 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2078 vcpu->last_guest_tsc = tsc_timestamp;
2080 /* If the host uses TSC clocksource, then it is stable */
2081 pvclock_flags = 0;
2082 if (use_master_clock)
2083 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2085 vcpu->hv_clock.flags = pvclock_flags;
2087 if (vcpu->pv_time_enabled)
2088 kvm_setup_pvclock_page(v);
2089 if (v == kvm_get_vcpu(v->kvm, 0))
2090 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2091 return 0;
2095 * kvmclock updates which are isolated to a given vcpu, such as
2096 * vcpu->cpu migration, should not allow system_timestamp from
2097 * the rest of the vcpus to remain static. Otherwise ntp frequency
2098 * correction applies to one vcpu's system_timestamp but not
2099 * the others.
2101 * So in those cases, request a kvmclock update for all vcpus.
2102 * We need to rate-limit these requests though, as they can
2103 * considerably slow guests that have a large number of vcpus.
2104 * The time for a remote vcpu to update its kvmclock is bound
2105 * by the delay we use to rate-limit the updates.
2108 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2110 static void kvmclock_update_fn(struct work_struct *work)
2112 int i;
2113 struct delayed_work *dwork = to_delayed_work(work);
2114 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2115 kvmclock_update_work);
2116 struct kvm *kvm = container_of(ka, struct kvm, arch);
2117 struct kvm_vcpu *vcpu;
2119 kvm_for_each_vcpu(i, vcpu, kvm) {
2120 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2121 kvm_vcpu_kick(vcpu);
2125 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2127 struct kvm *kvm = v->kvm;
2129 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2130 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2131 KVMCLOCK_UPDATE_DELAY);
2134 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2136 static void kvmclock_sync_fn(struct work_struct *work)
2138 struct delayed_work *dwork = to_delayed_work(work);
2139 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2140 kvmclock_sync_work);
2141 struct kvm *kvm = container_of(ka, struct kvm, arch);
2143 if (!kvmclock_periodic_sync)
2144 return;
2146 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2147 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2148 KVMCLOCK_SYNC_PERIOD);
2151 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2153 u64 mcg_cap = vcpu->arch.mcg_cap;
2154 unsigned bank_num = mcg_cap & 0xff;
2156 switch (msr) {
2157 case MSR_IA32_MCG_STATUS:
2158 vcpu->arch.mcg_status = data;
2159 break;
2160 case MSR_IA32_MCG_CTL:
2161 if (!(mcg_cap & MCG_CTL_P))
2162 return 1;
2163 if (data != 0 && data != ~(u64)0)
2164 return -1;
2165 vcpu->arch.mcg_ctl = data;
2166 break;
2167 default:
2168 if (msr >= MSR_IA32_MC0_CTL &&
2169 msr < MSR_IA32_MCx_CTL(bank_num)) {
2170 u32 offset = array_index_nospec(
2171 msr - MSR_IA32_MC0_CTL,
2172 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2174 /* only 0 or all 1s can be written to IA32_MCi_CTL
2175 * some Linux kernels though clear bit 10 in bank 4 to
2176 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2177 * this to avoid an uncatched #GP in the guest
2179 if ((offset & 0x3) == 0 &&
2180 data != 0 && (data | (1 << 10)) != ~(u64)0)
2181 return -1;
2182 vcpu->arch.mce_banks[offset] = data;
2183 break;
2185 return 1;
2187 return 0;
2190 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2192 struct kvm *kvm = vcpu->kvm;
2193 int lm = is_long_mode(vcpu);
2194 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2195 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2196 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2197 : kvm->arch.xen_hvm_config.blob_size_32;
2198 u32 page_num = data & ~PAGE_MASK;
2199 u64 page_addr = data & PAGE_MASK;
2200 u8 *page;
2201 int r;
2203 r = -E2BIG;
2204 if (page_num >= blob_size)
2205 goto out;
2206 r = -ENOMEM;
2207 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2208 if (IS_ERR(page)) {
2209 r = PTR_ERR(page);
2210 goto out;
2212 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2213 goto out_free;
2214 r = 0;
2215 out_free:
2216 kfree(page);
2217 out:
2218 return r;
2221 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2223 gpa_t gpa = data & ~0x3f;
2225 /* Bits 3:5 are reserved, Should be zero */
2226 if (data & 0x38)
2227 return 1;
2229 vcpu->arch.apf.msr_val = data;
2231 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2232 kvm_clear_async_pf_completion_queue(vcpu);
2233 kvm_async_pf_hash_reset(vcpu);
2234 return 0;
2237 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2238 sizeof(u32)))
2239 return 1;
2241 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2242 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2243 kvm_async_pf_wakeup_all(vcpu);
2244 return 0;
2247 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2249 vcpu->arch.pv_time_enabled = false;
2252 static void record_steal_time(struct kvm_vcpu *vcpu)
2254 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2255 return;
2257 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2258 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2259 return;
2261 vcpu->arch.st.steal.preempted = 0;
2263 if (vcpu->arch.st.steal.version & 1)
2264 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2266 vcpu->arch.st.steal.version += 1;
2268 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2269 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2271 smp_wmb();
2273 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2274 vcpu->arch.st.last_steal;
2275 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2277 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2278 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2280 smp_wmb();
2282 vcpu->arch.st.steal.version += 1;
2284 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2285 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2288 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2290 bool pr = false;
2291 u32 msr = msr_info->index;
2292 u64 data = msr_info->data;
2294 switch (msr) {
2295 case MSR_AMD64_NB_CFG:
2296 case MSR_IA32_UCODE_WRITE:
2297 case MSR_VM_HSAVE_PA:
2298 case MSR_AMD64_PATCH_LOADER:
2299 case MSR_AMD64_BU_CFG2:
2300 case MSR_AMD64_DC_CFG:
2301 case MSR_F15H_EX_CFG:
2302 break;
2304 case MSR_IA32_UCODE_REV:
2305 if (msr_info->host_initiated)
2306 vcpu->arch.microcode_version = data;
2307 break;
2308 case MSR_IA32_ARCH_CAPABILITIES:
2309 if (!msr_info->host_initiated)
2310 return 1;
2311 vcpu->arch.arch_capabilities = data;
2312 break;
2313 case MSR_EFER:
2314 return set_efer(vcpu, msr_info);
2315 case MSR_K7_HWCR:
2316 data &= ~(u64)0x40; /* ignore flush filter disable */
2317 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2318 data &= ~(u64)0x8; /* ignore TLB cache disable */
2319 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2320 if (data != 0) {
2321 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2322 data);
2323 return 1;
2325 break;
2326 case MSR_FAM10H_MMIO_CONF_BASE:
2327 if (data != 0) {
2328 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2329 "0x%llx\n", data);
2330 return 1;
2332 break;
2333 case MSR_IA32_DEBUGCTLMSR:
2334 if (!data) {
2335 /* We support the non-activated case already */
2336 break;
2337 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2338 /* Values other than LBR and BTF are vendor-specific,
2339 thus reserved and should throw a #GP */
2340 return 1;
2342 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2343 __func__, data);
2344 break;
2345 case 0x200 ... 0x2ff:
2346 return kvm_mtrr_set_msr(vcpu, msr, data);
2347 case MSR_IA32_APICBASE:
2348 return kvm_set_apic_base(vcpu, msr_info);
2349 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2350 return kvm_x2apic_msr_write(vcpu, msr, data);
2351 case MSR_IA32_TSCDEADLINE:
2352 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2353 break;
2354 case MSR_IA32_TSC_ADJUST:
2355 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2356 if (!msr_info->host_initiated) {
2357 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2358 adjust_tsc_offset_guest(vcpu, adj);
2360 vcpu->arch.ia32_tsc_adjust_msr = data;
2362 break;
2363 case MSR_IA32_MISC_ENABLE:
2364 vcpu->arch.ia32_misc_enable_msr = data;
2365 break;
2366 case MSR_IA32_SMBASE:
2367 if (!msr_info->host_initiated)
2368 return 1;
2369 vcpu->arch.smbase = data;
2370 break;
2371 case MSR_KVM_WALL_CLOCK_NEW:
2372 case MSR_KVM_WALL_CLOCK:
2373 vcpu->kvm->arch.wall_clock = data;
2374 kvm_write_wall_clock(vcpu->kvm, data);
2375 break;
2376 case MSR_KVM_SYSTEM_TIME_NEW:
2377 case MSR_KVM_SYSTEM_TIME: {
2378 struct kvm_arch *ka = &vcpu->kvm->arch;
2380 kvmclock_reset(vcpu);
2382 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2383 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2385 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2386 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2388 ka->boot_vcpu_runs_old_kvmclock = tmp;
2391 vcpu->arch.time = data;
2392 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2394 /* we verify if the enable bit is set... */
2395 if (!(data & 1))
2396 break;
2398 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2399 &vcpu->arch.pv_time, data & ~1ULL,
2400 sizeof(struct pvclock_vcpu_time_info)))
2401 vcpu->arch.pv_time_enabled = false;
2402 else
2403 vcpu->arch.pv_time_enabled = true;
2405 break;
2407 case MSR_KVM_ASYNC_PF_EN:
2408 if (kvm_pv_enable_async_pf(vcpu, data))
2409 return 1;
2410 break;
2411 case MSR_KVM_STEAL_TIME:
2413 if (unlikely(!sched_info_on()))
2414 return 1;
2416 if (data & KVM_STEAL_RESERVED_MASK)
2417 return 1;
2419 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2420 data & KVM_STEAL_VALID_BITS,
2421 sizeof(struct kvm_steal_time)))
2422 return 1;
2424 vcpu->arch.st.msr_val = data;
2426 if (!(data & KVM_MSR_ENABLED))
2427 break;
2429 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2431 break;
2432 case MSR_KVM_PV_EOI_EN:
2433 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2434 return 1;
2435 break;
2437 case MSR_IA32_MCG_CTL:
2438 case MSR_IA32_MCG_STATUS:
2439 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2440 return set_msr_mce(vcpu, msr, data);
2442 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2443 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2444 pr = true; /* fall through */
2445 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2446 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2447 if (kvm_pmu_is_valid_msr(vcpu, msr))
2448 return kvm_pmu_set_msr(vcpu, msr_info);
2450 if (pr || data != 0)
2451 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2452 "0x%x data 0x%llx\n", msr, data);
2453 break;
2454 case MSR_K7_CLK_CTL:
2456 * Ignore all writes to this no longer documented MSR.
2457 * Writes are only relevant for old K7 processors,
2458 * all pre-dating SVM, but a recommended workaround from
2459 * AMD for these chips. It is possible to specify the
2460 * affected processor models on the command line, hence
2461 * the need to ignore the workaround.
2463 break;
2464 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2465 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2466 case HV_X64_MSR_CRASH_CTL:
2467 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2468 return kvm_hv_set_msr_common(vcpu, msr, data,
2469 msr_info->host_initiated);
2470 case MSR_IA32_BBL_CR_CTL3:
2471 /* Drop writes to this legacy MSR -- see rdmsr
2472 * counterpart for further detail.
2474 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2475 break;
2476 case MSR_AMD64_OSVW_ID_LENGTH:
2477 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2478 return 1;
2479 vcpu->arch.osvw.length = data;
2480 break;
2481 case MSR_AMD64_OSVW_STATUS:
2482 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2483 return 1;
2484 vcpu->arch.osvw.status = data;
2485 break;
2486 case MSR_PLATFORM_INFO:
2487 if (!msr_info->host_initiated ||
2488 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2489 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2490 cpuid_fault_enabled(vcpu)))
2491 return 1;
2492 vcpu->arch.msr_platform_info = data;
2493 break;
2494 case MSR_MISC_FEATURES_ENABLES:
2495 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2496 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2497 !supports_cpuid_fault(vcpu)))
2498 return 1;
2499 vcpu->arch.msr_misc_features_enables = data;
2500 break;
2501 default:
2502 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2503 return xen_hvm_config(vcpu, data);
2504 if (kvm_pmu_is_valid_msr(vcpu, msr))
2505 return kvm_pmu_set_msr(vcpu, msr_info);
2506 if (!ignore_msrs) {
2507 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2508 msr, data);
2509 return 1;
2510 } else {
2511 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2512 msr, data);
2513 break;
2516 return 0;
2518 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2522 * Reads an msr value (of 'msr_index') into 'pdata'.
2523 * Returns 0 on success, non-0 otherwise.
2524 * Assumes vcpu_load() was already called.
2526 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2528 return kvm_x86_ops->get_msr(vcpu, msr);
2530 EXPORT_SYMBOL_GPL(kvm_get_msr);
2532 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2534 u64 data;
2535 u64 mcg_cap = vcpu->arch.mcg_cap;
2536 unsigned bank_num = mcg_cap & 0xff;
2538 switch (msr) {
2539 case MSR_IA32_P5_MC_ADDR:
2540 case MSR_IA32_P5_MC_TYPE:
2541 data = 0;
2542 break;
2543 case MSR_IA32_MCG_CAP:
2544 data = vcpu->arch.mcg_cap;
2545 break;
2546 case MSR_IA32_MCG_CTL:
2547 if (!(mcg_cap & MCG_CTL_P))
2548 return 1;
2549 data = vcpu->arch.mcg_ctl;
2550 break;
2551 case MSR_IA32_MCG_STATUS:
2552 data = vcpu->arch.mcg_status;
2553 break;
2554 default:
2555 if (msr >= MSR_IA32_MC0_CTL &&
2556 msr < MSR_IA32_MCx_CTL(bank_num)) {
2557 u32 offset = array_index_nospec(
2558 msr - MSR_IA32_MC0_CTL,
2559 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2561 data = vcpu->arch.mce_banks[offset];
2562 break;
2564 return 1;
2566 *pdata = data;
2567 return 0;
2570 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2572 switch (msr_info->index) {
2573 case MSR_IA32_PLATFORM_ID:
2574 case MSR_IA32_EBL_CR_POWERON:
2575 case MSR_IA32_DEBUGCTLMSR:
2576 case MSR_IA32_LASTBRANCHFROMIP:
2577 case MSR_IA32_LASTBRANCHTOIP:
2578 case MSR_IA32_LASTINTFROMIP:
2579 case MSR_IA32_LASTINTTOIP:
2580 case MSR_K8_SYSCFG:
2581 case MSR_K8_TSEG_ADDR:
2582 case MSR_K8_TSEG_MASK:
2583 case MSR_K7_HWCR:
2584 case MSR_VM_HSAVE_PA:
2585 case MSR_K8_INT_PENDING_MSG:
2586 case MSR_AMD64_NB_CFG:
2587 case MSR_FAM10H_MMIO_CONF_BASE:
2588 case MSR_AMD64_BU_CFG2:
2589 case MSR_IA32_PERF_CTL:
2590 case MSR_AMD64_DC_CFG:
2591 case MSR_F15H_EX_CFG:
2592 msr_info->data = 0;
2593 break;
2594 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2595 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2596 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2597 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2598 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2599 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2600 msr_info->data = 0;
2601 break;
2602 case MSR_IA32_UCODE_REV:
2603 msr_info->data = vcpu->arch.microcode_version;
2604 break;
2605 case MSR_IA32_ARCH_CAPABILITIES:
2606 if (!msr_info->host_initiated &&
2607 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2608 return 1;
2609 msr_info->data = vcpu->arch.arch_capabilities;
2610 break;
2611 case MSR_MTRRcap:
2612 case 0x200 ... 0x2ff:
2613 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2614 case 0xcd: /* fsb frequency */
2615 msr_info->data = 3;
2616 break;
2618 * MSR_EBC_FREQUENCY_ID
2619 * Conservative value valid for even the basic CPU models.
2620 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2621 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2622 * and 266MHz for model 3, or 4. Set Core Clock
2623 * Frequency to System Bus Frequency Ratio to 1 (bits
2624 * 31:24) even though these are only valid for CPU
2625 * models > 2, however guests may end up dividing or
2626 * multiplying by zero otherwise.
2628 case MSR_EBC_FREQUENCY_ID:
2629 msr_info->data = 1 << 24;
2630 break;
2631 case MSR_IA32_APICBASE:
2632 msr_info->data = kvm_get_apic_base(vcpu);
2633 break;
2634 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2635 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2636 break;
2637 case MSR_IA32_TSCDEADLINE:
2638 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2639 break;
2640 case MSR_IA32_TSC_ADJUST:
2641 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2642 break;
2643 case MSR_IA32_MISC_ENABLE:
2644 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2645 break;
2646 case MSR_IA32_SMBASE:
2647 if (!msr_info->host_initiated)
2648 return 1;
2649 msr_info->data = vcpu->arch.smbase;
2650 break;
2651 case MSR_IA32_PERF_STATUS:
2652 /* TSC increment by tick */
2653 msr_info->data = 1000ULL;
2654 /* CPU multiplier */
2655 msr_info->data |= (((uint64_t)4ULL) << 40);
2656 break;
2657 case MSR_EFER:
2658 msr_info->data = vcpu->arch.efer;
2659 break;
2660 case MSR_KVM_WALL_CLOCK:
2661 case MSR_KVM_WALL_CLOCK_NEW:
2662 msr_info->data = vcpu->kvm->arch.wall_clock;
2663 break;
2664 case MSR_KVM_SYSTEM_TIME:
2665 case MSR_KVM_SYSTEM_TIME_NEW:
2666 msr_info->data = vcpu->arch.time;
2667 break;
2668 case MSR_KVM_ASYNC_PF_EN:
2669 msr_info->data = vcpu->arch.apf.msr_val;
2670 break;
2671 case MSR_KVM_STEAL_TIME:
2672 msr_info->data = vcpu->arch.st.msr_val;
2673 break;
2674 case MSR_KVM_PV_EOI_EN:
2675 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2676 break;
2677 case MSR_IA32_P5_MC_ADDR:
2678 case MSR_IA32_P5_MC_TYPE:
2679 case MSR_IA32_MCG_CAP:
2680 case MSR_IA32_MCG_CTL:
2681 case MSR_IA32_MCG_STATUS:
2682 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2683 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2684 case MSR_K7_CLK_CTL:
2686 * Provide expected ramp-up count for K7. All other
2687 * are set to zero, indicating minimum divisors for
2688 * every field.
2690 * This prevents guest kernels on AMD host with CPU
2691 * type 6, model 8 and higher from exploding due to
2692 * the rdmsr failing.
2694 msr_info->data = 0x20000000;
2695 break;
2696 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2697 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2698 case HV_X64_MSR_CRASH_CTL:
2699 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2700 return kvm_hv_get_msr_common(vcpu,
2701 msr_info->index, &msr_info->data);
2702 break;
2703 case MSR_IA32_BBL_CR_CTL3:
2704 /* This legacy MSR exists but isn't fully documented in current
2705 * silicon. It is however accessed by winxp in very narrow
2706 * scenarios where it sets bit #19, itself documented as
2707 * a "reserved" bit. Best effort attempt to source coherent
2708 * read data here should the balance of the register be
2709 * interpreted by the guest:
2711 * L2 cache control register 3: 64GB range, 256KB size,
2712 * enabled, latency 0x1, configured
2714 msr_info->data = 0xbe702111;
2715 break;
2716 case MSR_AMD64_OSVW_ID_LENGTH:
2717 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2718 return 1;
2719 msr_info->data = vcpu->arch.osvw.length;
2720 break;
2721 case MSR_AMD64_OSVW_STATUS:
2722 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2723 return 1;
2724 msr_info->data = vcpu->arch.osvw.status;
2725 break;
2726 case MSR_PLATFORM_INFO:
2727 msr_info->data = vcpu->arch.msr_platform_info;
2728 break;
2729 case MSR_MISC_FEATURES_ENABLES:
2730 msr_info->data = vcpu->arch.msr_misc_features_enables;
2731 break;
2732 default:
2733 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2734 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2735 if (!ignore_msrs) {
2736 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2737 msr_info->index);
2738 return 1;
2739 } else {
2740 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2741 msr_info->data = 0;
2743 break;
2745 return 0;
2747 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2750 * Read or write a bunch of msrs. All parameters are kernel addresses.
2752 * @return number of msrs set successfully.
2754 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2755 struct kvm_msr_entry *entries,
2756 int (*do_msr)(struct kvm_vcpu *vcpu,
2757 unsigned index, u64 *data))
2759 int i;
2761 for (i = 0; i < msrs->nmsrs; ++i)
2762 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2763 break;
2765 return i;
2769 * Read or write a bunch of msrs. Parameters are user addresses.
2771 * @return number of msrs set successfully.
2773 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2774 int (*do_msr)(struct kvm_vcpu *vcpu,
2775 unsigned index, u64 *data),
2776 int writeback)
2778 struct kvm_msrs msrs;
2779 struct kvm_msr_entry *entries;
2780 int r, n;
2781 unsigned size;
2783 r = -EFAULT;
2784 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2785 goto out;
2787 r = -E2BIG;
2788 if (msrs.nmsrs >= MAX_IO_MSRS)
2789 goto out;
2791 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2792 entries = memdup_user(user_msrs->entries, size);
2793 if (IS_ERR(entries)) {
2794 r = PTR_ERR(entries);
2795 goto out;
2798 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2799 if (r < 0)
2800 goto out_free;
2802 r = -EFAULT;
2803 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2804 goto out_free;
2806 r = n;
2808 out_free:
2809 kfree(entries);
2810 out:
2811 return r;
2814 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2816 int r;
2818 switch (ext) {
2819 case KVM_CAP_IRQCHIP:
2820 case KVM_CAP_HLT:
2821 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2822 case KVM_CAP_SET_TSS_ADDR:
2823 case KVM_CAP_EXT_CPUID:
2824 case KVM_CAP_EXT_EMUL_CPUID:
2825 case KVM_CAP_CLOCKSOURCE:
2826 case KVM_CAP_PIT:
2827 case KVM_CAP_NOP_IO_DELAY:
2828 case KVM_CAP_MP_STATE:
2829 case KVM_CAP_SYNC_MMU:
2830 case KVM_CAP_USER_NMI:
2831 case KVM_CAP_REINJECT_CONTROL:
2832 case KVM_CAP_IRQ_INJECT_STATUS:
2833 case KVM_CAP_IOEVENTFD:
2834 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2835 case KVM_CAP_PIT2:
2836 case KVM_CAP_PIT_STATE2:
2837 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2838 case KVM_CAP_XEN_HVM:
2839 case KVM_CAP_VCPU_EVENTS:
2840 case KVM_CAP_HYPERV:
2841 case KVM_CAP_HYPERV_VAPIC:
2842 case KVM_CAP_HYPERV_SPIN:
2843 case KVM_CAP_HYPERV_SYNIC:
2844 case KVM_CAP_HYPERV_SYNIC2:
2845 case KVM_CAP_HYPERV_VP_INDEX:
2846 case KVM_CAP_PCI_SEGMENT:
2847 case KVM_CAP_DEBUGREGS:
2848 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2849 case KVM_CAP_XSAVE:
2850 case KVM_CAP_ASYNC_PF:
2851 case KVM_CAP_GET_TSC_KHZ:
2852 case KVM_CAP_KVMCLOCK_CTRL:
2853 case KVM_CAP_READONLY_MEM:
2854 case KVM_CAP_HYPERV_TIME:
2855 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2856 case KVM_CAP_TSC_DEADLINE_TIMER:
2857 case KVM_CAP_ENABLE_CAP_VM:
2858 case KVM_CAP_DISABLE_QUIRKS:
2859 case KVM_CAP_SET_BOOT_CPU_ID:
2860 case KVM_CAP_SPLIT_IRQCHIP:
2861 case KVM_CAP_IMMEDIATE_EXIT:
2862 case KVM_CAP_GET_MSR_FEATURES:
2863 r = 1;
2864 break;
2865 case KVM_CAP_ADJUST_CLOCK:
2866 r = KVM_CLOCK_TSC_STABLE;
2867 break;
2868 case KVM_CAP_X86_GUEST_MWAIT:
2869 r = kvm_mwait_in_guest();
2870 break;
2871 case KVM_CAP_X86_SMM:
2872 /* SMBASE is usually relocated above 1M on modern chipsets,
2873 * and SMM handlers might indeed rely on 4G segment limits,
2874 * so do not report SMM to be available if real mode is
2875 * emulated via vm86 mode. Still, do not go to great lengths
2876 * to avoid userspace's usage of the feature, because it is a
2877 * fringe case that is not enabled except via specific settings
2878 * of the module parameters.
2880 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2881 break;
2882 case KVM_CAP_VAPIC:
2883 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2884 break;
2885 case KVM_CAP_NR_VCPUS:
2886 r = KVM_SOFT_MAX_VCPUS;
2887 break;
2888 case KVM_CAP_MAX_VCPUS:
2889 r = KVM_MAX_VCPUS;
2890 break;
2891 case KVM_CAP_MAX_VCPU_ID:
2892 r = KVM_MAX_VCPU_ID;
2893 break;
2894 case KVM_CAP_NR_MEMSLOTS:
2895 r = KVM_USER_MEM_SLOTS;
2896 break;
2897 case KVM_CAP_PV_MMU: /* obsolete */
2898 r = 0;
2899 break;
2900 case KVM_CAP_MCE:
2901 r = KVM_MAX_MCE_BANKS;
2902 break;
2903 case KVM_CAP_XCRS:
2904 r = boot_cpu_has(X86_FEATURE_XSAVE);
2905 break;
2906 case KVM_CAP_TSC_CONTROL:
2907 r = kvm_has_tsc_control;
2908 break;
2909 case KVM_CAP_X2APIC_API:
2910 r = KVM_X2APIC_API_VALID_FLAGS;
2911 break;
2912 default:
2913 r = 0;
2914 break;
2916 return r;
2920 long kvm_arch_dev_ioctl(struct file *filp,
2921 unsigned int ioctl, unsigned long arg)
2923 void __user *argp = (void __user *)arg;
2924 long r;
2926 switch (ioctl) {
2927 case KVM_GET_MSR_INDEX_LIST: {
2928 struct kvm_msr_list __user *user_msr_list = argp;
2929 struct kvm_msr_list msr_list;
2930 unsigned n;
2932 r = -EFAULT;
2933 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2934 goto out;
2935 n = msr_list.nmsrs;
2936 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2937 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2938 goto out;
2939 r = -E2BIG;
2940 if (n < msr_list.nmsrs)
2941 goto out;
2942 r = -EFAULT;
2943 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2944 num_msrs_to_save * sizeof(u32)))
2945 goto out;
2946 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2947 &emulated_msrs,
2948 num_emulated_msrs * sizeof(u32)))
2949 goto out;
2950 r = 0;
2951 break;
2953 case KVM_GET_SUPPORTED_CPUID:
2954 case KVM_GET_EMULATED_CPUID: {
2955 struct kvm_cpuid2 __user *cpuid_arg = argp;
2956 struct kvm_cpuid2 cpuid;
2958 r = -EFAULT;
2959 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2960 goto out;
2962 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2963 ioctl);
2964 if (r)
2965 goto out;
2967 r = -EFAULT;
2968 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2969 goto out;
2970 r = 0;
2971 break;
2973 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2974 r = -EFAULT;
2975 if (copy_to_user(argp, &kvm_mce_cap_supported,
2976 sizeof(kvm_mce_cap_supported)))
2977 goto out;
2978 r = 0;
2979 break;
2980 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2981 struct kvm_msr_list __user *user_msr_list = argp;
2982 struct kvm_msr_list msr_list;
2983 unsigned int n;
2985 r = -EFAULT;
2986 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2987 goto out;
2988 n = msr_list.nmsrs;
2989 msr_list.nmsrs = num_msr_based_features;
2990 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2991 goto out;
2992 r = -E2BIG;
2993 if (n < msr_list.nmsrs)
2994 goto out;
2995 r = -EFAULT;
2996 if (copy_to_user(user_msr_list->indices, &msr_based_features,
2997 num_msr_based_features * sizeof(u32)))
2998 goto out;
2999 r = 0;
3000 break;
3002 case KVM_GET_MSRS:
3003 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3004 break;
3006 default:
3007 r = -EINVAL;
3009 out:
3010 return r;
3013 static void wbinvd_ipi(void *garbage)
3015 wbinvd();
3018 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3020 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3023 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3025 /* Address WBINVD may be executed by guest */
3026 if (need_emulate_wbinvd(vcpu)) {
3027 if (kvm_x86_ops->has_wbinvd_exit())
3028 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3029 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3030 smp_call_function_single(vcpu->cpu,
3031 wbinvd_ipi, NULL, 1);
3034 kvm_x86_ops->vcpu_load(vcpu, cpu);
3036 /* Apply any externally detected TSC adjustments (due to suspend) */
3037 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3038 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3039 vcpu->arch.tsc_offset_adjustment = 0;
3040 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3043 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
3044 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3045 rdtsc() - vcpu->arch.last_host_tsc;
3046 if (tsc_delta < 0)
3047 mark_tsc_unstable("KVM discovered backwards TSC");
3049 if (check_tsc_unstable()) {
3050 u64 offset = kvm_compute_tsc_offset(vcpu,
3051 vcpu->arch.last_guest_tsc);
3052 kvm_vcpu_write_tsc_offset(vcpu, offset);
3053 vcpu->arch.tsc_catchup = 1;
3056 if (kvm_lapic_hv_timer_in_use(vcpu))
3057 kvm_lapic_restart_hv_timer(vcpu);
3060 * On a host with synchronized TSC, there is no need to update
3061 * kvmclock on vcpu->cpu migration
3063 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3064 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3065 if (vcpu->cpu != cpu)
3066 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3067 vcpu->cpu = cpu;
3070 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3073 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3075 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3076 return;
3078 if (vcpu->arch.st.steal.preempted)
3079 return;
3081 vcpu->arch.st.steal.preempted = 1;
3083 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3084 &vcpu->arch.st.steal.preempted,
3085 offsetof(struct kvm_steal_time, preempted),
3086 sizeof(vcpu->arch.st.steal.preempted));
3089 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3091 int idx;
3093 if (vcpu->preempted)
3094 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3097 * Disable page faults because we're in atomic context here.
3098 * kvm_write_guest_offset_cached() would call might_fault()
3099 * that relies on pagefault_disable() to tell if there's a
3100 * bug. NOTE: the write to guest memory may not go through if
3101 * during postcopy live migration or if there's heavy guest
3102 * paging.
3104 pagefault_disable();
3106 * kvm_memslots() will be called by
3107 * kvm_write_guest_offset_cached() so take the srcu lock.
3109 idx = srcu_read_lock(&vcpu->kvm->srcu);
3110 kvm_steal_time_set_preempted(vcpu);
3111 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3112 pagefault_enable();
3113 kvm_x86_ops->vcpu_put(vcpu);
3114 vcpu->arch.last_host_tsc = rdtsc();
3116 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3117 * on every vmexit, but if not, we might have a stale dr6 from the
3118 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3120 set_debugreg(0, 6);
3123 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3124 struct kvm_lapic_state *s)
3126 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
3127 kvm_x86_ops->sync_pir_to_irr(vcpu);
3129 return kvm_apic_get_state(vcpu, s);
3132 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3133 struct kvm_lapic_state *s)
3135 int r;
3137 r = kvm_apic_set_state(vcpu, s);
3138 if (r)
3139 return r;
3140 update_cr8_intercept(vcpu);
3142 return 0;
3145 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3147 return (!lapic_in_kernel(vcpu) ||
3148 kvm_apic_accept_pic_intr(vcpu));
3152 * if userspace requested an interrupt window, check that the
3153 * interrupt window is open.
3155 * No need to exit to userspace if we already have an interrupt queued.
3157 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3159 return kvm_arch_interrupt_allowed(vcpu) &&
3160 !kvm_cpu_has_interrupt(vcpu) &&
3161 !kvm_event_needs_reinjection(vcpu) &&
3162 kvm_cpu_accept_dm_intr(vcpu);
3165 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3166 struct kvm_interrupt *irq)
3168 if (irq->irq >= KVM_NR_INTERRUPTS)
3169 return -EINVAL;
3171 if (!irqchip_in_kernel(vcpu->kvm)) {
3172 kvm_queue_interrupt(vcpu, irq->irq, false);
3173 kvm_make_request(KVM_REQ_EVENT, vcpu);
3174 return 0;
3178 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3179 * fail for in-kernel 8259.
3181 if (pic_in_kernel(vcpu->kvm))
3182 return -ENXIO;
3184 if (vcpu->arch.pending_external_vector != -1)
3185 return -EEXIST;
3187 vcpu->arch.pending_external_vector = irq->irq;
3188 kvm_make_request(KVM_REQ_EVENT, vcpu);
3189 return 0;
3192 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3194 kvm_inject_nmi(vcpu);
3196 return 0;
3199 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3201 kvm_make_request(KVM_REQ_SMI, vcpu);
3203 return 0;
3206 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3207 struct kvm_tpr_access_ctl *tac)
3209 if (tac->flags)
3210 return -EINVAL;
3211 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3212 return 0;
3215 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3216 u64 mcg_cap)
3218 int r;
3219 unsigned bank_num = mcg_cap & 0xff, bank;
3221 r = -EINVAL;
3222 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3223 goto out;
3224 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3225 goto out;
3226 r = 0;
3227 vcpu->arch.mcg_cap = mcg_cap;
3228 /* Init IA32_MCG_CTL to all 1s */
3229 if (mcg_cap & MCG_CTL_P)
3230 vcpu->arch.mcg_ctl = ~(u64)0;
3231 /* Init IA32_MCi_CTL to all 1s */
3232 for (bank = 0; bank < bank_num; bank++)
3233 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3235 if (kvm_x86_ops->setup_mce)
3236 kvm_x86_ops->setup_mce(vcpu);
3237 out:
3238 return r;
3241 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3242 struct kvm_x86_mce *mce)
3244 u64 mcg_cap = vcpu->arch.mcg_cap;
3245 unsigned bank_num = mcg_cap & 0xff;
3246 u64 *banks = vcpu->arch.mce_banks;
3248 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3249 return -EINVAL;
3251 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3252 * reporting is disabled
3254 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3255 vcpu->arch.mcg_ctl != ~(u64)0)
3256 return 0;
3257 banks += 4 * mce->bank;
3259 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3260 * reporting is disabled for the bank
3262 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3263 return 0;
3264 if (mce->status & MCI_STATUS_UC) {
3265 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3266 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3267 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3268 return 0;
3270 if (banks[1] & MCI_STATUS_VAL)
3271 mce->status |= MCI_STATUS_OVER;
3272 banks[2] = mce->addr;
3273 banks[3] = mce->misc;
3274 vcpu->arch.mcg_status = mce->mcg_status;
3275 banks[1] = mce->status;
3276 kvm_queue_exception(vcpu, MC_VECTOR);
3277 } else if (!(banks[1] & MCI_STATUS_VAL)
3278 || !(banks[1] & MCI_STATUS_UC)) {
3279 if (banks[1] & MCI_STATUS_VAL)
3280 mce->status |= MCI_STATUS_OVER;
3281 banks[2] = mce->addr;
3282 banks[3] = mce->misc;
3283 banks[1] = mce->status;
3284 } else
3285 banks[1] |= MCI_STATUS_OVER;
3286 return 0;
3289 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3290 struct kvm_vcpu_events *events)
3292 process_nmi(vcpu);
3294 * FIXME: pass injected and pending separately. This is only
3295 * needed for nested virtualization, whose state cannot be
3296 * migrated yet. For now we can combine them.
3298 events->exception.injected =
3299 (vcpu->arch.exception.pending ||
3300 vcpu->arch.exception.injected) &&
3301 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3302 events->exception.nr = vcpu->arch.exception.nr;
3303 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3304 events->exception.pad = 0;
3305 events->exception.error_code = vcpu->arch.exception.error_code;
3307 events->interrupt.injected =
3308 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3309 events->interrupt.nr = vcpu->arch.interrupt.nr;
3310 events->interrupt.soft = 0;
3311 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3313 events->nmi.injected = vcpu->arch.nmi_injected;
3314 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3315 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3316 events->nmi.pad = 0;
3318 events->sipi_vector = 0; /* never valid when reporting to user space */
3320 events->smi.smm = is_smm(vcpu);
3321 events->smi.pending = vcpu->arch.smi_pending;
3322 events->smi.smm_inside_nmi =
3323 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3324 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3326 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3327 | KVM_VCPUEVENT_VALID_SHADOW
3328 | KVM_VCPUEVENT_VALID_SMM);
3329 memset(&events->reserved, 0, sizeof(events->reserved));
3332 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3334 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3335 struct kvm_vcpu_events *events)
3337 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3338 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3339 | KVM_VCPUEVENT_VALID_SHADOW
3340 | KVM_VCPUEVENT_VALID_SMM))
3341 return -EINVAL;
3343 if (events->exception.injected &&
3344 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3345 is_guest_mode(vcpu)))
3346 return -EINVAL;
3348 /* INITs are latched while in SMM */
3349 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3350 (events->smi.smm || events->smi.pending) &&
3351 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3352 return -EINVAL;
3354 process_nmi(vcpu);
3355 vcpu->arch.exception.injected = false;
3356 vcpu->arch.exception.pending = events->exception.injected;
3357 vcpu->arch.exception.nr = events->exception.nr;
3358 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3359 vcpu->arch.exception.error_code = events->exception.error_code;
3361 vcpu->arch.interrupt.pending = events->interrupt.injected;
3362 vcpu->arch.interrupt.nr = events->interrupt.nr;
3363 vcpu->arch.interrupt.soft = events->interrupt.soft;
3364 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3365 kvm_x86_ops->set_interrupt_shadow(vcpu,
3366 events->interrupt.shadow);
3368 vcpu->arch.nmi_injected = events->nmi.injected;
3369 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3370 vcpu->arch.nmi_pending = events->nmi.pending;
3371 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3373 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3374 lapic_in_kernel(vcpu))
3375 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3377 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3378 u32 hflags = vcpu->arch.hflags;
3379 if (events->smi.smm)
3380 hflags |= HF_SMM_MASK;
3381 else
3382 hflags &= ~HF_SMM_MASK;
3383 kvm_set_hflags(vcpu, hflags);
3385 vcpu->arch.smi_pending = events->smi.pending;
3387 if (events->smi.smm) {
3388 if (events->smi.smm_inside_nmi)
3389 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3390 else
3391 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3392 if (lapic_in_kernel(vcpu)) {
3393 if (events->smi.latched_init)
3394 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3395 else
3396 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3401 kvm_make_request(KVM_REQ_EVENT, vcpu);
3403 return 0;
3406 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3407 struct kvm_debugregs *dbgregs)
3409 unsigned long val;
3411 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3412 kvm_get_dr(vcpu, 6, &val);
3413 dbgregs->dr6 = val;
3414 dbgregs->dr7 = vcpu->arch.dr7;
3415 dbgregs->flags = 0;
3416 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3419 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3420 struct kvm_debugregs *dbgregs)
3422 if (dbgregs->flags)
3423 return -EINVAL;
3425 if (dbgregs->dr6 & ~0xffffffffull)
3426 return -EINVAL;
3427 if (dbgregs->dr7 & ~0xffffffffull)
3428 return -EINVAL;
3430 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3431 kvm_update_dr0123(vcpu);
3432 vcpu->arch.dr6 = dbgregs->dr6;
3433 kvm_update_dr6(vcpu);
3434 vcpu->arch.dr7 = dbgregs->dr7;
3435 kvm_update_dr7(vcpu);
3437 return 0;
3440 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3442 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3444 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3445 u64 xstate_bv = xsave->header.xfeatures;
3446 u64 valid;
3449 * Copy legacy XSAVE area, to avoid complications with CPUID
3450 * leaves 0 and 1 in the loop below.
3452 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3454 /* Set XSTATE_BV */
3455 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3456 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3459 * Copy each region from the possibly compacted offset to the
3460 * non-compacted offset.
3462 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3463 while (valid) {
3464 u64 feature = valid & -valid;
3465 int index = fls64(feature) - 1;
3466 void *src = get_xsave_addr(xsave, feature);
3468 if (src) {
3469 u32 size, offset, ecx, edx;
3470 cpuid_count(XSTATE_CPUID, index,
3471 &size, &offset, &ecx, &edx);
3472 if (feature == XFEATURE_MASK_PKRU)
3473 memcpy(dest + offset, &vcpu->arch.pkru,
3474 sizeof(vcpu->arch.pkru));
3475 else
3476 memcpy(dest + offset, src, size);
3480 valid -= feature;
3484 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3486 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3487 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3488 u64 valid;
3491 * Copy legacy XSAVE area, to avoid complications with CPUID
3492 * leaves 0 and 1 in the loop below.
3494 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3496 /* Set XSTATE_BV and possibly XCOMP_BV. */
3497 xsave->header.xfeatures = xstate_bv;
3498 if (boot_cpu_has(X86_FEATURE_XSAVES))
3499 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3502 * Copy each region from the non-compacted offset to the
3503 * possibly compacted offset.
3505 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3506 while (valid) {
3507 u64 feature = valid & -valid;
3508 int index = fls64(feature) - 1;
3509 void *dest = get_xsave_addr(xsave, feature);
3511 if (dest) {
3512 u32 size, offset, ecx, edx;
3513 cpuid_count(XSTATE_CPUID, index,
3514 &size, &offset, &ecx, &edx);
3515 if (feature == XFEATURE_MASK_PKRU)
3516 memcpy(&vcpu->arch.pkru, src + offset,
3517 sizeof(vcpu->arch.pkru));
3518 else
3519 memcpy(dest, src + offset, size);
3522 valid -= feature;
3526 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3527 struct kvm_xsave *guest_xsave)
3529 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3530 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3531 fill_xsave((u8 *) guest_xsave->region, vcpu);
3532 } else {
3533 memcpy(guest_xsave->region,
3534 &vcpu->arch.guest_fpu.state.fxsave,
3535 sizeof(struct fxregs_state));
3536 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3537 XFEATURE_MASK_FPSSE;
3541 #define XSAVE_MXCSR_OFFSET 24
3543 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3544 struct kvm_xsave *guest_xsave)
3546 u64 xstate_bv =
3547 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3548 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3550 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3552 * Here we allow setting states that are not present in
3553 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3554 * with old userspace.
3556 if (xstate_bv & ~kvm_supported_xcr0() ||
3557 mxcsr & ~mxcsr_feature_mask)
3558 return -EINVAL;
3559 load_xsave(vcpu, (u8 *)guest_xsave->region);
3560 } else {
3561 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3562 mxcsr & ~mxcsr_feature_mask)
3563 return -EINVAL;
3564 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3565 guest_xsave->region, sizeof(struct fxregs_state));
3567 return 0;
3570 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3571 struct kvm_xcrs *guest_xcrs)
3573 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3574 guest_xcrs->nr_xcrs = 0;
3575 return;
3578 guest_xcrs->nr_xcrs = 1;
3579 guest_xcrs->flags = 0;
3580 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3581 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3584 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3585 struct kvm_xcrs *guest_xcrs)
3587 int i, r = 0;
3589 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3590 return -EINVAL;
3592 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3593 return -EINVAL;
3595 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3596 /* Only support XCR0 currently */
3597 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3598 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3599 guest_xcrs->xcrs[i].value);
3600 break;
3602 if (r)
3603 r = -EINVAL;
3604 return r;
3608 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3609 * stopped by the hypervisor. This function will be called from the host only.
3610 * EINVAL is returned when the host attempts to set the flag for a guest that
3611 * does not support pv clocks.
3613 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3615 if (!vcpu->arch.pv_time_enabled)
3616 return -EINVAL;
3617 vcpu->arch.pvclock_set_guest_stopped_request = true;
3618 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3619 return 0;
3622 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3623 struct kvm_enable_cap *cap)
3625 if (cap->flags)
3626 return -EINVAL;
3628 switch (cap->cap) {
3629 case KVM_CAP_HYPERV_SYNIC2:
3630 if (cap->args[0])
3631 return -EINVAL;
3632 case KVM_CAP_HYPERV_SYNIC:
3633 if (!irqchip_in_kernel(vcpu->kvm))
3634 return -EINVAL;
3635 return kvm_hv_activate_synic(vcpu, cap->cap ==
3636 KVM_CAP_HYPERV_SYNIC2);
3637 default:
3638 return -EINVAL;
3642 long kvm_arch_vcpu_ioctl(struct file *filp,
3643 unsigned int ioctl, unsigned long arg)
3645 struct kvm_vcpu *vcpu = filp->private_data;
3646 void __user *argp = (void __user *)arg;
3647 int r;
3648 union {
3649 struct kvm_lapic_state *lapic;
3650 struct kvm_xsave *xsave;
3651 struct kvm_xcrs *xcrs;
3652 void *buffer;
3653 } u;
3655 u.buffer = NULL;
3656 switch (ioctl) {
3657 case KVM_GET_LAPIC: {
3658 r = -EINVAL;
3659 if (!lapic_in_kernel(vcpu))
3660 goto out;
3661 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3663 r = -ENOMEM;
3664 if (!u.lapic)
3665 goto out;
3666 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3667 if (r)
3668 goto out;
3669 r = -EFAULT;
3670 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3671 goto out;
3672 r = 0;
3673 break;
3675 case KVM_SET_LAPIC: {
3676 r = -EINVAL;
3677 if (!lapic_in_kernel(vcpu))
3678 goto out;
3679 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3680 if (IS_ERR(u.lapic))
3681 return PTR_ERR(u.lapic);
3683 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3684 break;
3686 case KVM_INTERRUPT: {
3687 struct kvm_interrupt irq;
3689 r = -EFAULT;
3690 if (copy_from_user(&irq, argp, sizeof irq))
3691 goto out;
3692 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3693 break;
3695 case KVM_NMI: {
3696 r = kvm_vcpu_ioctl_nmi(vcpu);
3697 break;
3699 case KVM_SMI: {
3700 r = kvm_vcpu_ioctl_smi(vcpu);
3701 break;
3703 case KVM_SET_CPUID: {
3704 struct kvm_cpuid __user *cpuid_arg = argp;
3705 struct kvm_cpuid cpuid;
3707 r = -EFAULT;
3708 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3709 goto out;
3710 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3711 break;
3713 case KVM_SET_CPUID2: {
3714 struct kvm_cpuid2 __user *cpuid_arg = argp;
3715 struct kvm_cpuid2 cpuid;
3717 r = -EFAULT;
3718 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3719 goto out;
3720 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3721 cpuid_arg->entries);
3722 break;
3724 case KVM_GET_CPUID2: {
3725 struct kvm_cpuid2 __user *cpuid_arg = argp;
3726 struct kvm_cpuid2 cpuid;
3728 r = -EFAULT;
3729 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3730 goto out;
3731 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3732 cpuid_arg->entries);
3733 if (r)
3734 goto out;
3735 r = -EFAULT;
3736 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3737 goto out;
3738 r = 0;
3739 break;
3741 case KVM_GET_MSRS: {
3742 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3743 r = msr_io(vcpu, argp, do_get_msr, 1);
3744 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3745 break;
3747 case KVM_SET_MSRS: {
3748 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3749 r = msr_io(vcpu, argp, do_set_msr, 0);
3750 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3751 break;
3753 case KVM_TPR_ACCESS_REPORTING: {
3754 struct kvm_tpr_access_ctl tac;
3756 r = -EFAULT;
3757 if (copy_from_user(&tac, argp, sizeof tac))
3758 goto out;
3759 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3760 if (r)
3761 goto out;
3762 r = -EFAULT;
3763 if (copy_to_user(argp, &tac, sizeof tac))
3764 goto out;
3765 r = 0;
3766 break;
3768 case KVM_SET_VAPIC_ADDR: {
3769 struct kvm_vapic_addr va;
3770 int idx;
3772 r = -EINVAL;
3773 if (!lapic_in_kernel(vcpu))
3774 goto out;
3775 r = -EFAULT;
3776 if (copy_from_user(&va, argp, sizeof va))
3777 goto out;
3778 idx = srcu_read_lock(&vcpu->kvm->srcu);
3779 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3780 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3781 break;
3783 case KVM_X86_SETUP_MCE: {
3784 u64 mcg_cap;
3786 r = -EFAULT;
3787 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3788 goto out;
3789 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3790 break;
3792 case KVM_X86_SET_MCE: {
3793 struct kvm_x86_mce mce;
3795 r = -EFAULT;
3796 if (copy_from_user(&mce, argp, sizeof mce))
3797 goto out;
3798 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3799 break;
3801 case KVM_GET_VCPU_EVENTS: {
3802 struct kvm_vcpu_events events;
3804 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3806 r = -EFAULT;
3807 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3808 break;
3809 r = 0;
3810 break;
3812 case KVM_SET_VCPU_EVENTS: {
3813 struct kvm_vcpu_events events;
3815 r = -EFAULT;
3816 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3817 break;
3819 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3820 break;
3822 case KVM_GET_DEBUGREGS: {
3823 struct kvm_debugregs dbgregs;
3825 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3827 r = -EFAULT;
3828 if (copy_to_user(argp, &dbgregs,
3829 sizeof(struct kvm_debugregs)))
3830 break;
3831 r = 0;
3832 break;
3834 case KVM_SET_DEBUGREGS: {
3835 struct kvm_debugregs dbgregs;
3837 r = -EFAULT;
3838 if (copy_from_user(&dbgregs, argp,
3839 sizeof(struct kvm_debugregs)))
3840 break;
3842 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3843 break;
3845 case KVM_GET_XSAVE: {
3846 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3847 r = -ENOMEM;
3848 if (!u.xsave)
3849 break;
3851 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3853 r = -EFAULT;
3854 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3855 break;
3856 r = 0;
3857 break;
3859 case KVM_SET_XSAVE: {
3860 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3861 if (IS_ERR(u.xsave))
3862 return PTR_ERR(u.xsave);
3864 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3865 break;
3867 case KVM_GET_XCRS: {
3868 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3869 r = -ENOMEM;
3870 if (!u.xcrs)
3871 break;
3873 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3875 r = -EFAULT;
3876 if (copy_to_user(argp, u.xcrs,
3877 sizeof(struct kvm_xcrs)))
3878 break;
3879 r = 0;
3880 break;
3882 case KVM_SET_XCRS: {
3883 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3884 if (IS_ERR(u.xcrs))
3885 return PTR_ERR(u.xcrs);
3887 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3888 break;
3890 case KVM_SET_TSC_KHZ: {
3891 u32 user_tsc_khz;
3893 r = -EINVAL;
3894 user_tsc_khz = (u32)arg;
3896 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3897 goto out;
3899 if (user_tsc_khz == 0)
3900 user_tsc_khz = tsc_khz;
3902 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3903 r = 0;
3905 goto out;
3907 case KVM_GET_TSC_KHZ: {
3908 r = vcpu->arch.virtual_tsc_khz;
3909 goto out;
3911 case KVM_KVMCLOCK_CTRL: {
3912 r = kvm_set_guest_paused(vcpu);
3913 goto out;
3915 case KVM_ENABLE_CAP: {
3916 struct kvm_enable_cap cap;
3918 r = -EFAULT;
3919 if (copy_from_user(&cap, argp, sizeof(cap)))
3920 goto out;
3921 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3922 break;
3924 default:
3925 r = -EINVAL;
3927 out:
3928 kfree(u.buffer);
3929 return r;
3932 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3934 return VM_FAULT_SIGBUS;
3937 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3939 int ret;
3941 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3942 return -EINVAL;
3943 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3944 return ret;
3947 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3948 u64 ident_addr)
3950 kvm->arch.ept_identity_map_addr = ident_addr;
3951 return 0;
3954 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3955 u32 kvm_nr_mmu_pages)
3957 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3958 return -EINVAL;
3960 mutex_lock(&kvm->slots_lock);
3962 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3963 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3965 mutex_unlock(&kvm->slots_lock);
3966 return 0;
3969 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3971 return kvm->arch.n_max_mmu_pages;
3974 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3976 struct kvm_pic *pic = kvm->arch.vpic;
3977 int r;
3979 r = 0;
3980 switch (chip->chip_id) {
3981 case KVM_IRQCHIP_PIC_MASTER:
3982 memcpy(&chip->chip.pic, &pic->pics[0],
3983 sizeof(struct kvm_pic_state));
3984 break;
3985 case KVM_IRQCHIP_PIC_SLAVE:
3986 memcpy(&chip->chip.pic, &pic->pics[1],
3987 sizeof(struct kvm_pic_state));
3988 break;
3989 case KVM_IRQCHIP_IOAPIC:
3990 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3991 break;
3992 default:
3993 r = -EINVAL;
3994 break;
3996 return r;
3999 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4001 struct kvm_pic *pic = kvm->arch.vpic;
4002 int r;
4004 r = 0;
4005 switch (chip->chip_id) {
4006 case KVM_IRQCHIP_PIC_MASTER:
4007 spin_lock(&pic->lock);
4008 memcpy(&pic->pics[0], &chip->chip.pic,
4009 sizeof(struct kvm_pic_state));
4010 spin_unlock(&pic->lock);
4011 break;
4012 case KVM_IRQCHIP_PIC_SLAVE:
4013 spin_lock(&pic->lock);
4014 memcpy(&pic->pics[1], &chip->chip.pic,
4015 sizeof(struct kvm_pic_state));
4016 spin_unlock(&pic->lock);
4017 break;
4018 case KVM_IRQCHIP_IOAPIC:
4019 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4020 break;
4021 default:
4022 r = -EINVAL;
4023 break;
4025 kvm_pic_update_irq(pic);
4026 return r;
4029 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4031 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4033 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4035 mutex_lock(&kps->lock);
4036 memcpy(ps, &kps->channels, sizeof(*ps));
4037 mutex_unlock(&kps->lock);
4038 return 0;
4041 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4043 int i;
4044 struct kvm_pit *pit = kvm->arch.vpit;
4046 mutex_lock(&pit->pit_state.lock);
4047 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4048 for (i = 0; i < 3; i++)
4049 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4050 mutex_unlock(&pit->pit_state.lock);
4051 return 0;
4054 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4056 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4057 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4058 sizeof(ps->channels));
4059 ps->flags = kvm->arch.vpit->pit_state.flags;
4060 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4061 memset(&ps->reserved, 0, sizeof(ps->reserved));
4062 return 0;
4065 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4067 int start = 0;
4068 int i;
4069 u32 prev_legacy, cur_legacy;
4070 struct kvm_pit *pit = kvm->arch.vpit;
4072 mutex_lock(&pit->pit_state.lock);
4073 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4074 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4075 if (!prev_legacy && cur_legacy)
4076 start = 1;
4077 memcpy(&pit->pit_state.channels, &ps->channels,
4078 sizeof(pit->pit_state.channels));
4079 pit->pit_state.flags = ps->flags;
4080 for (i = 0; i < 3; i++)
4081 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4082 start && i == 0);
4083 mutex_unlock(&pit->pit_state.lock);
4084 return 0;
4087 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4088 struct kvm_reinject_control *control)
4090 struct kvm_pit *pit = kvm->arch.vpit;
4092 if (!pit)
4093 return -ENXIO;
4095 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4096 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4097 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4099 mutex_lock(&pit->pit_state.lock);
4100 kvm_pit_set_reinject(pit, control->pit_reinject);
4101 mutex_unlock(&pit->pit_state.lock);
4103 return 0;
4107 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4108 * @kvm: kvm instance
4109 * @log: slot id and address to which we copy the log
4111 * Steps 1-4 below provide general overview of dirty page logging. See
4112 * kvm_get_dirty_log_protect() function description for additional details.
4114 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4115 * always flush the TLB (step 4) even if previous step failed and the dirty
4116 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4117 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4118 * writes will be marked dirty for next log read.
4120 * 1. Take a snapshot of the bit and clear it if needed.
4121 * 2. Write protect the corresponding page.
4122 * 3. Copy the snapshot to the userspace.
4123 * 4. Flush TLB's if needed.
4125 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4127 bool is_dirty = false;
4128 int r;
4130 mutex_lock(&kvm->slots_lock);
4133 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4135 if (kvm_x86_ops->flush_log_dirty)
4136 kvm_x86_ops->flush_log_dirty(kvm);
4138 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4141 * All the TLBs can be flushed out of mmu lock, see the comments in
4142 * kvm_mmu_slot_remove_write_access().
4144 lockdep_assert_held(&kvm->slots_lock);
4145 if (is_dirty)
4146 kvm_flush_remote_tlbs(kvm);
4148 mutex_unlock(&kvm->slots_lock);
4149 return r;
4152 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4153 bool line_status)
4155 if (!irqchip_in_kernel(kvm))
4156 return -ENXIO;
4158 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4159 irq_event->irq, irq_event->level,
4160 line_status);
4161 return 0;
4164 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4165 struct kvm_enable_cap *cap)
4167 int r;
4169 if (cap->flags)
4170 return -EINVAL;
4172 switch (cap->cap) {
4173 case KVM_CAP_DISABLE_QUIRKS:
4174 kvm->arch.disabled_quirks = cap->args[0];
4175 r = 0;
4176 break;
4177 case KVM_CAP_SPLIT_IRQCHIP: {
4178 mutex_lock(&kvm->lock);
4179 r = -EINVAL;
4180 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4181 goto split_irqchip_unlock;
4182 r = -EEXIST;
4183 if (irqchip_in_kernel(kvm))
4184 goto split_irqchip_unlock;
4185 if (kvm->created_vcpus)
4186 goto split_irqchip_unlock;
4187 r = kvm_setup_empty_irq_routing(kvm);
4188 if (r)
4189 goto split_irqchip_unlock;
4190 /* Pairs with irqchip_in_kernel. */
4191 smp_wmb();
4192 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4193 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4194 r = 0;
4195 split_irqchip_unlock:
4196 mutex_unlock(&kvm->lock);
4197 break;
4199 case KVM_CAP_X2APIC_API:
4200 r = -EINVAL;
4201 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4202 break;
4204 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4205 kvm->arch.x2apic_format = true;
4206 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4207 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4209 r = 0;
4210 break;
4211 default:
4212 r = -EINVAL;
4213 break;
4215 return r;
4218 long kvm_arch_vm_ioctl(struct file *filp,
4219 unsigned int ioctl, unsigned long arg)
4221 struct kvm *kvm = filp->private_data;
4222 void __user *argp = (void __user *)arg;
4223 int r = -ENOTTY;
4225 * This union makes it completely explicit to gcc-3.x
4226 * that these two variables' stack usage should be
4227 * combined, not added together.
4229 union {
4230 struct kvm_pit_state ps;
4231 struct kvm_pit_state2 ps2;
4232 struct kvm_pit_config pit_config;
4233 } u;
4235 switch (ioctl) {
4236 case KVM_SET_TSS_ADDR:
4237 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4238 break;
4239 case KVM_SET_IDENTITY_MAP_ADDR: {
4240 u64 ident_addr;
4242 r = -EFAULT;
4243 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4244 goto out;
4245 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4246 break;
4248 case KVM_SET_NR_MMU_PAGES:
4249 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4250 break;
4251 case KVM_GET_NR_MMU_PAGES:
4252 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4253 break;
4254 case KVM_CREATE_IRQCHIP: {
4255 mutex_lock(&kvm->lock);
4257 r = -EEXIST;
4258 if (irqchip_in_kernel(kvm))
4259 goto create_irqchip_unlock;
4261 r = -EINVAL;
4262 if (kvm->created_vcpus)
4263 goto create_irqchip_unlock;
4265 r = kvm_pic_init(kvm);
4266 if (r)
4267 goto create_irqchip_unlock;
4269 r = kvm_ioapic_init(kvm);
4270 if (r) {
4271 kvm_pic_destroy(kvm);
4272 goto create_irqchip_unlock;
4275 r = kvm_setup_default_irq_routing(kvm);
4276 if (r) {
4277 kvm_ioapic_destroy(kvm);
4278 kvm_pic_destroy(kvm);
4279 goto create_irqchip_unlock;
4281 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4282 smp_wmb();
4283 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4284 create_irqchip_unlock:
4285 mutex_unlock(&kvm->lock);
4286 break;
4288 case KVM_CREATE_PIT:
4289 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4290 goto create_pit;
4291 case KVM_CREATE_PIT2:
4292 r = -EFAULT;
4293 if (copy_from_user(&u.pit_config, argp,
4294 sizeof(struct kvm_pit_config)))
4295 goto out;
4296 create_pit:
4297 mutex_lock(&kvm->lock);
4298 r = -EEXIST;
4299 if (kvm->arch.vpit)
4300 goto create_pit_unlock;
4301 r = -ENOMEM;
4302 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4303 if (kvm->arch.vpit)
4304 r = 0;
4305 create_pit_unlock:
4306 mutex_unlock(&kvm->lock);
4307 break;
4308 case KVM_GET_IRQCHIP: {
4309 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4310 struct kvm_irqchip *chip;
4312 chip = memdup_user(argp, sizeof(*chip));
4313 if (IS_ERR(chip)) {
4314 r = PTR_ERR(chip);
4315 goto out;
4318 r = -ENXIO;
4319 if (!irqchip_kernel(kvm))
4320 goto get_irqchip_out;
4321 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4322 if (r)
4323 goto get_irqchip_out;
4324 r = -EFAULT;
4325 if (copy_to_user(argp, chip, sizeof *chip))
4326 goto get_irqchip_out;
4327 r = 0;
4328 get_irqchip_out:
4329 kfree(chip);
4330 break;
4332 case KVM_SET_IRQCHIP: {
4333 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4334 struct kvm_irqchip *chip;
4336 chip = memdup_user(argp, sizeof(*chip));
4337 if (IS_ERR(chip)) {
4338 r = PTR_ERR(chip);
4339 goto out;
4342 r = -ENXIO;
4343 if (!irqchip_kernel(kvm))
4344 goto set_irqchip_out;
4345 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4346 if (r)
4347 goto set_irqchip_out;
4348 r = 0;
4349 set_irqchip_out:
4350 kfree(chip);
4351 break;
4353 case KVM_GET_PIT: {
4354 r = -EFAULT;
4355 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4356 goto out;
4357 r = -ENXIO;
4358 if (!kvm->arch.vpit)
4359 goto out;
4360 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4361 if (r)
4362 goto out;
4363 r = -EFAULT;
4364 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4365 goto out;
4366 r = 0;
4367 break;
4369 case KVM_SET_PIT: {
4370 r = -EFAULT;
4371 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4372 goto out;
4373 mutex_lock(&kvm->lock);
4374 r = -ENXIO;
4375 if (!kvm->arch.vpit)
4376 goto set_pit_out;
4377 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4378 set_pit_out:
4379 mutex_unlock(&kvm->lock);
4380 break;
4382 case KVM_GET_PIT2: {
4383 r = -ENXIO;
4384 if (!kvm->arch.vpit)
4385 goto out;
4386 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4387 if (r)
4388 goto out;
4389 r = -EFAULT;
4390 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4391 goto out;
4392 r = 0;
4393 break;
4395 case KVM_SET_PIT2: {
4396 r = -EFAULT;
4397 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4398 goto out;
4399 mutex_lock(&kvm->lock);
4400 r = -ENXIO;
4401 if (!kvm->arch.vpit)
4402 goto set_pit2_out;
4403 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4404 set_pit2_out:
4405 mutex_unlock(&kvm->lock);
4406 break;
4408 case KVM_REINJECT_CONTROL: {
4409 struct kvm_reinject_control control;
4410 r = -EFAULT;
4411 if (copy_from_user(&control, argp, sizeof(control)))
4412 goto out;
4413 r = kvm_vm_ioctl_reinject(kvm, &control);
4414 break;
4416 case KVM_SET_BOOT_CPU_ID:
4417 r = 0;
4418 mutex_lock(&kvm->lock);
4419 if (kvm->created_vcpus)
4420 r = -EBUSY;
4421 else
4422 kvm->arch.bsp_vcpu_id = arg;
4423 mutex_unlock(&kvm->lock);
4424 break;
4425 case KVM_XEN_HVM_CONFIG: {
4426 struct kvm_xen_hvm_config xhc;
4427 r = -EFAULT;
4428 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4429 goto out;
4430 r = -EINVAL;
4431 if (xhc.flags)
4432 goto out;
4433 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4434 r = 0;
4435 break;
4437 case KVM_SET_CLOCK: {
4438 struct kvm_clock_data user_ns;
4439 u64 now_ns;
4441 r = -EFAULT;
4442 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4443 goto out;
4445 r = -EINVAL;
4446 if (user_ns.flags)
4447 goto out;
4449 r = 0;
4451 * TODO: userspace has to take care of races with VCPU_RUN, so
4452 * kvm_gen_update_masterclock() can be cut down to locked
4453 * pvclock_update_vm_gtod_copy().
4455 kvm_gen_update_masterclock(kvm);
4456 now_ns = get_kvmclock_ns(kvm);
4457 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4458 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4459 break;
4461 case KVM_GET_CLOCK: {
4462 struct kvm_clock_data user_ns;
4463 u64 now_ns;
4465 now_ns = get_kvmclock_ns(kvm);
4466 user_ns.clock = now_ns;
4467 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4468 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4470 r = -EFAULT;
4471 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4472 goto out;
4473 r = 0;
4474 break;
4476 case KVM_ENABLE_CAP: {
4477 struct kvm_enable_cap cap;
4479 r = -EFAULT;
4480 if (copy_from_user(&cap, argp, sizeof(cap)))
4481 goto out;
4482 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4483 break;
4485 default:
4486 r = -ENOTTY;
4488 out:
4489 return r;
4492 static void kvm_init_msr_list(void)
4494 u32 dummy[2];
4495 unsigned i, j;
4497 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4498 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4499 continue;
4502 * Even MSRs that are valid in the host may not be exposed
4503 * to the guests in some cases.
4505 switch (msrs_to_save[i]) {
4506 case MSR_IA32_BNDCFGS:
4507 if (!kvm_x86_ops->mpx_supported())
4508 continue;
4509 break;
4510 case MSR_TSC_AUX:
4511 if (!kvm_x86_ops->rdtscp_supported())
4512 continue;
4513 break;
4514 default:
4515 break;
4518 if (j < i)
4519 msrs_to_save[j] = msrs_to_save[i];
4520 j++;
4522 num_msrs_to_save = j;
4524 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4525 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4526 continue;
4528 if (j < i)
4529 emulated_msrs[j] = emulated_msrs[i];
4530 j++;
4532 num_emulated_msrs = j;
4534 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4535 struct kvm_msr_entry msr;
4537 msr.index = msr_based_features[i];
4538 if (kvm_get_msr_feature(&msr))
4539 continue;
4541 if (j < i)
4542 msr_based_features[j] = msr_based_features[i];
4543 j++;
4545 num_msr_based_features = j;
4548 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4549 const void *v)
4551 int handled = 0;
4552 int n;
4554 do {
4555 n = min(len, 8);
4556 if (!(lapic_in_kernel(vcpu) &&
4557 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4558 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4559 break;
4560 handled += n;
4561 addr += n;
4562 len -= n;
4563 v += n;
4564 } while (len);
4566 return handled;
4569 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4571 int handled = 0;
4572 int n;
4574 do {
4575 n = min(len, 8);
4576 if (!(lapic_in_kernel(vcpu) &&
4577 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4578 addr, n, v))
4579 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4580 break;
4581 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4582 handled += n;
4583 addr += n;
4584 len -= n;
4585 v += n;
4586 } while (len);
4588 return handled;
4591 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4592 struct kvm_segment *var, int seg)
4594 kvm_x86_ops->set_segment(vcpu, var, seg);
4597 void kvm_get_segment(struct kvm_vcpu *vcpu,
4598 struct kvm_segment *var, int seg)
4600 kvm_x86_ops->get_segment(vcpu, var, seg);
4603 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4604 struct x86_exception *exception)
4606 gpa_t t_gpa;
4608 BUG_ON(!mmu_is_nested(vcpu));
4610 /* NPT walks are always user-walks */
4611 access |= PFERR_USER_MASK;
4612 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4614 return t_gpa;
4617 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4618 struct x86_exception *exception)
4620 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4621 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4624 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4625 struct x86_exception *exception)
4627 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4628 access |= PFERR_FETCH_MASK;
4629 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4632 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4633 struct x86_exception *exception)
4635 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4636 access |= PFERR_WRITE_MASK;
4637 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4640 /* uses this to access any guest's mapped memory without checking CPL */
4641 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4642 struct x86_exception *exception)
4644 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4647 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4648 struct kvm_vcpu *vcpu, u32 access,
4649 struct x86_exception *exception)
4651 void *data = val;
4652 int r = X86EMUL_CONTINUE;
4654 while (bytes) {
4655 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4656 exception);
4657 unsigned offset = addr & (PAGE_SIZE-1);
4658 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4659 int ret;
4661 if (gpa == UNMAPPED_GVA)
4662 return X86EMUL_PROPAGATE_FAULT;
4663 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4664 offset, toread);
4665 if (ret < 0) {
4666 r = X86EMUL_IO_NEEDED;
4667 goto out;
4670 bytes -= toread;
4671 data += toread;
4672 addr += toread;
4674 out:
4675 return r;
4678 /* used for instruction fetching */
4679 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4680 gva_t addr, void *val, unsigned int bytes,
4681 struct x86_exception *exception)
4683 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4684 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4685 unsigned offset;
4686 int ret;
4688 /* Inline kvm_read_guest_virt_helper for speed. */
4689 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4690 exception);
4691 if (unlikely(gpa == UNMAPPED_GVA))
4692 return X86EMUL_PROPAGATE_FAULT;
4694 offset = addr & (PAGE_SIZE-1);
4695 if (WARN_ON(offset + bytes > PAGE_SIZE))
4696 bytes = (unsigned)PAGE_SIZE - offset;
4697 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4698 offset, bytes);
4699 if (unlikely(ret < 0))
4700 return X86EMUL_IO_NEEDED;
4702 return X86EMUL_CONTINUE;
4705 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4706 gva_t addr, void *val, unsigned int bytes,
4707 struct x86_exception *exception)
4709 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4712 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4713 * is returned, but our callers are not ready for that and they blindly
4714 * call kvm_inject_page_fault. Ensure that they at least do not leak
4715 * uninitialized kernel stack memory into cr2 and error code.
4717 memset(exception, 0, sizeof(*exception));
4718 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4719 exception);
4721 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4723 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4724 gva_t addr, void *val, unsigned int bytes,
4725 struct x86_exception *exception, bool system)
4727 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4728 u32 access = 0;
4730 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4731 access |= PFERR_USER_MASK;
4733 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4736 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4737 unsigned long addr, void *val, unsigned int bytes)
4739 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4740 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4742 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4745 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4746 struct kvm_vcpu *vcpu, u32 access,
4747 struct x86_exception *exception)
4749 void *data = val;
4750 int r = X86EMUL_CONTINUE;
4752 while (bytes) {
4753 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4754 access,
4755 exception);
4756 unsigned offset = addr & (PAGE_SIZE-1);
4757 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4758 int ret;
4760 if (gpa == UNMAPPED_GVA)
4761 return X86EMUL_PROPAGATE_FAULT;
4762 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4763 if (ret < 0) {
4764 r = X86EMUL_IO_NEEDED;
4765 goto out;
4768 bytes -= towrite;
4769 data += towrite;
4770 addr += towrite;
4772 out:
4773 return r;
4776 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4777 unsigned int bytes, struct x86_exception *exception,
4778 bool system)
4780 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4781 u32 access = PFERR_WRITE_MASK;
4783 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4784 access |= PFERR_USER_MASK;
4786 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4787 access, exception);
4790 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4791 unsigned int bytes, struct x86_exception *exception)
4793 /* kvm_write_guest_virt_system can pull in tons of pages. */
4794 vcpu->arch.l1tf_flush_l1d = true;
4797 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4798 * is returned, but our callers are not ready for that and they blindly
4799 * call kvm_inject_page_fault. Ensure that they at least do not leak
4800 * uninitialized kernel stack memory into cr2 and error code.
4802 memset(exception, 0, sizeof(*exception));
4803 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4804 PFERR_WRITE_MASK, exception);
4806 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4808 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4809 gpa_t gpa, bool write)
4811 /* For APIC access vmexit */
4812 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4813 return 1;
4815 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4816 trace_vcpu_match_mmio(gva, gpa, write, true);
4817 return 1;
4820 return 0;
4823 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4824 gpa_t *gpa, struct x86_exception *exception,
4825 bool write)
4827 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4828 | (write ? PFERR_WRITE_MASK : 0);
4831 * currently PKRU is only applied to ept enabled guest so
4832 * there is no pkey in EPT page table for L1 guest or EPT
4833 * shadow page table for L2 guest.
4835 if (vcpu_match_mmio_gva(vcpu, gva)
4836 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4837 vcpu->arch.access, 0, access)) {
4838 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4839 (gva & (PAGE_SIZE - 1));
4840 trace_vcpu_match_mmio(gva, *gpa, write, false);
4841 return 1;
4844 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4846 if (*gpa == UNMAPPED_GVA)
4847 return -1;
4849 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4852 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4853 const void *val, int bytes)
4855 int ret;
4857 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4858 if (ret < 0)
4859 return 0;
4860 kvm_page_track_write(vcpu, gpa, val, bytes);
4861 return 1;
4864 struct read_write_emulator_ops {
4865 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4866 int bytes);
4867 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4868 void *val, int bytes);
4869 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4870 int bytes, void *val);
4871 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4872 void *val, int bytes);
4873 bool write;
4876 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4878 if (vcpu->mmio_read_completed) {
4879 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4880 vcpu->mmio_fragments[0].gpa, val);
4881 vcpu->mmio_read_completed = 0;
4882 return 1;
4885 return 0;
4888 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4889 void *val, int bytes)
4891 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4894 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4895 void *val, int bytes)
4897 return emulator_write_phys(vcpu, gpa, val, bytes);
4900 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4902 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4903 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4906 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4907 void *val, int bytes)
4909 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4910 return X86EMUL_IO_NEEDED;
4913 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4914 void *val, int bytes)
4916 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4918 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4919 return X86EMUL_CONTINUE;
4922 static const struct read_write_emulator_ops read_emultor = {
4923 .read_write_prepare = read_prepare,
4924 .read_write_emulate = read_emulate,
4925 .read_write_mmio = vcpu_mmio_read,
4926 .read_write_exit_mmio = read_exit_mmio,
4929 static const struct read_write_emulator_ops write_emultor = {
4930 .read_write_emulate = write_emulate,
4931 .read_write_mmio = write_mmio,
4932 .read_write_exit_mmio = write_exit_mmio,
4933 .write = true,
4936 static int emulator_read_write_onepage(unsigned long addr, void *val,
4937 unsigned int bytes,
4938 struct x86_exception *exception,
4939 struct kvm_vcpu *vcpu,
4940 const struct read_write_emulator_ops *ops)
4942 gpa_t gpa;
4943 int handled, ret;
4944 bool write = ops->write;
4945 struct kvm_mmio_fragment *frag;
4946 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4949 * If the exit was due to a NPF we may already have a GPA.
4950 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4951 * Note, this cannot be used on string operations since string
4952 * operation using rep will only have the initial GPA from the NPF
4953 * occurred.
4955 if (vcpu->arch.gpa_available &&
4956 emulator_can_use_gpa(ctxt) &&
4957 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4958 gpa = vcpu->arch.gpa_val;
4959 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4960 } else {
4961 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4962 if (ret < 0)
4963 return X86EMUL_PROPAGATE_FAULT;
4966 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4967 return X86EMUL_CONTINUE;
4970 * Is this MMIO handled locally?
4972 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4973 if (handled == bytes)
4974 return X86EMUL_CONTINUE;
4976 gpa += handled;
4977 bytes -= handled;
4978 val += handled;
4980 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4981 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4982 frag->gpa = gpa;
4983 frag->data = val;
4984 frag->len = bytes;
4985 return X86EMUL_CONTINUE;
4988 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4989 unsigned long addr,
4990 void *val, unsigned int bytes,
4991 struct x86_exception *exception,
4992 const struct read_write_emulator_ops *ops)
4994 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4995 gpa_t gpa;
4996 int rc;
4998 if (ops->read_write_prepare &&
4999 ops->read_write_prepare(vcpu, val, bytes))
5000 return X86EMUL_CONTINUE;
5002 vcpu->mmio_nr_fragments = 0;
5004 /* Crossing a page boundary? */
5005 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5006 int now;
5008 now = -addr & ~PAGE_MASK;
5009 rc = emulator_read_write_onepage(addr, val, now, exception,
5010 vcpu, ops);
5012 if (rc != X86EMUL_CONTINUE)
5013 return rc;
5014 addr += now;
5015 if (ctxt->mode != X86EMUL_MODE_PROT64)
5016 addr = (u32)addr;
5017 val += now;
5018 bytes -= now;
5021 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5022 vcpu, ops);
5023 if (rc != X86EMUL_CONTINUE)
5024 return rc;
5026 if (!vcpu->mmio_nr_fragments)
5027 return rc;
5029 gpa = vcpu->mmio_fragments[0].gpa;
5031 vcpu->mmio_needed = 1;
5032 vcpu->mmio_cur_fragment = 0;
5034 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5035 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5036 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5037 vcpu->run->mmio.phys_addr = gpa;
5039 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5042 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5043 unsigned long addr,
5044 void *val,
5045 unsigned int bytes,
5046 struct x86_exception *exception)
5048 return emulator_read_write(ctxt, addr, val, bytes,
5049 exception, &read_emultor);
5052 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5053 unsigned long addr,
5054 const void *val,
5055 unsigned int bytes,
5056 struct x86_exception *exception)
5058 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5059 exception, &write_emultor);
5062 #define CMPXCHG_TYPE(t, ptr, old, new) \
5063 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5065 #ifdef CONFIG_X86_64
5066 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5067 #else
5068 # define CMPXCHG64(ptr, old, new) \
5069 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5070 #endif
5072 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5073 unsigned long addr,
5074 const void *old,
5075 const void *new,
5076 unsigned int bytes,
5077 struct x86_exception *exception)
5079 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5080 gpa_t gpa;
5081 struct page *page;
5082 char *kaddr;
5083 bool exchanged;
5085 /* guests cmpxchg8b have to be emulated atomically */
5086 if (bytes > 8 || (bytes & (bytes - 1)))
5087 goto emul_write;
5089 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5091 if (gpa == UNMAPPED_GVA ||
5092 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5093 goto emul_write;
5095 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5096 goto emul_write;
5098 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5099 if (is_error_page(page))
5100 goto emul_write;
5102 kaddr = kmap_atomic(page);
5103 kaddr += offset_in_page(gpa);
5104 switch (bytes) {
5105 case 1:
5106 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5107 break;
5108 case 2:
5109 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5110 break;
5111 case 4:
5112 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5113 break;
5114 case 8:
5115 exchanged = CMPXCHG64(kaddr, old, new);
5116 break;
5117 default:
5118 BUG();
5120 kunmap_atomic(kaddr);
5121 kvm_release_page_dirty(page);
5123 if (!exchanged)
5124 return X86EMUL_CMPXCHG_FAILED;
5126 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5127 kvm_page_track_write(vcpu, gpa, new, bytes);
5129 return X86EMUL_CONTINUE;
5131 emul_write:
5132 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5134 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5137 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5139 int r = 0, i;
5141 for (i = 0; i < vcpu->arch.pio.count; i++) {
5142 if (vcpu->arch.pio.in)
5143 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5144 vcpu->arch.pio.size, pd);
5145 else
5146 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5147 vcpu->arch.pio.port, vcpu->arch.pio.size,
5148 pd);
5149 if (r)
5150 break;
5151 pd += vcpu->arch.pio.size;
5153 return r;
5156 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5157 unsigned short port, void *val,
5158 unsigned int count, bool in)
5160 vcpu->arch.pio.port = port;
5161 vcpu->arch.pio.in = in;
5162 vcpu->arch.pio.count = count;
5163 vcpu->arch.pio.size = size;
5165 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5166 vcpu->arch.pio.count = 0;
5167 return 1;
5170 vcpu->run->exit_reason = KVM_EXIT_IO;
5171 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5172 vcpu->run->io.size = size;
5173 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5174 vcpu->run->io.count = count;
5175 vcpu->run->io.port = port;
5177 return 0;
5180 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5181 int size, unsigned short port, void *val,
5182 unsigned int count)
5184 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5185 int ret;
5187 if (vcpu->arch.pio.count)
5188 goto data_avail;
5190 memset(vcpu->arch.pio_data, 0, size * count);
5192 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5193 if (ret) {
5194 data_avail:
5195 memcpy(val, vcpu->arch.pio_data, size * count);
5196 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5197 vcpu->arch.pio.count = 0;
5198 return 1;
5201 return 0;
5204 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5205 int size, unsigned short port,
5206 const void *val, unsigned int count)
5208 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5210 memcpy(vcpu->arch.pio_data, val, size * count);
5211 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5212 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5215 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5217 return kvm_x86_ops->get_segment_base(vcpu, seg);
5220 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5222 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5225 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5227 if (!need_emulate_wbinvd(vcpu))
5228 return X86EMUL_CONTINUE;
5230 if (kvm_x86_ops->has_wbinvd_exit()) {
5231 int cpu = get_cpu();
5233 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5234 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5235 wbinvd_ipi, NULL, 1);
5236 put_cpu();
5237 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5238 } else
5239 wbinvd();
5240 return X86EMUL_CONTINUE;
5243 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5245 kvm_emulate_wbinvd_noskip(vcpu);
5246 return kvm_skip_emulated_instruction(vcpu);
5248 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5252 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5254 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5257 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5258 unsigned long *dest)
5260 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5263 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5264 unsigned long value)
5267 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5270 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5272 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5275 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5277 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5278 unsigned long value;
5280 switch (cr) {
5281 case 0:
5282 value = kvm_read_cr0(vcpu);
5283 break;
5284 case 2:
5285 value = vcpu->arch.cr2;
5286 break;
5287 case 3:
5288 value = kvm_read_cr3(vcpu);
5289 break;
5290 case 4:
5291 value = kvm_read_cr4(vcpu);
5292 break;
5293 case 8:
5294 value = kvm_get_cr8(vcpu);
5295 break;
5296 default:
5297 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5298 return 0;
5301 return value;
5304 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5306 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5307 int res = 0;
5309 switch (cr) {
5310 case 0:
5311 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5312 break;
5313 case 2:
5314 vcpu->arch.cr2 = val;
5315 break;
5316 case 3:
5317 res = kvm_set_cr3(vcpu, val);
5318 break;
5319 case 4:
5320 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5321 break;
5322 case 8:
5323 res = kvm_set_cr8(vcpu, val);
5324 break;
5325 default:
5326 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5327 res = -1;
5330 return res;
5333 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5335 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5338 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5340 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5343 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5345 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5348 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5350 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5353 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5355 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5358 static unsigned long emulator_get_cached_segment_base(
5359 struct x86_emulate_ctxt *ctxt, int seg)
5361 return get_segment_base(emul_to_vcpu(ctxt), seg);
5364 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5365 struct desc_struct *desc, u32 *base3,
5366 int seg)
5368 struct kvm_segment var;
5370 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5371 *selector = var.selector;
5373 if (var.unusable) {
5374 memset(desc, 0, sizeof(*desc));
5375 if (base3)
5376 *base3 = 0;
5377 return false;
5380 if (var.g)
5381 var.limit >>= 12;
5382 set_desc_limit(desc, var.limit);
5383 set_desc_base(desc, (unsigned long)var.base);
5384 #ifdef CONFIG_X86_64
5385 if (base3)
5386 *base3 = var.base >> 32;
5387 #endif
5388 desc->type = var.type;
5389 desc->s = var.s;
5390 desc->dpl = var.dpl;
5391 desc->p = var.present;
5392 desc->avl = var.avl;
5393 desc->l = var.l;
5394 desc->d = var.db;
5395 desc->g = var.g;
5397 return true;
5400 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5401 struct desc_struct *desc, u32 base3,
5402 int seg)
5404 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5405 struct kvm_segment var;
5407 var.selector = selector;
5408 var.base = get_desc_base(desc);
5409 #ifdef CONFIG_X86_64
5410 var.base |= ((u64)base3) << 32;
5411 #endif
5412 var.limit = get_desc_limit(desc);
5413 if (desc->g)
5414 var.limit = (var.limit << 12) | 0xfff;
5415 var.type = desc->type;
5416 var.dpl = desc->dpl;
5417 var.db = desc->d;
5418 var.s = desc->s;
5419 var.l = desc->l;
5420 var.g = desc->g;
5421 var.avl = desc->avl;
5422 var.present = desc->p;
5423 var.unusable = !var.present;
5424 var.padding = 0;
5426 kvm_set_segment(vcpu, &var, seg);
5427 return;
5430 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5431 u32 msr_index, u64 *pdata)
5433 struct msr_data msr;
5434 int r;
5436 msr.index = msr_index;
5437 msr.host_initiated = false;
5438 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5439 if (r)
5440 return r;
5442 *pdata = msr.data;
5443 return 0;
5446 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5447 u32 msr_index, u64 data)
5449 struct msr_data msr;
5451 msr.data = data;
5452 msr.index = msr_index;
5453 msr.host_initiated = false;
5454 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5457 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5459 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5461 return vcpu->arch.smbase;
5464 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5466 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5468 vcpu->arch.smbase = smbase;
5471 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5472 u32 pmc)
5474 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5477 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5478 u32 pmc, u64 *pdata)
5480 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5483 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5485 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5488 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5492 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5496 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5497 struct x86_instruction_info *info,
5498 enum x86_intercept_stage stage)
5500 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5503 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5504 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5506 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5509 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5511 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5514 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5516 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5519 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5521 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5524 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5526 return emul_to_vcpu(ctxt)->arch.hflags;
5529 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5531 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5534 static const struct x86_emulate_ops emulate_ops = {
5535 .read_gpr = emulator_read_gpr,
5536 .write_gpr = emulator_write_gpr,
5537 .read_std = emulator_read_std,
5538 .write_std = emulator_write_std,
5539 .read_phys = kvm_read_guest_phys_system,
5540 .fetch = kvm_fetch_guest_virt,
5541 .read_emulated = emulator_read_emulated,
5542 .write_emulated = emulator_write_emulated,
5543 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5544 .invlpg = emulator_invlpg,
5545 .pio_in_emulated = emulator_pio_in_emulated,
5546 .pio_out_emulated = emulator_pio_out_emulated,
5547 .get_segment = emulator_get_segment,
5548 .set_segment = emulator_set_segment,
5549 .get_cached_segment_base = emulator_get_cached_segment_base,
5550 .get_gdt = emulator_get_gdt,
5551 .get_idt = emulator_get_idt,
5552 .set_gdt = emulator_set_gdt,
5553 .set_idt = emulator_set_idt,
5554 .get_cr = emulator_get_cr,
5555 .set_cr = emulator_set_cr,
5556 .cpl = emulator_get_cpl,
5557 .get_dr = emulator_get_dr,
5558 .set_dr = emulator_set_dr,
5559 .get_smbase = emulator_get_smbase,
5560 .set_smbase = emulator_set_smbase,
5561 .set_msr = emulator_set_msr,
5562 .get_msr = emulator_get_msr,
5563 .check_pmc = emulator_check_pmc,
5564 .read_pmc = emulator_read_pmc,
5565 .halt = emulator_halt,
5566 .wbinvd = emulator_wbinvd,
5567 .fix_hypercall = emulator_fix_hypercall,
5568 .get_fpu = emulator_get_fpu,
5569 .put_fpu = emulator_put_fpu,
5570 .intercept = emulator_intercept,
5571 .get_cpuid = emulator_get_cpuid,
5572 .set_nmi_mask = emulator_set_nmi_mask,
5573 .get_hflags = emulator_get_hflags,
5574 .set_hflags = emulator_set_hflags,
5577 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5579 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5581 * an sti; sti; sequence only disable interrupts for the first
5582 * instruction. So, if the last instruction, be it emulated or
5583 * not, left the system with the INT_STI flag enabled, it
5584 * means that the last instruction is an sti. We should not
5585 * leave the flag on in this case. The same goes for mov ss
5587 if (int_shadow & mask)
5588 mask = 0;
5589 if (unlikely(int_shadow || mask)) {
5590 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5591 if (!mask)
5592 kvm_make_request(KVM_REQ_EVENT, vcpu);
5596 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5598 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5599 if (ctxt->exception.vector == PF_VECTOR)
5600 return kvm_propagate_fault(vcpu, &ctxt->exception);
5602 if (ctxt->exception.error_code_valid)
5603 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5604 ctxt->exception.error_code);
5605 else
5606 kvm_queue_exception(vcpu, ctxt->exception.vector);
5607 return false;
5610 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5612 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5613 int cs_db, cs_l;
5615 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5617 ctxt->eflags = kvm_get_rflags(vcpu);
5618 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5620 ctxt->eip = kvm_rip_read(vcpu);
5621 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5622 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5623 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5624 cs_db ? X86EMUL_MODE_PROT32 :
5625 X86EMUL_MODE_PROT16;
5626 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5627 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5628 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5630 init_decode_cache(ctxt);
5631 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5634 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5636 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5637 int ret;
5639 init_emulate_ctxt(vcpu);
5641 ctxt->op_bytes = 2;
5642 ctxt->ad_bytes = 2;
5643 ctxt->_eip = ctxt->eip + inc_eip;
5644 ret = emulate_int_real(ctxt, irq);
5646 if (ret != X86EMUL_CONTINUE)
5647 return EMULATE_FAIL;
5649 ctxt->eip = ctxt->_eip;
5650 kvm_rip_write(vcpu, ctxt->eip);
5651 kvm_set_rflags(vcpu, ctxt->eflags);
5653 if (irq == NMI_VECTOR)
5654 vcpu->arch.nmi_pending = 0;
5655 else
5656 vcpu->arch.interrupt.pending = false;
5658 return EMULATE_DONE;
5660 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5662 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5664 int r = EMULATE_DONE;
5666 ++vcpu->stat.insn_emulation_fail;
5667 trace_kvm_emulate_insn_failed(vcpu);
5668 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5669 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5670 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5671 vcpu->run->internal.ndata = 0;
5672 r = EMULATE_USER_EXIT;
5674 kvm_queue_exception(vcpu, UD_VECTOR);
5676 return r;
5679 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5680 bool write_fault_to_shadow_pgtable,
5681 int emulation_type)
5683 gpa_t gpa = cr2;
5684 kvm_pfn_t pfn;
5686 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5687 return false;
5689 if (!vcpu->arch.mmu.direct_map) {
5691 * Write permission should be allowed since only
5692 * write access need to be emulated.
5694 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5697 * If the mapping is invalid in guest, let cpu retry
5698 * it to generate fault.
5700 if (gpa == UNMAPPED_GVA)
5701 return true;
5705 * Do not retry the unhandleable instruction if it faults on the
5706 * readonly host memory, otherwise it will goto a infinite loop:
5707 * retry instruction -> write #PF -> emulation fail -> retry
5708 * instruction -> ...
5710 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5713 * If the instruction failed on the error pfn, it can not be fixed,
5714 * report the error to userspace.
5716 if (is_error_noslot_pfn(pfn))
5717 return false;
5719 kvm_release_pfn_clean(pfn);
5721 /* The instructions are well-emulated on direct mmu. */
5722 if (vcpu->arch.mmu.direct_map) {
5723 unsigned int indirect_shadow_pages;
5725 spin_lock(&vcpu->kvm->mmu_lock);
5726 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5727 spin_unlock(&vcpu->kvm->mmu_lock);
5729 if (indirect_shadow_pages)
5730 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5732 return true;
5736 * if emulation was due to access to shadowed page table
5737 * and it failed try to unshadow page and re-enter the
5738 * guest to let CPU execute the instruction.
5740 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5743 * If the access faults on its page table, it can not
5744 * be fixed by unprotecting shadow page and it should
5745 * be reported to userspace.
5747 return !write_fault_to_shadow_pgtable;
5750 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5751 unsigned long cr2, int emulation_type)
5753 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5754 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5756 last_retry_eip = vcpu->arch.last_retry_eip;
5757 last_retry_addr = vcpu->arch.last_retry_addr;
5760 * If the emulation is caused by #PF and it is non-page_table
5761 * writing instruction, it means the VM-EXIT is caused by shadow
5762 * page protected, we can zap the shadow page and retry this
5763 * instruction directly.
5765 * Note: if the guest uses a non-page-table modifying instruction
5766 * on the PDE that points to the instruction, then we will unmap
5767 * the instruction and go to an infinite loop. So, we cache the
5768 * last retried eip and the last fault address, if we meet the eip
5769 * and the address again, we can break out of the potential infinite
5770 * loop.
5772 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5774 if (!(emulation_type & EMULTYPE_RETRY))
5775 return false;
5777 if (x86_page_table_writing_insn(ctxt))
5778 return false;
5780 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5781 return false;
5783 vcpu->arch.last_retry_eip = ctxt->eip;
5784 vcpu->arch.last_retry_addr = cr2;
5786 if (!vcpu->arch.mmu.direct_map)
5787 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5789 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5791 return true;
5794 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5795 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5797 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5799 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5800 /* This is a good place to trace that we are exiting SMM. */
5801 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5803 /* Process a latched INIT or SMI, if any. */
5804 kvm_make_request(KVM_REQ_EVENT, vcpu);
5807 kvm_mmu_reset_context(vcpu);
5810 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5812 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5814 vcpu->arch.hflags = emul_flags;
5816 if (changed & HF_SMM_MASK)
5817 kvm_smm_changed(vcpu);
5820 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5821 unsigned long *db)
5823 u32 dr6 = 0;
5824 int i;
5825 u32 enable, rwlen;
5827 enable = dr7;
5828 rwlen = dr7 >> 16;
5829 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5830 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5831 dr6 |= (1 << i);
5832 return dr6;
5835 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5837 struct kvm_run *kvm_run = vcpu->run;
5839 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5840 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5841 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5842 kvm_run->debug.arch.exception = DB_VECTOR;
5843 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5844 *r = EMULATE_USER_EXIT;
5845 } else {
5847 * "Certain debug exceptions may clear bit 0-3. The
5848 * remaining contents of the DR6 register are never
5849 * cleared by the processor".
5851 vcpu->arch.dr6 &= ~15;
5852 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5853 kvm_queue_exception(vcpu, DB_VECTOR);
5857 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5859 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5860 int r = EMULATE_DONE;
5862 kvm_x86_ops->skip_emulated_instruction(vcpu);
5865 * rflags is the old, "raw" value of the flags. The new value has
5866 * not been saved yet.
5868 * This is correct even for TF set by the guest, because "the
5869 * processor will not generate this exception after the instruction
5870 * that sets the TF flag".
5872 if (unlikely(rflags & X86_EFLAGS_TF))
5873 kvm_vcpu_do_singlestep(vcpu, &r);
5874 return r == EMULATE_DONE;
5876 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5878 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5880 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5881 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5882 struct kvm_run *kvm_run = vcpu->run;
5883 unsigned long eip = kvm_get_linear_rip(vcpu);
5884 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5885 vcpu->arch.guest_debug_dr7,
5886 vcpu->arch.eff_db);
5888 if (dr6 != 0) {
5889 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5890 kvm_run->debug.arch.pc = eip;
5891 kvm_run->debug.arch.exception = DB_VECTOR;
5892 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5893 *r = EMULATE_USER_EXIT;
5894 return true;
5898 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5899 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5900 unsigned long eip = kvm_get_linear_rip(vcpu);
5901 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5902 vcpu->arch.dr7,
5903 vcpu->arch.db);
5905 if (dr6 != 0) {
5906 vcpu->arch.dr6 &= ~15;
5907 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5908 kvm_queue_exception(vcpu, DB_VECTOR);
5909 *r = EMULATE_DONE;
5910 return true;
5914 return false;
5917 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5918 unsigned long cr2,
5919 int emulation_type,
5920 void *insn,
5921 int insn_len)
5923 int r;
5924 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5925 bool writeback = true;
5926 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5928 vcpu->arch.l1tf_flush_l1d = true;
5931 * Clear write_fault_to_shadow_pgtable here to ensure it is
5932 * never reused.
5934 vcpu->arch.write_fault_to_shadow_pgtable = false;
5935 kvm_clear_exception_queue(vcpu);
5937 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5938 init_emulate_ctxt(vcpu);
5941 * We will reenter on the same instruction since
5942 * we do not set complete_userspace_io. This does not
5943 * handle watchpoints yet, those would be handled in
5944 * the emulate_ops.
5946 if (!(emulation_type & EMULTYPE_SKIP) &&
5947 kvm_vcpu_check_breakpoint(vcpu, &r))
5948 return r;
5950 ctxt->interruptibility = 0;
5951 ctxt->have_exception = false;
5952 ctxt->exception.vector = -1;
5953 ctxt->perm_ok = false;
5955 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5957 r = x86_decode_insn(ctxt, insn, insn_len);
5959 trace_kvm_emulate_insn_start(vcpu);
5960 ++vcpu->stat.insn_emulation;
5961 if (r != EMULATION_OK) {
5962 if (emulation_type & EMULTYPE_TRAP_UD)
5963 return EMULATE_FAIL;
5964 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5965 emulation_type))
5966 return EMULATE_DONE;
5967 if (ctxt->have_exception) {
5969 * #UD should result in just EMULATION_FAILED, and trap-like
5970 * exception should not be encountered during decode.
5972 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
5973 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
5974 inject_emulated_exception(vcpu);
5975 return EMULATE_DONE;
5977 if (emulation_type & EMULTYPE_SKIP)
5978 return EMULATE_FAIL;
5979 return handle_emulation_failure(vcpu);
5983 if (emulation_type & EMULTYPE_SKIP) {
5984 kvm_rip_write(vcpu, ctxt->_eip);
5985 if (ctxt->eflags & X86_EFLAGS_RF)
5986 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5987 return EMULATE_DONE;
5990 if (retry_instruction(ctxt, cr2, emulation_type))
5991 return EMULATE_DONE;
5993 /* this is needed for vmware backdoor interface to work since it
5994 changes registers values during IO operation */
5995 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5996 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5997 emulator_invalidate_register_cache(ctxt);
6000 restart:
6001 /* Save the faulting GPA (cr2) in the address field */
6002 ctxt->exception.address = cr2;
6004 r = x86_emulate_insn(ctxt);
6006 if (r == EMULATION_INTERCEPTED)
6007 return EMULATE_DONE;
6009 if (r == EMULATION_FAILED) {
6010 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6011 emulation_type))
6012 return EMULATE_DONE;
6014 return handle_emulation_failure(vcpu);
6017 if (ctxt->have_exception) {
6018 r = EMULATE_DONE;
6019 if (inject_emulated_exception(vcpu))
6020 return r;
6021 } else if (vcpu->arch.pio.count) {
6022 if (!vcpu->arch.pio.in) {
6023 /* FIXME: return into emulator if single-stepping. */
6024 vcpu->arch.pio.count = 0;
6025 } else {
6026 writeback = false;
6027 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6029 r = EMULATE_USER_EXIT;
6030 } else if (vcpu->mmio_needed) {
6031 if (!vcpu->mmio_is_write)
6032 writeback = false;
6033 r = EMULATE_USER_EXIT;
6034 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6035 } else if (r == EMULATION_RESTART)
6036 goto restart;
6037 else
6038 r = EMULATE_DONE;
6040 if (writeback) {
6041 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6042 toggle_interruptibility(vcpu, ctxt->interruptibility);
6043 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6044 if (!ctxt->have_exception ||
6045 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6046 kvm_rip_write(vcpu, ctxt->eip);
6047 if (r == EMULATE_DONE && ctxt->tf)
6048 kvm_vcpu_do_singlestep(vcpu, &r);
6049 __kvm_set_rflags(vcpu, ctxt->eflags);
6053 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6054 * do nothing, and it will be requested again as soon as
6055 * the shadow expires. But we still need to check here,
6056 * because POPF has no interrupt shadow.
6058 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6059 kvm_make_request(KVM_REQ_EVENT, vcpu);
6060 } else
6061 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6063 return r;
6065 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6067 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
6069 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6070 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6071 size, port, &val, 1);
6072 /* do not return to emulator after return from userspace */
6073 vcpu->arch.pio.count = 0;
6074 return ret;
6076 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
6078 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6080 unsigned long val;
6082 /* We should only ever be called with arch.pio.count equal to 1 */
6083 BUG_ON(vcpu->arch.pio.count != 1);
6085 /* For size less than 4 we merge, else we zero extend */
6086 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6087 : 0;
6090 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6091 * the copy and tracing
6093 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6094 vcpu->arch.pio.port, &val, 1);
6095 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6097 return 1;
6100 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
6102 unsigned long val;
6103 int ret;
6105 /* For size less than 4 we merge, else we zero extend */
6106 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6108 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6109 &val, 1);
6110 if (ret) {
6111 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6112 return ret;
6115 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6117 return 0;
6119 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
6121 static int kvmclock_cpu_down_prep(unsigned int cpu)
6123 __this_cpu_write(cpu_tsc_khz, 0);
6124 return 0;
6127 static void tsc_khz_changed(void *data)
6129 struct cpufreq_freqs *freq = data;
6130 unsigned long khz = 0;
6132 if (data)
6133 khz = freq->new;
6134 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6135 khz = cpufreq_quick_get(raw_smp_processor_id());
6136 if (!khz)
6137 khz = tsc_khz;
6138 __this_cpu_write(cpu_tsc_khz, khz);
6141 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6142 void *data)
6144 struct cpufreq_freqs *freq = data;
6145 struct kvm *kvm;
6146 struct kvm_vcpu *vcpu;
6147 int i, send_ipi = 0;
6150 * We allow guests to temporarily run on slowing clocks,
6151 * provided we notify them after, or to run on accelerating
6152 * clocks, provided we notify them before. Thus time never
6153 * goes backwards.
6155 * However, we have a problem. We can't atomically update
6156 * the frequency of a given CPU from this function; it is
6157 * merely a notifier, which can be called from any CPU.
6158 * Changing the TSC frequency at arbitrary points in time
6159 * requires a recomputation of local variables related to
6160 * the TSC for each VCPU. We must flag these local variables
6161 * to be updated and be sure the update takes place with the
6162 * new frequency before any guests proceed.
6164 * Unfortunately, the combination of hotplug CPU and frequency
6165 * change creates an intractable locking scenario; the order
6166 * of when these callouts happen is undefined with respect to
6167 * CPU hotplug, and they can race with each other. As such,
6168 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6169 * undefined; you can actually have a CPU frequency change take
6170 * place in between the computation of X and the setting of the
6171 * variable. To protect against this problem, all updates of
6172 * the per_cpu tsc_khz variable are done in an interrupt
6173 * protected IPI, and all callers wishing to update the value
6174 * must wait for a synchronous IPI to complete (which is trivial
6175 * if the caller is on the CPU already). This establishes the
6176 * necessary total order on variable updates.
6178 * Note that because a guest time update may take place
6179 * anytime after the setting of the VCPU's request bit, the
6180 * correct TSC value must be set before the request. However,
6181 * to ensure the update actually makes it to any guest which
6182 * starts running in hardware virtualization between the set
6183 * and the acquisition of the spinlock, we must also ping the
6184 * CPU after setting the request bit.
6188 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6189 return 0;
6190 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6191 return 0;
6193 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6195 mutex_lock(&kvm_lock);
6196 list_for_each_entry(kvm, &vm_list, vm_list) {
6197 kvm_for_each_vcpu(i, vcpu, kvm) {
6198 if (vcpu->cpu != freq->cpu)
6199 continue;
6200 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6201 if (vcpu->cpu != raw_smp_processor_id())
6202 send_ipi = 1;
6205 mutex_unlock(&kvm_lock);
6207 if (freq->old < freq->new && send_ipi) {
6209 * We upscale the frequency. Must make the guest
6210 * doesn't see old kvmclock values while running with
6211 * the new frequency, otherwise we risk the guest sees
6212 * time go backwards.
6214 * In case we update the frequency for another cpu
6215 * (which might be in guest context) send an interrupt
6216 * to kick the cpu out of guest context. Next time
6217 * guest context is entered kvmclock will be updated,
6218 * so the guest will not see stale values.
6220 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6222 return 0;
6225 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6226 .notifier_call = kvmclock_cpufreq_notifier
6229 static int kvmclock_cpu_online(unsigned int cpu)
6231 tsc_khz_changed(NULL);
6232 return 0;
6235 static void kvm_timer_init(void)
6237 max_tsc_khz = tsc_khz;
6239 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6240 #ifdef CONFIG_CPU_FREQ
6241 struct cpufreq_policy policy;
6242 int cpu;
6244 memset(&policy, 0, sizeof(policy));
6245 cpu = get_cpu();
6246 cpufreq_get_policy(&policy, cpu);
6247 if (policy.cpuinfo.max_freq)
6248 max_tsc_khz = policy.cpuinfo.max_freq;
6249 put_cpu();
6250 #endif
6251 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6252 CPUFREQ_TRANSITION_NOTIFIER);
6254 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6256 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6257 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6260 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6262 int kvm_is_in_guest(void)
6264 return __this_cpu_read(current_vcpu) != NULL;
6267 static int kvm_is_user_mode(void)
6269 int user_mode = 3;
6271 if (__this_cpu_read(current_vcpu))
6272 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6274 return user_mode != 0;
6277 static unsigned long kvm_get_guest_ip(void)
6279 unsigned long ip = 0;
6281 if (__this_cpu_read(current_vcpu))
6282 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6284 return ip;
6287 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6288 .is_in_guest = kvm_is_in_guest,
6289 .is_user_mode = kvm_is_user_mode,
6290 .get_guest_ip = kvm_get_guest_ip,
6293 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6295 __this_cpu_write(current_vcpu, vcpu);
6297 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6299 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6301 __this_cpu_write(current_vcpu, NULL);
6303 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6305 #ifdef CONFIG_X86_64
6306 static void pvclock_gtod_update_fn(struct work_struct *work)
6308 struct kvm *kvm;
6310 struct kvm_vcpu *vcpu;
6311 int i;
6313 mutex_lock(&kvm_lock);
6314 list_for_each_entry(kvm, &vm_list, vm_list)
6315 kvm_for_each_vcpu(i, vcpu, kvm)
6316 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6317 atomic_set(&kvm_guest_has_master_clock, 0);
6318 mutex_unlock(&kvm_lock);
6321 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6324 * Notification about pvclock gtod data update.
6326 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6327 void *priv)
6329 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6330 struct timekeeper *tk = priv;
6332 update_pvclock_gtod(tk);
6334 /* disable master clock if host does not trust, or does not
6335 * use, TSC clocksource
6337 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6338 atomic_read(&kvm_guest_has_master_clock) != 0)
6339 queue_work(system_long_wq, &pvclock_gtod_work);
6341 return 0;
6344 static struct notifier_block pvclock_gtod_notifier = {
6345 .notifier_call = pvclock_gtod_notify,
6347 #endif
6349 int kvm_arch_init(void *opaque)
6351 int r;
6352 struct kvm_x86_ops *ops = opaque;
6354 if (kvm_x86_ops) {
6355 printk(KERN_ERR "kvm: already loaded the other module\n");
6356 r = -EEXIST;
6357 goto out;
6360 if (!ops->cpu_has_kvm_support()) {
6361 printk(KERN_ERR "kvm: no hardware support\n");
6362 r = -EOPNOTSUPP;
6363 goto out;
6365 if (ops->disabled_by_bios()) {
6366 printk(KERN_ERR "kvm: disabled by bios\n");
6367 r = -EOPNOTSUPP;
6368 goto out;
6371 r = -ENOMEM;
6372 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6373 if (!shared_msrs) {
6374 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6375 goto out;
6378 r = kvm_mmu_module_init();
6379 if (r)
6380 goto out_free_percpu;
6382 kvm_x86_ops = ops;
6384 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6385 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6386 PT_PRESENT_MASK, 0, sme_me_mask);
6387 kvm_timer_init();
6389 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6391 if (boot_cpu_has(X86_FEATURE_XSAVE))
6392 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6394 kvm_lapic_init();
6395 #ifdef CONFIG_X86_64
6396 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6397 #endif
6399 return 0;
6401 out_free_percpu:
6402 free_percpu(shared_msrs);
6403 out:
6404 return r;
6407 void kvm_arch_exit(void)
6409 kvm_lapic_exit();
6410 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6412 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6413 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6414 CPUFREQ_TRANSITION_NOTIFIER);
6415 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6416 #ifdef CONFIG_X86_64
6417 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6418 #endif
6419 kvm_x86_ops = NULL;
6420 kvm_mmu_module_exit();
6421 free_percpu(shared_msrs);
6424 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6426 ++vcpu->stat.halt_exits;
6427 if (lapic_in_kernel(vcpu)) {
6428 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6429 return 1;
6430 } else {
6431 vcpu->run->exit_reason = KVM_EXIT_HLT;
6432 return 0;
6435 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6437 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6439 int ret = kvm_skip_emulated_instruction(vcpu);
6441 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6442 * KVM_EXIT_DEBUG here.
6444 return kvm_vcpu_halt(vcpu) && ret;
6446 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6448 #ifdef CONFIG_X86_64
6449 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6450 unsigned long clock_type)
6452 struct kvm_clock_pairing clock_pairing;
6453 struct timespec ts;
6454 u64 cycle;
6455 int ret;
6457 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6458 return -KVM_EOPNOTSUPP;
6460 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6461 return -KVM_EOPNOTSUPP;
6463 clock_pairing.sec = ts.tv_sec;
6464 clock_pairing.nsec = ts.tv_nsec;
6465 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6466 clock_pairing.flags = 0;
6467 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6469 ret = 0;
6470 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6471 sizeof(struct kvm_clock_pairing)))
6472 ret = -KVM_EFAULT;
6474 return ret;
6476 #endif
6479 * kvm_pv_kick_cpu_op: Kick a vcpu.
6481 * @apicid - apicid of vcpu to be kicked.
6483 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6485 struct kvm_lapic_irq lapic_irq;
6487 lapic_irq.shorthand = 0;
6488 lapic_irq.dest_mode = 0;
6489 lapic_irq.level = 0;
6490 lapic_irq.dest_id = apicid;
6491 lapic_irq.msi_redir_hint = false;
6493 lapic_irq.delivery_mode = APIC_DM_REMRD;
6494 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6497 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6499 vcpu->arch.apicv_active = false;
6500 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6503 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6505 unsigned long nr, a0, a1, a2, a3, ret;
6506 int op_64_bit;
6508 if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
6509 if (!kvm_hv_hypercall(vcpu))
6510 return 0;
6511 goto out;
6514 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6515 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6516 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6517 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6518 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6520 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6522 op_64_bit = is_64_bit_mode(vcpu);
6523 if (!op_64_bit) {
6524 nr &= 0xFFFFFFFF;
6525 a0 &= 0xFFFFFFFF;
6526 a1 &= 0xFFFFFFFF;
6527 a2 &= 0xFFFFFFFF;
6528 a3 &= 0xFFFFFFFF;
6531 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6532 ret = -KVM_EPERM;
6533 goto out_error;
6536 switch (nr) {
6537 case KVM_HC_VAPIC_POLL_IRQ:
6538 ret = 0;
6539 break;
6540 case KVM_HC_KICK_CPU:
6541 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6542 ret = 0;
6543 break;
6544 #ifdef CONFIG_X86_64
6545 case KVM_HC_CLOCK_PAIRING:
6546 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6547 break;
6548 #endif
6549 default:
6550 ret = -KVM_ENOSYS;
6551 break;
6553 out_error:
6554 if (!op_64_bit)
6555 ret = (u32)ret;
6556 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6558 out:
6559 ++vcpu->stat.hypercalls;
6560 return kvm_skip_emulated_instruction(vcpu);
6562 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6564 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6566 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6567 char instruction[3];
6568 unsigned long rip = kvm_rip_read(vcpu);
6570 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6572 return emulator_write_emulated(ctxt, rip, instruction, 3,
6573 &ctxt->exception);
6576 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6578 return vcpu->run->request_interrupt_window &&
6579 likely(!pic_in_kernel(vcpu->kvm));
6582 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6584 struct kvm_run *kvm_run = vcpu->run;
6586 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6587 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6588 kvm_run->cr8 = kvm_get_cr8(vcpu);
6589 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6590 kvm_run->ready_for_interrupt_injection =
6591 pic_in_kernel(vcpu->kvm) ||
6592 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6595 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6597 int max_irr, tpr;
6599 if (!kvm_x86_ops->update_cr8_intercept)
6600 return;
6602 if (!lapic_in_kernel(vcpu))
6603 return;
6605 if (vcpu->arch.apicv_active)
6606 return;
6608 if (!vcpu->arch.apic->vapic_addr)
6609 max_irr = kvm_lapic_find_highest_irr(vcpu);
6610 else
6611 max_irr = -1;
6613 if (max_irr != -1)
6614 max_irr >>= 4;
6616 tpr = kvm_lapic_get_cr8(vcpu);
6618 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6621 static int inject_pending_event(struct kvm_vcpu *vcpu)
6623 int r;
6625 /* try to reinject previous events if any */
6626 if (vcpu->arch.exception.injected) {
6627 kvm_x86_ops->queue_exception(vcpu);
6628 return 0;
6632 * Exceptions must be injected immediately, or the exception
6633 * frame will have the address of the NMI or interrupt handler.
6635 if (!vcpu->arch.exception.pending) {
6636 if (vcpu->arch.nmi_injected) {
6637 kvm_x86_ops->set_nmi(vcpu);
6638 return 0;
6641 if (vcpu->arch.interrupt.pending) {
6642 kvm_x86_ops->set_irq(vcpu);
6643 return 0;
6647 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6648 r = kvm_x86_ops->check_nested_events(vcpu);
6649 if (r != 0)
6650 return r;
6653 /* try to inject new event if pending */
6654 if (vcpu->arch.exception.pending) {
6655 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6656 vcpu->arch.exception.has_error_code,
6657 vcpu->arch.exception.error_code);
6659 vcpu->arch.exception.pending = false;
6660 vcpu->arch.exception.injected = true;
6662 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6663 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6664 X86_EFLAGS_RF);
6666 if (vcpu->arch.exception.nr == DB_VECTOR &&
6667 (vcpu->arch.dr7 & DR7_GD)) {
6668 vcpu->arch.dr7 &= ~DR7_GD;
6669 kvm_update_dr7(vcpu);
6672 kvm_x86_ops->queue_exception(vcpu);
6673 } else if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6674 vcpu->arch.smi_pending = false;
6675 enter_smm(vcpu);
6676 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6677 --vcpu->arch.nmi_pending;
6678 vcpu->arch.nmi_injected = true;
6679 kvm_x86_ops->set_nmi(vcpu);
6680 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6682 * Because interrupts can be injected asynchronously, we are
6683 * calling check_nested_events again here to avoid a race condition.
6684 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6685 * proposal and current concerns. Perhaps we should be setting
6686 * KVM_REQ_EVENT only on certain events and not unconditionally?
6688 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6689 r = kvm_x86_ops->check_nested_events(vcpu);
6690 if (r != 0)
6691 return r;
6693 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6694 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6695 false);
6696 kvm_x86_ops->set_irq(vcpu);
6700 return 0;
6703 static void process_nmi(struct kvm_vcpu *vcpu)
6705 unsigned limit = 2;
6708 * x86 is limited to one NMI running, and one NMI pending after it.
6709 * If an NMI is already in progress, limit further NMIs to just one.
6710 * Otherwise, allow two (and we'll inject the first one immediately).
6712 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6713 limit = 1;
6715 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6716 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6717 kvm_make_request(KVM_REQ_EVENT, vcpu);
6720 #define put_smstate(type, buf, offset, val) \
6721 *(type *)((buf) + (offset) - 0x7e00) = val
6723 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6725 u32 flags = 0;
6726 flags |= seg->g << 23;
6727 flags |= seg->db << 22;
6728 flags |= seg->l << 21;
6729 flags |= seg->avl << 20;
6730 flags |= seg->present << 15;
6731 flags |= seg->dpl << 13;
6732 flags |= seg->s << 12;
6733 flags |= seg->type << 8;
6734 return flags;
6737 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6739 struct kvm_segment seg;
6740 int offset;
6742 kvm_get_segment(vcpu, &seg, n);
6743 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6745 if (n < 3)
6746 offset = 0x7f84 + n * 12;
6747 else
6748 offset = 0x7f2c + (n - 3) * 12;
6750 put_smstate(u32, buf, offset + 8, seg.base);
6751 put_smstate(u32, buf, offset + 4, seg.limit);
6752 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6755 #ifdef CONFIG_X86_64
6756 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6758 struct kvm_segment seg;
6759 int offset;
6760 u16 flags;
6762 kvm_get_segment(vcpu, &seg, n);
6763 offset = 0x7e00 + n * 16;
6765 flags = enter_smm_get_segment_flags(&seg) >> 8;
6766 put_smstate(u16, buf, offset, seg.selector);
6767 put_smstate(u16, buf, offset + 2, flags);
6768 put_smstate(u32, buf, offset + 4, seg.limit);
6769 put_smstate(u64, buf, offset + 8, seg.base);
6771 #endif
6773 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6775 struct desc_ptr dt;
6776 struct kvm_segment seg;
6777 unsigned long val;
6778 int i;
6780 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6781 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6782 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6783 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6785 for (i = 0; i < 8; i++)
6786 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6788 kvm_get_dr(vcpu, 6, &val);
6789 put_smstate(u32, buf, 0x7fcc, (u32)val);
6790 kvm_get_dr(vcpu, 7, &val);
6791 put_smstate(u32, buf, 0x7fc8, (u32)val);
6793 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6794 put_smstate(u32, buf, 0x7fc4, seg.selector);
6795 put_smstate(u32, buf, 0x7f64, seg.base);
6796 put_smstate(u32, buf, 0x7f60, seg.limit);
6797 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6799 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6800 put_smstate(u32, buf, 0x7fc0, seg.selector);
6801 put_smstate(u32, buf, 0x7f80, seg.base);
6802 put_smstate(u32, buf, 0x7f7c, seg.limit);
6803 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6805 kvm_x86_ops->get_gdt(vcpu, &dt);
6806 put_smstate(u32, buf, 0x7f74, dt.address);
6807 put_smstate(u32, buf, 0x7f70, dt.size);
6809 kvm_x86_ops->get_idt(vcpu, &dt);
6810 put_smstate(u32, buf, 0x7f58, dt.address);
6811 put_smstate(u32, buf, 0x7f54, dt.size);
6813 for (i = 0; i < 6; i++)
6814 enter_smm_save_seg_32(vcpu, buf, i);
6816 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6818 /* revision id */
6819 put_smstate(u32, buf, 0x7efc, 0x00020000);
6820 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6823 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6825 #ifdef CONFIG_X86_64
6826 struct desc_ptr dt;
6827 struct kvm_segment seg;
6828 unsigned long val;
6829 int i;
6831 for (i = 0; i < 16; i++)
6832 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6834 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6835 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6837 kvm_get_dr(vcpu, 6, &val);
6838 put_smstate(u64, buf, 0x7f68, val);
6839 kvm_get_dr(vcpu, 7, &val);
6840 put_smstate(u64, buf, 0x7f60, val);
6842 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6843 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6844 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6846 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6848 /* revision id */
6849 put_smstate(u32, buf, 0x7efc, 0x00020064);
6851 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6853 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6854 put_smstate(u16, buf, 0x7e90, seg.selector);
6855 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6856 put_smstate(u32, buf, 0x7e94, seg.limit);
6857 put_smstate(u64, buf, 0x7e98, seg.base);
6859 kvm_x86_ops->get_idt(vcpu, &dt);
6860 put_smstate(u32, buf, 0x7e84, dt.size);
6861 put_smstate(u64, buf, 0x7e88, dt.address);
6863 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6864 put_smstate(u16, buf, 0x7e70, seg.selector);
6865 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6866 put_smstate(u32, buf, 0x7e74, seg.limit);
6867 put_smstate(u64, buf, 0x7e78, seg.base);
6869 kvm_x86_ops->get_gdt(vcpu, &dt);
6870 put_smstate(u32, buf, 0x7e64, dt.size);
6871 put_smstate(u64, buf, 0x7e68, dt.address);
6873 for (i = 0; i < 6; i++)
6874 enter_smm_save_seg_64(vcpu, buf, i);
6875 #else
6876 WARN_ON_ONCE(1);
6877 #endif
6880 static void enter_smm(struct kvm_vcpu *vcpu)
6882 struct kvm_segment cs, ds;
6883 struct desc_ptr dt;
6884 char buf[512];
6885 u32 cr0;
6887 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6888 vcpu->arch.hflags |= HF_SMM_MASK;
6889 memset(buf, 0, 512);
6890 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6891 enter_smm_save_state_64(vcpu, buf);
6892 else
6893 enter_smm_save_state_32(vcpu, buf);
6895 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6897 if (kvm_x86_ops->get_nmi_mask(vcpu))
6898 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6899 else
6900 kvm_x86_ops->set_nmi_mask(vcpu, true);
6902 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6903 kvm_rip_write(vcpu, 0x8000);
6905 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6906 kvm_x86_ops->set_cr0(vcpu, cr0);
6907 vcpu->arch.cr0 = cr0;
6909 kvm_x86_ops->set_cr4(vcpu, 0);
6911 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6912 dt.address = dt.size = 0;
6913 kvm_x86_ops->set_idt(vcpu, &dt);
6915 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6917 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6918 cs.base = vcpu->arch.smbase;
6920 ds.selector = 0;
6921 ds.base = 0;
6923 cs.limit = ds.limit = 0xffffffff;
6924 cs.type = ds.type = 0x3;
6925 cs.dpl = ds.dpl = 0;
6926 cs.db = ds.db = 0;
6927 cs.s = ds.s = 1;
6928 cs.l = ds.l = 0;
6929 cs.g = ds.g = 1;
6930 cs.avl = ds.avl = 0;
6931 cs.present = ds.present = 1;
6932 cs.unusable = ds.unusable = 0;
6933 cs.padding = ds.padding = 0;
6935 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6936 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6937 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6938 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6939 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6940 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6942 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6943 kvm_x86_ops->set_efer(vcpu, 0);
6945 kvm_update_cpuid(vcpu);
6946 kvm_mmu_reset_context(vcpu);
6949 static void process_smi(struct kvm_vcpu *vcpu)
6951 vcpu->arch.smi_pending = true;
6952 kvm_make_request(KVM_REQ_EVENT, vcpu);
6955 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6957 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6960 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6962 u64 eoi_exit_bitmap[4];
6964 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6965 return;
6967 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6969 if (irqchip_split(vcpu->kvm))
6970 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6971 else {
6972 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6973 kvm_x86_ops->sync_pir_to_irr(vcpu);
6974 if (ioapic_in_kernel(vcpu->kvm))
6975 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6977 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6978 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6979 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6982 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
6984 ++vcpu->stat.tlb_flush;
6985 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
6988 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6989 unsigned long start, unsigned long end)
6991 unsigned long apic_address;
6994 * The physical address of apic access page is stored in the VMCS.
6995 * Update it when it becomes invalid.
6997 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6998 if (start <= apic_address && apic_address < end)
6999 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7002 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7004 struct page *page = NULL;
7006 if (!lapic_in_kernel(vcpu))
7007 return;
7009 if (!kvm_x86_ops->set_apic_access_page_addr)
7010 return;
7012 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7013 if (is_error_page(page))
7014 return;
7015 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7018 * Do not pin apic access page in memory, the MMU notifier
7019 * will call us again if it is migrated or swapped out.
7021 put_page(page);
7023 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7026 * Returns 1 to let vcpu_run() continue the guest execution loop without
7027 * exiting to the userspace. Otherwise, the value will be returned to the
7028 * userspace.
7030 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7032 int r;
7033 bool req_int_win =
7034 dm_request_for_irq_injection(vcpu) &&
7035 kvm_cpu_accept_dm_intr(vcpu);
7037 bool req_immediate_exit = false;
7039 if (kvm_request_pending(vcpu)) {
7040 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7041 kvm_mmu_unload(vcpu);
7042 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7043 __kvm_migrate_timers(vcpu);
7044 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7045 kvm_gen_update_masterclock(vcpu->kvm);
7046 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7047 kvm_gen_kvmclock_update(vcpu);
7048 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7049 r = kvm_guest_time_update(vcpu);
7050 if (unlikely(r))
7051 goto out;
7053 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7054 kvm_mmu_sync_roots(vcpu);
7055 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7056 kvm_vcpu_flush_tlb(vcpu, true);
7057 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7058 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7059 r = 0;
7060 goto out;
7062 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7063 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7064 vcpu->mmio_needed = 0;
7065 r = 0;
7066 goto out;
7068 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7069 /* Page is swapped out. Do synthetic halt */
7070 vcpu->arch.apf.halted = true;
7071 r = 1;
7072 goto out;
7074 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7075 record_steal_time(vcpu);
7076 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7077 process_smi(vcpu);
7078 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7079 process_nmi(vcpu);
7080 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7081 kvm_pmu_handle_event(vcpu);
7082 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7083 kvm_pmu_deliver_pmi(vcpu);
7084 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7085 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7086 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7087 vcpu->arch.ioapic_handled_vectors)) {
7088 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7089 vcpu->run->eoi.vector =
7090 vcpu->arch.pending_ioapic_eoi;
7091 r = 0;
7092 goto out;
7095 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7096 vcpu_scan_ioapic(vcpu);
7097 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7098 kvm_vcpu_reload_apic_access_page(vcpu);
7099 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7100 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7101 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7102 r = 0;
7103 goto out;
7105 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7106 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7107 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7108 r = 0;
7109 goto out;
7111 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7112 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7113 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7114 r = 0;
7115 goto out;
7119 * KVM_REQ_HV_STIMER has to be processed after
7120 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7121 * depend on the guest clock being up-to-date
7123 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7124 kvm_hv_process_stimers(vcpu);
7127 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7128 ++vcpu->stat.req_event;
7129 kvm_apic_accept_events(vcpu);
7130 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7131 r = 1;
7132 goto out;
7135 if (inject_pending_event(vcpu) != 0)
7136 req_immediate_exit = true;
7137 else {
7138 /* Enable NMI/IRQ window open exits if needed.
7140 * SMIs have two cases: 1) they can be nested, and
7141 * then there is nothing to do here because RSM will
7142 * cause a vmexit anyway; 2) or the SMI can be pending
7143 * because inject_pending_event has completed the
7144 * injection of an IRQ or NMI from the previous vmexit,
7145 * and then we request an immediate exit to inject the SMI.
7147 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7148 req_immediate_exit = true;
7149 if (vcpu->arch.nmi_pending)
7150 kvm_x86_ops->enable_nmi_window(vcpu);
7151 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7152 kvm_x86_ops->enable_irq_window(vcpu);
7153 WARN_ON(vcpu->arch.exception.pending);
7156 if (kvm_lapic_enabled(vcpu)) {
7157 update_cr8_intercept(vcpu);
7158 kvm_lapic_sync_to_vapic(vcpu);
7162 r = kvm_mmu_reload(vcpu);
7163 if (unlikely(r)) {
7164 goto cancel_injection;
7167 preempt_disable();
7169 kvm_x86_ops->prepare_guest_switch(vcpu);
7172 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7173 * IPI are then delayed after guest entry, which ensures that they
7174 * result in virtual interrupt delivery.
7176 local_irq_disable();
7177 vcpu->mode = IN_GUEST_MODE;
7179 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7182 * 1) We should set ->mode before checking ->requests. Please see
7183 * the comment in kvm_vcpu_exiting_guest_mode().
7185 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7186 * pairs with the memory barrier implicit in pi_test_and_set_on
7187 * (see vmx_deliver_posted_interrupt).
7189 * 3) This also orders the write to mode from any reads to the page
7190 * tables done while the VCPU is running. Please see the comment
7191 * in kvm_flush_remote_tlbs.
7193 smp_mb__after_srcu_read_unlock();
7196 * This handles the case where a posted interrupt was
7197 * notified with kvm_vcpu_kick.
7199 if (kvm_lapic_enabled(vcpu)) {
7200 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
7201 kvm_x86_ops->sync_pir_to_irr(vcpu);
7204 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7205 || need_resched() || signal_pending(current)) {
7206 vcpu->mode = OUTSIDE_GUEST_MODE;
7207 smp_wmb();
7208 local_irq_enable();
7209 preempt_enable();
7210 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7211 r = 1;
7212 goto cancel_injection;
7215 kvm_load_guest_xcr0(vcpu);
7217 if (req_immediate_exit) {
7218 kvm_make_request(KVM_REQ_EVENT, vcpu);
7219 smp_send_reschedule(vcpu->cpu);
7222 trace_kvm_entry(vcpu->vcpu_id);
7223 wait_lapic_expire(vcpu);
7224 guest_enter_irqoff();
7226 if (unlikely(vcpu->arch.switch_db_regs)) {
7227 set_debugreg(0, 7);
7228 set_debugreg(vcpu->arch.eff_db[0], 0);
7229 set_debugreg(vcpu->arch.eff_db[1], 1);
7230 set_debugreg(vcpu->arch.eff_db[2], 2);
7231 set_debugreg(vcpu->arch.eff_db[3], 3);
7232 set_debugreg(vcpu->arch.dr6, 6);
7233 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7236 kvm_x86_ops->run(vcpu);
7239 * Do this here before restoring debug registers on the host. And
7240 * since we do this before handling the vmexit, a DR access vmexit
7241 * can (a) read the correct value of the debug registers, (b) set
7242 * KVM_DEBUGREG_WONT_EXIT again.
7244 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7245 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7246 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7247 kvm_update_dr0123(vcpu);
7248 kvm_update_dr6(vcpu);
7249 kvm_update_dr7(vcpu);
7250 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7254 * If the guest has used debug registers, at least dr7
7255 * will be disabled while returning to the host.
7256 * If we don't have active breakpoints in the host, we don't
7257 * care about the messed up debug address registers. But if
7258 * we have some of them active, restore the old state.
7260 if (hw_breakpoint_active())
7261 hw_breakpoint_restore();
7263 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7265 vcpu->mode = OUTSIDE_GUEST_MODE;
7266 smp_wmb();
7268 kvm_put_guest_xcr0(vcpu);
7270 kvm_x86_ops->handle_external_intr(vcpu);
7272 ++vcpu->stat.exits;
7274 guest_exit_irqoff();
7276 local_irq_enable();
7277 preempt_enable();
7279 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7282 * Profile KVM exit RIPs:
7284 if (unlikely(prof_on == KVM_PROFILING)) {
7285 unsigned long rip = kvm_rip_read(vcpu);
7286 profile_hit(KVM_PROFILING, (void *)rip);
7289 if (unlikely(vcpu->arch.tsc_always_catchup))
7290 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7292 if (vcpu->arch.apic_attention)
7293 kvm_lapic_sync_from_vapic(vcpu);
7295 vcpu->arch.gpa_available = false;
7296 r = kvm_x86_ops->handle_exit(vcpu);
7297 return r;
7299 cancel_injection:
7300 kvm_x86_ops->cancel_injection(vcpu);
7301 if (unlikely(vcpu->arch.apic_attention))
7302 kvm_lapic_sync_from_vapic(vcpu);
7303 out:
7304 return r;
7307 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7309 if (!kvm_arch_vcpu_runnable(vcpu) &&
7310 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7311 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7312 kvm_vcpu_block(vcpu);
7313 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7315 if (kvm_x86_ops->post_block)
7316 kvm_x86_ops->post_block(vcpu);
7318 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7319 return 1;
7322 kvm_apic_accept_events(vcpu);
7323 switch(vcpu->arch.mp_state) {
7324 case KVM_MP_STATE_HALTED:
7325 vcpu->arch.pv.pv_unhalted = false;
7326 vcpu->arch.mp_state =
7327 KVM_MP_STATE_RUNNABLE;
7328 case KVM_MP_STATE_RUNNABLE:
7329 vcpu->arch.apf.halted = false;
7330 break;
7331 case KVM_MP_STATE_INIT_RECEIVED:
7332 break;
7333 default:
7334 return -EINTR;
7335 break;
7337 return 1;
7340 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7342 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7343 kvm_x86_ops->check_nested_events(vcpu);
7345 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7346 !vcpu->arch.apf.halted);
7349 static int vcpu_run(struct kvm_vcpu *vcpu)
7351 int r;
7352 struct kvm *kvm = vcpu->kvm;
7354 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7355 vcpu->arch.l1tf_flush_l1d = true;
7357 for (;;) {
7358 if (kvm_vcpu_running(vcpu)) {
7359 r = vcpu_enter_guest(vcpu);
7360 } else {
7361 r = vcpu_block(kvm, vcpu);
7364 if (r <= 0)
7365 break;
7367 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7368 if (kvm_cpu_has_pending_timer(vcpu))
7369 kvm_inject_pending_timer_irqs(vcpu);
7371 if (dm_request_for_irq_injection(vcpu) &&
7372 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7373 r = 0;
7374 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7375 ++vcpu->stat.request_irq_exits;
7376 break;
7379 kvm_check_async_pf_completion(vcpu);
7381 if (signal_pending(current)) {
7382 r = -EINTR;
7383 vcpu->run->exit_reason = KVM_EXIT_INTR;
7384 ++vcpu->stat.signal_exits;
7385 break;
7387 if (need_resched()) {
7388 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7389 cond_resched();
7390 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7394 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7396 return r;
7399 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7401 int r;
7402 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7403 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7404 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7405 if (r != EMULATE_DONE)
7406 return 0;
7407 return 1;
7410 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7412 BUG_ON(!vcpu->arch.pio.count);
7414 return complete_emulated_io(vcpu);
7418 * Implements the following, as a state machine:
7420 * read:
7421 * for each fragment
7422 * for each mmio piece in the fragment
7423 * write gpa, len
7424 * exit
7425 * copy data
7426 * execute insn
7428 * write:
7429 * for each fragment
7430 * for each mmio piece in the fragment
7431 * write gpa, len
7432 * copy data
7433 * exit
7435 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7437 struct kvm_run *run = vcpu->run;
7438 struct kvm_mmio_fragment *frag;
7439 unsigned len;
7441 BUG_ON(!vcpu->mmio_needed);
7443 /* Complete previous fragment */
7444 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7445 len = min(8u, frag->len);
7446 if (!vcpu->mmio_is_write)
7447 memcpy(frag->data, run->mmio.data, len);
7449 if (frag->len <= 8) {
7450 /* Switch to the next fragment. */
7451 frag++;
7452 vcpu->mmio_cur_fragment++;
7453 } else {
7454 /* Go forward to the next mmio piece. */
7455 frag->data += len;
7456 frag->gpa += len;
7457 frag->len -= len;
7460 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7461 vcpu->mmio_needed = 0;
7463 /* FIXME: return into emulator if single-stepping. */
7464 if (vcpu->mmio_is_write)
7465 return 1;
7466 vcpu->mmio_read_completed = 1;
7467 return complete_emulated_io(vcpu);
7470 run->exit_reason = KVM_EXIT_MMIO;
7471 run->mmio.phys_addr = frag->gpa;
7472 if (vcpu->mmio_is_write)
7473 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7474 run->mmio.len = min(8u, frag->len);
7475 run->mmio.is_write = vcpu->mmio_is_write;
7476 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7477 return 0;
7481 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7483 int r;
7485 kvm_sigset_activate(vcpu);
7487 kvm_load_guest_fpu(vcpu);
7489 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7490 if (kvm_run->immediate_exit) {
7491 r = -EINTR;
7492 goto out;
7494 kvm_vcpu_block(vcpu);
7495 kvm_apic_accept_events(vcpu);
7496 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7497 r = -EAGAIN;
7498 if (signal_pending(current)) {
7499 r = -EINTR;
7500 vcpu->run->exit_reason = KVM_EXIT_INTR;
7501 ++vcpu->stat.signal_exits;
7503 goto out;
7506 /* re-sync apic's tpr */
7507 if (!lapic_in_kernel(vcpu)) {
7508 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7509 r = -EINVAL;
7510 goto out;
7514 if (unlikely(vcpu->arch.complete_userspace_io)) {
7515 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7516 vcpu->arch.complete_userspace_io = NULL;
7517 r = cui(vcpu);
7518 if (r <= 0)
7519 goto out;
7520 } else
7521 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7523 if (kvm_run->immediate_exit)
7524 r = -EINTR;
7525 else
7526 r = vcpu_run(vcpu);
7528 out:
7529 kvm_put_guest_fpu(vcpu);
7530 post_kvm_run_save(vcpu);
7531 kvm_sigset_deactivate(vcpu);
7533 return r;
7536 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7538 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7540 * We are here if userspace calls get_regs() in the middle of
7541 * instruction emulation. Registers state needs to be copied
7542 * back from emulation context to vcpu. Userspace shouldn't do
7543 * that usually, but some bad designed PV devices (vmware
7544 * backdoor interface) need this to work
7546 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7547 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7549 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7550 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7551 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7552 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7553 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7554 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7555 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7556 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7557 #ifdef CONFIG_X86_64
7558 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7559 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7560 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7561 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7562 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7563 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7564 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7565 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7566 #endif
7568 regs->rip = kvm_rip_read(vcpu);
7569 regs->rflags = kvm_get_rflags(vcpu);
7571 return 0;
7574 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7576 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7577 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7579 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7580 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7581 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7582 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7583 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7584 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7585 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7586 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7587 #ifdef CONFIG_X86_64
7588 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7589 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7590 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7591 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7592 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7593 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7594 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7595 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7596 #endif
7598 kvm_rip_write(vcpu, regs->rip);
7599 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7601 vcpu->arch.exception.pending = false;
7603 kvm_make_request(KVM_REQ_EVENT, vcpu);
7605 return 0;
7608 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7610 struct kvm_segment cs;
7612 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7613 *db = cs.db;
7614 *l = cs.l;
7616 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7618 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7619 struct kvm_sregs *sregs)
7621 struct desc_ptr dt;
7623 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7624 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7625 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7626 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7627 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7628 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7630 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7631 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7633 kvm_x86_ops->get_idt(vcpu, &dt);
7634 sregs->idt.limit = dt.size;
7635 sregs->idt.base = dt.address;
7636 kvm_x86_ops->get_gdt(vcpu, &dt);
7637 sregs->gdt.limit = dt.size;
7638 sregs->gdt.base = dt.address;
7640 sregs->cr0 = kvm_read_cr0(vcpu);
7641 sregs->cr2 = vcpu->arch.cr2;
7642 sregs->cr3 = kvm_read_cr3(vcpu);
7643 sregs->cr4 = kvm_read_cr4(vcpu);
7644 sregs->cr8 = kvm_get_cr8(vcpu);
7645 sregs->efer = vcpu->arch.efer;
7646 sregs->apic_base = kvm_get_apic_base(vcpu);
7648 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7650 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7651 set_bit(vcpu->arch.interrupt.nr,
7652 (unsigned long *)sregs->interrupt_bitmap);
7654 return 0;
7657 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7658 struct kvm_mp_state *mp_state)
7660 if (kvm_mpx_supported())
7661 kvm_load_guest_fpu(vcpu);
7663 kvm_apic_accept_events(vcpu);
7664 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7665 vcpu->arch.pv.pv_unhalted)
7666 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7667 else
7668 mp_state->mp_state = vcpu->arch.mp_state;
7670 if (kvm_mpx_supported())
7671 kvm_put_guest_fpu(vcpu);
7672 return 0;
7675 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7676 struct kvm_mp_state *mp_state)
7678 if (!lapic_in_kernel(vcpu) &&
7679 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7680 return -EINVAL;
7682 /* INITs are latched while in SMM */
7683 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7684 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7685 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7686 return -EINVAL;
7688 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7689 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7690 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7691 } else
7692 vcpu->arch.mp_state = mp_state->mp_state;
7693 kvm_make_request(KVM_REQ_EVENT, vcpu);
7694 return 0;
7697 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7698 int reason, bool has_error_code, u32 error_code)
7700 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7701 int ret;
7703 init_emulate_ctxt(vcpu);
7705 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7706 has_error_code, error_code);
7708 if (ret)
7709 return EMULATE_FAIL;
7711 kvm_rip_write(vcpu, ctxt->eip);
7712 kvm_set_rflags(vcpu, ctxt->eflags);
7713 kvm_make_request(KVM_REQ_EVENT, vcpu);
7714 return EMULATE_DONE;
7716 EXPORT_SYMBOL_GPL(kvm_task_switch);
7718 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7720 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7722 * When EFER.LME and CR0.PG are set, the processor is in
7723 * 64-bit mode (though maybe in a 32-bit code segment).
7724 * CR4.PAE and EFER.LMA must be set.
7726 if (!(sregs->cr4 & X86_CR4_PAE)
7727 || !(sregs->efer & EFER_LMA))
7728 return -EINVAL;
7729 } else {
7731 * Not in 64-bit mode: EFER.LMA is clear and the code
7732 * segment cannot be 64-bit.
7734 if (sregs->efer & EFER_LMA || sregs->cs.l)
7735 return -EINVAL;
7738 return 0;
7741 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7742 struct kvm_sregs *sregs)
7744 struct msr_data apic_base_msr;
7745 int mmu_reset_needed = 0;
7746 int cpuid_update_needed = 0;
7747 int pending_vec, max_bits, idx;
7748 struct desc_ptr dt;
7750 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7751 (sregs->cr4 & X86_CR4_OSXSAVE))
7752 return -EINVAL;
7754 if (kvm_valid_sregs(vcpu, sregs))
7755 return -EINVAL;
7757 apic_base_msr.data = sregs->apic_base;
7758 apic_base_msr.host_initiated = true;
7759 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7760 return -EINVAL;
7762 dt.size = sregs->idt.limit;
7763 dt.address = sregs->idt.base;
7764 kvm_x86_ops->set_idt(vcpu, &dt);
7765 dt.size = sregs->gdt.limit;
7766 dt.address = sregs->gdt.base;
7767 kvm_x86_ops->set_gdt(vcpu, &dt);
7769 vcpu->arch.cr2 = sregs->cr2;
7770 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7771 vcpu->arch.cr3 = sregs->cr3;
7772 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7774 kvm_set_cr8(vcpu, sregs->cr8);
7776 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7777 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7779 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7780 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7781 vcpu->arch.cr0 = sregs->cr0;
7783 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7784 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
7785 (X86_CR4_OSXSAVE | X86_CR4_PKE));
7786 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7787 if (cpuid_update_needed)
7788 kvm_update_cpuid(vcpu);
7790 idx = srcu_read_lock(&vcpu->kvm->srcu);
7791 if (is_pae_paging(vcpu)) {
7792 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7793 mmu_reset_needed = 1;
7795 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7797 if (mmu_reset_needed)
7798 kvm_mmu_reset_context(vcpu);
7800 max_bits = KVM_NR_INTERRUPTS;
7801 pending_vec = find_first_bit(
7802 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7803 if (pending_vec < max_bits) {
7804 kvm_queue_interrupt(vcpu, pending_vec, false);
7805 pr_debug("Set back pending irq %d\n", pending_vec);
7808 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7809 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7810 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7811 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7812 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7813 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7815 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7816 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7818 update_cr8_intercept(vcpu);
7820 /* Older userspace won't unhalt the vcpu on reset. */
7821 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7822 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7823 !is_protmode(vcpu))
7824 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7826 kvm_make_request(KVM_REQ_EVENT, vcpu);
7828 return 0;
7831 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7832 struct kvm_guest_debug *dbg)
7834 unsigned long rflags;
7835 int i, r;
7837 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7838 r = -EBUSY;
7839 if (vcpu->arch.exception.pending)
7840 goto out;
7841 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7842 kvm_queue_exception(vcpu, DB_VECTOR);
7843 else
7844 kvm_queue_exception(vcpu, BP_VECTOR);
7848 * Read rflags as long as potentially injected trace flags are still
7849 * filtered out.
7851 rflags = kvm_get_rflags(vcpu);
7853 vcpu->guest_debug = dbg->control;
7854 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7855 vcpu->guest_debug = 0;
7857 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7858 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7859 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7860 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7861 } else {
7862 for (i = 0; i < KVM_NR_DB_REGS; i++)
7863 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7865 kvm_update_dr7(vcpu);
7867 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7868 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7869 get_segment_base(vcpu, VCPU_SREG_CS);
7872 * Trigger an rflags update that will inject or remove the trace
7873 * flags.
7875 kvm_set_rflags(vcpu, rflags);
7877 kvm_x86_ops->update_bp_intercept(vcpu);
7879 r = 0;
7881 out:
7883 return r;
7887 * Translate a guest virtual address to a guest physical address.
7889 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7890 struct kvm_translation *tr)
7892 unsigned long vaddr = tr->linear_address;
7893 gpa_t gpa;
7894 int idx;
7896 idx = srcu_read_lock(&vcpu->kvm->srcu);
7897 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7898 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7899 tr->physical_address = gpa;
7900 tr->valid = gpa != UNMAPPED_GVA;
7901 tr->writeable = 1;
7902 tr->usermode = 0;
7904 return 0;
7907 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7909 struct fxregs_state *fxsave =
7910 &vcpu->arch.guest_fpu.state.fxsave;
7912 memcpy(fpu->fpr, fxsave->st_space, 128);
7913 fpu->fcw = fxsave->cwd;
7914 fpu->fsw = fxsave->swd;
7915 fpu->ftwx = fxsave->twd;
7916 fpu->last_opcode = fxsave->fop;
7917 fpu->last_ip = fxsave->rip;
7918 fpu->last_dp = fxsave->rdp;
7919 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7921 return 0;
7924 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7926 struct fxregs_state *fxsave =
7927 &vcpu->arch.guest_fpu.state.fxsave;
7929 memcpy(fxsave->st_space, fpu->fpr, 128);
7930 fxsave->cwd = fpu->fcw;
7931 fxsave->swd = fpu->fsw;
7932 fxsave->twd = fpu->ftwx;
7933 fxsave->fop = fpu->last_opcode;
7934 fxsave->rip = fpu->last_ip;
7935 fxsave->rdp = fpu->last_dp;
7936 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7938 return 0;
7941 static void fx_init(struct kvm_vcpu *vcpu)
7943 fpstate_init(&vcpu->arch.guest_fpu.state);
7944 if (boot_cpu_has(X86_FEATURE_XSAVES))
7945 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7946 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7949 * Ensure guest xcr0 is valid for loading
7951 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7953 vcpu->arch.cr0 |= X86_CR0_ET;
7956 /* Swap (qemu) user FPU context for the guest FPU context. */
7957 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7959 preempt_disable();
7960 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7961 /* PKRU is separately restored in kvm_x86_ops->run. */
7962 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7963 ~XFEATURE_MASK_PKRU);
7964 preempt_enable();
7965 trace_kvm_fpu(1);
7968 /* When vcpu_run ends, restore user space FPU context. */
7969 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7971 preempt_disable();
7972 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7973 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7974 preempt_enable();
7975 ++vcpu->stat.fpu_reload;
7976 trace_kvm_fpu(0);
7979 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7981 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7983 kvmclock_reset(vcpu);
7985 kvm_x86_ops->vcpu_free(vcpu);
7986 free_cpumask_var(wbinvd_dirty_mask);
7989 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7990 unsigned int id)
7992 struct kvm_vcpu *vcpu;
7994 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7995 printk_once(KERN_WARNING
7996 "kvm: SMP vm created on host with unstable TSC; "
7997 "guest TSC will not be reliable\n");
7999 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8001 return vcpu;
8004 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8006 int r;
8008 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8009 kvm_vcpu_mtrr_init(vcpu);
8010 r = vcpu_load(vcpu);
8011 if (r)
8012 return r;
8013 kvm_vcpu_reset(vcpu, false);
8014 kvm_mmu_setup(vcpu);
8015 vcpu_put(vcpu);
8016 return r;
8019 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8021 struct msr_data msr;
8022 struct kvm *kvm = vcpu->kvm;
8024 kvm_hv_vcpu_postcreate(vcpu);
8026 if (vcpu_load(vcpu))
8027 return;
8028 msr.data = 0x0;
8029 msr.index = MSR_IA32_TSC;
8030 msr.host_initiated = true;
8031 kvm_write_tsc(vcpu, &msr);
8032 vcpu_put(vcpu);
8034 if (!kvmclock_periodic_sync)
8035 return;
8037 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8038 KVMCLOCK_SYNC_PERIOD);
8041 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8043 int r;
8044 vcpu->arch.apf.msr_val = 0;
8046 r = vcpu_load(vcpu);
8047 BUG_ON(r);
8048 kvm_mmu_unload(vcpu);
8049 vcpu_put(vcpu);
8051 kvm_arch_vcpu_free(vcpu);
8054 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8056 kvm_lapic_reset(vcpu, init_event);
8058 vcpu->arch.hflags = 0;
8060 vcpu->arch.smi_pending = 0;
8061 atomic_set(&vcpu->arch.nmi_queued, 0);
8062 vcpu->arch.nmi_pending = 0;
8063 vcpu->arch.nmi_injected = false;
8064 kvm_clear_interrupt_queue(vcpu);
8065 kvm_clear_exception_queue(vcpu);
8066 vcpu->arch.exception.pending = false;
8068 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8069 kvm_update_dr0123(vcpu);
8070 vcpu->arch.dr6 = DR6_INIT;
8071 kvm_update_dr6(vcpu);
8072 vcpu->arch.dr7 = DR7_FIXED_1;
8073 kvm_update_dr7(vcpu);
8075 vcpu->arch.cr2 = 0;
8077 kvm_make_request(KVM_REQ_EVENT, vcpu);
8078 vcpu->arch.apf.msr_val = 0;
8079 vcpu->arch.st.msr_val = 0;
8081 kvmclock_reset(vcpu);
8083 kvm_clear_async_pf_completion_queue(vcpu);
8084 kvm_async_pf_hash_reset(vcpu);
8085 vcpu->arch.apf.halted = false;
8087 if (!init_event) {
8088 kvm_pmu_reset(vcpu);
8089 vcpu->arch.smbase = 0x30000;
8091 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8092 vcpu->arch.msr_misc_features_enables = 0;
8095 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8096 vcpu->arch.regs_avail = ~0;
8097 vcpu->arch.regs_dirty = ~0;
8099 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8102 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8104 struct kvm_segment cs;
8106 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8107 cs.selector = vector << 8;
8108 cs.base = vector << 12;
8109 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8110 kvm_rip_write(vcpu, 0);
8113 int kvm_arch_hardware_enable(void)
8115 struct kvm *kvm;
8116 struct kvm_vcpu *vcpu;
8117 int i;
8118 int ret;
8119 u64 local_tsc;
8120 u64 max_tsc = 0;
8121 bool stable, backwards_tsc = false;
8123 kvm_shared_msr_cpu_online();
8124 ret = kvm_x86_ops->hardware_enable();
8125 if (ret != 0)
8126 return ret;
8128 local_tsc = rdtsc();
8129 stable = !check_tsc_unstable();
8130 list_for_each_entry(kvm, &vm_list, vm_list) {
8131 kvm_for_each_vcpu(i, vcpu, kvm) {
8132 if (!stable && vcpu->cpu == smp_processor_id())
8133 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8134 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8135 backwards_tsc = true;
8136 if (vcpu->arch.last_host_tsc > max_tsc)
8137 max_tsc = vcpu->arch.last_host_tsc;
8143 * Sometimes, even reliable TSCs go backwards. This happens on
8144 * platforms that reset TSC during suspend or hibernate actions, but
8145 * maintain synchronization. We must compensate. Fortunately, we can
8146 * detect that condition here, which happens early in CPU bringup,
8147 * before any KVM threads can be running. Unfortunately, we can't
8148 * bring the TSCs fully up to date with real time, as we aren't yet far
8149 * enough into CPU bringup that we know how much real time has actually
8150 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8151 * variables that haven't been updated yet.
8153 * So we simply find the maximum observed TSC above, then record the
8154 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8155 * the adjustment will be applied. Note that we accumulate
8156 * adjustments, in case multiple suspend cycles happen before some VCPU
8157 * gets a chance to run again. In the event that no KVM threads get a
8158 * chance to run, we will miss the entire elapsed period, as we'll have
8159 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8160 * loose cycle time. This isn't too big a deal, since the loss will be
8161 * uniform across all VCPUs (not to mention the scenario is extremely
8162 * unlikely). It is possible that a second hibernate recovery happens
8163 * much faster than a first, causing the observed TSC here to be
8164 * smaller; this would require additional padding adjustment, which is
8165 * why we set last_host_tsc to the local tsc observed here.
8167 * N.B. - this code below runs only on platforms with reliable TSC,
8168 * as that is the only way backwards_tsc is set above. Also note
8169 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8170 * have the same delta_cyc adjustment applied if backwards_tsc
8171 * is detected. Note further, this adjustment is only done once,
8172 * as we reset last_host_tsc on all VCPUs to stop this from being
8173 * called multiple times (one for each physical CPU bringup).
8175 * Platforms with unreliable TSCs don't have to deal with this, they
8176 * will be compensated by the logic in vcpu_load, which sets the TSC to
8177 * catchup mode. This will catchup all VCPUs to real time, but cannot
8178 * guarantee that they stay in perfect synchronization.
8180 if (backwards_tsc) {
8181 u64 delta_cyc = max_tsc - local_tsc;
8182 list_for_each_entry(kvm, &vm_list, vm_list) {
8183 kvm->arch.backwards_tsc_observed = true;
8184 kvm_for_each_vcpu(i, vcpu, kvm) {
8185 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8186 vcpu->arch.last_host_tsc = local_tsc;
8187 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8191 * We have to disable TSC offset matching.. if you were
8192 * booting a VM while issuing an S4 host suspend....
8193 * you may have some problem. Solving this issue is
8194 * left as an exercise to the reader.
8196 kvm->arch.last_tsc_nsec = 0;
8197 kvm->arch.last_tsc_write = 0;
8201 return 0;
8204 void kvm_arch_hardware_disable(void)
8206 kvm_x86_ops->hardware_disable();
8207 drop_user_return_notifiers();
8210 int kvm_arch_hardware_setup(void)
8212 int r;
8214 r = kvm_x86_ops->hardware_setup();
8215 if (r != 0)
8216 return r;
8218 if (kvm_has_tsc_control) {
8220 * Make sure the user can only configure tsc_khz values that
8221 * fit into a signed integer.
8222 * A min value is not calculated needed because it will always
8223 * be 1 on all machines.
8225 u64 max = min(0x7fffffffULL,
8226 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8227 kvm_max_guest_tsc_khz = max;
8229 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8232 kvm_init_msr_list();
8233 return 0;
8236 void kvm_arch_hardware_unsetup(void)
8238 kvm_x86_ops->hardware_unsetup();
8241 void kvm_arch_check_processor_compat(void *rtn)
8243 kvm_x86_ops->check_processor_compatibility(rtn);
8246 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8248 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8250 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8252 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8254 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8257 struct static_key kvm_no_apic_vcpu __read_mostly;
8258 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8260 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8262 struct page *page;
8263 struct kvm *kvm;
8264 int r;
8266 BUG_ON(vcpu->kvm == NULL);
8267 kvm = vcpu->kvm;
8269 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8270 vcpu->arch.pv.pv_unhalted = false;
8271 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8272 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8273 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8274 else
8275 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8277 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8278 if (!page) {
8279 r = -ENOMEM;
8280 goto fail;
8282 vcpu->arch.pio_data = page_address(page);
8284 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8286 r = kvm_mmu_create(vcpu);
8287 if (r < 0)
8288 goto fail_free_pio_data;
8290 if (irqchip_in_kernel(kvm)) {
8291 r = kvm_create_lapic(vcpu);
8292 if (r < 0)
8293 goto fail_mmu_destroy;
8294 } else
8295 static_key_slow_inc(&kvm_no_apic_vcpu);
8297 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8298 GFP_KERNEL);
8299 if (!vcpu->arch.mce_banks) {
8300 r = -ENOMEM;
8301 goto fail_free_lapic;
8303 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8305 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8306 r = -ENOMEM;
8307 goto fail_free_mce_banks;
8310 fx_init(vcpu);
8312 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
8313 vcpu->arch.pv_time_enabled = false;
8315 vcpu->arch.guest_supported_xcr0 = 0;
8316 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8318 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8320 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8322 kvm_async_pf_hash_reset(vcpu);
8323 kvm_pmu_init(vcpu);
8325 vcpu->arch.pending_external_vector = -1;
8326 vcpu->arch.preempted_in_kernel = false;
8328 kvm_hv_vcpu_init(vcpu);
8330 return 0;
8332 fail_free_mce_banks:
8333 kfree(vcpu->arch.mce_banks);
8334 fail_free_lapic:
8335 kvm_free_lapic(vcpu);
8336 fail_mmu_destroy:
8337 kvm_mmu_destroy(vcpu);
8338 fail_free_pio_data:
8339 free_page((unsigned long)vcpu->arch.pio_data);
8340 fail:
8341 return r;
8344 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8346 int idx;
8348 kvm_hv_vcpu_uninit(vcpu);
8349 kvm_pmu_destroy(vcpu);
8350 kfree(vcpu->arch.mce_banks);
8351 kvm_free_lapic(vcpu);
8352 idx = srcu_read_lock(&vcpu->kvm->srcu);
8353 kvm_mmu_destroy(vcpu);
8354 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8355 free_page((unsigned long)vcpu->arch.pio_data);
8356 if (!lapic_in_kernel(vcpu))
8357 static_key_slow_dec(&kvm_no_apic_vcpu);
8360 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8362 vcpu->arch.l1tf_flush_l1d = true;
8363 kvm_x86_ops->sched_in(vcpu, cpu);
8366 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8368 if (type)
8369 return -EINVAL;
8371 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8372 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8373 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8374 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
8375 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8376 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8378 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8379 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8380 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8381 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8382 &kvm->arch.irq_sources_bitmap);
8384 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8385 mutex_init(&kvm->arch.apic_map_lock);
8386 mutex_init(&kvm->arch.hyperv.hv_lock);
8387 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8389 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8390 pvclock_update_vm_gtod_copy(kvm);
8392 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8393 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8395 kvm_page_track_init(kvm);
8396 kvm_mmu_init_vm(kvm);
8398 if (kvm_x86_ops->vm_init)
8399 return kvm_x86_ops->vm_init(kvm);
8401 return 0;
8404 int kvm_arch_post_init_vm(struct kvm *kvm)
8406 return kvm_mmu_post_init_vm(kvm);
8409 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8411 int r;
8412 r = vcpu_load(vcpu);
8413 BUG_ON(r);
8414 kvm_mmu_unload(vcpu);
8415 vcpu_put(vcpu);
8418 static void kvm_free_vcpus(struct kvm *kvm)
8420 unsigned int i;
8421 struct kvm_vcpu *vcpu;
8424 * Unpin any mmu pages first.
8426 kvm_for_each_vcpu(i, vcpu, kvm) {
8427 kvm_clear_async_pf_completion_queue(vcpu);
8428 kvm_unload_vcpu_mmu(vcpu);
8430 kvm_for_each_vcpu(i, vcpu, kvm)
8431 kvm_arch_vcpu_free(vcpu);
8433 mutex_lock(&kvm->lock);
8434 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8435 kvm->vcpus[i] = NULL;
8437 atomic_set(&kvm->online_vcpus, 0);
8438 mutex_unlock(&kvm->lock);
8441 void kvm_arch_sync_events(struct kvm *kvm)
8443 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8444 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8445 kvm_free_pit(kvm);
8448 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8450 int i, r;
8451 unsigned long hva;
8452 struct kvm_memslots *slots = kvm_memslots(kvm);
8453 struct kvm_memory_slot *slot, old;
8455 /* Called with kvm->slots_lock held. */
8456 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8457 return -EINVAL;
8459 slot = id_to_memslot(slots, id);
8460 if (size) {
8461 if (slot->npages)
8462 return -EEXIST;
8465 * MAP_SHARED to prevent internal slot pages from being moved
8466 * by fork()/COW.
8468 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8469 MAP_SHARED | MAP_ANONYMOUS, 0);
8470 if (IS_ERR((void *)hva))
8471 return PTR_ERR((void *)hva);
8472 } else {
8473 if (!slot->npages)
8474 return 0;
8476 hva = 0;
8479 old = *slot;
8480 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8481 struct kvm_userspace_memory_region m;
8483 m.slot = id | (i << 16);
8484 m.flags = 0;
8485 m.guest_phys_addr = gpa;
8486 m.userspace_addr = hva;
8487 m.memory_size = size;
8488 r = __kvm_set_memory_region(kvm, &m);
8489 if (r < 0)
8490 return r;
8493 if (!size)
8494 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8496 return 0;
8498 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8500 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8502 int r;
8504 mutex_lock(&kvm->slots_lock);
8505 r = __x86_set_memory_region(kvm, id, gpa, size);
8506 mutex_unlock(&kvm->slots_lock);
8508 return r;
8510 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8512 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
8514 kvm_mmu_pre_destroy_vm(kvm);
8517 void kvm_arch_destroy_vm(struct kvm *kvm)
8519 if (current->mm == kvm->mm) {
8521 * Free memory regions allocated on behalf of userspace,
8522 * unless the the memory map has changed due to process exit
8523 * or fd copying.
8525 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8526 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8527 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8529 if (kvm_x86_ops->vm_destroy)
8530 kvm_x86_ops->vm_destroy(kvm);
8531 kvm_pic_destroy(kvm);
8532 kvm_ioapic_destroy(kvm);
8533 kvm_free_vcpus(kvm);
8534 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8535 kvm_mmu_uninit_vm(kvm);
8536 kvm_page_track_cleanup(kvm);
8539 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8540 struct kvm_memory_slot *dont)
8542 int i;
8544 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8545 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8546 kvfree(free->arch.rmap[i]);
8547 free->arch.rmap[i] = NULL;
8549 if (i == 0)
8550 continue;
8552 if (!dont || free->arch.lpage_info[i - 1] !=
8553 dont->arch.lpage_info[i - 1]) {
8554 kvfree(free->arch.lpage_info[i - 1]);
8555 free->arch.lpage_info[i - 1] = NULL;
8559 kvm_page_track_free_memslot(free, dont);
8562 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8563 unsigned long npages)
8565 int i;
8568 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
8569 * old arrays will be freed by __kvm_set_memory_region() if installing
8570 * the new memslot is successful.
8572 memset(&slot->arch, 0, sizeof(slot->arch));
8574 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8575 struct kvm_lpage_info *linfo;
8576 unsigned long ugfn;
8577 int lpages;
8578 int level = i + 1;
8580 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8581 slot->base_gfn, level) + 1;
8583 slot->arch.rmap[i] =
8584 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8585 if (!slot->arch.rmap[i])
8586 goto out_free;
8587 if (i == 0)
8588 continue;
8590 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8591 if (!linfo)
8592 goto out_free;
8594 slot->arch.lpage_info[i - 1] = linfo;
8596 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8597 linfo[0].disallow_lpage = 1;
8598 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8599 linfo[lpages - 1].disallow_lpage = 1;
8600 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8602 * If the gfn and userspace address are not aligned wrt each
8603 * other, or if explicitly asked to, disable large page
8604 * support for this slot
8606 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8607 !kvm_largepages_enabled()) {
8608 unsigned long j;
8610 for (j = 0; j < lpages; ++j)
8611 linfo[j].disallow_lpage = 1;
8615 if (kvm_page_track_create_memslot(slot, npages))
8616 goto out_free;
8618 return 0;
8620 out_free:
8621 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8622 kvfree(slot->arch.rmap[i]);
8623 slot->arch.rmap[i] = NULL;
8624 if (i == 0)
8625 continue;
8627 kvfree(slot->arch.lpage_info[i - 1]);
8628 slot->arch.lpage_info[i - 1] = NULL;
8630 return -ENOMEM;
8633 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
8636 * memslots->generation has been incremented.
8637 * mmio generation may have reached its maximum value.
8639 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
8642 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8643 struct kvm_memory_slot *memslot,
8644 const struct kvm_userspace_memory_region *mem,
8645 enum kvm_mr_change change)
8647 if (change == KVM_MR_MOVE)
8648 return kvm_arch_create_memslot(kvm, memslot,
8649 mem->memory_size >> PAGE_SHIFT);
8651 return 0;
8654 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8655 struct kvm_memory_slot *new)
8657 /* Still write protect RO slot */
8658 if (new->flags & KVM_MEM_READONLY) {
8659 kvm_mmu_slot_remove_write_access(kvm, new);
8660 return;
8664 * Call kvm_x86_ops dirty logging hooks when they are valid.
8666 * kvm_x86_ops->slot_disable_log_dirty is called when:
8668 * - KVM_MR_CREATE with dirty logging is disabled
8669 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8671 * The reason is, in case of PML, we need to set D-bit for any slots
8672 * with dirty logging disabled in order to eliminate unnecessary GPA
8673 * logging in PML buffer (and potential PML buffer full VMEXT). This
8674 * guarantees leaving PML enabled during guest's lifetime won't have
8675 * any additonal overhead from PML when guest is running with dirty
8676 * logging disabled for memory slots.
8678 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8679 * to dirty logging mode.
8681 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8683 * In case of write protect:
8685 * Write protect all pages for dirty logging.
8687 * All the sptes including the large sptes which point to this
8688 * slot are set to readonly. We can not create any new large
8689 * spte on this slot until the end of the logging.
8691 * See the comments in fast_page_fault().
8693 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8694 if (kvm_x86_ops->slot_enable_log_dirty)
8695 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8696 else
8697 kvm_mmu_slot_remove_write_access(kvm, new);
8698 } else {
8699 if (kvm_x86_ops->slot_disable_log_dirty)
8700 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8704 void kvm_arch_commit_memory_region(struct kvm *kvm,
8705 const struct kvm_userspace_memory_region *mem,
8706 const struct kvm_memory_slot *old,
8707 const struct kvm_memory_slot *new,
8708 enum kvm_mr_change change)
8710 int nr_mmu_pages = 0;
8712 if (!kvm->arch.n_requested_mmu_pages)
8713 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8715 if (nr_mmu_pages)
8716 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8719 * Dirty logging tracks sptes in 4k granularity, meaning that large
8720 * sptes have to be split. If live migration is successful, the guest
8721 * in the source machine will be destroyed and large sptes will be
8722 * created in the destination. However, if the guest continues to run
8723 * in the source machine (for example if live migration fails), small
8724 * sptes will remain around and cause bad performance.
8726 * Scan sptes if dirty logging has been stopped, dropping those
8727 * which can be collapsed into a single large-page spte. Later
8728 * page faults will create the large-page sptes.
8730 if ((change != KVM_MR_DELETE) &&
8731 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8732 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8733 kvm_mmu_zap_collapsible_sptes(kvm, new);
8736 * Set up write protection and/or dirty logging for the new slot.
8738 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8739 * been zapped so no dirty logging staff is needed for old slot. For
8740 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8741 * new and it's also covered when dealing with the new slot.
8743 * FIXME: const-ify all uses of struct kvm_memory_slot.
8745 if (change != KVM_MR_DELETE)
8746 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8749 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8751 kvm_mmu_invalidate_zap_all_pages(kvm);
8754 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8755 struct kvm_memory_slot *slot)
8757 kvm_page_track_flush_slot(kvm, slot);
8760 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8762 if (!list_empty_careful(&vcpu->async_pf.done))
8763 return true;
8765 if (kvm_apic_has_events(vcpu))
8766 return true;
8768 if (vcpu->arch.pv.pv_unhalted)
8769 return true;
8771 if (vcpu->arch.exception.pending)
8772 return true;
8774 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8775 (vcpu->arch.nmi_pending &&
8776 kvm_x86_ops->nmi_allowed(vcpu)))
8777 return true;
8779 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8780 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8781 return true;
8783 if (kvm_arch_interrupt_allowed(vcpu) &&
8784 kvm_cpu_has_interrupt(vcpu))
8785 return true;
8787 if (kvm_hv_has_stimer_pending(vcpu))
8788 return true;
8790 return false;
8793 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8795 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8798 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
8800 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
8801 return true;
8803 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8804 kvm_test_request(KVM_REQ_SMI, vcpu) ||
8805 kvm_test_request(KVM_REQ_EVENT, vcpu))
8806 return true;
8808 if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
8809 return true;
8811 return false;
8814 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8816 return vcpu->arch.preempted_in_kernel;
8819 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8821 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8824 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8826 return kvm_x86_ops->interrupt_allowed(vcpu);
8829 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8831 if (is_64_bit_mode(vcpu))
8832 return kvm_rip_read(vcpu);
8833 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8834 kvm_rip_read(vcpu));
8836 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8838 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8840 return kvm_get_linear_rip(vcpu) == linear_rip;
8842 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8844 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8846 unsigned long rflags;
8848 rflags = kvm_x86_ops->get_rflags(vcpu);
8849 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8850 rflags &= ~X86_EFLAGS_TF;
8851 return rflags;
8853 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8855 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8857 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8858 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8859 rflags |= X86_EFLAGS_TF;
8860 kvm_x86_ops->set_rflags(vcpu, rflags);
8863 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8865 __kvm_set_rflags(vcpu, rflags);
8866 kvm_make_request(KVM_REQ_EVENT, vcpu);
8868 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8870 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8872 int r;
8874 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8875 work->wakeup_all)
8876 return;
8878 r = kvm_mmu_reload(vcpu);
8879 if (unlikely(r))
8880 return;
8882 if (!vcpu->arch.mmu.direct_map &&
8883 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8884 return;
8886 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8889 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8891 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8894 static inline u32 kvm_async_pf_next_probe(u32 key)
8896 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8899 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8901 u32 key = kvm_async_pf_hash_fn(gfn);
8903 while (vcpu->arch.apf.gfns[key] != ~0)
8904 key = kvm_async_pf_next_probe(key);
8906 vcpu->arch.apf.gfns[key] = gfn;
8909 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8911 int i;
8912 u32 key = kvm_async_pf_hash_fn(gfn);
8914 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8915 (vcpu->arch.apf.gfns[key] != gfn &&
8916 vcpu->arch.apf.gfns[key] != ~0); i++)
8917 key = kvm_async_pf_next_probe(key);
8919 return key;
8922 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8924 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8927 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8929 u32 i, j, k;
8931 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8932 while (true) {
8933 vcpu->arch.apf.gfns[i] = ~0;
8934 do {
8935 j = kvm_async_pf_next_probe(j);
8936 if (vcpu->arch.apf.gfns[j] == ~0)
8937 return;
8938 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8940 * k lies cyclically in ]i,j]
8941 * | i.k.j |
8942 * |....j i.k.| or |.k..j i...|
8944 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8945 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8946 i = j;
8950 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8953 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8954 sizeof(val));
8957 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8960 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8961 sizeof(u32));
8964 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8965 struct kvm_async_pf *work)
8967 struct x86_exception fault;
8969 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8970 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8972 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8973 (vcpu->arch.apf.send_user_only &&
8974 kvm_x86_ops->get_cpl(vcpu) == 0))
8975 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8976 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8977 fault.vector = PF_VECTOR;
8978 fault.error_code_valid = true;
8979 fault.error_code = 0;
8980 fault.nested_page_fault = false;
8981 fault.address = work->arch.token;
8982 fault.async_page_fault = true;
8983 kvm_inject_page_fault(vcpu, &fault);
8987 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8988 struct kvm_async_pf *work)
8990 struct x86_exception fault;
8991 u32 val;
8993 if (work->wakeup_all)
8994 work->arch.token = ~0; /* broadcast wakeup */
8995 else
8996 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8997 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8999 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9000 !apf_get_user(vcpu, &val)) {
9001 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9002 vcpu->arch.exception.pending &&
9003 vcpu->arch.exception.nr == PF_VECTOR &&
9004 !apf_put_user(vcpu, 0)) {
9005 vcpu->arch.exception.injected = false;
9006 vcpu->arch.exception.pending = false;
9007 vcpu->arch.exception.nr = 0;
9008 vcpu->arch.exception.has_error_code = false;
9009 vcpu->arch.exception.error_code = 0;
9010 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9011 fault.vector = PF_VECTOR;
9012 fault.error_code_valid = true;
9013 fault.error_code = 0;
9014 fault.nested_page_fault = false;
9015 fault.address = work->arch.token;
9016 fault.async_page_fault = true;
9017 kvm_inject_page_fault(vcpu, &fault);
9020 vcpu->arch.apf.halted = false;
9021 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9024 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9026 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9027 return true;
9028 else
9029 return kvm_can_do_async_pf(vcpu);
9032 void kvm_arch_start_assignment(struct kvm *kvm)
9034 atomic_inc(&kvm->arch.assigned_device_count);
9036 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9038 void kvm_arch_end_assignment(struct kvm *kvm)
9040 atomic_dec(&kvm->arch.assigned_device_count);
9042 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9044 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9046 return atomic_read(&kvm->arch.assigned_device_count);
9048 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9050 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9052 atomic_inc(&kvm->arch.noncoherent_dma_count);
9054 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9056 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9058 atomic_dec(&kvm->arch.noncoherent_dma_count);
9060 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9062 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9064 return atomic_read(&kvm->arch.noncoherent_dma_count);
9066 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9068 bool kvm_arch_has_irq_bypass(void)
9070 return kvm_x86_ops->update_pi_irte != NULL;
9073 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9074 struct irq_bypass_producer *prod)
9076 struct kvm_kernel_irqfd *irqfd =
9077 container_of(cons, struct kvm_kernel_irqfd, consumer);
9079 irqfd->producer = prod;
9081 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9082 prod->irq, irqfd->gsi, 1);
9085 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9086 struct irq_bypass_producer *prod)
9088 int ret;
9089 struct kvm_kernel_irqfd *irqfd =
9090 container_of(cons, struct kvm_kernel_irqfd, consumer);
9092 WARN_ON(irqfd->producer != prod);
9093 irqfd->producer = NULL;
9096 * When producer of consumer is unregistered, we change back to
9097 * remapped mode, so we can re-use the current implementation
9098 * when the irq is masked/disabled or the consumer side (KVM
9099 * int this case doesn't want to receive the interrupts.
9101 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9102 if (ret)
9103 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9104 " fails: %d\n", irqfd->consumer.token, ret);
9107 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9108 uint32_t guest_irq, bool set)
9110 if (!kvm_x86_ops->update_pi_irte)
9111 return -EINVAL;
9113 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9116 bool kvm_vector_hashing_enabled(void)
9118 return vector_hashing;
9120 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9122 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9123 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9124 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9125 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9126 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9127 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9128 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9129 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9130 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9134 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9135 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);