mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / block / bio.c
blob1384f979088226850adfa03eddd197d8d305a66b
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
32 #include <trace/events/block.h>
33 #include "blk.h"
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
39 #define BIO_INLINE_VECS 4
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
50 #undef BV
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
60 * Our slab pool management
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
80 mutex_lock(&bio_slab_lock);
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
93 i++;
96 if (slab)
97 goto out_unlock;
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
109 if (entry == -1)
110 entry = bio_slab_nr++;
112 bslab = &bio_slabs[entry];
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
128 static void bio_put_slab(struct bio_set *bs)
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
133 mutex_lock(&bio_slab_lock);
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
145 WARN_ON(!bslab->slab_ref);
147 if (--bslab->slab_ref)
148 goto out;
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
153 out:
154 mutex_unlock(&bio_slab_lock);
157 unsigned int bvec_nr_vecs(unsigned short idx)
159 return bvec_slabs[--idx].nr_vecs;
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
164 if (!idx)
165 return;
166 idx--;
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
175 kmem_cache_free(bvs->slab, bv);
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
182 struct bio_vec *bvl;
185 * see comment near bvec_array define!
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
239 (*idx)++;
240 return bvl;
243 void bio_uninit(struct bio *bio)
245 bio_disassociate_task(bio);
247 EXPORT_SYMBOL(bio_uninit);
249 static void bio_free(struct bio *bio)
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
254 bio_uninit(bio);
256 if (bs) {
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260 * If we have front padding, adjust the bio pointer before freeing
262 p = bio;
263 p -= bs->front_pad;
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
280 memset(bio, 0, sizeof(*bio));
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
287 EXPORT_SYMBOL(bio_init);
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
299 void bio_reset(struct bio *bio)
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
303 bio_uninit(bio);
305 memset(bio, 0, BIO_RESET_BYTES);
306 bio->bi_flags = flags;
307 atomic_set(&bio->__bi_remaining, 1);
309 EXPORT_SYMBOL(bio_reset);
311 static struct bio *__bio_chain_endio(struct bio *bio)
313 struct bio *parent = bio->bi_private;
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
317 bio_put(bio);
318 return parent;
321 static void bio_chain_endio(struct bio *bio)
323 bio_endio(__bio_chain_endio(bio));
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
335 * The caller must not set bi_private or bi_end_io in @bio.
337 void bio_chain(struct bio *bio, struct bio *parent)
339 BUG_ON(bio->bi_private || bio->bi_end_io);
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
345 EXPORT_SYMBOL(bio_chain);
347 static void bio_alloc_rescue(struct work_struct *work)
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
357 if (!bio)
358 break;
360 generic_make_request(bio);
364 static void punt_bios_to_rescuer(struct bio_set *bs)
366 struct bio_list punt, nopunt;
367 struct bio *bio;
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
385 while ((bio = bio_list_pop(&current->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_ mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
407 * Description:
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
439 gfp_t saved_gfp = gfp_mask;
440 unsigned front_pad;
441 unsigned inline_vecs;
442 struct bio_vec *bvl = NULL;
443 struct bio *bio;
444 void *p;
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
497 if (unlikely(!p))
498 return NULL;
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
513 if (unlikely(!bvl))
514 goto err_free;
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
526 err_free:
527 mempool_free(p, bs->bio_pool);
528 return NULL;
530 EXPORT_SYMBOL(bio_alloc_bioset);
532 void zero_fill_bio(struct bio *bio)
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
545 EXPORT_SYMBOL(zero_fill_bio);
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
555 void bio_put(struct bio *bio)
557 if (!bio_flagged(bio, BIO_REFFED))
558 bio_free(bio);
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
563 * last put frees it
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
569 EXPORT_SYMBOL(bio_put);
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
576 return bio->bi_phys_segments;
578 EXPORT_SYMBOL(bio_phys_segments);
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
589 * Caller must ensure that @bio_src is not freed before @bio.
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
596 * most users will be overriding ->bi_disk with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
599 bio->bi_disk = bio_src->bi_disk;
600 bio->bi_partno = bio_src->bi_partno;
601 bio_set_flag(bio, BIO_CLONED);
602 if (bio_flagged(bio_src, BIO_THROTTLED))
603 bio_set_flag(bio, BIO_THROTTLED);
604 bio->bi_opf = bio_src->bi_opf;
605 bio->bi_write_hint = bio_src->bi_write_hint;
606 bio->bi_iter = bio_src->bi_iter;
607 bio->bi_io_vec = bio_src->bi_io_vec;
609 bio_clone_blkcg_association(bio, bio_src);
611 EXPORT_SYMBOL(__bio_clone_fast);
614 * bio_clone_fast - clone a bio that shares the original bio's biovec
615 * @bio: bio to clone
616 * @gfp_mask: allocation priority
617 * @bs: bio_set to allocate from
619 * Like __bio_clone_fast, only also allocates the returned bio
621 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
623 struct bio *b;
625 b = bio_alloc_bioset(gfp_mask, 0, bs);
626 if (!b)
627 return NULL;
629 __bio_clone_fast(b, bio);
631 if (bio_integrity(bio)) {
632 int ret;
634 ret = bio_integrity_clone(b, bio, gfp_mask);
636 if (ret < 0) {
637 bio_put(b);
638 return NULL;
642 return b;
644 EXPORT_SYMBOL(bio_clone_fast);
647 * bio_clone_bioset - clone a bio
648 * @bio_src: bio to clone
649 * @gfp_mask: allocation priority
650 * @bs: bio_set to allocate from
652 * Clone bio. Caller will own the returned bio, but not the actual data it
653 * points to. Reference count of returned bio will be one.
655 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
656 struct bio_set *bs)
658 struct bvec_iter iter;
659 struct bio_vec bv;
660 struct bio *bio;
663 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
664 * bio_src->bi_io_vec to bio->bi_io_vec.
666 * We can't do that anymore, because:
668 * - The point of cloning the biovec is to produce a bio with a biovec
669 * the caller can modify: bi_idx and bi_bvec_done should be 0.
671 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
672 * we tried to clone the whole thing bio_alloc_bioset() would fail.
673 * But the clone should succeed as long as the number of biovecs we
674 * actually need to allocate is fewer than BIO_MAX_PAGES.
676 * - Lastly, bi_vcnt should not be looked at or relied upon by code
677 * that does not own the bio - reason being drivers don't use it for
678 * iterating over the biovec anymore, so expecting it to be kept up
679 * to date (i.e. for clones that share the parent biovec) is just
680 * asking for trouble and would force extra work on
681 * __bio_clone_fast() anyways.
684 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
685 if (!bio)
686 return NULL;
687 bio->bi_disk = bio_src->bi_disk;
688 bio->bi_opf = bio_src->bi_opf;
689 bio->bi_write_hint = bio_src->bi_write_hint;
690 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
691 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
693 switch (bio_op(bio)) {
694 case REQ_OP_DISCARD:
695 case REQ_OP_SECURE_ERASE:
696 case REQ_OP_WRITE_ZEROES:
697 break;
698 case REQ_OP_WRITE_SAME:
699 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
700 break;
701 default:
702 bio_for_each_segment(bv, bio_src, iter)
703 bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 break;
707 if (bio_integrity(bio_src)) {
708 int ret;
710 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
711 if (ret < 0) {
712 bio_put(bio);
713 return NULL;
717 bio_clone_blkcg_association(bio, bio_src);
719 return bio;
721 EXPORT_SYMBOL(bio_clone_bioset);
724 * bio_add_pc_page - attempt to add page to bio
725 * @q: the target queue
726 * @bio: destination bio
727 * @page: page to add
728 * @len: vec entry length
729 * @offset: vec entry offset
731 * Attempt to add a page to the bio_vec maplist. This can fail for a
732 * number of reasons, such as the bio being full or target block device
733 * limitations. The target block device must allow bio's up to PAGE_SIZE,
734 * so it is always possible to add a single page to an empty bio.
736 * This should only be used by REQ_PC bios.
738 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
739 *page, unsigned int len, unsigned int offset)
741 int retried_segments = 0;
742 struct bio_vec *bvec;
745 * cloned bio must not modify vec list
747 if (unlikely(bio_flagged(bio, BIO_CLONED)))
748 return 0;
750 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
751 return 0;
754 * For filesystems with a blocksize smaller than the pagesize
755 * we will often be called with the same page as last time and
756 * a consecutive offset. Optimize this special case.
758 if (bio->bi_vcnt > 0) {
759 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
761 if (page == prev->bv_page &&
762 offset == prev->bv_offset + prev->bv_len) {
763 prev->bv_len += len;
764 bio->bi_iter.bi_size += len;
765 goto done;
769 * If the queue doesn't support SG gaps and adding this
770 * offset would create a gap, disallow it.
772 if (bvec_gap_to_prev(q, prev, offset))
773 return 0;
776 if (bio_full(bio))
777 return 0;
780 * setup the new entry, we might clear it again later if we
781 * cannot add the page
783 bvec = &bio->bi_io_vec[bio->bi_vcnt];
784 bvec->bv_page = page;
785 bvec->bv_len = len;
786 bvec->bv_offset = offset;
787 bio->bi_vcnt++;
788 bio->bi_phys_segments++;
789 bio->bi_iter.bi_size += len;
792 * Perform a recount if the number of segments is greater
793 * than queue_max_segments(q).
796 while (bio->bi_phys_segments > queue_max_segments(q)) {
798 if (retried_segments)
799 goto failed;
801 retried_segments = 1;
802 blk_recount_segments(q, bio);
805 /* If we may be able to merge these biovecs, force a recount */
806 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
807 bio_clear_flag(bio, BIO_SEG_VALID);
809 done:
810 return len;
812 failed:
813 bvec->bv_page = NULL;
814 bvec->bv_len = 0;
815 bvec->bv_offset = 0;
816 bio->bi_vcnt--;
817 bio->bi_iter.bi_size -= len;
818 blk_recount_segments(q, bio);
819 return 0;
821 EXPORT_SYMBOL(bio_add_pc_page);
824 * __bio_try_merge_page - try appending data to an existing bvec.
825 * @bio: destination bio
826 * @page: page to add
827 * @len: length of the data to add
828 * @off: offset of the data in @page
830 * Try to add the data at @page + @off to the last bvec of @bio. This is a
831 * a useful optimisation for file systems with a block size smaller than the
832 * page size.
834 * Return %true on success or %false on failure.
836 bool __bio_try_merge_page(struct bio *bio, struct page *page,
837 unsigned int len, unsigned int off)
839 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
840 return false;
842 if (bio->bi_vcnt > 0) {
843 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
845 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
846 bv->bv_len += len;
847 bio->bi_iter.bi_size += len;
848 return true;
851 return false;
853 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
856 * __bio_add_page - add page to a bio in a new segment
857 * @bio: destination bio
858 * @page: page to add
859 * @len: length of the data to add
860 * @off: offset of the data in @page
862 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
863 * that @bio has space for another bvec.
865 void __bio_add_page(struct bio *bio, struct page *page,
866 unsigned int len, unsigned int off)
868 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
870 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
871 WARN_ON_ONCE(bio_full(bio));
873 bv->bv_page = page;
874 bv->bv_offset = off;
875 bv->bv_len = len;
877 bio->bi_iter.bi_size += len;
878 bio->bi_vcnt++;
880 EXPORT_SYMBOL_GPL(__bio_add_page);
883 * bio_add_page - attempt to add page to bio
884 * @bio: destination bio
885 * @page: page to add
886 * @len: vec entry length
887 * @offset: vec entry offset
889 * Attempt to add a page to the bio_vec maplist. This will only fail
890 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
892 int bio_add_page(struct bio *bio, struct page *page,
893 unsigned int len, unsigned int offset)
895 if (!__bio_try_merge_page(bio, page, len, offset)) {
896 if (bio_full(bio))
897 return 0;
898 __bio_add_page(bio, page, len, offset);
900 return len;
902 EXPORT_SYMBOL(bio_add_page);
905 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
906 * @bio: bio to add pages to
907 * @iter: iov iterator describing the region to be mapped
909 * Pins pages from *iter and appends them to @bio's bvec array. The
910 * pages will have to be released using put_page() when done.
911 * For multi-segment *iter, this function only adds pages from the
912 * the next non-empty segment of the iov iterator.
914 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
916 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
917 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
918 struct page **pages = (struct page **)bv;
919 size_t offset;
920 ssize_t size;
922 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
923 if (unlikely(size <= 0))
924 return size ? size : -EFAULT;
925 idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
928 * Deep magic below: We need to walk the pinned pages backwards
929 * because we are abusing the space allocated for the bio_vecs
930 * for the page array. Because the bio_vecs are larger than the
931 * page pointers by definition this will always work. But it also
932 * means we can't use bio_add_page, so any changes to it's semantics
933 * need to be reflected here as well.
935 bio->bi_iter.bi_size += size;
936 bio->bi_vcnt += nr_pages;
938 while (idx--) {
939 bv[idx].bv_page = pages[idx];
940 bv[idx].bv_len = PAGE_SIZE;
941 bv[idx].bv_offset = 0;
944 bv[0].bv_offset += offset;
945 bv[0].bv_len -= offset;
946 bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
948 iov_iter_advance(iter, size);
949 return 0;
953 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
954 * @bio: bio to add pages to
955 * @iter: iov iterator describing the region to be mapped
957 * Pins pages from *iter and appends them to @bio's bvec array. The
958 * pages will have to be released using put_page() when done.
959 * The function tries, but does not guarantee, to pin as many pages as
960 * fit into the bio, or are requested in *iter, whatever is smaller.
961 * If MM encounters an error pinning the requested pages, it stops.
962 * Error is returned only if 0 pages could be pinned.
964 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
966 unsigned short orig_vcnt = bio->bi_vcnt;
968 do {
969 int ret = __bio_iov_iter_get_pages(bio, iter);
971 if (unlikely(ret))
972 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
974 } while (iov_iter_count(iter) && !bio_full(bio));
976 return 0;
978 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
980 struct submit_bio_ret {
981 struct completion event;
982 int error;
985 static void submit_bio_wait_endio(struct bio *bio)
987 struct submit_bio_ret *ret = bio->bi_private;
989 ret->error = blk_status_to_errno(bio->bi_status);
990 complete(&ret->event);
994 * submit_bio_wait - submit a bio, and wait until it completes
995 * @bio: The &struct bio which describes the I/O
997 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
998 * bio_endio() on failure.
1000 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1001 * result in bio reference to be consumed. The caller must drop the reference
1002 * on his own.
1004 int submit_bio_wait(struct bio *bio)
1006 struct submit_bio_ret ret;
1008 init_completion(&ret.event);
1009 bio->bi_private = &ret;
1010 bio->bi_end_io = submit_bio_wait_endio;
1011 bio->bi_opf |= REQ_SYNC;
1012 submit_bio(bio);
1013 wait_for_completion_io(&ret.event);
1015 return ret.error;
1017 EXPORT_SYMBOL(submit_bio_wait);
1020 * bio_advance - increment/complete a bio by some number of bytes
1021 * @bio: bio to advance
1022 * @bytes: number of bytes to complete
1024 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1025 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1026 * be updated on the last bvec as well.
1028 * @bio will then represent the remaining, uncompleted portion of the io.
1030 void bio_advance(struct bio *bio, unsigned bytes)
1032 if (bio_integrity(bio))
1033 bio_integrity_advance(bio, bytes);
1035 bio_advance_iter(bio, &bio->bi_iter, bytes);
1037 EXPORT_SYMBOL(bio_advance);
1040 * bio_alloc_pages - allocates a single page for each bvec in a bio
1041 * @bio: bio to allocate pages for
1042 * @gfp_mask: flags for allocation
1044 * Allocates pages up to @bio->bi_vcnt.
1046 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1047 * freed.
1049 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1051 int i;
1052 struct bio_vec *bv;
1054 bio_for_each_segment_all(bv, bio, i) {
1055 bv->bv_page = alloc_page(gfp_mask);
1056 if (!bv->bv_page) {
1057 while (--bv >= bio->bi_io_vec)
1058 __free_page(bv->bv_page);
1059 return -ENOMEM;
1063 return 0;
1065 EXPORT_SYMBOL(bio_alloc_pages);
1068 * bio_copy_data - copy contents of data buffers from one chain of bios to
1069 * another
1070 * @src: source bio list
1071 * @dst: destination bio list
1073 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1074 * @src and @dst as linked lists of bios.
1076 * Stops when it reaches the end of either @src or @dst - that is, copies
1077 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1079 void bio_copy_data(struct bio *dst, struct bio *src)
1081 struct bvec_iter src_iter, dst_iter;
1082 struct bio_vec src_bv, dst_bv;
1083 void *src_p, *dst_p;
1084 unsigned bytes;
1086 src_iter = src->bi_iter;
1087 dst_iter = dst->bi_iter;
1089 while (1) {
1090 if (!src_iter.bi_size) {
1091 src = src->bi_next;
1092 if (!src)
1093 break;
1095 src_iter = src->bi_iter;
1098 if (!dst_iter.bi_size) {
1099 dst = dst->bi_next;
1100 if (!dst)
1101 break;
1103 dst_iter = dst->bi_iter;
1106 src_bv = bio_iter_iovec(src, src_iter);
1107 dst_bv = bio_iter_iovec(dst, dst_iter);
1109 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1111 src_p = kmap_atomic(src_bv.bv_page);
1112 dst_p = kmap_atomic(dst_bv.bv_page);
1114 memcpy(dst_p + dst_bv.bv_offset,
1115 src_p + src_bv.bv_offset,
1116 bytes);
1118 kunmap_atomic(dst_p);
1119 kunmap_atomic(src_p);
1121 bio_advance_iter(src, &src_iter, bytes);
1122 bio_advance_iter(dst, &dst_iter, bytes);
1125 EXPORT_SYMBOL(bio_copy_data);
1127 struct bio_map_data {
1128 int is_our_pages;
1129 struct iov_iter iter;
1130 struct iovec iov[];
1133 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1134 gfp_t gfp_mask)
1136 if (iov_count > UIO_MAXIOV)
1137 return NULL;
1139 return kmalloc(sizeof(struct bio_map_data) +
1140 sizeof(struct iovec) * iov_count, gfp_mask);
1144 * bio_copy_from_iter - copy all pages from iov_iter to bio
1145 * @bio: The &struct bio which describes the I/O as destination
1146 * @iter: iov_iter as source
1148 * Copy all pages from iov_iter to bio.
1149 * Returns 0 on success, or error on failure.
1151 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1153 int i;
1154 struct bio_vec *bvec;
1156 bio_for_each_segment_all(bvec, bio, i) {
1157 ssize_t ret;
1159 ret = copy_page_from_iter(bvec->bv_page,
1160 bvec->bv_offset,
1161 bvec->bv_len,
1162 &iter);
1164 if (!iov_iter_count(&iter))
1165 break;
1167 if (ret < bvec->bv_len)
1168 return -EFAULT;
1171 return 0;
1175 * bio_copy_to_iter - copy all pages from bio to iov_iter
1176 * @bio: The &struct bio which describes the I/O as source
1177 * @iter: iov_iter as destination
1179 * Copy all pages from bio to iov_iter.
1180 * Returns 0 on success, or error on failure.
1182 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1184 int i;
1185 struct bio_vec *bvec;
1187 bio_for_each_segment_all(bvec, bio, i) {
1188 ssize_t ret;
1190 ret = copy_page_to_iter(bvec->bv_page,
1191 bvec->bv_offset,
1192 bvec->bv_len,
1193 &iter);
1195 if (!iov_iter_count(&iter))
1196 break;
1198 if (ret < bvec->bv_len)
1199 return -EFAULT;
1202 return 0;
1205 void bio_free_pages(struct bio *bio)
1207 struct bio_vec *bvec;
1208 int i;
1210 bio_for_each_segment_all(bvec, bio, i)
1211 __free_page(bvec->bv_page);
1213 EXPORT_SYMBOL(bio_free_pages);
1216 * bio_uncopy_user - finish previously mapped bio
1217 * @bio: bio being terminated
1219 * Free pages allocated from bio_copy_user_iov() and write back data
1220 * to user space in case of a read.
1222 int bio_uncopy_user(struct bio *bio)
1224 struct bio_map_data *bmd = bio->bi_private;
1225 int ret = 0;
1227 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1229 * if we're in a workqueue, the request is orphaned, so
1230 * don't copy into a random user address space, just free
1231 * and return -EINTR so user space doesn't expect any data.
1233 if (!current->mm)
1234 ret = -EINTR;
1235 else if (bio_data_dir(bio) == READ)
1236 ret = bio_copy_to_iter(bio, bmd->iter);
1237 if (bmd->is_our_pages)
1238 bio_free_pages(bio);
1240 kfree(bmd);
1241 bio_put(bio);
1242 return ret;
1246 * bio_copy_user_iov - copy user data to bio
1247 * @q: destination block queue
1248 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1249 * @iter: iovec iterator
1250 * @gfp_mask: memory allocation flags
1252 * Prepares and returns a bio for indirect user io, bouncing data
1253 * to/from kernel pages as necessary. Must be paired with
1254 * call bio_uncopy_user() on io completion.
1256 struct bio *bio_copy_user_iov(struct request_queue *q,
1257 struct rq_map_data *map_data,
1258 const struct iov_iter *iter,
1259 gfp_t gfp_mask)
1261 struct bio_map_data *bmd;
1262 struct page *page;
1263 struct bio *bio;
1264 int i, ret;
1265 int nr_pages = 0;
1266 unsigned int len = iter->count;
1267 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1269 for (i = 0; i < iter->nr_segs; i++) {
1270 unsigned long uaddr;
1271 unsigned long end;
1272 unsigned long start;
1274 uaddr = (unsigned long) iter->iov[i].iov_base;
1275 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1276 >> PAGE_SHIFT;
1277 start = uaddr >> PAGE_SHIFT;
1280 * Overflow, abort
1282 if (end < start)
1283 return ERR_PTR(-EINVAL);
1285 nr_pages += end - start;
1288 if (offset)
1289 nr_pages++;
1291 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1292 if (!bmd)
1293 return ERR_PTR(-ENOMEM);
1296 * We need to do a deep copy of the iov_iter including the iovecs.
1297 * The caller provided iov might point to an on-stack or otherwise
1298 * shortlived one.
1300 bmd->is_our_pages = map_data ? 0 : 1;
1301 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1302 bmd->iter = *iter;
1303 bmd->iter.iov = bmd->iov;
1305 ret = -ENOMEM;
1306 bio = bio_kmalloc(gfp_mask, nr_pages);
1307 if (!bio)
1308 goto out_bmd;
1310 ret = 0;
1312 if (map_data) {
1313 nr_pages = 1 << map_data->page_order;
1314 i = map_data->offset / PAGE_SIZE;
1316 while (len) {
1317 unsigned int bytes = PAGE_SIZE;
1319 bytes -= offset;
1321 if (bytes > len)
1322 bytes = len;
1324 if (map_data) {
1325 if (i == map_data->nr_entries * nr_pages) {
1326 ret = -ENOMEM;
1327 break;
1330 page = map_data->pages[i / nr_pages];
1331 page += (i % nr_pages);
1333 i++;
1334 } else {
1335 page = alloc_page(q->bounce_gfp | gfp_mask);
1336 if (!page) {
1337 ret = -ENOMEM;
1338 break;
1342 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1343 if (!map_data)
1344 __free_page(page);
1345 break;
1348 len -= bytes;
1349 offset = 0;
1352 if (ret)
1353 goto cleanup;
1356 * success
1358 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1359 (map_data && map_data->from_user)) {
1360 ret = bio_copy_from_iter(bio, *iter);
1361 if (ret)
1362 goto cleanup;
1365 bio->bi_private = bmd;
1366 return bio;
1367 cleanup:
1368 if (!map_data)
1369 bio_free_pages(bio);
1370 bio_put(bio);
1371 out_bmd:
1372 kfree(bmd);
1373 return ERR_PTR(ret);
1377 * bio_map_user_iov - map user iovec into bio
1378 * @q: the struct request_queue for the bio
1379 * @iter: iovec iterator
1380 * @gfp_mask: memory allocation flags
1382 * Map the user space address into a bio suitable for io to a block
1383 * device. Returns an error pointer in case of error.
1385 struct bio *bio_map_user_iov(struct request_queue *q,
1386 const struct iov_iter *iter,
1387 gfp_t gfp_mask)
1389 int j;
1390 int nr_pages = 0;
1391 struct page **pages;
1392 struct bio *bio;
1393 int cur_page = 0;
1394 int ret, offset;
1395 struct iov_iter i;
1396 struct iovec iov;
1397 struct bio_vec *bvec;
1399 iov_for_each(iov, i, *iter) {
1400 unsigned long uaddr = (unsigned long) iov.iov_base;
1401 unsigned long len = iov.iov_len;
1402 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1403 unsigned long start = uaddr >> PAGE_SHIFT;
1406 * Overflow, abort
1408 if (end < start)
1409 return ERR_PTR(-EINVAL);
1411 nr_pages += end - start;
1413 * buffer must be aligned to at least logical block size for now
1415 if (uaddr & queue_dma_alignment(q))
1416 return ERR_PTR(-EINVAL);
1419 if (!nr_pages)
1420 return ERR_PTR(-EINVAL);
1422 bio = bio_kmalloc(gfp_mask, nr_pages);
1423 if (!bio)
1424 return ERR_PTR(-ENOMEM);
1426 ret = -ENOMEM;
1427 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1428 if (!pages)
1429 goto out;
1431 iov_for_each(iov, i, *iter) {
1432 unsigned long uaddr = (unsigned long) iov.iov_base;
1433 unsigned long len = iov.iov_len;
1434 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1435 unsigned long start = uaddr >> PAGE_SHIFT;
1436 const int local_nr_pages = end - start;
1437 const int page_limit = cur_page + local_nr_pages;
1439 ret = get_user_pages_fast(uaddr, local_nr_pages,
1440 (iter->type & WRITE) != WRITE,
1441 &pages[cur_page]);
1442 if (unlikely(ret < local_nr_pages)) {
1443 for (j = cur_page; j < page_limit; j++) {
1444 if (!pages[j])
1445 break;
1446 put_page(pages[j]);
1448 ret = -EFAULT;
1449 goto out_unmap;
1452 offset = offset_in_page(uaddr);
1453 for (j = cur_page; j < page_limit; j++) {
1454 unsigned int bytes = PAGE_SIZE - offset;
1455 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1457 if (len <= 0)
1458 break;
1460 if (bytes > len)
1461 bytes = len;
1464 * sorry...
1466 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1467 bytes)
1468 break;
1471 * check if vector was merged with previous
1472 * drop page reference if needed
1474 if (bio->bi_vcnt == prev_bi_vcnt)
1475 put_page(pages[j]);
1477 len -= bytes;
1478 offset = 0;
1481 cur_page = j;
1483 * release the pages we didn't map into the bio, if any
1485 while (j < page_limit)
1486 put_page(pages[j++]);
1489 kfree(pages);
1491 bio_set_flag(bio, BIO_USER_MAPPED);
1494 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1495 * it would normally disappear when its bi_end_io is run.
1496 * however, we need it for the unmap, so grab an extra
1497 * reference to it
1499 bio_get(bio);
1500 return bio;
1502 out_unmap:
1503 bio_for_each_segment_all(bvec, bio, j) {
1504 put_page(bvec->bv_page);
1506 out:
1507 kfree(pages);
1508 bio_put(bio);
1509 return ERR_PTR(ret);
1512 static void __bio_unmap_user(struct bio *bio)
1514 struct bio_vec *bvec;
1515 int i;
1518 * make sure we dirty pages we wrote to
1520 bio_for_each_segment_all(bvec, bio, i) {
1521 if (bio_data_dir(bio) == READ)
1522 set_page_dirty_lock(bvec->bv_page);
1524 put_page(bvec->bv_page);
1527 bio_put(bio);
1531 * bio_unmap_user - unmap a bio
1532 * @bio: the bio being unmapped
1534 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1535 * process context.
1537 * bio_unmap_user() may sleep.
1539 void bio_unmap_user(struct bio *bio)
1541 __bio_unmap_user(bio);
1542 bio_put(bio);
1545 static void bio_map_kern_endio(struct bio *bio)
1547 bio_put(bio);
1551 * bio_map_kern - map kernel address into bio
1552 * @q: the struct request_queue for the bio
1553 * @data: pointer to buffer to map
1554 * @len: length in bytes
1555 * @gfp_mask: allocation flags for bio allocation
1557 * Map the kernel address into a bio suitable for io to a block
1558 * device. Returns an error pointer in case of error.
1560 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1561 gfp_t gfp_mask)
1563 unsigned long kaddr = (unsigned long)data;
1564 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1565 unsigned long start = kaddr >> PAGE_SHIFT;
1566 const int nr_pages = end - start;
1567 int offset, i;
1568 struct bio *bio;
1570 bio = bio_kmalloc(gfp_mask, nr_pages);
1571 if (!bio)
1572 return ERR_PTR(-ENOMEM);
1574 offset = offset_in_page(kaddr);
1575 for (i = 0; i < nr_pages; i++) {
1576 unsigned int bytes = PAGE_SIZE - offset;
1578 if (len <= 0)
1579 break;
1581 if (bytes > len)
1582 bytes = len;
1584 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1585 offset) < bytes) {
1586 /* we don't support partial mappings */
1587 bio_put(bio);
1588 return ERR_PTR(-EINVAL);
1591 data += bytes;
1592 len -= bytes;
1593 offset = 0;
1596 bio->bi_end_io = bio_map_kern_endio;
1597 return bio;
1599 EXPORT_SYMBOL(bio_map_kern);
1601 static void bio_copy_kern_endio(struct bio *bio)
1603 bio_free_pages(bio);
1604 bio_put(bio);
1607 static void bio_copy_kern_endio_read(struct bio *bio)
1609 char *p = bio->bi_private;
1610 struct bio_vec *bvec;
1611 int i;
1613 bio_for_each_segment_all(bvec, bio, i) {
1614 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1615 p += bvec->bv_len;
1618 bio_copy_kern_endio(bio);
1622 * bio_copy_kern - copy kernel address into bio
1623 * @q: the struct request_queue for the bio
1624 * @data: pointer to buffer to copy
1625 * @len: length in bytes
1626 * @gfp_mask: allocation flags for bio and page allocation
1627 * @reading: data direction is READ
1629 * copy the kernel address into a bio suitable for io to a block
1630 * device. Returns an error pointer in case of error.
1632 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1633 gfp_t gfp_mask, int reading)
1635 unsigned long kaddr = (unsigned long)data;
1636 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1637 unsigned long start = kaddr >> PAGE_SHIFT;
1638 struct bio *bio;
1639 void *p = data;
1640 int nr_pages = 0;
1643 * Overflow, abort
1645 if (end < start)
1646 return ERR_PTR(-EINVAL);
1648 nr_pages = end - start;
1649 bio = bio_kmalloc(gfp_mask, nr_pages);
1650 if (!bio)
1651 return ERR_PTR(-ENOMEM);
1653 while (len) {
1654 struct page *page;
1655 unsigned int bytes = PAGE_SIZE;
1657 if (bytes > len)
1658 bytes = len;
1660 page = alloc_page(q->bounce_gfp | gfp_mask);
1661 if (!page)
1662 goto cleanup;
1664 if (!reading)
1665 memcpy(page_address(page), p, bytes);
1667 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1668 break;
1670 len -= bytes;
1671 p += bytes;
1674 if (reading) {
1675 bio->bi_end_io = bio_copy_kern_endio_read;
1676 bio->bi_private = data;
1677 } else {
1678 bio->bi_end_io = bio_copy_kern_endio;
1681 return bio;
1683 cleanup:
1684 bio_free_pages(bio);
1685 bio_put(bio);
1686 return ERR_PTR(-ENOMEM);
1690 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1691 * for performing direct-IO in BIOs.
1693 * The problem is that we cannot run set_page_dirty() from interrupt context
1694 * because the required locks are not interrupt-safe. So what we can do is to
1695 * mark the pages dirty _before_ performing IO. And in interrupt context,
1696 * check that the pages are still dirty. If so, fine. If not, redirty them
1697 * in process context.
1699 * We special-case compound pages here: normally this means reads into hugetlb
1700 * pages. The logic in here doesn't really work right for compound pages
1701 * because the VM does not uniformly chase down the head page in all cases.
1702 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1703 * handle them at all. So we skip compound pages here at an early stage.
1705 * Note that this code is very hard to test under normal circumstances because
1706 * direct-io pins the pages with get_user_pages(). This makes
1707 * is_page_cache_freeable return false, and the VM will not clean the pages.
1708 * But other code (eg, flusher threads) could clean the pages if they are mapped
1709 * pagecache.
1711 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1712 * deferred bio dirtying paths.
1716 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1718 void bio_set_pages_dirty(struct bio *bio)
1720 struct bio_vec *bvec;
1721 int i;
1723 bio_for_each_segment_all(bvec, bio, i) {
1724 struct page *page = bvec->bv_page;
1726 if (page && !PageCompound(page))
1727 set_page_dirty_lock(page);
1731 static void bio_release_pages(struct bio *bio)
1733 struct bio_vec *bvec;
1734 int i;
1736 bio_for_each_segment_all(bvec, bio, i) {
1737 struct page *page = bvec->bv_page;
1739 if (page)
1740 put_page(page);
1745 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1746 * If they are, then fine. If, however, some pages are clean then they must
1747 * have been written out during the direct-IO read. So we take another ref on
1748 * the BIO and the offending pages and re-dirty the pages in process context.
1750 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1751 * here on. It will run one put_page() against each page and will run one
1752 * bio_put() against the BIO.
1755 static void bio_dirty_fn(struct work_struct *work);
1757 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1758 static DEFINE_SPINLOCK(bio_dirty_lock);
1759 static struct bio *bio_dirty_list;
1762 * This runs in process context
1764 static void bio_dirty_fn(struct work_struct *work)
1766 unsigned long flags;
1767 struct bio *bio;
1769 spin_lock_irqsave(&bio_dirty_lock, flags);
1770 bio = bio_dirty_list;
1771 bio_dirty_list = NULL;
1772 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1774 while (bio) {
1775 struct bio *next = bio->bi_private;
1777 bio_set_pages_dirty(bio);
1778 bio_release_pages(bio);
1779 bio_put(bio);
1780 bio = next;
1784 void bio_check_pages_dirty(struct bio *bio)
1786 struct bio_vec *bvec;
1787 int nr_clean_pages = 0;
1788 int i;
1790 bio_for_each_segment_all(bvec, bio, i) {
1791 struct page *page = bvec->bv_page;
1793 if (PageDirty(page) || PageCompound(page)) {
1794 put_page(page);
1795 bvec->bv_page = NULL;
1796 } else {
1797 nr_clean_pages++;
1801 if (nr_clean_pages) {
1802 unsigned long flags;
1804 spin_lock_irqsave(&bio_dirty_lock, flags);
1805 bio->bi_private = bio_dirty_list;
1806 bio_dirty_list = bio;
1807 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1808 schedule_work(&bio_dirty_work);
1809 } else {
1810 bio_put(bio);
1814 void generic_start_io_acct(struct request_queue *q, int rw,
1815 unsigned long sectors, struct hd_struct *part)
1817 int cpu = part_stat_lock();
1819 part_round_stats(q, cpu, part);
1820 part_stat_inc(cpu, part, ios[rw]);
1821 part_stat_add(cpu, part, sectors[rw], sectors);
1822 part_inc_in_flight(q, part, rw);
1824 part_stat_unlock();
1826 EXPORT_SYMBOL(generic_start_io_acct);
1828 void generic_end_io_acct(struct request_queue *q, int rw,
1829 struct hd_struct *part, unsigned long start_time)
1831 unsigned long duration = jiffies - start_time;
1832 int cpu = part_stat_lock();
1834 part_stat_add(cpu, part, ticks[rw], duration);
1835 part_round_stats(q, cpu, part);
1836 part_dec_in_flight(q, part, rw);
1838 part_stat_unlock();
1840 EXPORT_SYMBOL(generic_end_io_acct);
1842 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1843 void bio_flush_dcache_pages(struct bio *bi)
1845 struct bio_vec bvec;
1846 struct bvec_iter iter;
1848 bio_for_each_segment(bvec, bi, iter)
1849 flush_dcache_page(bvec.bv_page);
1851 EXPORT_SYMBOL(bio_flush_dcache_pages);
1852 #endif
1854 static inline bool bio_remaining_done(struct bio *bio)
1857 * If we're not chaining, then ->__bi_remaining is always 1 and
1858 * we always end io on the first invocation.
1860 if (!bio_flagged(bio, BIO_CHAIN))
1861 return true;
1863 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1865 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1866 bio_clear_flag(bio, BIO_CHAIN);
1867 return true;
1870 return false;
1874 * bio_endio - end I/O on a bio
1875 * @bio: bio
1877 * Description:
1878 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1879 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1880 * bio unless they own it and thus know that it has an end_io function.
1882 * bio_endio() can be called several times on a bio that has been chained
1883 * using bio_chain(). The ->bi_end_io() function will only be called the
1884 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1885 * generated if BIO_TRACE_COMPLETION is set.
1887 void bio_endio(struct bio *bio)
1889 again:
1890 if (!bio_remaining_done(bio))
1891 return;
1892 if (!bio_integrity_endio(bio))
1893 return;
1896 * Need to have a real endio function for chained bios, otherwise
1897 * various corner cases will break (like stacking block devices that
1898 * save/restore bi_end_io) - however, we want to avoid unbounded
1899 * recursion and blowing the stack. Tail call optimization would
1900 * handle this, but compiling with frame pointers also disables
1901 * gcc's sibling call optimization.
1903 if (bio->bi_end_io == bio_chain_endio) {
1904 bio = __bio_chain_endio(bio);
1905 goto again;
1908 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1909 trace_block_bio_complete(bio->bi_disk->queue, bio,
1910 blk_status_to_errno(bio->bi_status));
1911 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1914 blk_throtl_bio_endio(bio);
1915 /* release cgroup info */
1916 bio_uninit(bio);
1917 if (bio->bi_end_io)
1918 bio->bi_end_io(bio);
1920 EXPORT_SYMBOL(bio_endio);
1923 * bio_split - split a bio
1924 * @bio: bio to split
1925 * @sectors: number of sectors to split from the front of @bio
1926 * @gfp: gfp mask
1927 * @bs: bio set to allocate from
1929 * Allocates and returns a new bio which represents @sectors from the start of
1930 * @bio, and updates @bio to represent the remaining sectors.
1932 * Unless this is a discard request the newly allocated bio will point
1933 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1934 * @bio is not freed before the split.
1936 struct bio *bio_split(struct bio *bio, int sectors,
1937 gfp_t gfp, struct bio_set *bs)
1939 struct bio *split = NULL;
1941 BUG_ON(sectors <= 0);
1942 BUG_ON(sectors >= bio_sectors(bio));
1944 split = bio_clone_fast(bio, gfp, bs);
1945 if (!split)
1946 return NULL;
1948 split->bi_iter.bi_size = sectors << 9;
1950 if (bio_integrity(split))
1951 bio_integrity_trim(split);
1953 bio_advance(bio, split->bi_iter.bi_size);
1954 bio->bi_iter.bi_done = 0;
1956 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1957 bio_set_flag(split, BIO_TRACE_COMPLETION);
1959 return split;
1961 EXPORT_SYMBOL(bio_split);
1964 * bio_trim - trim a bio
1965 * @bio: bio to trim
1966 * @offset: number of sectors to trim from the front of @bio
1967 * @size: size we want to trim @bio to, in sectors
1969 void bio_trim(struct bio *bio, int offset, int size)
1971 /* 'bio' is a cloned bio which we need to trim to match
1972 * the given offset and size.
1975 size <<= 9;
1976 if (offset == 0 && size == bio->bi_iter.bi_size)
1977 return;
1979 bio_clear_flag(bio, BIO_SEG_VALID);
1981 bio_advance(bio, offset << 9);
1983 bio->bi_iter.bi_size = size;
1985 if (bio_integrity(bio))
1986 bio_integrity_trim(bio);
1989 EXPORT_SYMBOL_GPL(bio_trim);
1992 * create memory pools for biovec's in a bio_set.
1993 * use the global biovec slabs created for general use.
1995 mempool_t *biovec_create_pool(int pool_entries)
1997 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1999 return mempool_create_slab_pool(pool_entries, bp->slab);
2002 void bioset_free(struct bio_set *bs)
2004 if (bs->rescue_workqueue)
2005 destroy_workqueue(bs->rescue_workqueue);
2007 if (bs->bio_pool)
2008 mempool_destroy(bs->bio_pool);
2010 if (bs->bvec_pool)
2011 mempool_destroy(bs->bvec_pool);
2013 bioset_integrity_free(bs);
2014 bio_put_slab(bs);
2016 kfree(bs);
2018 EXPORT_SYMBOL(bioset_free);
2021 * bioset_create - Create a bio_set
2022 * @pool_size: Number of bio and bio_vecs to cache in the mempool
2023 * @front_pad: Number of bytes to allocate in front of the returned bio
2024 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
2025 * and %BIOSET_NEED_RESCUER
2027 * Description:
2028 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
2029 * to ask for a number of bytes to be allocated in front of the bio.
2030 * Front pad allocation is useful for embedding the bio inside
2031 * another structure, to avoid allocating extra data to go with the bio.
2032 * Note that the bio must be embedded at the END of that structure always,
2033 * or things will break badly.
2034 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
2035 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
2036 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
2037 * dispatch queued requests when the mempool runs out of space.
2040 struct bio_set *bioset_create(unsigned int pool_size,
2041 unsigned int front_pad,
2042 int flags)
2044 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2045 struct bio_set *bs;
2047 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
2048 if (!bs)
2049 return NULL;
2051 bs->front_pad = front_pad;
2053 spin_lock_init(&bs->rescue_lock);
2054 bio_list_init(&bs->rescue_list);
2055 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2057 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2058 if (!bs->bio_slab) {
2059 kfree(bs);
2060 return NULL;
2063 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
2064 if (!bs->bio_pool)
2065 goto bad;
2067 if (flags & BIOSET_NEED_BVECS) {
2068 bs->bvec_pool = biovec_create_pool(pool_size);
2069 if (!bs->bvec_pool)
2070 goto bad;
2073 if (!(flags & BIOSET_NEED_RESCUER))
2074 return bs;
2076 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2077 if (!bs->rescue_workqueue)
2078 goto bad;
2080 return bs;
2081 bad:
2082 bioset_free(bs);
2083 return NULL;
2085 EXPORT_SYMBOL(bioset_create);
2087 #ifdef CONFIG_BLK_CGROUP
2090 * bio_associate_blkcg - associate a bio with the specified blkcg
2091 * @bio: target bio
2092 * @blkcg_css: css of the blkcg to associate
2094 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2095 * treat @bio as if it were issued by a task which belongs to the blkcg.
2097 * This function takes an extra reference of @blkcg_css which will be put
2098 * when @bio is released. The caller must own @bio and is responsible for
2099 * synchronizing calls to this function.
2101 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2103 if (unlikely(bio->bi_css))
2104 return -EBUSY;
2105 css_get(blkcg_css);
2106 bio->bi_css = blkcg_css;
2107 return 0;
2109 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2112 * bio_associate_current - associate a bio with %current
2113 * @bio: target bio
2115 * Associate @bio with %current if it hasn't been associated yet. Block
2116 * layer will treat @bio as if it were issued by %current no matter which
2117 * task actually issues it.
2119 * This function takes an extra reference of @task's io_context and blkcg
2120 * which will be put when @bio is released. The caller must own @bio,
2121 * ensure %current->io_context exists, and is responsible for synchronizing
2122 * calls to this function.
2124 int bio_associate_current(struct bio *bio)
2126 struct io_context *ioc;
2128 if (bio->bi_css)
2129 return -EBUSY;
2131 ioc = current->io_context;
2132 if (!ioc)
2133 return -ENOENT;
2135 get_io_context_active(ioc);
2136 bio->bi_ioc = ioc;
2137 bio->bi_css = task_get_css(current, io_cgrp_id);
2138 return 0;
2140 EXPORT_SYMBOL_GPL(bio_associate_current);
2143 * bio_disassociate_task - undo bio_associate_current()
2144 * @bio: target bio
2146 void bio_disassociate_task(struct bio *bio)
2148 if (bio->bi_ioc) {
2149 put_io_context(bio->bi_ioc);
2150 bio->bi_ioc = NULL;
2152 if (bio->bi_css) {
2153 css_put(bio->bi_css);
2154 bio->bi_css = NULL;
2159 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2160 * @dst: destination bio
2161 * @src: source bio
2163 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2165 if (src->bi_css)
2166 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2168 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2169 #endif /* CONFIG_BLK_CGROUP */
2171 static void __init biovec_init_slabs(void)
2173 int i;
2175 for (i = 0; i < BVEC_POOL_NR; i++) {
2176 int size;
2177 struct biovec_slab *bvs = bvec_slabs + i;
2179 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2180 bvs->slab = NULL;
2181 continue;
2184 size = bvs->nr_vecs * sizeof(struct bio_vec);
2185 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2186 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2190 static int __init init_bio(void)
2192 bio_slab_max = 2;
2193 bio_slab_nr = 0;
2194 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2195 if (!bio_slabs)
2196 panic("bio: can't allocate bios\n");
2198 bio_integrity_init();
2199 biovec_init_slabs();
2201 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2202 if (!fs_bio_set)
2203 panic("bio: can't allocate bios\n");
2205 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2206 panic("bio: can't create integrity pool\n");
2208 return 0;
2210 subsys_initcall(init_bio);