2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
40 static void blk_mq_poll_stats_start(struct request_queue
*q
);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
43 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
45 int ddir
, bytes
, bucket
;
47 ddir
= rq_data_dir(rq
);
48 bytes
= blk_rq_bytes(rq
);
50 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
54 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
55 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
61 * Check if any of the ctx's have pending work in this hardware queue
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
65 return sbitmap_any_bit_set(&hctx
->ctx_map
) ||
66 !list_empty_careful(&hctx
->dispatch
) ||
67 blk_mq_sched_has_work(hctx
);
71 * Mark this ctx as having pending work in this hardware queue
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
74 struct blk_mq_ctx
*ctx
)
76 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
77 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
81 struct blk_mq_ctx
*ctx
)
83 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
87 struct hd_struct
*part
;
88 unsigned int *inflight
;
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
92 struct request
*rq
, void *priv
,
95 struct mq_inflight
*mi
= priv
;
97 if (test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
) &&
98 !test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
)) {
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
105 if (rq
->part
== mi
->part
)
107 if (mi
->part
->partno
)
112 void blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
,
113 unsigned int inflight
[2])
115 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
117 inflight
[0] = inflight
[1] = 0;
118 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
121 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx
*hctx
,
122 struct request
*rq
, void *priv
,
125 struct mq_inflight
*mi
= priv
;
127 if (rq
->part
== mi
->part
)
128 mi
->inflight
[rq_data_dir(rq
)]++;
131 void blk_mq_in_flight_rw(struct request_queue
*q
, struct hd_struct
*part
,
132 unsigned int inflight
[2])
134 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
136 inflight
[0] = inflight
[1] = 0;
137 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight_rw
, &mi
);
140 void blk_freeze_queue_start(struct request_queue
*q
)
144 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
145 if (freeze_depth
== 1) {
146 percpu_ref_kill(&q
->q_usage_counter
);
147 blk_mq_run_hw_queues(q
, false);
150 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
152 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
154 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
156 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
158 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
159 unsigned long timeout
)
161 return wait_event_timeout(q
->mq_freeze_wq
,
162 percpu_ref_is_zero(&q
->q_usage_counter
),
165 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
168 * Guarantee no request is in use, so we can change any data structure of
169 * the queue afterward.
171 void blk_freeze_queue(struct request_queue
*q
)
174 * In the !blk_mq case we are only calling this to kill the
175 * q_usage_counter, otherwise this increases the freeze depth
176 * and waits for it to return to zero. For this reason there is
177 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
178 * exported to drivers as the only user for unfreeze is blk_mq.
180 blk_freeze_queue_start(q
);
183 blk_mq_freeze_queue_wait(q
);
186 void blk_mq_freeze_queue(struct request_queue
*q
)
189 * ...just an alias to keep freeze and unfreeze actions balanced
190 * in the blk_mq_* namespace
194 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
196 void blk_mq_unfreeze_queue(struct request_queue
*q
)
200 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
201 WARN_ON_ONCE(freeze_depth
< 0);
203 percpu_ref_reinit(&q
->q_usage_counter
);
204 wake_up_all(&q
->mq_freeze_wq
);
207 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
210 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
211 * mpt3sas driver such that this function can be removed.
213 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
217 spin_lock_irqsave(q
->queue_lock
, flags
);
218 queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
219 spin_unlock_irqrestore(q
->queue_lock
, flags
);
221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
224 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227 * Note: this function does not prevent that the struct request end_io()
228 * callback function is invoked. Once this function is returned, we make
229 * sure no dispatch can happen until the queue is unquiesced via
230 * blk_mq_unquiesce_queue().
232 void blk_mq_quiesce_queue(struct request_queue
*q
)
234 struct blk_mq_hw_ctx
*hctx
;
238 blk_mq_quiesce_queue_nowait(q
);
240 queue_for_each_hw_ctx(q
, hctx
, i
) {
241 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
242 synchronize_srcu(hctx
->queue_rq_srcu
);
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * This function recovers queue into the state before quiescing
256 * which is done by blk_mq_quiesce_queue.
258 void blk_mq_unquiesce_queue(struct request_queue
*q
)
262 spin_lock_irqsave(q
->queue_lock
, flags
);
263 queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
264 spin_unlock_irqrestore(q
->queue_lock
, flags
);
266 /* dispatch requests which are inserted during quiescing */
267 blk_mq_run_hw_queues(q
, true);
269 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
271 void blk_mq_wake_waiters(struct request_queue
*q
)
273 struct blk_mq_hw_ctx
*hctx
;
276 queue_for_each_hw_ctx(q
, hctx
, i
)
277 if (blk_mq_hw_queue_mapped(hctx
))
278 blk_mq_tag_wakeup_all(hctx
->tags
, true);
281 * If we are called because the queue has now been marked as
282 * dying, we need to ensure that processes currently waiting on
283 * the queue are notified as well.
285 wake_up_all(&q
->mq_freeze_wq
);
288 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
290 return blk_mq_has_free_tags(hctx
->tags
);
292 EXPORT_SYMBOL(blk_mq_can_queue
);
294 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
295 unsigned int tag
, unsigned int op
)
297 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
298 struct request
*rq
= tags
->static_rqs
[tag
];
302 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
304 rq
->internal_tag
= tag
;
306 if (blk_mq_tag_busy(data
->hctx
)) {
307 rq
->rq_flags
= RQF_MQ_INFLIGHT
;
308 atomic_inc(&data
->hctx
->nr_active
);
311 rq
->internal_tag
= -1;
312 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
315 INIT_LIST_HEAD(&rq
->queuelist
);
316 /* csd/requeue_work/fifo_time is initialized before use */
318 rq
->mq_ctx
= data
->ctx
;
320 if (blk_queue_io_stat(data
->q
))
321 rq
->rq_flags
|= RQF_IO_STAT
;
322 /* do not touch atomic flags, it needs atomic ops against the timer */
324 INIT_HLIST_NODE(&rq
->hash
);
325 RB_CLEAR_NODE(&rq
->rb_node
);
328 rq
->start_time
= jiffies
;
329 #ifdef CONFIG_BLK_CGROUP
331 set_start_time_ns(rq
);
332 rq
->io_start_time_ns
= 0;
334 rq
->nr_phys_segments
= 0;
335 #if defined(CONFIG_BLK_DEV_INTEGRITY)
336 rq
->nr_integrity_segments
= 0;
339 /* tag was already set */
342 INIT_LIST_HEAD(&rq
->timeout_list
);
346 rq
->end_io_data
= NULL
;
349 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
353 static struct request
*blk_mq_get_request(struct request_queue
*q
,
354 struct bio
*bio
, unsigned int op
,
355 struct blk_mq_alloc_data
*data
)
357 struct elevator_queue
*e
= q
->elevator
;
360 struct blk_mq_ctx
*local_ctx
= NULL
;
362 blk_queue_enter_live(q
);
364 if (likely(!data
->ctx
))
365 data
->ctx
= local_ctx
= blk_mq_get_ctx(q
);
366 if (likely(!data
->hctx
))
367 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
369 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
372 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
375 * Flush requests are special and go directly to the
378 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
)
379 e
->type
->ops
.mq
.limit_depth(op
, data
);
382 tag
= blk_mq_get_tag(data
);
383 if (tag
== BLK_MQ_TAG_FAIL
) {
385 blk_mq_put_ctx(local_ctx
);
392 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
393 if (!op_is_flush(op
)) {
395 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
396 if (e
->type
->icq_cache
&& rq_ioc(bio
))
397 blk_mq_sched_assign_ioc(rq
, bio
);
399 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
400 rq
->rq_flags
|= RQF_ELVPRIV
;
403 data
->hctx
->queued
++;
407 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
410 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
414 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
418 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
422 return ERR_PTR(-EWOULDBLOCK
);
424 blk_mq_put_ctx(alloc_data
.ctx
);
427 rq
->__sector
= (sector_t
) -1;
428 rq
->bio
= rq
->biotail
= NULL
;
431 EXPORT_SYMBOL(blk_mq_alloc_request
);
433 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
434 unsigned int op
, unsigned int flags
, unsigned int hctx_idx
)
436 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
442 * If the tag allocator sleeps we could get an allocation for a
443 * different hardware context. No need to complicate the low level
444 * allocator for this for the rare use case of a command tied to
447 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
448 return ERR_PTR(-EINVAL
);
450 if (hctx_idx
>= q
->nr_hw_queues
)
451 return ERR_PTR(-EIO
);
453 ret
= blk_queue_enter(q
, true);
458 * Check if the hardware context is actually mapped to anything.
459 * If not tell the caller that it should skip this queue.
461 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
462 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
464 return ERR_PTR(-EXDEV
);
466 cpu
= cpumask_first(alloc_data
.hctx
->cpumask
);
467 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
469 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
473 return ERR_PTR(-EWOULDBLOCK
);
477 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
479 void blk_mq_free_request(struct request
*rq
)
481 struct request_queue
*q
= rq
->q
;
482 struct elevator_queue
*e
= q
->elevator
;
483 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
484 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
485 const int sched_tag
= rq
->internal_tag
;
487 if (rq
->rq_flags
& RQF_ELVPRIV
) {
488 if (e
&& e
->type
->ops
.mq
.finish_request
)
489 e
->type
->ops
.mq
.finish_request(rq
);
491 put_io_context(rq
->elv
.icq
->ioc
);
496 ctx
->rq_completed
[rq_is_sync(rq
)]++;
497 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
498 atomic_dec(&hctx
->nr_active
);
500 wbt_done(q
->rq_wb
, &rq
->issue_stat
);
502 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
503 clear_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
505 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
507 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
508 blk_mq_sched_restart(hctx
);
511 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
513 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
515 blk_account_io_done(rq
);
518 wbt_done(rq
->q
->rq_wb
, &rq
->issue_stat
);
519 rq
->end_io(rq
, error
);
521 if (unlikely(blk_bidi_rq(rq
)))
522 blk_mq_free_request(rq
->next_rq
);
523 blk_mq_free_request(rq
);
526 EXPORT_SYMBOL(__blk_mq_end_request
);
528 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
530 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
532 __blk_mq_end_request(rq
, error
);
534 EXPORT_SYMBOL(blk_mq_end_request
);
536 static void __blk_mq_complete_request_remote(void *data
)
538 struct request
*rq
= data
;
540 rq
->q
->softirq_done_fn(rq
);
543 static void __blk_mq_complete_request(struct request
*rq
)
545 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
549 if (rq
->internal_tag
!= -1)
550 blk_mq_sched_completed_request(rq
);
551 if (rq
->rq_flags
& RQF_STATS
) {
552 blk_mq_poll_stats_start(rq
->q
);
556 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
557 rq
->q
->softirq_done_fn(rq
);
562 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
563 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
565 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
566 rq
->csd
.func
= __blk_mq_complete_request_remote
;
569 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
571 rq
->q
->softirq_done_fn(rq
);
577 * blk_mq_complete_request - end I/O on a request
578 * @rq: the request being processed
581 * Ends all I/O on a request. It does not handle partial completions.
582 * The actual completion happens out-of-order, through a IPI handler.
584 void blk_mq_complete_request(struct request
*rq
)
586 struct request_queue
*q
= rq
->q
;
588 if (unlikely(blk_should_fake_timeout(q
)))
590 if (!blk_mark_rq_complete(rq
))
591 __blk_mq_complete_request(rq
);
593 EXPORT_SYMBOL(blk_mq_complete_request
);
595 int blk_mq_request_started(struct request
*rq
)
597 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
599 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
601 void blk_mq_start_request(struct request
*rq
)
603 struct request_queue
*q
= rq
->q
;
605 blk_mq_sched_started_request(rq
);
607 trace_block_rq_issue(q
, rq
);
609 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
610 blk_stat_set_issue(&rq
->issue_stat
, blk_rq_sectors(rq
));
611 rq
->rq_flags
|= RQF_STATS
;
612 wbt_issue(q
->rq_wb
, &rq
->issue_stat
);
618 * Ensure that ->deadline is visible before set the started
619 * flag and clear the completed flag.
621 smp_mb__before_atomic();
624 * Mark us as started and clear complete. Complete might have been
625 * set if requeue raced with timeout, which then marked it as
626 * complete. So be sure to clear complete again when we start
627 * the request, otherwise we'll ignore the completion event.
629 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
630 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
631 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
632 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
634 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
636 * Make sure space for the drain appears. We know we can do
637 * this because max_hw_segments has been adjusted to be one
638 * fewer than the device can handle.
640 rq
->nr_phys_segments
++;
643 EXPORT_SYMBOL(blk_mq_start_request
);
646 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
647 * flag isn't set yet, so there may be race with timeout handler,
648 * but given rq->deadline is just set in .queue_rq() under
649 * this situation, the race won't be possible in reality because
650 * rq->timeout should be set as big enough to cover the window
651 * between blk_mq_start_request() called from .queue_rq() and
652 * clearing REQ_ATOM_STARTED here.
654 static void __blk_mq_requeue_request(struct request
*rq
)
656 struct request_queue
*q
= rq
->q
;
658 trace_block_rq_requeue(q
, rq
);
659 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
661 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
662 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
663 rq
->nr_phys_segments
--;
667 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
669 __blk_mq_requeue_request(rq
);
671 /* this request will be re-inserted to io scheduler queue */
672 blk_mq_sched_requeue_request(rq
);
674 BUG_ON(blk_queued_rq(rq
));
675 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
677 EXPORT_SYMBOL(blk_mq_requeue_request
);
679 static void blk_mq_requeue_work(struct work_struct
*work
)
681 struct request_queue
*q
=
682 container_of(work
, struct request_queue
, requeue_work
.work
);
684 struct request
*rq
, *next
;
686 spin_lock_irq(&q
->requeue_lock
);
687 list_splice_init(&q
->requeue_list
, &rq_list
);
688 spin_unlock_irq(&q
->requeue_lock
);
690 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
691 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
694 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
695 list_del_init(&rq
->queuelist
);
696 blk_mq_sched_insert_request(rq
, true, false, false, true);
699 while (!list_empty(&rq_list
)) {
700 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
701 list_del_init(&rq
->queuelist
);
702 blk_mq_sched_insert_request(rq
, false, false, false, true);
705 blk_mq_run_hw_queues(q
, false);
708 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
709 bool kick_requeue_list
)
711 struct request_queue
*q
= rq
->q
;
715 * We abuse this flag that is otherwise used by the I/O scheduler to
716 * request head insertation from the workqueue.
718 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
720 spin_lock_irqsave(&q
->requeue_lock
, flags
);
722 rq
->rq_flags
|= RQF_SOFTBARRIER
;
723 list_add(&rq
->queuelist
, &q
->requeue_list
);
725 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
727 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
729 if (kick_requeue_list
)
730 blk_mq_kick_requeue_list(q
);
732 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
734 void blk_mq_kick_requeue_list(struct request_queue
*q
)
736 kblockd_schedule_delayed_work(&q
->requeue_work
, 0);
738 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
740 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
743 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
744 msecs_to_jiffies(msecs
));
746 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
748 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
750 if (tag
< tags
->nr_tags
) {
751 prefetch(tags
->rqs
[tag
]);
752 return tags
->rqs
[tag
];
757 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
759 struct blk_mq_timeout_data
{
761 unsigned int next_set
;
764 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
766 const struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
767 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
770 * We know that complete is set at this point. If STARTED isn't set
771 * anymore, then the request isn't active and the "timeout" should
772 * just be ignored. This can happen due to the bitflag ordering.
773 * Timeout first checks if STARTED is set, and if it is, assumes
774 * the request is active. But if we race with completion, then
775 * both flags will get cleared. So check here again, and ignore
776 * a timeout event with a request that isn't active.
778 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
782 ret
= ops
->timeout(req
, reserved
);
786 __blk_mq_complete_request(req
);
788 case BLK_EH_RESET_TIMER
:
790 blk_clear_rq_complete(req
);
792 case BLK_EH_NOT_HANDLED
:
795 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
800 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
801 struct request
*rq
, void *priv
, bool reserved
)
803 struct blk_mq_timeout_data
*data
= priv
;
805 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
809 * The rq being checked may have been freed and reallocated
810 * out already here, we avoid this race by checking rq->deadline
811 * and REQ_ATOM_COMPLETE flag together:
813 * - if rq->deadline is observed as new value because of
814 * reusing, the rq won't be timed out because of timing.
815 * - if rq->deadline is observed as previous value,
816 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
817 * because we put a barrier between setting rq->deadline
818 * and clearing the flag in blk_mq_start_request(), so
819 * this rq won't be timed out too.
821 if (time_after_eq(jiffies
, rq
->deadline
)) {
822 if (!blk_mark_rq_complete(rq
))
823 blk_mq_rq_timed_out(rq
, reserved
);
824 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
825 data
->next
= rq
->deadline
;
830 static void blk_mq_timeout_work(struct work_struct
*work
)
832 struct request_queue
*q
=
833 container_of(work
, struct request_queue
, timeout_work
);
834 struct blk_mq_timeout_data data
= {
840 /* A deadlock might occur if a request is stuck requiring a
841 * timeout at the same time a queue freeze is waiting
842 * completion, since the timeout code would not be able to
843 * acquire the queue reference here.
845 * That's why we don't use blk_queue_enter here; instead, we use
846 * percpu_ref_tryget directly, because we need to be able to
847 * obtain a reference even in the short window between the queue
848 * starting to freeze, by dropping the first reference in
849 * blk_freeze_queue_start, and the moment the last request is
850 * consumed, marked by the instant q_usage_counter reaches
853 if (!percpu_ref_tryget(&q
->q_usage_counter
))
856 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
859 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
860 mod_timer(&q
->timeout
, data
.next
);
862 struct blk_mq_hw_ctx
*hctx
;
864 queue_for_each_hw_ctx(q
, hctx
, i
) {
865 /* the hctx may be unmapped, so check it here */
866 if (blk_mq_hw_queue_mapped(hctx
))
867 blk_mq_tag_idle(hctx
);
873 struct flush_busy_ctx_data
{
874 struct blk_mq_hw_ctx
*hctx
;
875 struct list_head
*list
;
878 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
880 struct flush_busy_ctx_data
*flush_data
= data
;
881 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
882 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
884 sbitmap_clear_bit(sb
, bitnr
);
885 spin_lock(&ctx
->lock
);
886 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
887 spin_unlock(&ctx
->lock
);
892 * Process software queues that have been marked busy, splicing them
893 * to the for-dispatch
895 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
897 struct flush_busy_ctx_data data
= {
902 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
904 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
906 static inline unsigned int queued_to_index(unsigned int queued
)
911 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
914 bool blk_mq_get_driver_tag(struct request
*rq
, struct blk_mq_hw_ctx
**hctx
,
917 struct blk_mq_alloc_data data
= {
919 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
920 .flags
= wait
? 0 : BLK_MQ_REQ_NOWAIT
,
923 might_sleep_if(wait
);
928 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
929 data
.flags
|= BLK_MQ_REQ_RESERVED
;
931 rq
->tag
= blk_mq_get_tag(&data
);
933 if (blk_mq_tag_busy(data
.hctx
)) {
934 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
935 atomic_inc(&data
.hctx
->nr_active
);
937 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
943 return rq
->tag
!= -1;
946 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx
*hctx
,
949 blk_mq_put_tag(hctx
, hctx
->tags
, rq
->mq_ctx
, rq
->tag
);
952 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
) {
953 rq
->rq_flags
&= ~RQF_MQ_INFLIGHT
;
954 atomic_dec(&hctx
->nr_active
);
958 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx
*hctx
,
961 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
964 __blk_mq_put_driver_tag(hctx
, rq
);
967 static void blk_mq_put_driver_tag(struct request
*rq
)
969 struct blk_mq_hw_ctx
*hctx
;
971 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
974 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
975 __blk_mq_put_driver_tag(hctx
, rq
);
979 * If we fail getting a driver tag because all the driver tags are already
980 * assigned and on the dispatch list, BUT the first entry does not have a
981 * tag, then we could deadlock. For that case, move entries with assigned
982 * driver tags to the front, leaving the set of tagged requests in the
983 * same order, and the untagged set in the same order.
985 static bool reorder_tags_to_front(struct list_head
*list
)
987 struct request
*rq
, *tmp
, *first
= NULL
;
989 list_for_each_entry_safe_reverse(rq
, tmp
, list
, queuelist
) {
993 list_move(&rq
->queuelist
, list
);
999 return first
!= NULL
;
1002 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
, int flags
,
1005 struct blk_mq_hw_ctx
*hctx
;
1007 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1009 list_del(&wait
->entry
);
1010 clear_bit_unlock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
);
1011 blk_mq_run_hw_queue(hctx
, true);
1015 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx
*hctx
)
1017 struct sbq_wait_state
*ws
;
1020 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1021 * The thread which wins the race to grab this bit adds the hardware
1022 * queue to the wait queue.
1024 if (test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
) ||
1025 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
1028 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
1029 ws
= bt_wait_ptr(&hctx
->tags
->bitmap_tags
, hctx
);
1032 * As soon as this returns, it's no longer safe to fiddle with
1033 * hctx->dispatch_wait, since a completion can wake up the wait queue
1034 * and unlock the bit.
1036 add_wait_queue(&ws
->wait
, &hctx
->dispatch_wait
);
1040 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
)
1042 struct blk_mq_hw_ctx
*hctx
;
1046 if (list_empty(list
))
1050 * Now process all the entries, sending them to the driver.
1052 errors
= queued
= 0;
1054 struct blk_mq_queue_data bd
;
1057 rq
= list_first_entry(list
, struct request
, queuelist
);
1058 if (!blk_mq_get_driver_tag(rq
, &hctx
, false)) {
1059 if (!queued
&& reorder_tags_to_front(list
))
1063 * The initial allocation attempt failed, so we need to
1064 * rerun the hardware queue when a tag is freed.
1066 if (!blk_mq_dispatch_wait_add(hctx
))
1070 * It's possible that a tag was freed in the window
1071 * between the allocation failure and adding the
1072 * hardware queue to the wait queue.
1074 if (!blk_mq_get_driver_tag(rq
, &hctx
, false))
1078 list_del_init(&rq
->queuelist
);
1083 * Flag last if we have no more requests, or if we have more
1084 * but can't assign a driver tag to it.
1086 if (list_empty(list
))
1089 struct request
*nxt
;
1091 nxt
= list_first_entry(list
, struct request
, queuelist
);
1092 bd
.last
= !blk_mq_get_driver_tag(nxt
, NULL
, false);
1095 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1096 if (ret
== BLK_STS_RESOURCE
) {
1097 blk_mq_put_driver_tag_hctx(hctx
, rq
);
1098 list_add(&rq
->queuelist
, list
);
1099 __blk_mq_requeue_request(rq
);
1103 if (unlikely(ret
!= BLK_STS_OK
)) {
1105 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1110 } while (!list_empty(list
));
1112 hctx
->dispatched
[queued_to_index(queued
)]++;
1115 * Any items that need requeuing? Stuff them into hctx->dispatch,
1116 * that is where we will continue on next queue run.
1118 if (!list_empty(list
)) {
1120 * If an I/O scheduler has been configured and we got a driver
1121 * tag for the next request already, free it again.
1123 rq
= list_first_entry(list
, struct request
, queuelist
);
1124 blk_mq_put_driver_tag(rq
);
1126 spin_lock(&hctx
->lock
);
1127 list_splice_init(list
, &hctx
->dispatch
);
1128 spin_unlock(&hctx
->lock
);
1131 * If SCHED_RESTART was set by the caller of this function and
1132 * it is no longer set that means that it was cleared by another
1133 * thread and hence that a queue rerun is needed.
1135 * If TAG_WAITING is set that means that an I/O scheduler has
1136 * been configured and another thread is waiting for a driver
1137 * tag. To guarantee fairness, do not rerun this hardware queue
1138 * but let the other thread grab the driver tag.
1140 * If no I/O scheduler has been configured it is possible that
1141 * the hardware queue got stopped and restarted before requests
1142 * were pushed back onto the dispatch list. Rerun the queue to
1143 * avoid starvation. Notes:
1144 * - blk_mq_run_hw_queue() checks whether or not a queue has
1145 * been stopped before rerunning a queue.
1146 * - Some but not all block drivers stop a queue before
1147 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1150 if (!blk_mq_sched_needs_restart(hctx
) &&
1151 !test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
1152 blk_mq_run_hw_queue(hctx
, true);
1155 return (queued
+ errors
) != 0;
1158 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1163 * We should be running this queue from one of the CPUs that
1166 * There are at least two related races now between setting
1167 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1168 * __blk_mq_run_hw_queue():
1170 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1171 * but later it becomes online, then this warning is harmless
1174 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1175 * but later it becomes offline, then the warning can't be
1176 * triggered, and we depend on blk-mq timeout handler to
1177 * handle dispatched requests to this hctx
1179 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1180 cpu_online(hctx
->next_cpu
)) {
1181 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1182 raw_smp_processor_id(),
1183 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1188 * We can't run the queue inline with ints disabled. Ensure that
1189 * we catch bad users of this early.
1191 WARN_ON_ONCE(in_interrupt());
1193 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1195 blk_mq_sched_dispatch_requests(hctx
);
1200 srcu_idx
= srcu_read_lock(hctx
->queue_rq_srcu
);
1201 blk_mq_sched_dispatch_requests(hctx
);
1202 srcu_read_unlock(hctx
->queue_rq_srcu
, srcu_idx
);
1207 * It'd be great if the workqueue API had a way to pass
1208 * in a mask and had some smarts for more clever placement.
1209 * For now we just round-robin here, switching for every
1210 * BLK_MQ_CPU_WORK_BATCH queued items.
1212 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1214 if (hctx
->queue
->nr_hw_queues
== 1)
1215 return WORK_CPU_UNBOUND
;
1217 if (--hctx
->next_cpu_batch
<= 0) {
1220 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
1221 if (next_cpu
>= nr_cpu_ids
)
1222 next_cpu
= cpumask_first(hctx
->cpumask
);
1224 hctx
->next_cpu
= next_cpu
;
1225 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1228 return hctx
->next_cpu
;
1231 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1232 unsigned long msecs
)
1234 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1237 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1240 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1241 int cpu
= get_cpu();
1242 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1243 __blk_mq_run_hw_queue(hctx
);
1251 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1253 msecs_to_jiffies(msecs
));
1256 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1258 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1260 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1262 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1264 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1266 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1268 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1270 struct blk_mq_hw_ctx
*hctx
;
1273 queue_for_each_hw_ctx(q
, hctx
, i
) {
1274 if (!blk_mq_hctx_has_pending(hctx
) ||
1275 blk_mq_hctx_stopped(hctx
))
1278 blk_mq_run_hw_queue(hctx
, async
);
1281 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1284 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1285 * @q: request queue.
1287 * The caller is responsible for serializing this function against
1288 * blk_mq_{start,stop}_hw_queue().
1290 bool blk_mq_queue_stopped(struct request_queue
*q
)
1292 struct blk_mq_hw_ctx
*hctx
;
1295 queue_for_each_hw_ctx(q
, hctx
, i
)
1296 if (blk_mq_hctx_stopped(hctx
))
1301 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1304 * This function is often used for pausing .queue_rq() by driver when
1305 * there isn't enough resource or some conditions aren't satisfied, and
1306 * BLK_STS_RESOURCE is usually returned.
1308 * We do not guarantee that dispatch can be drained or blocked
1309 * after blk_mq_stop_hw_queue() returns. Please use
1310 * blk_mq_quiesce_queue() for that requirement.
1312 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1314 cancel_delayed_work(&hctx
->run_work
);
1316 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1318 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1321 * This function is often used for pausing .queue_rq() by driver when
1322 * there isn't enough resource or some conditions aren't satisfied, and
1323 * BLK_STS_RESOURCE is usually returned.
1325 * We do not guarantee that dispatch can be drained or blocked
1326 * after blk_mq_stop_hw_queues() returns. Please use
1327 * blk_mq_quiesce_queue() for that requirement.
1329 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1331 struct blk_mq_hw_ctx
*hctx
;
1334 queue_for_each_hw_ctx(q
, hctx
, i
)
1335 blk_mq_stop_hw_queue(hctx
);
1337 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1339 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1341 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1343 blk_mq_run_hw_queue(hctx
, false);
1345 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1347 void blk_mq_start_hw_queues(struct request_queue
*q
)
1349 struct blk_mq_hw_ctx
*hctx
;
1352 queue_for_each_hw_ctx(q
, hctx
, i
)
1353 blk_mq_start_hw_queue(hctx
);
1355 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1357 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1359 if (!blk_mq_hctx_stopped(hctx
))
1362 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1363 blk_mq_run_hw_queue(hctx
, async
);
1365 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1367 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1369 struct blk_mq_hw_ctx
*hctx
;
1372 queue_for_each_hw_ctx(q
, hctx
, i
)
1373 blk_mq_start_stopped_hw_queue(hctx
, async
);
1375 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1377 static void blk_mq_run_work_fn(struct work_struct
*work
)
1379 struct blk_mq_hw_ctx
*hctx
;
1381 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1384 * If we are stopped, don't run the queue. The exception is if
1385 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1386 * the STOPPED bit and run it.
1388 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)) {
1389 if (!test_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
))
1392 clear_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1393 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1396 __blk_mq_run_hw_queue(hctx
);
1400 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1402 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1406 * Stop the hw queue, then modify currently delayed work.
1407 * This should prevent us from running the queue prematurely.
1408 * Mark the queue as auto-clearing STOPPED when it runs.
1410 blk_mq_stop_hw_queue(hctx
);
1411 set_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1412 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1414 msecs_to_jiffies(msecs
));
1416 EXPORT_SYMBOL(blk_mq_delay_queue
);
1418 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1422 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1424 lockdep_assert_held(&ctx
->lock
);
1426 trace_block_rq_insert(hctx
->queue
, rq
);
1429 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1431 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1434 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1437 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1439 lockdep_assert_held(&ctx
->lock
);
1441 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1442 blk_mq_hctx_mark_pending(hctx
, ctx
);
1446 * Should only be used carefully, when the caller knows we want to
1447 * bypass a potential IO scheduler on the target device.
1449 void blk_mq_request_bypass_insert(struct request
*rq
)
1451 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1452 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1454 spin_lock(&hctx
->lock
);
1455 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1456 spin_unlock(&hctx
->lock
);
1458 blk_mq_run_hw_queue(hctx
, false);
1461 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1462 struct list_head
*list
)
1466 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1469 spin_lock(&ctx
->lock
);
1470 while (!list_empty(list
)) {
1473 rq
= list_first_entry(list
, struct request
, queuelist
);
1474 BUG_ON(rq
->mq_ctx
!= ctx
);
1475 list_del_init(&rq
->queuelist
);
1476 __blk_mq_insert_req_list(hctx
, rq
, false);
1478 blk_mq_hctx_mark_pending(hctx
, ctx
);
1479 spin_unlock(&ctx
->lock
);
1482 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1484 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1485 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1487 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1488 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1489 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1492 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1494 struct blk_mq_ctx
*this_ctx
;
1495 struct request_queue
*this_q
;
1498 LIST_HEAD(ctx_list
);
1501 list_splice_init(&plug
->mq_list
, &list
);
1503 list_sort(NULL
, &list
, plug_ctx_cmp
);
1509 while (!list_empty(&list
)) {
1510 rq
= list_entry_rq(list
.next
);
1511 list_del_init(&rq
->queuelist
);
1513 if (rq
->mq_ctx
!= this_ctx
) {
1515 trace_block_unplug(this_q
, depth
, !from_schedule
);
1516 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1521 this_ctx
= rq
->mq_ctx
;
1527 list_add_tail(&rq
->queuelist
, &ctx_list
);
1531 * If 'this_ctx' is set, we know we have entries to complete
1532 * on 'ctx_list'. Do those.
1535 trace_block_unplug(this_q
, depth
, !from_schedule
);
1536 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1541 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1543 blk_init_request_from_bio(rq
, bio
);
1545 blk_account_io_start(rq
, true);
1548 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1550 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1551 !blk_queue_nomerges(hctx
->queue
);
1554 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx
*hctx
,
1555 struct blk_mq_ctx
*ctx
,
1558 spin_lock(&ctx
->lock
);
1559 __blk_mq_insert_request(hctx
, rq
, false);
1560 spin_unlock(&ctx
->lock
);
1563 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1566 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1568 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1571 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1573 blk_qc_t
*cookie
, bool may_sleep
)
1575 struct request_queue
*q
= rq
->q
;
1576 struct blk_mq_queue_data bd
= {
1580 blk_qc_t new_cookie
;
1582 bool run_queue
= true;
1584 /* RCU or SRCU read lock is needed before checking quiesced flag */
1585 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1593 if (!blk_mq_get_driver_tag(rq
, NULL
, false))
1596 new_cookie
= request_to_qc_t(hctx
, rq
);
1599 * For OK queue, we are done. For error, kill it. Any other
1600 * error (busy), just add it to our list as we previously
1603 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1606 *cookie
= new_cookie
;
1608 case BLK_STS_RESOURCE
:
1609 __blk_mq_requeue_request(rq
);
1612 *cookie
= BLK_QC_T_NONE
;
1613 blk_mq_end_request(rq
, ret
);
1618 blk_mq_sched_insert_request(rq
, false, run_queue
, false, may_sleep
);
1621 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1622 struct request
*rq
, blk_qc_t
*cookie
)
1624 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1626 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1629 unsigned int srcu_idx
;
1633 srcu_idx
= srcu_read_lock(hctx
->queue_rq_srcu
);
1634 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, true);
1635 srcu_read_unlock(hctx
->queue_rq_srcu
, srcu_idx
);
1639 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1641 const int is_sync
= op_is_sync(bio
->bi_opf
);
1642 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1643 struct blk_mq_alloc_data data
= { .flags
= 0 };
1645 unsigned int request_count
= 0;
1646 struct blk_plug
*plug
;
1647 struct request
*same_queue_rq
= NULL
;
1649 unsigned int wb_acct
;
1651 blk_queue_bounce(q
, &bio
);
1653 blk_queue_split(q
, &bio
);
1655 if (!bio_integrity_prep(bio
))
1656 return BLK_QC_T_NONE
;
1658 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1659 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1660 return BLK_QC_T_NONE
;
1662 if (blk_mq_sched_bio_merge(q
, bio
))
1663 return BLK_QC_T_NONE
;
1665 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1667 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1669 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1670 if (unlikely(!rq
)) {
1671 __wbt_done(q
->rq_wb
, wb_acct
);
1672 if (bio
->bi_opf
& REQ_NOWAIT
)
1673 bio_wouldblock_error(bio
);
1674 return BLK_QC_T_NONE
;
1677 wbt_track(&rq
->issue_stat
, wb_acct
);
1679 cookie
= request_to_qc_t(data
.hctx
, rq
);
1681 plug
= current
->plug
;
1682 if (unlikely(is_flush_fua
)) {
1683 blk_mq_put_ctx(data
.ctx
);
1684 blk_mq_bio_to_request(rq
, bio
);
1686 blk_mq_sched_insert_request(rq
, false, true, true,
1689 blk_insert_flush(rq
);
1690 blk_mq_run_hw_queue(data
.hctx
, true);
1692 } else if (plug
&& q
->nr_hw_queues
== 1) {
1693 struct request
*last
= NULL
;
1695 blk_mq_put_ctx(data
.ctx
);
1696 blk_mq_bio_to_request(rq
, bio
);
1699 * @request_count may become stale because of schedule
1700 * out, so check the list again.
1702 if (list_empty(&plug
->mq_list
))
1704 else if (blk_queue_nomerges(q
))
1705 request_count
= blk_plug_queued_count(q
);
1708 trace_block_plug(q
);
1710 last
= list_entry_rq(plug
->mq_list
.prev
);
1712 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1713 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1714 blk_flush_plug_list(plug
, false);
1715 trace_block_plug(q
);
1718 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1719 } else if (plug
&& !blk_queue_nomerges(q
)) {
1720 blk_mq_bio_to_request(rq
, bio
);
1723 * We do limited plugging. If the bio can be merged, do that.
1724 * Otherwise the existing request in the plug list will be
1725 * issued. So the plug list will have one request at most
1726 * The plug list might get flushed before this. If that happens,
1727 * the plug list is empty, and same_queue_rq is invalid.
1729 if (list_empty(&plug
->mq_list
))
1730 same_queue_rq
= NULL
;
1732 list_del_init(&same_queue_rq
->queuelist
);
1733 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1735 blk_mq_put_ctx(data
.ctx
);
1737 if (same_queue_rq
) {
1738 data
.hctx
= blk_mq_map_queue(q
,
1739 same_queue_rq
->mq_ctx
->cpu
);
1740 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1743 } else if (q
->nr_hw_queues
> 1 && is_sync
) {
1744 blk_mq_put_ctx(data
.ctx
);
1745 blk_mq_bio_to_request(rq
, bio
);
1746 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1747 } else if (q
->elevator
) {
1748 blk_mq_put_ctx(data
.ctx
);
1749 blk_mq_bio_to_request(rq
, bio
);
1750 blk_mq_sched_insert_request(rq
, false, true, true, true);
1752 blk_mq_put_ctx(data
.ctx
);
1753 blk_mq_bio_to_request(rq
, bio
);
1754 blk_mq_queue_io(data
.hctx
, data
.ctx
, rq
);
1755 blk_mq_run_hw_queue(data
.hctx
, true);
1761 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1762 unsigned int hctx_idx
)
1766 if (tags
->rqs
&& set
->ops
->exit_request
) {
1769 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1770 struct request
*rq
= tags
->static_rqs
[i
];
1774 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1775 tags
->static_rqs
[i
] = NULL
;
1779 while (!list_empty(&tags
->page_list
)) {
1780 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1781 list_del_init(&page
->lru
);
1783 * Remove kmemleak object previously allocated in
1784 * blk_mq_init_rq_map().
1786 kmemleak_free(page_address(page
));
1787 __free_pages(page
, page
->private);
1791 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1795 kfree(tags
->static_rqs
);
1796 tags
->static_rqs
= NULL
;
1798 blk_mq_free_tags(tags
);
1801 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1802 unsigned int hctx_idx
,
1803 unsigned int nr_tags
,
1804 unsigned int reserved_tags
)
1806 struct blk_mq_tags
*tags
;
1809 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1810 if (node
== NUMA_NO_NODE
)
1811 node
= set
->numa_node
;
1813 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1814 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1818 tags
->rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1819 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1822 blk_mq_free_tags(tags
);
1826 tags
->static_rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1827 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1829 if (!tags
->static_rqs
) {
1831 blk_mq_free_tags(tags
);
1838 static size_t order_to_size(unsigned int order
)
1840 return (size_t)PAGE_SIZE
<< order
;
1843 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1844 unsigned int hctx_idx
, unsigned int depth
)
1846 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1847 size_t rq_size
, left
;
1850 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1851 if (node
== NUMA_NO_NODE
)
1852 node
= set
->numa_node
;
1854 INIT_LIST_HEAD(&tags
->page_list
);
1857 * rq_size is the size of the request plus driver payload, rounded
1858 * to the cacheline size
1860 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1862 left
= rq_size
* depth
;
1864 for (i
= 0; i
< depth
; ) {
1865 int this_order
= max_order
;
1870 while (this_order
&& left
< order_to_size(this_order
- 1))
1874 page
= alloc_pages_node(node
,
1875 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1881 if (order_to_size(this_order
) < rq_size
)
1888 page
->private = this_order
;
1889 list_add_tail(&page
->lru
, &tags
->page_list
);
1891 p
= page_address(page
);
1893 * Allow kmemleak to scan these pages as they contain pointers
1894 * to additional allocations like via ops->init_request().
1896 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1897 entries_per_page
= order_to_size(this_order
) / rq_size
;
1898 to_do
= min(entries_per_page
, depth
- i
);
1899 left
-= to_do
* rq_size
;
1900 for (j
= 0; j
< to_do
; j
++) {
1901 struct request
*rq
= p
;
1903 tags
->static_rqs
[i
] = rq
;
1904 if (set
->ops
->init_request
) {
1905 if (set
->ops
->init_request(set
, rq
, hctx_idx
,
1907 tags
->static_rqs
[i
] = NULL
;
1919 blk_mq_free_rqs(set
, tags
, hctx_idx
);
1924 * 'cpu' is going away. splice any existing rq_list entries from this
1925 * software queue to the hw queue dispatch list, and ensure that it
1928 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
1930 struct blk_mq_hw_ctx
*hctx
;
1931 struct blk_mq_ctx
*ctx
;
1934 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
1935 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1937 spin_lock(&ctx
->lock
);
1938 if (!list_empty(&ctx
->rq_list
)) {
1939 list_splice_init(&ctx
->rq_list
, &tmp
);
1940 blk_mq_hctx_clear_pending(hctx
, ctx
);
1942 spin_unlock(&ctx
->lock
);
1944 if (list_empty(&tmp
))
1947 spin_lock(&hctx
->lock
);
1948 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1949 spin_unlock(&hctx
->lock
);
1951 blk_mq_run_hw_queue(hctx
, true);
1955 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
1957 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
1961 /* hctx->ctxs will be freed in queue's release handler */
1962 static void blk_mq_exit_hctx(struct request_queue
*q
,
1963 struct blk_mq_tag_set
*set
,
1964 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1966 blk_mq_debugfs_unregister_hctx(hctx
);
1968 if (blk_mq_hw_queue_mapped(hctx
))
1969 blk_mq_tag_idle(hctx
);
1971 if (set
->ops
->exit_request
)
1972 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
1974 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
1976 if (set
->ops
->exit_hctx
)
1977 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1979 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1980 cleanup_srcu_struct(hctx
->queue_rq_srcu
);
1982 blk_mq_remove_cpuhp(hctx
);
1983 blk_free_flush_queue(hctx
->fq
);
1984 sbitmap_free(&hctx
->ctx_map
);
1987 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1988 struct blk_mq_tag_set
*set
, int nr_queue
)
1990 struct blk_mq_hw_ctx
*hctx
;
1993 queue_for_each_hw_ctx(q
, hctx
, i
) {
1996 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2000 static int blk_mq_init_hctx(struct request_queue
*q
,
2001 struct blk_mq_tag_set
*set
,
2002 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2006 node
= hctx
->numa_node
;
2007 if (node
== NUMA_NO_NODE
)
2008 node
= hctx
->numa_node
= set
->numa_node
;
2010 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2011 spin_lock_init(&hctx
->lock
);
2012 INIT_LIST_HEAD(&hctx
->dispatch
);
2014 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2016 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2018 hctx
->tags
= set
->tags
[hctx_idx
];
2021 * Allocate space for all possible cpus to avoid allocation at
2024 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
2027 goto unregister_cpu_notifier
;
2029 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
2035 if (set
->ops
->init_hctx
&&
2036 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2039 if (blk_mq_sched_init_hctx(q
, hctx
, hctx_idx
))
2042 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
2044 goto sched_exit_hctx
;
2046 if (set
->ops
->init_request
&&
2047 set
->ops
->init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
2051 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2052 init_srcu_struct(hctx
->queue_rq_srcu
);
2054 blk_mq_debugfs_register_hctx(q
, hctx
);
2061 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
2063 if (set
->ops
->exit_hctx
)
2064 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2066 sbitmap_free(&hctx
->ctx_map
);
2069 unregister_cpu_notifier
:
2070 blk_mq_remove_cpuhp(hctx
);
2074 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2075 unsigned int nr_hw_queues
)
2079 for_each_possible_cpu(i
) {
2080 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2081 struct blk_mq_hw_ctx
*hctx
;
2084 spin_lock_init(&__ctx
->lock
);
2085 INIT_LIST_HEAD(&__ctx
->rq_list
);
2088 /* If the cpu isn't present, the cpu is mapped to first hctx */
2089 if (!cpu_present(i
))
2092 hctx
= blk_mq_map_queue(q
, i
);
2095 * Set local node, IFF we have more than one hw queue. If
2096 * not, we remain on the home node of the device
2098 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2099 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2103 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2107 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2108 set
->queue_depth
, set
->reserved_tags
);
2109 if (!set
->tags
[hctx_idx
])
2112 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2117 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2118 set
->tags
[hctx_idx
] = NULL
;
2122 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2123 unsigned int hctx_idx
)
2125 if (set
->tags
[hctx_idx
]) {
2126 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2127 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2128 set
->tags
[hctx_idx
] = NULL
;
2132 static void blk_mq_map_swqueue(struct request_queue
*q
)
2134 unsigned int i
, hctx_idx
;
2135 struct blk_mq_hw_ctx
*hctx
;
2136 struct blk_mq_ctx
*ctx
;
2137 struct blk_mq_tag_set
*set
= q
->tag_set
;
2140 * Avoid others reading imcomplete hctx->cpumask through sysfs
2142 mutex_lock(&q
->sysfs_lock
);
2144 queue_for_each_hw_ctx(q
, hctx
, i
) {
2145 cpumask_clear(hctx
->cpumask
);
2150 * Map software to hardware queues.
2152 * If the cpu isn't present, the cpu is mapped to first hctx.
2154 for_each_present_cpu(i
) {
2155 hctx_idx
= q
->mq_map
[i
];
2156 /* unmapped hw queue can be remapped after CPU topo changed */
2157 if (!set
->tags
[hctx_idx
] &&
2158 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2160 * If tags initialization fail for some hctx,
2161 * that hctx won't be brought online. In this
2162 * case, remap the current ctx to hctx[0] which
2163 * is guaranteed to always have tags allocated
2168 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2169 hctx
= blk_mq_map_queue(q
, i
);
2171 cpumask_set_cpu(i
, hctx
->cpumask
);
2172 ctx
->index_hw
= hctx
->nr_ctx
;
2173 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2176 mutex_unlock(&q
->sysfs_lock
);
2178 queue_for_each_hw_ctx(q
, hctx
, i
) {
2180 * If no software queues are mapped to this hardware queue,
2181 * disable it and free the request entries.
2183 if (!hctx
->nr_ctx
) {
2184 /* Never unmap queue 0. We need it as a
2185 * fallback in case of a new remap fails
2188 if (i
&& set
->tags
[i
])
2189 blk_mq_free_map_and_requests(set
, i
);
2195 hctx
->tags
= set
->tags
[i
];
2196 WARN_ON(!hctx
->tags
);
2199 * Set the map size to the number of mapped software queues.
2200 * This is more accurate and more efficient than looping
2201 * over all possibly mapped software queues.
2203 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2206 * Initialize batch roundrobin counts
2208 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
2209 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2214 * Caller needs to ensure that we're either frozen/quiesced, or that
2215 * the queue isn't live yet.
2217 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2219 struct blk_mq_hw_ctx
*hctx
;
2222 queue_for_each_hw_ctx(q
, hctx
, i
) {
2224 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2225 atomic_inc(&q
->shared_hctx_restart
);
2226 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2228 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2229 atomic_dec(&q
->shared_hctx_restart
);
2230 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2235 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2238 struct request_queue
*q
;
2240 lockdep_assert_held(&set
->tag_list_lock
);
2242 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2243 blk_mq_freeze_queue(q
);
2244 queue_set_hctx_shared(q
, shared
);
2245 blk_mq_unfreeze_queue(q
);
2249 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2251 struct blk_mq_tag_set
*set
= q
->tag_set
;
2253 mutex_lock(&set
->tag_list_lock
);
2254 list_del_rcu(&q
->tag_set_list
);
2255 if (list_is_singular(&set
->tag_list
)) {
2256 /* just transitioned to unshared */
2257 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2258 /* update existing queue */
2259 blk_mq_update_tag_set_depth(set
, false);
2261 mutex_unlock(&set
->tag_list_lock
);
2263 INIT_LIST_HEAD(&q
->tag_set_list
);
2266 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2267 struct request_queue
*q
)
2271 mutex_lock(&set
->tag_list_lock
);
2273 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2274 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2275 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2276 /* update existing queue */
2277 blk_mq_update_tag_set_depth(set
, true);
2279 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2280 queue_set_hctx_shared(q
, true);
2281 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2283 mutex_unlock(&set
->tag_list_lock
);
2287 * It is the actual release handler for mq, but we do it from
2288 * request queue's release handler for avoiding use-after-free
2289 * and headache because q->mq_kobj shouldn't have been introduced,
2290 * but we can't group ctx/kctx kobj without it.
2292 void blk_mq_release(struct request_queue
*q
)
2294 struct blk_mq_hw_ctx
*hctx
;
2297 /* hctx kobj stays in hctx */
2298 queue_for_each_hw_ctx(q
, hctx
, i
) {
2301 kobject_put(&hctx
->kobj
);
2306 kfree(q
->queue_hw_ctx
);
2309 * release .mq_kobj and sw queue's kobject now because
2310 * both share lifetime with request queue.
2312 blk_mq_sysfs_deinit(q
);
2314 free_percpu(q
->queue_ctx
);
2317 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2319 struct request_queue
*uninit_q
, *q
;
2321 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2323 return ERR_PTR(-ENOMEM
);
2325 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2327 blk_cleanup_queue(uninit_q
);
2331 EXPORT_SYMBOL(blk_mq_init_queue
);
2333 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2335 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2337 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, queue_rq_srcu
),
2338 __alignof__(struct blk_mq_hw_ctx
)) !=
2339 sizeof(struct blk_mq_hw_ctx
));
2341 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2342 hw_ctx_size
+= sizeof(struct srcu_struct
);
2347 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2348 struct request_queue
*q
)
2351 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2353 blk_mq_sysfs_unregister(q
);
2355 /* protect against switching io scheduler */
2356 mutex_lock(&q
->sysfs_lock
);
2357 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2363 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2364 hctxs
[i
] = kzalloc_node(blk_mq_hw_ctx_size(set
),
2369 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2376 atomic_set(&hctxs
[i
]->nr_active
, 0);
2377 hctxs
[i
]->numa_node
= node
;
2378 hctxs
[i
]->queue_num
= i
;
2380 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2381 free_cpumask_var(hctxs
[i
]->cpumask
);
2386 blk_mq_hctx_kobj_init(hctxs
[i
]);
2388 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2389 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2393 blk_mq_free_map_and_requests(set
, j
);
2394 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2395 kobject_put(&hctx
->kobj
);
2400 q
->nr_hw_queues
= i
;
2401 mutex_unlock(&q
->sysfs_lock
);
2402 blk_mq_sysfs_register(q
);
2405 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2406 struct request_queue
*q
)
2408 /* mark the queue as mq asap */
2409 q
->mq_ops
= set
->ops
;
2411 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2412 blk_mq_poll_stats_bkt
,
2413 BLK_MQ_POLL_STATS_BKTS
, q
);
2417 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2421 /* init q->mq_kobj and sw queues' kobjects */
2422 blk_mq_sysfs_init(q
);
2424 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2425 GFP_KERNEL
, set
->numa_node
);
2426 if (!q
->queue_hw_ctx
)
2429 q
->mq_map
= set
->mq_map
;
2431 blk_mq_realloc_hw_ctxs(set
, q
);
2432 if (!q
->nr_hw_queues
)
2435 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2436 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2438 q
->nr_queues
= nr_cpu_ids
;
2440 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2442 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2443 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2445 q
->sg_reserved_size
= INT_MAX
;
2447 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2448 INIT_LIST_HEAD(&q
->requeue_list
);
2449 spin_lock_init(&q
->requeue_lock
);
2451 blk_queue_make_request(q
, blk_mq_make_request
);
2454 * Do this after blk_queue_make_request() overrides it...
2456 q
->nr_requests
= set
->queue_depth
;
2459 * Default to classic polling
2463 if (set
->ops
->complete
)
2464 blk_queue_softirq_done(q
, set
->ops
->complete
);
2466 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2467 blk_mq_add_queue_tag_set(set
, q
);
2468 blk_mq_map_swqueue(q
);
2470 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2473 ret
= blk_mq_sched_init(q
);
2475 return ERR_PTR(ret
);
2481 kfree(q
->queue_hw_ctx
);
2483 free_percpu(q
->queue_ctx
);
2486 return ERR_PTR(-ENOMEM
);
2488 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2490 void blk_mq_free_queue(struct request_queue
*q
)
2492 struct blk_mq_tag_set
*set
= q
->tag_set
;
2494 blk_mq_del_queue_tag_set(q
);
2495 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2498 /* Basically redo blk_mq_init_queue with queue frozen */
2499 static void blk_mq_queue_reinit(struct request_queue
*q
)
2501 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2503 blk_mq_debugfs_unregister_hctxs(q
);
2504 blk_mq_sysfs_unregister(q
);
2507 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2508 * we should change hctx numa_node according to new topology (this
2509 * involves free and re-allocate memory, worthy doing?)
2512 blk_mq_map_swqueue(q
);
2514 blk_mq_sysfs_register(q
);
2515 blk_mq_debugfs_register_hctxs(q
);
2518 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2522 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2523 if (!__blk_mq_alloc_rq_map(set
, i
))
2530 blk_mq_free_rq_map(set
->tags
[i
]);
2536 * Allocate the request maps associated with this tag_set. Note that this
2537 * may reduce the depth asked for, if memory is tight. set->queue_depth
2538 * will be updated to reflect the allocated depth.
2540 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2545 depth
= set
->queue_depth
;
2547 err
= __blk_mq_alloc_rq_maps(set
);
2551 set
->queue_depth
>>= 1;
2552 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2556 } while (set
->queue_depth
);
2558 if (!set
->queue_depth
|| err
) {
2559 pr_err("blk-mq: failed to allocate request map\n");
2563 if (depth
!= set
->queue_depth
)
2564 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2565 depth
, set
->queue_depth
);
2570 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2572 if (set
->ops
->map_queues
) {
2575 * transport .map_queues is usually done in the following
2578 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2579 * mask = get_cpu_mask(queue)
2580 * for_each_cpu(cpu, mask)
2581 * set->mq_map[cpu] = queue;
2584 * When we need to remap, the table has to be cleared for
2585 * killing stale mapping since one CPU may not be mapped
2588 for_each_possible_cpu(cpu
)
2589 set
->mq_map
[cpu
] = 0;
2591 return set
->ops
->map_queues(set
);
2593 return blk_mq_map_queues(set
);
2597 * Alloc a tag set to be associated with one or more request queues.
2598 * May fail with EINVAL for various error conditions. May adjust the
2599 * requested depth down, if if it too large. In that case, the set
2600 * value will be stored in set->queue_depth.
2602 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2606 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2608 if (!set
->nr_hw_queues
)
2610 if (!set
->queue_depth
)
2612 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2615 if (!set
->ops
->queue_rq
)
2618 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2619 pr_info("blk-mq: reduced tag depth to %u\n",
2621 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2625 * If a crashdump is active, then we are potentially in a very
2626 * memory constrained environment. Limit us to 1 queue and
2627 * 64 tags to prevent using too much memory.
2629 if (is_kdump_kernel()) {
2630 set
->nr_hw_queues
= 1;
2631 set
->queue_depth
= min(64U, set
->queue_depth
);
2634 * There is no use for more h/w queues than cpus.
2636 if (set
->nr_hw_queues
> nr_cpu_ids
)
2637 set
->nr_hw_queues
= nr_cpu_ids
;
2639 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2640 GFP_KERNEL
, set
->numa_node
);
2645 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2646 GFP_KERNEL
, set
->numa_node
);
2650 ret
= blk_mq_update_queue_map(set
);
2652 goto out_free_mq_map
;
2654 ret
= blk_mq_alloc_rq_maps(set
);
2656 goto out_free_mq_map
;
2658 mutex_init(&set
->tag_list_lock
);
2659 INIT_LIST_HEAD(&set
->tag_list
);
2671 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2673 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2677 for (i
= 0; i
< nr_cpu_ids
; i
++)
2678 blk_mq_free_map_and_requests(set
, i
);
2686 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2688 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2690 struct blk_mq_tag_set
*set
= q
->tag_set
;
2691 struct blk_mq_hw_ctx
*hctx
;
2697 blk_mq_freeze_queue(q
);
2700 queue_for_each_hw_ctx(q
, hctx
, i
) {
2704 * If we're using an MQ scheduler, just update the scheduler
2705 * queue depth. This is similar to what the old code would do.
2707 if (!hctx
->sched_tags
) {
2708 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
,
2709 min(nr
, set
->queue_depth
),
2712 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2720 q
->nr_requests
= nr
;
2722 blk_mq_unfreeze_queue(q
);
2727 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2730 struct request_queue
*q
;
2732 lockdep_assert_held(&set
->tag_list_lock
);
2734 if (nr_hw_queues
> nr_cpu_ids
)
2735 nr_hw_queues
= nr_cpu_ids
;
2736 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2739 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2740 blk_mq_freeze_queue(q
);
2742 * Sync with blk_mq_queue_tag_busy_iter.
2746 set
->nr_hw_queues
= nr_hw_queues
;
2747 blk_mq_update_queue_map(set
);
2748 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2749 blk_mq_realloc_hw_ctxs(set
, q
);
2750 blk_mq_queue_reinit(q
);
2753 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2754 blk_mq_unfreeze_queue(q
);
2757 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2759 mutex_lock(&set
->tag_list_lock
);
2760 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
2761 mutex_unlock(&set
->tag_list_lock
);
2763 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2765 /* Enable polling stats and return whether they were already enabled. */
2766 static bool blk_poll_stats_enable(struct request_queue
*q
)
2768 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2769 test_and_set_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
))
2771 blk_stat_add_callback(q
, q
->poll_cb
);
2775 static void blk_mq_poll_stats_start(struct request_queue
*q
)
2778 * We don't arm the callback if polling stats are not enabled or the
2779 * callback is already active.
2781 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2782 blk_stat_is_active(q
->poll_cb
))
2785 blk_stat_activate_msecs(q
->poll_cb
, 100);
2788 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
2790 struct request_queue
*q
= cb
->data
;
2793 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
2794 if (cb
->stat
[bucket
].nr_samples
)
2795 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
2799 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
2800 struct blk_mq_hw_ctx
*hctx
,
2803 unsigned long ret
= 0;
2807 * If stats collection isn't on, don't sleep but turn it on for
2810 if (!blk_poll_stats_enable(q
))
2814 * As an optimistic guess, use half of the mean service time
2815 * for this type of request. We can (and should) make this smarter.
2816 * For instance, if the completion latencies are tight, we can
2817 * get closer than just half the mean. This is especially
2818 * important on devices where the completion latencies are longer
2819 * than ~10 usec. We do use the stats for the relevant IO size
2820 * if available which does lead to better estimates.
2822 bucket
= blk_mq_poll_stats_bkt(rq
);
2826 if (q
->poll_stat
[bucket
].nr_samples
)
2827 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
2832 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
2833 struct blk_mq_hw_ctx
*hctx
,
2836 struct hrtimer_sleeper hs
;
2837 enum hrtimer_mode mode
;
2841 if (test_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
))
2847 * -1: don't ever hybrid sleep
2848 * 0: use half of prev avg
2849 * >0: use this specific value
2851 if (q
->poll_nsec
== -1)
2853 else if (q
->poll_nsec
> 0)
2854 nsecs
= q
->poll_nsec
;
2856 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
2861 set_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
2864 * This will be replaced with the stats tracking code, using
2865 * 'avg_completion_time / 2' as the pre-sleep target.
2869 mode
= HRTIMER_MODE_REL
;
2870 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
2871 hrtimer_set_expires(&hs
.timer
, kt
);
2873 hrtimer_init_sleeper(&hs
, current
);
2875 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
2877 set_current_state(TASK_UNINTERRUPTIBLE
);
2878 hrtimer_start_expires(&hs
.timer
, mode
);
2881 hrtimer_cancel(&hs
.timer
);
2882 mode
= HRTIMER_MODE_ABS
;
2883 } while (hs
.task
&& !signal_pending(current
));
2885 __set_current_state(TASK_RUNNING
);
2886 destroy_hrtimer_on_stack(&hs
.timer
);
2890 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
2892 struct request_queue
*q
= hctx
->queue
;
2896 * If we sleep, have the caller restart the poll loop to reset
2897 * the state. Like for the other success return cases, the
2898 * caller is responsible for checking if the IO completed. If
2899 * the IO isn't complete, we'll get called again and will go
2900 * straight to the busy poll loop.
2902 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
2905 hctx
->poll_considered
++;
2907 state
= current
->state
;
2908 while (!need_resched()) {
2911 hctx
->poll_invoked
++;
2913 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
2915 hctx
->poll_success
++;
2916 set_current_state(TASK_RUNNING
);
2920 if (signal_pending_state(state
, current
))
2921 set_current_state(TASK_RUNNING
);
2923 if (current
->state
== TASK_RUNNING
)
2933 bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
2935 struct blk_mq_hw_ctx
*hctx
;
2936 struct blk_plug
*plug
;
2939 if (!q
->mq_ops
|| !q
->mq_ops
->poll
|| !blk_qc_t_valid(cookie
) ||
2940 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
2943 plug
= current
->plug
;
2945 blk_flush_plug_list(plug
, false);
2947 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
2948 if (!blk_qc_t_is_internal(cookie
))
2949 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
2951 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
2953 * With scheduling, if the request has completed, we'll
2954 * get a NULL return here, as we clear the sched tag when
2955 * that happens. The request still remains valid, like always,
2956 * so we should be safe with just the NULL check.
2962 return __blk_mq_poll(hctx
, rq
);
2964 EXPORT_SYMBOL_GPL(blk_mq_poll
);
2966 static int __init
blk_mq_init(void)
2968 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
2969 blk_mq_hctx_notify_dead
);
2972 subsys_initcall(blk_mq_init
);