mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / block / kyber-iosched.c
blob09cd5cf2e459f6bc10e7118422944703d6b45571
1 /*
2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
3 * scalable techniques.
5 * Copyright (C) 2017 Facebook
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public
9 * License v2 as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
32 #include "blk-stat.h"
34 /* Scheduling domains. */
35 enum {
36 KYBER_READ,
37 KYBER_SYNC_WRITE,
38 KYBER_OTHER, /* Async writes, discard, etc. */
39 KYBER_NUM_DOMAINS,
42 enum {
43 KYBER_MIN_DEPTH = 256,
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
48 * operations.
50 KYBER_ASYNC_PERCENT = 75,
54 * Initial device-wide depths for each scheduling domain.
56 * Even for fast devices with lots of tags like NVMe, you can saturate
57 * the device with only a fraction of the maximum possible queue depth.
58 * So, we cap these to a reasonable value.
60 static const unsigned int kyber_depth[] = {
61 [KYBER_READ] = 256,
62 [KYBER_SYNC_WRITE] = 128,
63 [KYBER_OTHER] = 64,
67 * Scheduling domain batch sizes. We favor reads.
69 static const unsigned int kyber_batch_size[] = {
70 [KYBER_READ] = 16,
71 [KYBER_SYNC_WRITE] = 8,
72 [KYBER_OTHER] = 8,
75 struct kyber_queue_data {
76 struct request_queue *q;
78 struct blk_stat_callback *cb;
81 * The device is divided into multiple scheduling domains based on the
82 * request type. Each domain has a fixed number of in-flight requests of
83 * that type device-wide, limited by these tokens.
85 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
88 * Async request percentage, converted to per-word depth for
89 * sbitmap_get_shallow().
91 unsigned int async_depth;
93 /* Target latencies in nanoseconds. */
94 u64 read_lat_nsec, write_lat_nsec;
97 struct kyber_hctx_data {
98 spinlock_t lock;
99 struct list_head rqs[KYBER_NUM_DOMAINS];
100 unsigned int cur_domain;
101 unsigned int batching;
102 wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS];
103 atomic_t wait_index[KYBER_NUM_DOMAINS];
106 static int rq_sched_domain(const struct request *rq)
108 unsigned int op = rq->cmd_flags;
110 if ((op & REQ_OP_MASK) == REQ_OP_READ)
111 return KYBER_READ;
112 else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
113 return KYBER_SYNC_WRITE;
114 else
115 return KYBER_OTHER;
118 enum {
119 NONE = 0,
120 GOOD = 1,
121 GREAT = 2,
122 BAD = -1,
123 AWFUL = -2,
126 #define IS_GOOD(status) ((status) > 0)
127 #define IS_BAD(status) ((status) < 0)
129 static int kyber_lat_status(struct blk_stat_callback *cb,
130 unsigned int sched_domain, u64 target)
132 u64 latency;
134 if (!cb->stat[sched_domain].nr_samples)
135 return NONE;
137 latency = cb->stat[sched_domain].mean;
138 if (latency >= 2 * target)
139 return AWFUL;
140 else if (latency > target)
141 return BAD;
142 else if (latency <= target / 2)
143 return GREAT;
144 else /* (latency <= target) */
145 return GOOD;
149 * Adjust the read or synchronous write depth given the status of reads and
150 * writes. The goal is that the latencies of the two domains are fair (i.e., if
151 * one is good, then the other is good).
153 static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
154 unsigned int sched_domain, int this_status,
155 int other_status)
157 unsigned int orig_depth, depth;
160 * If this domain had no samples, or reads and writes are both good or
161 * both bad, don't adjust the depth.
163 if (this_status == NONE ||
164 (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
165 (IS_BAD(this_status) && IS_BAD(other_status)))
166 return;
168 orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
170 if (other_status == NONE) {
171 depth++;
172 } else {
173 switch (this_status) {
174 case GOOD:
175 if (other_status == AWFUL)
176 depth -= max(depth / 4, 1U);
177 else
178 depth -= max(depth / 8, 1U);
179 break;
180 case GREAT:
181 if (other_status == AWFUL)
182 depth /= 2;
183 else
184 depth -= max(depth / 4, 1U);
185 break;
186 case BAD:
187 depth++;
188 break;
189 case AWFUL:
190 if (other_status == GREAT)
191 depth += 2;
192 else
193 depth++;
194 break;
198 depth = clamp(depth, 1U, kyber_depth[sched_domain]);
199 if (depth != orig_depth)
200 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
204 * Adjust the depth of other requests given the status of reads and synchronous
205 * writes. As long as either domain is doing fine, we don't throttle, but if
206 * both domains are doing badly, we throttle heavily.
208 static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
209 int read_status, int write_status,
210 bool have_samples)
212 unsigned int orig_depth, depth;
213 int status;
215 orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
217 if (read_status == NONE && write_status == NONE) {
218 depth += 2;
219 } else if (have_samples) {
220 if (read_status == NONE)
221 status = write_status;
222 else if (write_status == NONE)
223 status = read_status;
224 else
225 status = max(read_status, write_status);
226 switch (status) {
227 case GREAT:
228 depth += 2;
229 break;
230 case GOOD:
231 depth++;
232 break;
233 case BAD:
234 depth -= max(depth / 4, 1U);
235 break;
236 case AWFUL:
237 depth /= 2;
238 break;
242 depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
243 if (depth != orig_depth)
244 sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
248 * Apply heuristics for limiting queue depths based on gathered latency
249 * statistics.
251 static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
253 struct kyber_queue_data *kqd = cb->data;
254 int read_status, write_status;
256 read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
257 write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
259 kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
260 kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
261 kyber_adjust_other_depth(kqd, read_status, write_status,
262 cb->stat[KYBER_OTHER].nr_samples != 0);
265 * Continue monitoring latencies if we aren't hitting the targets or
266 * we're still throttling other requests.
268 if (!blk_stat_is_active(kqd->cb) &&
269 ((IS_BAD(read_status) || IS_BAD(write_status) ||
270 kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
271 blk_stat_activate_msecs(kqd->cb, 100);
274 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
277 * All of the hardware queues have the same depth, so we can just grab
278 * the shift of the first one.
280 return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
283 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
285 struct kyber_queue_data *kqd;
286 unsigned int max_tokens;
287 unsigned int shift;
288 int ret = -ENOMEM;
289 int i;
291 kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
292 if (!kqd)
293 goto err;
294 kqd->q = q;
296 kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
297 KYBER_NUM_DOMAINS, kqd);
298 if (!kqd->cb)
299 goto err_kqd;
302 * The maximum number of tokens for any scheduling domain is at least
303 * the queue depth of a single hardware queue. If the hardware doesn't
304 * have many tags, still provide a reasonable number.
306 max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
307 KYBER_MIN_DEPTH);
308 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
309 WARN_ON(!kyber_depth[i]);
310 WARN_ON(!kyber_batch_size[i]);
311 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
312 max_tokens, -1, false, GFP_KERNEL,
313 q->node);
314 if (ret) {
315 while (--i >= 0)
316 sbitmap_queue_free(&kqd->domain_tokens[i]);
317 goto err_cb;
319 sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
322 shift = kyber_sched_tags_shift(kqd);
323 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
325 kqd->read_lat_nsec = 2000000ULL;
326 kqd->write_lat_nsec = 10000000ULL;
328 return kqd;
330 err_cb:
331 blk_stat_free_callback(kqd->cb);
332 err_kqd:
333 kfree(kqd);
334 err:
335 return ERR_PTR(ret);
338 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
340 struct kyber_queue_data *kqd;
341 struct elevator_queue *eq;
343 eq = elevator_alloc(q, e);
344 if (!eq)
345 return -ENOMEM;
347 kqd = kyber_queue_data_alloc(q);
348 if (IS_ERR(kqd)) {
349 kobject_put(&eq->kobj);
350 return PTR_ERR(kqd);
353 eq->elevator_data = kqd;
354 q->elevator = eq;
356 blk_stat_add_callback(q, kqd->cb);
358 return 0;
361 static void kyber_exit_sched(struct elevator_queue *e)
363 struct kyber_queue_data *kqd = e->elevator_data;
364 struct request_queue *q = kqd->q;
365 int i;
367 blk_stat_remove_callback(q, kqd->cb);
369 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
370 sbitmap_queue_free(&kqd->domain_tokens[i]);
371 blk_stat_free_callback(kqd->cb);
372 kfree(kqd);
375 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
377 struct kyber_hctx_data *khd;
378 int i;
380 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
381 if (!khd)
382 return -ENOMEM;
384 spin_lock_init(&khd->lock);
386 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
387 INIT_LIST_HEAD(&khd->rqs[i]);
388 INIT_LIST_HEAD(&khd->domain_wait[i].entry);
389 atomic_set(&khd->wait_index[i], 0);
392 khd->cur_domain = 0;
393 khd->batching = 0;
395 hctx->sched_data = khd;
397 return 0;
400 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
402 kfree(hctx->sched_data);
405 static int rq_get_domain_token(struct request *rq)
407 return (long)rq->elv.priv[0];
410 static void rq_set_domain_token(struct request *rq, int token)
412 rq->elv.priv[0] = (void *)(long)token;
415 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
416 struct request *rq)
418 unsigned int sched_domain;
419 int nr;
421 nr = rq_get_domain_token(rq);
422 if (nr != -1) {
423 sched_domain = rq_sched_domain(rq);
424 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
425 rq->mq_ctx->cpu);
429 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
432 * We use the scheduler tags as per-hardware queue queueing tokens.
433 * Async requests can be limited at this stage.
435 if (!op_is_sync(op)) {
436 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
438 data->shallow_depth = kqd->async_depth;
442 static void kyber_prepare_request(struct request *rq, struct bio *bio)
444 rq_set_domain_token(rq, -1);
447 static void kyber_finish_request(struct request *rq)
449 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
451 rq_clear_domain_token(kqd, rq);
454 static void kyber_completed_request(struct request *rq)
456 struct request_queue *q = rq->q;
457 struct kyber_queue_data *kqd = q->elevator->elevator_data;
458 unsigned int sched_domain;
459 u64 now, latency, target;
462 * Check if this request met our latency goal. If not, quickly gather
463 * some statistics and start throttling.
465 sched_domain = rq_sched_domain(rq);
466 switch (sched_domain) {
467 case KYBER_READ:
468 target = kqd->read_lat_nsec;
469 break;
470 case KYBER_SYNC_WRITE:
471 target = kqd->write_lat_nsec;
472 break;
473 default:
474 return;
477 /* If we are already monitoring latencies, don't check again. */
478 if (blk_stat_is_active(kqd->cb))
479 return;
481 now = __blk_stat_time(ktime_to_ns(ktime_get()));
482 if (now < blk_stat_time(&rq->issue_stat))
483 return;
485 latency = now - blk_stat_time(&rq->issue_stat);
487 if (latency > target)
488 blk_stat_activate_msecs(kqd->cb, 10);
491 static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
492 struct blk_mq_hw_ctx *hctx)
494 LIST_HEAD(rq_list);
495 struct request *rq, *next;
497 blk_mq_flush_busy_ctxs(hctx, &rq_list);
498 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
499 unsigned int sched_domain;
501 sched_domain = rq_sched_domain(rq);
502 list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
506 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
507 void *key)
509 struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
511 list_del_init(&wait->entry);
512 blk_mq_run_hw_queue(hctx, true);
513 return 1;
516 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
517 struct kyber_hctx_data *khd,
518 struct blk_mq_hw_ctx *hctx)
520 unsigned int sched_domain = khd->cur_domain;
521 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
522 wait_queue_entry_t *wait = &khd->domain_wait[sched_domain];
523 struct sbq_wait_state *ws;
524 int nr;
526 nr = __sbitmap_queue_get(domain_tokens);
527 if (nr >= 0)
528 return nr;
531 * If we failed to get a domain token, make sure the hardware queue is
532 * run when one becomes available. Note that this is serialized on
533 * khd->lock, but we still need to be careful about the waker.
535 if (list_empty_careful(&wait->entry)) {
536 init_waitqueue_func_entry(wait, kyber_domain_wake);
537 wait->private = hctx;
538 ws = sbq_wait_ptr(domain_tokens,
539 &khd->wait_index[sched_domain]);
540 add_wait_queue(&ws->wait, wait);
543 * Try again in case a token was freed before we got on the wait
544 * queue.
546 nr = __sbitmap_queue_get(domain_tokens);
548 return nr;
551 static struct request *
552 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
553 struct kyber_hctx_data *khd,
554 struct blk_mq_hw_ctx *hctx,
555 bool *flushed)
557 struct list_head *rqs;
558 struct request *rq;
559 int nr;
561 rqs = &khd->rqs[khd->cur_domain];
562 rq = list_first_entry_or_null(rqs, struct request, queuelist);
565 * If there wasn't already a pending request and we haven't flushed the
566 * software queues yet, flush the software queues and check again.
568 if (!rq && !*flushed) {
569 kyber_flush_busy_ctxs(khd, hctx);
570 *flushed = true;
571 rq = list_first_entry_or_null(rqs, struct request, queuelist);
574 if (rq) {
575 nr = kyber_get_domain_token(kqd, khd, hctx);
576 if (nr >= 0) {
577 khd->batching++;
578 rq_set_domain_token(rq, nr);
579 list_del_init(&rq->queuelist);
580 return rq;
584 /* There were either no pending requests or no tokens. */
585 return NULL;
588 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
590 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
591 struct kyber_hctx_data *khd = hctx->sched_data;
592 bool flushed = false;
593 struct request *rq;
594 int i;
596 spin_lock(&khd->lock);
599 * First, if we are still entitled to batch, try to dispatch a request
600 * from the batch.
602 if (khd->batching < kyber_batch_size[khd->cur_domain]) {
603 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
604 if (rq)
605 goto out;
609 * Either,
610 * 1. We were no longer entitled to a batch.
611 * 2. The domain we were batching didn't have any requests.
612 * 3. The domain we were batching was out of tokens.
614 * Start another batch. Note that this wraps back around to the original
615 * domain if no other domains have requests or tokens.
617 khd->batching = 0;
618 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
619 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
620 khd->cur_domain = 0;
621 else
622 khd->cur_domain++;
624 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
625 if (rq)
626 goto out;
629 rq = NULL;
630 out:
631 spin_unlock(&khd->lock);
632 return rq;
635 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
637 struct kyber_hctx_data *khd = hctx->sched_data;
638 int i;
640 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
641 if (!list_empty_careful(&khd->rqs[i]))
642 return true;
644 return false;
647 #define KYBER_LAT_SHOW_STORE(op) \
648 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e, \
649 char *page) \
651 struct kyber_queue_data *kqd = e->elevator_data; \
653 return sprintf(page, "%llu\n", kqd->op##_lat_nsec); \
656 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e, \
657 const char *page, size_t count) \
659 struct kyber_queue_data *kqd = e->elevator_data; \
660 unsigned long long nsec; \
661 int ret; \
663 ret = kstrtoull(page, 10, &nsec); \
664 if (ret) \
665 return ret; \
667 kqd->op##_lat_nsec = nsec; \
669 return count; \
671 KYBER_LAT_SHOW_STORE(read);
672 KYBER_LAT_SHOW_STORE(write);
673 #undef KYBER_LAT_SHOW_STORE
675 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
676 static struct elv_fs_entry kyber_sched_attrs[] = {
677 KYBER_LAT_ATTR(read),
678 KYBER_LAT_ATTR(write),
679 __ATTR_NULL
681 #undef KYBER_LAT_ATTR
683 #ifdef CONFIG_BLK_DEBUG_FS
684 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
685 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
687 struct request_queue *q = data; \
688 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
690 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
691 return 0; \
694 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
695 __acquires(&khd->lock) \
697 struct blk_mq_hw_ctx *hctx = m->private; \
698 struct kyber_hctx_data *khd = hctx->sched_data; \
700 spin_lock(&khd->lock); \
701 return seq_list_start(&khd->rqs[domain], *pos); \
704 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
705 loff_t *pos) \
707 struct blk_mq_hw_ctx *hctx = m->private; \
708 struct kyber_hctx_data *khd = hctx->sched_data; \
710 return seq_list_next(v, &khd->rqs[domain], pos); \
713 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
714 __releases(&khd->lock) \
716 struct blk_mq_hw_ctx *hctx = m->private; \
717 struct kyber_hctx_data *khd = hctx->sched_data; \
719 spin_unlock(&khd->lock); \
722 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
723 .start = kyber_##name##_rqs_start, \
724 .next = kyber_##name##_rqs_next, \
725 .stop = kyber_##name##_rqs_stop, \
726 .show = blk_mq_debugfs_rq_show, \
727 }; \
729 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
731 struct blk_mq_hw_ctx *hctx = data; \
732 struct kyber_hctx_data *khd = hctx->sched_data; \
733 wait_queue_entry_t *wait = &khd->domain_wait[domain]; \
735 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
736 return 0; \
738 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
739 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
740 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
741 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
743 static int kyber_async_depth_show(void *data, struct seq_file *m)
745 struct request_queue *q = data;
746 struct kyber_queue_data *kqd = q->elevator->elevator_data;
748 seq_printf(m, "%u\n", kqd->async_depth);
749 return 0;
752 static int kyber_cur_domain_show(void *data, struct seq_file *m)
754 struct blk_mq_hw_ctx *hctx = data;
755 struct kyber_hctx_data *khd = hctx->sched_data;
757 switch (khd->cur_domain) {
758 case KYBER_READ:
759 seq_puts(m, "READ\n");
760 break;
761 case KYBER_SYNC_WRITE:
762 seq_puts(m, "SYNC_WRITE\n");
763 break;
764 case KYBER_OTHER:
765 seq_puts(m, "OTHER\n");
766 break;
767 default:
768 seq_printf(m, "%u\n", khd->cur_domain);
769 break;
771 return 0;
774 static int kyber_batching_show(void *data, struct seq_file *m)
776 struct blk_mq_hw_ctx *hctx = data;
777 struct kyber_hctx_data *khd = hctx->sched_data;
779 seq_printf(m, "%u\n", khd->batching);
780 return 0;
783 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \
784 {#name "_tokens", 0400, kyber_##name##_tokens_show}
785 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
786 KYBER_QUEUE_DOMAIN_ATTRS(read),
787 KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
788 KYBER_QUEUE_DOMAIN_ATTRS(other),
789 {"async_depth", 0400, kyber_async_depth_show},
792 #undef KYBER_QUEUE_DOMAIN_ATTRS
794 #define KYBER_HCTX_DOMAIN_ATTRS(name) \
795 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
796 {#name "_waiting", 0400, kyber_##name##_waiting_show}
797 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
798 KYBER_HCTX_DOMAIN_ATTRS(read),
799 KYBER_HCTX_DOMAIN_ATTRS(sync_write),
800 KYBER_HCTX_DOMAIN_ATTRS(other),
801 {"cur_domain", 0400, kyber_cur_domain_show},
802 {"batching", 0400, kyber_batching_show},
805 #undef KYBER_HCTX_DOMAIN_ATTRS
806 #endif
808 static struct elevator_type kyber_sched = {
809 .ops.mq = {
810 .init_sched = kyber_init_sched,
811 .exit_sched = kyber_exit_sched,
812 .init_hctx = kyber_init_hctx,
813 .exit_hctx = kyber_exit_hctx,
814 .limit_depth = kyber_limit_depth,
815 .prepare_request = kyber_prepare_request,
816 .finish_request = kyber_finish_request,
817 .requeue_request = kyber_finish_request,
818 .completed_request = kyber_completed_request,
819 .dispatch_request = kyber_dispatch_request,
820 .has_work = kyber_has_work,
822 .uses_mq = true,
823 #ifdef CONFIG_BLK_DEBUG_FS
824 .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
825 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
826 #endif
827 .elevator_attrs = kyber_sched_attrs,
828 .elevator_name = "kyber",
829 .elevator_owner = THIS_MODULE,
832 static int __init kyber_init(void)
834 return elv_register(&kyber_sched);
837 static void __exit kyber_exit(void)
839 elv_unregister(&kyber_sched);
842 module_init(kyber_init);
843 module_exit(kyber_exit);
845 MODULE_AUTHOR("Omar Sandoval");
846 MODULE_LICENSE("GPL");
847 MODULE_DESCRIPTION("Kyber I/O scheduler");