mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / fs / btrfs / backref.c
blob1cf75d1032e1750a09affc17aa791597dc66bbb9
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/mm.h>
20 #include <linux/rbtree.h>
21 #include <trace/events/btrfs.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "backref.h"
25 #include "ulist.h"
26 #include "transaction.h"
27 #include "delayed-ref.h"
28 #include "locking.h"
30 /* Just an arbitrary number so we can be sure this happened */
31 #define BACKREF_FOUND_SHARED 6
33 struct extent_inode_elem {
34 u64 inum;
35 u64 offset;
36 struct extent_inode_elem *next;
39 static int check_extent_in_eb(const struct btrfs_key *key,
40 const struct extent_buffer *eb,
41 const struct btrfs_file_extent_item *fi,
42 u64 extent_item_pos,
43 struct extent_inode_elem **eie)
45 u64 offset = 0;
46 struct extent_inode_elem *e;
48 if (!btrfs_file_extent_compression(eb, fi) &&
49 !btrfs_file_extent_encryption(eb, fi) &&
50 !btrfs_file_extent_other_encoding(eb, fi)) {
51 u64 data_offset;
52 u64 data_len;
54 data_offset = btrfs_file_extent_offset(eb, fi);
55 data_len = btrfs_file_extent_num_bytes(eb, fi);
57 if (extent_item_pos < data_offset ||
58 extent_item_pos >= data_offset + data_len)
59 return 1;
60 offset = extent_item_pos - data_offset;
63 e = kmalloc(sizeof(*e), GFP_NOFS);
64 if (!e)
65 return -ENOMEM;
67 e->next = *eie;
68 e->inum = key->objectid;
69 e->offset = key->offset + offset;
70 *eie = e;
72 return 0;
75 static void free_inode_elem_list(struct extent_inode_elem *eie)
77 struct extent_inode_elem *eie_next;
79 for (; eie; eie = eie_next) {
80 eie_next = eie->next;
81 kfree(eie);
85 static int find_extent_in_eb(const struct extent_buffer *eb,
86 u64 wanted_disk_byte, u64 extent_item_pos,
87 struct extent_inode_elem **eie)
89 u64 disk_byte;
90 struct btrfs_key key;
91 struct btrfs_file_extent_item *fi;
92 int slot;
93 int nritems;
94 int extent_type;
95 int ret;
98 * from the shared data ref, we only have the leaf but we need
99 * the key. thus, we must look into all items and see that we
100 * find one (some) with a reference to our extent item.
102 nritems = btrfs_header_nritems(eb);
103 for (slot = 0; slot < nritems; ++slot) {
104 btrfs_item_key_to_cpu(eb, &key, slot);
105 if (key.type != BTRFS_EXTENT_DATA_KEY)
106 continue;
107 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
108 extent_type = btrfs_file_extent_type(eb, fi);
109 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
110 continue;
111 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
112 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
113 if (disk_byte != wanted_disk_byte)
114 continue;
116 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
117 if (ret < 0)
118 return ret;
121 return 0;
124 struct preftree {
125 struct rb_root root;
126 unsigned int count;
129 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 }
131 struct preftrees {
132 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
133 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
134 struct preftree indirect_missing_keys;
138 * Checks for a shared extent during backref search.
140 * The share_count tracks prelim_refs (direct and indirect) having a
141 * ref->count >0:
142 * - incremented when a ref->count transitions to >0
143 * - decremented when a ref->count transitions to <1
145 struct share_check {
146 u64 root_objectid;
147 u64 inum;
148 int share_count;
151 static inline int extent_is_shared(struct share_check *sc)
153 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
156 static struct kmem_cache *btrfs_prelim_ref_cache;
158 int __init btrfs_prelim_ref_init(void)
160 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
161 sizeof(struct prelim_ref),
163 SLAB_MEM_SPREAD,
164 NULL);
165 if (!btrfs_prelim_ref_cache)
166 return -ENOMEM;
167 return 0;
170 void btrfs_prelim_ref_exit(void)
172 kmem_cache_destroy(btrfs_prelim_ref_cache);
175 static void free_pref(struct prelim_ref *ref)
177 kmem_cache_free(btrfs_prelim_ref_cache, ref);
181 * Return 0 when both refs are for the same block (and can be merged).
182 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
183 * indicates a 'higher' block.
185 static int prelim_ref_compare(struct prelim_ref *ref1,
186 struct prelim_ref *ref2)
188 if (ref1->level < ref2->level)
189 return -1;
190 if (ref1->level > ref2->level)
191 return 1;
192 if (ref1->root_id < ref2->root_id)
193 return -1;
194 if (ref1->root_id > ref2->root_id)
195 return 1;
196 if (ref1->key_for_search.type < ref2->key_for_search.type)
197 return -1;
198 if (ref1->key_for_search.type > ref2->key_for_search.type)
199 return 1;
200 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
201 return -1;
202 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
203 return 1;
204 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
205 return -1;
206 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
207 return 1;
208 if (ref1->parent < ref2->parent)
209 return -1;
210 if (ref1->parent > ref2->parent)
211 return 1;
213 return 0;
216 void update_share_count(struct share_check *sc, int oldcount, int newcount)
218 if ((!sc) || (oldcount == 0 && newcount < 1))
219 return;
221 if (oldcount > 0 && newcount < 1)
222 sc->share_count--;
223 else if (oldcount < 1 && newcount > 0)
224 sc->share_count++;
228 * Add @newref to the @root rbtree, merging identical refs.
230 * Callers should assume that newref has been freed after calling.
232 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
233 struct preftree *preftree,
234 struct prelim_ref *newref,
235 struct share_check *sc)
237 struct rb_root *root;
238 struct rb_node **p;
239 struct rb_node *parent = NULL;
240 struct prelim_ref *ref;
241 int result;
243 root = &preftree->root;
244 p = &root->rb_node;
246 while (*p) {
247 parent = *p;
248 ref = rb_entry(parent, struct prelim_ref, rbnode);
249 result = prelim_ref_compare(ref, newref);
250 if (result < 0) {
251 p = &(*p)->rb_left;
252 } else if (result > 0) {
253 p = &(*p)->rb_right;
254 } else {
255 /* Identical refs, merge them and free @newref */
256 struct extent_inode_elem *eie = ref->inode_list;
258 while (eie && eie->next)
259 eie = eie->next;
261 if (!eie)
262 ref->inode_list = newref->inode_list;
263 else
264 eie->next = newref->inode_list;
265 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
266 preftree->count);
268 * A delayed ref can have newref->count < 0.
269 * The ref->count is updated to follow any
270 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
272 update_share_count(sc, ref->count,
273 ref->count + newref->count);
274 ref->count += newref->count;
275 free_pref(newref);
276 return;
280 update_share_count(sc, 0, newref->count);
281 preftree->count++;
282 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
283 rb_link_node(&newref->rbnode, parent, p);
284 rb_insert_color(&newref->rbnode, root);
288 * Release the entire tree. We don't care about internal consistency so
289 * just free everything and then reset the tree root.
291 static void prelim_release(struct preftree *preftree)
293 struct prelim_ref *ref, *next_ref;
295 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
296 rbnode)
297 free_pref(ref);
299 preftree->root = RB_ROOT;
300 preftree->count = 0;
304 * the rules for all callers of this function are:
305 * - obtaining the parent is the goal
306 * - if you add a key, you must know that it is a correct key
307 * - if you cannot add the parent or a correct key, then we will look into the
308 * block later to set a correct key
310 * delayed refs
311 * ============
312 * backref type | shared | indirect | shared | indirect
313 * information | tree | tree | data | data
314 * --------------------+--------+----------+--------+----------
315 * parent logical | y | - | - | -
316 * key to resolve | - | y | y | y
317 * tree block logical | - | - | - | -
318 * root for resolving | y | y | y | y
320 * - column 1: we've the parent -> done
321 * - column 2, 3, 4: we use the key to find the parent
323 * on disk refs (inline or keyed)
324 * ==============================
325 * backref type | shared | indirect | shared | indirect
326 * information | tree | tree | data | data
327 * --------------------+--------+----------+--------+----------
328 * parent logical | y | - | y | -
329 * key to resolve | - | - | - | y
330 * tree block logical | y | y | y | y
331 * root for resolving | - | y | y | y
333 * - column 1, 3: we've the parent -> done
334 * - column 2: we take the first key from the block to find the parent
335 * (see add_missing_keys)
336 * - column 4: we use the key to find the parent
338 * additional information that's available but not required to find the parent
339 * block might help in merging entries to gain some speed.
341 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
342 struct preftree *preftree, u64 root_id,
343 const struct btrfs_key *key, int level, u64 parent,
344 u64 wanted_disk_byte, int count,
345 struct share_check *sc, gfp_t gfp_mask)
347 struct prelim_ref *ref;
349 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
350 return 0;
352 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
353 if (!ref)
354 return -ENOMEM;
356 ref->root_id = root_id;
357 if (key) {
358 ref->key_for_search = *key;
360 * We can often find data backrefs with an offset that is too
361 * large (>= LLONG_MAX, maximum allowed file offset) due to
362 * underflows when subtracting a file's offset with the data
363 * offset of its corresponding extent data item. This can
364 * happen for example in the clone ioctl.
365 * So if we detect such case we set the search key's offset to
366 * zero to make sure we will find the matching file extent item
367 * at add_all_parents(), otherwise we will miss it because the
368 * offset taken form the backref is much larger then the offset
369 * of the file extent item. This can make us scan a very large
370 * number of file extent items, but at least it will not make
371 * us miss any.
372 * This is an ugly workaround for a behaviour that should have
373 * never existed, but it does and a fix for the clone ioctl
374 * would touch a lot of places, cause backwards incompatibility
375 * and would not fix the problem for extents cloned with older
376 * kernels.
378 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
379 ref->key_for_search.offset >= LLONG_MAX)
380 ref->key_for_search.offset = 0;
381 } else {
382 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
385 ref->inode_list = NULL;
386 ref->level = level;
387 ref->count = count;
388 ref->parent = parent;
389 ref->wanted_disk_byte = wanted_disk_byte;
390 prelim_ref_insert(fs_info, preftree, ref, sc);
391 return extent_is_shared(sc);
394 /* direct refs use root == 0, key == NULL */
395 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
396 struct preftrees *preftrees, int level, u64 parent,
397 u64 wanted_disk_byte, int count,
398 struct share_check *sc, gfp_t gfp_mask)
400 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
401 parent, wanted_disk_byte, count, sc, gfp_mask);
404 /* indirect refs use parent == 0 */
405 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
406 struct preftrees *preftrees, u64 root_id,
407 const struct btrfs_key *key, int level,
408 u64 wanted_disk_byte, int count,
409 struct share_check *sc, gfp_t gfp_mask)
411 struct preftree *tree = &preftrees->indirect;
413 if (!key)
414 tree = &preftrees->indirect_missing_keys;
415 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
416 wanted_disk_byte, count, sc, gfp_mask);
419 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
420 struct ulist *parents, struct prelim_ref *ref,
421 int level, u64 time_seq, const u64 *extent_item_pos,
422 u64 total_refs)
424 int ret = 0;
425 int slot;
426 struct extent_buffer *eb;
427 struct btrfs_key key;
428 struct btrfs_key *key_for_search = &ref->key_for_search;
429 struct btrfs_file_extent_item *fi;
430 struct extent_inode_elem *eie = NULL, *old = NULL;
431 u64 disk_byte;
432 u64 wanted_disk_byte = ref->wanted_disk_byte;
433 u64 count = 0;
435 if (level != 0) {
436 eb = path->nodes[level];
437 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
438 if (ret < 0)
439 return ret;
440 return 0;
444 * We normally enter this function with the path already pointing to
445 * the first item to check. But sometimes, we may enter it with
446 * slot==nritems. In that case, go to the next leaf before we continue.
448 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
449 if (time_seq == SEQ_LAST)
450 ret = btrfs_next_leaf(root, path);
451 else
452 ret = btrfs_next_old_leaf(root, path, time_seq);
455 while (!ret && count < total_refs) {
456 eb = path->nodes[0];
457 slot = path->slots[0];
459 btrfs_item_key_to_cpu(eb, &key, slot);
461 if (key.objectid != key_for_search->objectid ||
462 key.type != BTRFS_EXTENT_DATA_KEY)
463 break;
465 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
466 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
468 if (disk_byte == wanted_disk_byte) {
469 eie = NULL;
470 old = NULL;
471 count++;
472 if (extent_item_pos) {
473 ret = check_extent_in_eb(&key, eb, fi,
474 *extent_item_pos,
475 &eie);
476 if (ret < 0)
477 break;
479 if (ret > 0)
480 goto next;
481 ret = ulist_add_merge_ptr(parents, eb->start,
482 eie, (void **)&old, GFP_NOFS);
483 if (ret < 0)
484 break;
485 if (!ret && extent_item_pos) {
486 while (old->next)
487 old = old->next;
488 old->next = eie;
490 eie = NULL;
492 next:
493 if (time_seq == SEQ_LAST)
494 ret = btrfs_next_item(root, path);
495 else
496 ret = btrfs_next_old_item(root, path, time_seq);
499 if (ret > 0)
500 ret = 0;
501 else if (ret < 0)
502 free_inode_elem_list(eie);
503 return ret;
507 * resolve an indirect backref in the form (root_id, key, level)
508 * to a logical address
510 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
511 struct btrfs_path *path, u64 time_seq,
512 struct prelim_ref *ref, struct ulist *parents,
513 const u64 *extent_item_pos, u64 total_refs)
515 struct btrfs_root *root;
516 struct btrfs_key root_key;
517 struct extent_buffer *eb;
518 int ret = 0;
519 int root_level;
520 int level = ref->level;
521 int index;
523 root_key.objectid = ref->root_id;
524 root_key.type = BTRFS_ROOT_ITEM_KEY;
525 root_key.offset = (u64)-1;
527 index = srcu_read_lock(&fs_info->subvol_srcu);
529 root = btrfs_get_fs_root(fs_info, &root_key, false);
530 if (IS_ERR(root)) {
531 srcu_read_unlock(&fs_info->subvol_srcu, index);
532 ret = PTR_ERR(root);
533 goto out;
536 if (btrfs_is_testing(fs_info)) {
537 srcu_read_unlock(&fs_info->subvol_srcu, index);
538 ret = -ENOENT;
539 goto out;
542 if (path->search_commit_root)
543 root_level = btrfs_header_level(root->commit_root);
544 else if (time_seq == SEQ_LAST)
545 root_level = btrfs_header_level(root->node);
546 else
547 root_level = btrfs_old_root_level(root, time_seq);
549 if (root_level + 1 == level) {
550 srcu_read_unlock(&fs_info->subvol_srcu, index);
551 goto out;
554 path->lowest_level = level;
555 if (time_seq == SEQ_LAST)
556 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
557 0, 0);
558 else
559 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
560 time_seq);
562 /* root node has been locked, we can release @subvol_srcu safely here */
563 srcu_read_unlock(&fs_info->subvol_srcu, index);
565 btrfs_debug(fs_info,
566 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
567 ref->root_id, level, ref->count, ret,
568 ref->key_for_search.objectid, ref->key_for_search.type,
569 ref->key_for_search.offset);
570 if (ret < 0)
571 goto out;
573 eb = path->nodes[level];
574 while (!eb) {
575 if (WARN_ON(!level)) {
576 ret = 1;
577 goto out;
579 level--;
580 eb = path->nodes[level];
583 ret = add_all_parents(root, path, parents, ref, level, time_seq,
584 extent_item_pos, total_refs);
585 out:
586 path->lowest_level = 0;
587 btrfs_release_path(path);
588 return ret;
591 static struct extent_inode_elem *
592 unode_aux_to_inode_list(struct ulist_node *node)
594 if (!node)
595 return NULL;
596 return (struct extent_inode_elem *)(uintptr_t)node->aux;
600 * We maintain three seperate rbtrees: one for direct refs, one for
601 * indirect refs which have a key, and one for indirect refs which do not
602 * have a key. Each tree does merge on insertion.
604 * Once all of the references are located, we iterate over the tree of
605 * indirect refs with missing keys. An appropriate key is located and
606 * the ref is moved onto the tree for indirect refs. After all missing
607 * keys are thus located, we iterate over the indirect ref tree, resolve
608 * each reference, and then insert the resolved reference onto the
609 * direct tree (merging there too).
611 * New backrefs (i.e., for parent nodes) are added to the appropriate
612 * rbtree as they are encountered. The new backrefs are subsequently
613 * resolved as above.
615 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
616 struct btrfs_path *path, u64 time_seq,
617 struct preftrees *preftrees,
618 const u64 *extent_item_pos, u64 total_refs,
619 struct share_check *sc)
621 int err;
622 int ret = 0;
623 struct ulist *parents;
624 struct ulist_node *node;
625 struct ulist_iterator uiter;
626 struct rb_node *rnode;
628 parents = ulist_alloc(GFP_NOFS);
629 if (!parents)
630 return -ENOMEM;
633 * We could trade memory usage for performance here by iterating
634 * the tree, allocating new refs for each insertion, and then
635 * freeing the entire indirect tree when we're done. In some test
636 * cases, the tree can grow quite large (~200k objects).
638 while ((rnode = rb_first(&preftrees->indirect.root))) {
639 struct prelim_ref *ref;
641 ref = rb_entry(rnode, struct prelim_ref, rbnode);
642 if (WARN(ref->parent,
643 "BUG: direct ref found in indirect tree")) {
644 ret = -EINVAL;
645 goto out;
648 rb_erase(&ref->rbnode, &preftrees->indirect.root);
649 preftrees->indirect.count--;
651 if (ref->count == 0) {
652 free_pref(ref);
653 continue;
656 if (sc && sc->root_objectid &&
657 ref->root_id != sc->root_objectid) {
658 free_pref(ref);
659 ret = BACKREF_FOUND_SHARED;
660 goto out;
662 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
663 parents, extent_item_pos,
664 total_refs);
666 * we can only tolerate ENOENT,otherwise,we should catch error
667 * and return directly.
669 if (err == -ENOENT) {
670 prelim_ref_insert(fs_info, &preftrees->direct, ref,
671 NULL);
672 continue;
673 } else if (err) {
674 free_pref(ref);
675 ret = err;
676 goto out;
679 /* we put the first parent into the ref at hand */
680 ULIST_ITER_INIT(&uiter);
681 node = ulist_next(parents, &uiter);
682 ref->parent = node ? node->val : 0;
683 ref->inode_list = unode_aux_to_inode_list(node);
685 /* Add a prelim_ref(s) for any other parent(s). */
686 while ((node = ulist_next(parents, &uiter))) {
687 struct prelim_ref *new_ref;
689 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
690 GFP_NOFS);
691 if (!new_ref) {
692 free_pref(ref);
693 ret = -ENOMEM;
694 goto out;
696 memcpy(new_ref, ref, sizeof(*ref));
697 new_ref->parent = node->val;
698 new_ref->inode_list = unode_aux_to_inode_list(node);
699 prelim_ref_insert(fs_info, &preftrees->direct,
700 new_ref, NULL);
704 * Now it's a direct ref, put it in the the direct tree. We must
705 * do this last because the ref could be merged/freed here.
707 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
709 ulist_reinit(parents);
710 cond_resched();
712 out:
713 ulist_free(parents);
714 return ret;
718 * read tree blocks and add keys where required.
720 static int add_missing_keys(struct btrfs_fs_info *fs_info,
721 struct preftrees *preftrees, bool lock)
723 struct prelim_ref *ref;
724 struct extent_buffer *eb;
725 struct preftree *tree = &preftrees->indirect_missing_keys;
726 struct rb_node *node;
728 while ((node = rb_first(&tree->root))) {
729 ref = rb_entry(node, struct prelim_ref, rbnode);
730 rb_erase(node, &tree->root);
732 BUG_ON(ref->parent); /* should not be a direct ref */
733 BUG_ON(ref->key_for_search.type);
734 BUG_ON(!ref->wanted_disk_byte);
736 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
737 if (IS_ERR(eb)) {
738 free_pref(ref);
739 return PTR_ERR(eb);
740 } else if (!extent_buffer_uptodate(eb)) {
741 free_pref(ref);
742 free_extent_buffer(eb);
743 return -EIO;
745 if (lock)
746 btrfs_tree_read_lock(eb);
747 if (btrfs_header_level(eb) == 0)
748 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
749 else
750 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
751 if (lock)
752 btrfs_tree_read_unlock(eb);
753 free_extent_buffer(eb);
754 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
755 cond_resched();
757 return 0;
761 * add all currently queued delayed refs from this head whose seq nr is
762 * smaller or equal that seq to the list
764 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
765 struct btrfs_delayed_ref_head *head, u64 seq,
766 struct preftrees *preftrees, u64 *total_refs,
767 struct share_check *sc)
769 struct btrfs_delayed_ref_node *node;
770 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
771 struct btrfs_key key;
772 struct btrfs_key tmp_op_key;
773 struct btrfs_key *op_key = NULL;
774 int count;
775 int ret = 0;
777 if (extent_op && extent_op->update_key) {
778 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
779 op_key = &tmp_op_key;
782 spin_lock(&head->lock);
783 list_for_each_entry(node, &head->ref_list, list) {
784 if (node->seq > seq)
785 continue;
787 switch (node->action) {
788 case BTRFS_ADD_DELAYED_EXTENT:
789 case BTRFS_UPDATE_DELAYED_HEAD:
790 WARN_ON(1);
791 continue;
792 case BTRFS_ADD_DELAYED_REF:
793 count = node->ref_mod;
794 break;
795 case BTRFS_DROP_DELAYED_REF:
796 count = node->ref_mod * -1;
797 break;
798 default:
799 BUG_ON(1);
801 *total_refs += count;
802 switch (node->type) {
803 case BTRFS_TREE_BLOCK_REF_KEY: {
804 /* NORMAL INDIRECT METADATA backref */
805 struct btrfs_delayed_tree_ref *ref;
807 ref = btrfs_delayed_node_to_tree_ref(node);
808 ret = add_indirect_ref(fs_info, preftrees, ref->root,
809 &tmp_op_key, ref->level + 1,
810 node->bytenr, count, sc,
811 GFP_ATOMIC);
812 break;
814 case BTRFS_SHARED_BLOCK_REF_KEY: {
815 /* SHARED DIRECT METADATA backref */
816 struct btrfs_delayed_tree_ref *ref;
818 ref = btrfs_delayed_node_to_tree_ref(node);
820 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
821 ref->parent, node->bytenr, count,
822 sc, GFP_ATOMIC);
823 break;
825 case BTRFS_EXTENT_DATA_REF_KEY: {
826 /* NORMAL INDIRECT DATA backref */
827 struct btrfs_delayed_data_ref *ref;
828 ref = btrfs_delayed_node_to_data_ref(node);
830 key.objectid = ref->objectid;
831 key.type = BTRFS_EXTENT_DATA_KEY;
832 key.offset = ref->offset;
835 * Found a inum that doesn't match our known inum, we
836 * know it's shared.
838 if (sc && sc->inum && ref->objectid != sc->inum) {
839 ret = BACKREF_FOUND_SHARED;
840 goto out;
843 ret = add_indirect_ref(fs_info, preftrees, ref->root,
844 &key, 0, node->bytenr, count, sc,
845 GFP_ATOMIC);
846 break;
848 case BTRFS_SHARED_DATA_REF_KEY: {
849 /* SHARED DIRECT FULL backref */
850 struct btrfs_delayed_data_ref *ref;
852 ref = btrfs_delayed_node_to_data_ref(node);
854 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
855 node->bytenr, count, sc,
856 GFP_ATOMIC);
857 break;
859 default:
860 WARN_ON(1);
863 * We must ignore BACKREF_FOUND_SHARED until all delayed
864 * refs have been checked.
866 if (ret && (ret != BACKREF_FOUND_SHARED))
867 break;
869 if (!ret)
870 ret = extent_is_shared(sc);
871 out:
872 spin_unlock(&head->lock);
873 return ret;
877 * add all inline backrefs for bytenr to the list
879 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
881 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
882 struct btrfs_path *path, u64 bytenr,
883 int *info_level, struct preftrees *preftrees,
884 u64 *total_refs, struct share_check *sc)
886 int ret = 0;
887 int slot;
888 struct extent_buffer *leaf;
889 struct btrfs_key key;
890 struct btrfs_key found_key;
891 unsigned long ptr;
892 unsigned long end;
893 struct btrfs_extent_item *ei;
894 u64 flags;
895 u64 item_size;
898 * enumerate all inline refs
900 leaf = path->nodes[0];
901 slot = path->slots[0];
903 item_size = btrfs_item_size_nr(leaf, slot);
904 BUG_ON(item_size < sizeof(*ei));
906 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
907 flags = btrfs_extent_flags(leaf, ei);
908 *total_refs += btrfs_extent_refs(leaf, ei);
909 btrfs_item_key_to_cpu(leaf, &found_key, slot);
911 ptr = (unsigned long)(ei + 1);
912 end = (unsigned long)ei + item_size;
914 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
915 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
916 struct btrfs_tree_block_info *info;
918 info = (struct btrfs_tree_block_info *)ptr;
919 *info_level = btrfs_tree_block_level(leaf, info);
920 ptr += sizeof(struct btrfs_tree_block_info);
921 BUG_ON(ptr > end);
922 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
923 *info_level = found_key.offset;
924 } else {
925 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
928 while (ptr < end) {
929 struct btrfs_extent_inline_ref *iref;
930 u64 offset;
931 int type;
933 iref = (struct btrfs_extent_inline_ref *)ptr;
934 type = btrfs_get_extent_inline_ref_type(leaf, iref,
935 BTRFS_REF_TYPE_ANY);
936 if (type == BTRFS_REF_TYPE_INVALID)
937 return -EINVAL;
939 offset = btrfs_extent_inline_ref_offset(leaf, iref);
941 switch (type) {
942 case BTRFS_SHARED_BLOCK_REF_KEY:
943 ret = add_direct_ref(fs_info, preftrees,
944 *info_level + 1, offset,
945 bytenr, 1, NULL, GFP_NOFS);
946 break;
947 case BTRFS_SHARED_DATA_REF_KEY: {
948 struct btrfs_shared_data_ref *sdref;
949 int count;
951 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
952 count = btrfs_shared_data_ref_count(leaf, sdref);
954 ret = add_direct_ref(fs_info, preftrees, 0, offset,
955 bytenr, count, sc, GFP_NOFS);
956 break;
958 case BTRFS_TREE_BLOCK_REF_KEY:
959 ret = add_indirect_ref(fs_info, preftrees, offset,
960 NULL, *info_level + 1,
961 bytenr, 1, NULL, GFP_NOFS);
962 break;
963 case BTRFS_EXTENT_DATA_REF_KEY: {
964 struct btrfs_extent_data_ref *dref;
965 int count;
966 u64 root;
968 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
969 count = btrfs_extent_data_ref_count(leaf, dref);
970 key.objectid = btrfs_extent_data_ref_objectid(leaf,
971 dref);
972 key.type = BTRFS_EXTENT_DATA_KEY;
973 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
975 if (sc && sc->inum && key.objectid != sc->inum) {
976 ret = BACKREF_FOUND_SHARED;
977 break;
980 root = btrfs_extent_data_ref_root(leaf, dref);
982 ret = add_indirect_ref(fs_info, preftrees, root,
983 &key, 0, bytenr, count,
984 sc, GFP_NOFS);
985 break;
987 default:
988 WARN_ON(1);
990 if (ret)
991 return ret;
992 ptr += btrfs_extent_inline_ref_size(type);
995 return 0;
999 * add all non-inline backrefs for bytenr to the list
1001 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1003 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1004 struct btrfs_path *path, u64 bytenr,
1005 int info_level, struct preftrees *preftrees,
1006 struct share_check *sc)
1008 struct btrfs_root *extent_root = fs_info->extent_root;
1009 int ret;
1010 int slot;
1011 struct extent_buffer *leaf;
1012 struct btrfs_key key;
1014 while (1) {
1015 ret = btrfs_next_item(extent_root, path);
1016 if (ret < 0)
1017 break;
1018 if (ret) {
1019 ret = 0;
1020 break;
1023 slot = path->slots[0];
1024 leaf = path->nodes[0];
1025 btrfs_item_key_to_cpu(leaf, &key, slot);
1027 if (key.objectid != bytenr)
1028 break;
1029 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1030 continue;
1031 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1032 break;
1034 switch (key.type) {
1035 case BTRFS_SHARED_BLOCK_REF_KEY:
1036 /* SHARED DIRECT METADATA backref */
1037 ret = add_direct_ref(fs_info, preftrees,
1038 info_level + 1, key.offset,
1039 bytenr, 1, NULL, GFP_NOFS);
1040 break;
1041 case BTRFS_SHARED_DATA_REF_KEY: {
1042 /* SHARED DIRECT FULL backref */
1043 struct btrfs_shared_data_ref *sdref;
1044 int count;
1046 sdref = btrfs_item_ptr(leaf, slot,
1047 struct btrfs_shared_data_ref);
1048 count = btrfs_shared_data_ref_count(leaf, sdref);
1049 ret = add_direct_ref(fs_info, preftrees, 0,
1050 key.offset, bytenr, count,
1051 sc, GFP_NOFS);
1052 break;
1054 case BTRFS_TREE_BLOCK_REF_KEY:
1055 /* NORMAL INDIRECT METADATA backref */
1056 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1057 NULL, info_level + 1, bytenr,
1058 1, NULL, GFP_NOFS);
1059 break;
1060 case BTRFS_EXTENT_DATA_REF_KEY: {
1061 /* NORMAL INDIRECT DATA backref */
1062 struct btrfs_extent_data_ref *dref;
1063 int count;
1064 u64 root;
1066 dref = btrfs_item_ptr(leaf, slot,
1067 struct btrfs_extent_data_ref);
1068 count = btrfs_extent_data_ref_count(leaf, dref);
1069 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1070 dref);
1071 key.type = BTRFS_EXTENT_DATA_KEY;
1072 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1074 if (sc && sc->inum && key.objectid != sc->inum) {
1075 ret = BACKREF_FOUND_SHARED;
1076 break;
1079 root = btrfs_extent_data_ref_root(leaf, dref);
1080 ret = add_indirect_ref(fs_info, preftrees, root,
1081 &key, 0, bytenr, count,
1082 sc, GFP_NOFS);
1083 break;
1085 default:
1086 WARN_ON(1);
1088 if (ret)
1089 return ret;
1093 return ret;
1097 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1098 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1099 * indirect refs to their parent bytenr.
1100 * When roots are found, they're added to the roots list
1102 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1103 * much like trans == NULL case, the difference only lies in it will not
1104 * commit root.
1105 * The special case is for qgroup to search roots in commit_transaction().
1107 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1108 * shared extent is detected.
1110 * Otherwise this returns 0 for success and <0 for an error.
1112 * FIXME some caching might speed things up
1114 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1115 struct btrfs_fs_info *fs_info, u64 bytenr,
1116 u64 time_seq, struct ulist *refs,
1117 struct ulist *roots, const u64 *extent_item_pos,
1118 struct share_check *sc)
1120 struct btrfs_key key;
1121 struct btrfs_path *path;
1122 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1123 struct btrfs_delayed_ref_head *head;
1124 int info_level = 0;
1125 int ret;
1126 struct prelim_ref *ref;
1127 struct rb_node *node;
1128 struct extent_inode_elem *eie = NULL;
1129 /* total of both direct AND indirect refs! */
1130 u64 total_refs = 0;
1131 struct preftrees preftrees = {
1132 .direct = PREFTREE_INIT,
1133 .indirect = PREFTREE_INIT,
1134 .indirect_missing_keys = PREFTREE_INIT
1137 key.objectid = bytenr;
1138 key.offset = (u64)-1;
1139 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1140 key.type = BTRFS_METADATA_ITEM_KEY;
1141 else
1142 key.type = BTRFS_EXTENT_ITEM_KEY;
1144 path = btrfs_alloc_path();
1145 if (!path)
1146 return -ENOMEM;
1147 if (!trans) {
1148 path->search_commit_root = 1;
1149 path->skip_locking = 1;
1152 if (time_seq == SEQ_LAST)
1153 path->skip_locking = 1;
1156 * grab both a lock on the path and a lock on the delayed ref head.
1157 * We need both to get a consistent picture of how the refs look
1158 * at a specified point in time
1160 again:
1161 head = NULL;
1163 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1164 if (ret < 0)
1165 goto out;
1166 BUG_ON(ret == 0);
1168 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1169 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1170 time_seq != SEQ_LAST) {
1171 #else
1172 if (trans && time_seq != SEQ_LAST) {
1173 #endif
1175 * look if there are updates for this ref queued and lock the
1176 * head
1178 delayed_refs = &trans->transaction->delayed_refs;
1179 spin_lock(&delayed_refs->lock);
1180 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1181 if (head) {
1182 if (!mutex_trylock(&head->mutex)) {
1183 refcount_inc(&head->node.refs);
1184 spin_unlock(&delayed_refs->lock);
1186 btrfs_release_path(path);
1189 * Mutex was contended, block until it's
1190 * released and try again
1192 mutex_lock(&head->mutex);
1193 mutex_unlock(&head->mutex);
1194 btrfs_put_delayed_ref(&head->node);
1195 goto again;
1197 spin_unlock(&delayed_refs->lock);
1198 ret = add_delayed_refs(fs_info, head, time_seq,
1199 &preftrees, &total_refs, sc);
1200 mutex_unlock(&head->mutex);
1201 if (ret)
1202 goto out;
1203 } else {
1204 spin_unlock(&delayed_refs->lock);
1208 if (path->slots[0]) {
1209 struct extent_buffer *leaf;
1210 int slot;
1212 path->slots[0]--;
1213 leaf = path->nodes[0];
1214 slot = path->slots[0];
1215 btrfs_item_key_to_cpu(leaf, &key, slot);
1216 if (key.objectid == bytenr &&
1217 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1218 key.type == BTRFS_METADATA_ITEM_KEY)) {
1219 ret = add_inline_refs(fs_info, path, bytenr,
1220 &info_level, &preftrees,
1221 &total_refs, sc);
1222 if (ret)
1223 goto out;
1224 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1225 &preftrees, sc);
1226 if (ret)
1227 goto out;
1231 btrfs_release_path(path);
1233 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1234 if (ret)
1235 goto out;
1237 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1239 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1240 extent_item_pos, total_refs, sc);
1241 if (ret)
1242 goto out;
1244 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1247 * This walks the tree of merged and resolved refs. Tree blocks are
1248 * read in as needed. Unique entries are added to the ulist, and
1249 * the list of found roots is updated.
1251 * We release the entire tree in one go before returning.
1253 node = rb_first(&preftrees.direct.root);
1254 while (node) {
1255 ref = rb_entry(node, struct prelim_ref, rbnode);
1256 node = rb_next(&ref->rbnode);
1258 * ref->count < 0 can happen here if there are delayed
1259 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1260 * prelim_ref_insert() relies on this when merging
1261 * identical refs to keep the overall count correct.
1262 * prelim_ref_insert() will merge only those refs
1263 * which compare identically. Any refs having
1264 * e.g. different offsets would not be merged,
1265 * and would retain their original ref->count < 0.
1267 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1268 if (sc && sc->root_objectid &&
1269 ref->root_id != sc->root_objectid) {
1270 ret = BACKREF_FOUND_SHARED;
1271 goto out;
1274 /* no parent == root of tree */
1275 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1276 if (ret < 0)
1277 goto out;
1279 if (ref->count && ref->parent) {
1280 if (extent_item_pos && !ref->inode_list &&
1281 ref->level == 0) {
1282 struct extent_buffer *eb;
1284 eb = read_tree_block(fs_info, ref->parent, 0);
1285 if (IS_ERR(eb)) {
1286 ret = PTR_ERR(eb);
1287 goto out;
1288 } else if (!extent_buffer_uptodate(eb)) {
1289 free_extent_buffer(eb);
1290 ret = -EIO;
1291 goto out;
1293 if (!path->skip_locking) {
1294 btrfs_tree_read_lock(eb);
1295 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1297 ret = find_extent_in_eb(eb, bytenr,
1298 *extent_item_pos, &eie);
1299 if (!path->skip_locking)
1300 btrfs_tree_read_unlock_blocking(eb);
1301 free_extent_buffer(eb);
1302 if (ret < 0)
1303 goto out;
1304 ref->inode_list = eie;
1306 ret = ulist_add_merge_ptr(refs, ref->parent,
1307 ref->inode_list,
1308 (void **)&eie, GFP_NOFS);
1309 if (ret < 0)
1310 goto out;
1311 if (!ret && extent_item_pos) {
1313 * we've recorded that parent, so we must extend
1314 * its inode list here
1316 BUG_ON(!eie);
1317 while (eie->next)
1318 eie = eie->next;
1319 eie->next = ref->inode_list;
1321 eie = NULL;
1323 cond_resched();
1326 out:
1327 btrfs_free_path(path);
1329 prelim_release(&preftrees.direct);
1330 prelim_release(&preftrees.indirect);
1331 prelim_release(&preftrees.indirect_missing_keys);
1333 if (ret < 0)
1334 free_inode_elem_list(eie);
1335 return ret;
1338 static void free_leaf_list(struct ulist *blocks)
1340 struct ulist_node *node = NULL;
1341 struct extent_inode_elem *eie;
1342 struct ulist_iterator uiter;
1344 ULIST_ITER_INIT(&uiter);
1345 while ((node = ulist_next(blocks, &uiter))) {
1346 if (!node->aux)
1347 continue;
1348 eie = unode_aux_to_inode_list(node);
1349 free_inode_elem_list(eie);
1350 node->aux = 0;
1353 ulist_free(blocks);
1357 * Finds all leafs with a reference to the specified combination of bytenr and
1358 * offset. key_list_head will point to a list of corresponding keys (caller must
1359 * free each list element). The leafs will be stored in the leafs ulist, which
1360 * must be freed with ulist_free.
1362 * returns 0 on success, <0 on error
1364 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1365 struct btrfs_fs_info *fs_info, u64 bytenr,
1366 u64 time_seq, struct ulist **leafs,
1367 const u64 *extent_item_pos)
1369 int ret;
1371 *leafs = ulist_alloc(GFP_NOFS);
1372 if (!*leafs)
1373 return -ENOMEM;
1375 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1376 *leafs, NULL, extent_item_pos, NULL);
1377 if (ret < 0 && ret != -ENOENT) {
1378 free_leaf_list(*leafs);
1379 return ret;
1382 return 0;
1386 * walk all backrefs for a given extent to find all roots that reference this
1387 * extent. Walking a backref means finding all extents that reference this
1388 * extent and in turn walk the backrefs of those, too. Naturally this is a
1389 * recursive process, but here it is implemented in an iterative fashion: We
1390 * find all referencing extents for the extent in question and put them on a
1391 * list. In turn, we find all referencing extents for those, further appending
1392 * to the list. The way we iterate the list allows adding more elements after
1393 * the current while iterating. The process stops when we reach the end of the
1394 * list. Found roots are added to the roots list.
1396 * returns 0 on success, < 0 on error.
1398 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1399 struct btrfs_fs_info *fs_info, u64 bytenr,
1400 u64 time_seq, struct ulist **roots)
1402 struct ulist *tmp;
1403 struct ulist_node *node = NULL;
1404 struct ulist_iterator uiter;
1405 int ret;
1407 tmp = ulist_alloc(GFP_NOFS);
1408 if (!tmp)
1409 return -ENOMEM;
1410 *roots = ulist_alloc(GFP_NOFS);
1411 if (!*roots) {
1412 ulist_free(tmp);
1413 return -ENOMEM;
1416 ULIST_ITER_INIT(&uiter);
1417 while (1) {
1418 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1419 tmp, *roots, NULL, NULL);
1420 if (ret < 0 && ret != -ENOENT) {
1421 ulist_free(tmp);
1422 ulist_free(*roots);
1423 *roots = NULL;
1424 return ret;
1426 node = ulist_next(tmp, &uiter);
1427 if (!node)
1428 break;
1429 bytenr = node->val;
1430 cond_resched();
1433 ulist_free(tmp);
1434 return 0;
1437 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1438 struct btrfs_fs_info *fs_info, u64 bytenr,
1439 u64 time_seq, struct ulist **roots)
1441 int ret;
1443 if (!trans)
1444 down_read(&fs_info->commit_root_sem);
1445 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1446 time_seq, roots);
1447 if (!trans)
1448 up_read(&fs_info->commit_root_sem);
1449 return ret;
1453 * btrfs_check_shared - tell us whether an extent is shared
1455 * btrfs_check_shared uses the backref walking code but will short
1456 * circuit as soon as it finds a root or inode that doesn't match the
1457 * one passed in. This provides a significant performance benefit for
1458 * callers (such as fiemap) which want to know whether the extent is
1459 * shared but do not need a ref count.
1461 * This attempts to attach to the running transaction in order to account for
1462 * delayed refs, but continues on even when no running transaction exists.
1464 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1466 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1468 struct btrfs_fs_info *fs_info = root->fs_info;
1469 struct btrfs_trans_handle *trans;
1470 struct ulist *tmp = NULL;
1471 struct ulist *roots = NULL;
1472 struct ulist_iterator uiter;
1473 struct ulist_node *node;
1474 struct seq_list elem = SEQ_LIST_INIT(elem);
1475 int ret = 0;
1476 struct share_check shared = {
1477 .root_objectid = root->objectid,
1478 .inum = inum,
1479 .share_count = 0,
1482 tmp = ulist_alloc(GFP_NOFS);
1483 roots = ulist_alloc(GFP_NOFS);
1484 if (!tmp || !roots) {
1485 ret = -ENOMEM;
1486 goto out;
1489 trans = btrfs_attach_transaction(root);
1490 if (IS_ERR(trans)) {
1491 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1492 ret = PTR_ERR(trans);
1493 goto out;
1495 trans = NULL;
1496 down_read(&fs_info->commit_root_sem);
1497 } else {
1498 btrfs_get_tree_mod_seq(fs_info, &elem);
1501 ULIST_ITER_INIT(&uiter);
1502 while (1) {
1503 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1504 roots, NULL, &shared);
1505 if (ret == BACKREF_FOUND_SHARED) {
1506 /* this is the only condition under which we return 1 */
1507 ret = 1;
1508 break;
1510 if (ret < 0 && ret != -ENOENT)
1511 break;
1512 ret = 0;
1513 node = ulist_next(tmp, &uiter);
1514 if (!node)
1515 break;
1516 bytenr = node->val;
1517 shared.share_count = 0;
1518 cond_resched();
1521 if (trans) {
1522 btrfs_put_tree_mod_seq(fs_info, &elem);
1523 btrfs_end_transaction(trans);
1524 } else {
1525 up_read(&fs_info->commit_root_sem);
1527 out:
1528 ulist_free(tmp);
1529 ulist_free(roots);
1530 return ret;
1533 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1534 u64 start_off, struct btrfs_path *path,
1535 struct btrfs_inode_extref **ret_extref,
1536 u64 *found_off)
1538 int ret, slot;
1539 struct btrfs_key key;
1540 struct btrfs_key found_key;
1541 struct btrfs_inode_extref *extref;
1542 const struct extent_buffer *leaf;
1543 unsigned long ptr;
1545 key.objectid = inode_objectid;
1546 key.type = BTRFS_INODE_EXTREF_KEY;
1547 key.offset = start_off;
1549 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1550 if (ret < 0)
1551 return ret;
1553 while (1) {
1554 leaf = path->nodes[0];
1555 slot = path->slots[0];
1556 if (slot >= btrfs_header_nritems(leaf)) {
1558 * If the item at offset is not found,
1559 * btrfs_search_slot will point us to the slot
1560 * where it should be inserted. In our case
1561 * that will be the slot directly before the
1562 * next INODE_REF_KEY_V2 item. In the case
1563 * that we're pointing to the last slot in a
1564 * leaf, we must move one leaf over.
1566 ret = btrfs_next_leaf(root, path);
1567 if (ret) {
1568 if (ret >= 1)
1569 ret = -ENOENT;
1570 break;
1572 continue;
1575 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1578 * Check that we're still looking at an extended ref key for
1579 * this particular objectid. If we have different
1580 * objectid or type then there are no more to be found
1581 * in the tree and we can exit.
1583 ret = -ENOENT;
1584 if (found_key.objectid != inode_objectid)
1585 break;
1586 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1587 break;
1589 ret = 0;
1590 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1591 extref = (struct btrfs_inode_extref *)ptr;
1592 *ret_extref = extref;
1593 if (found_off)
1594 *found_off = found_key.offset;
1595 break;
1598 return ret;
1602 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1603 * Elements of the path are separated by '/' and the path is guaranteed to be
1604 * 0-terminated. the path is only given within the current file system.
1605 * Therefore, it never starts with a '/'. the caller is responsible to provide
1606 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1607 * the start point of the resulting string is returned. this pointer is within
1608 * dest, normally.
1609 * in case the path buffer would overflow, the pointer is decremented further
1610 * as if output was written to the buffer, though no more output is actually
1611 * generated. that way, the caller can determine how much space would be
1612 * required for the path to fit into the buffer. in that case, the returned
1613 * value will be smaller than dest. callers must check this!
1615 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1616 u32 name_len, unsigned long name_off,
1617 struct extent_buffer *eb_in, u64 parent,
1618 char *dest, u32 size)
1620 int slot;
1621 u64 next_inum;
1622 int ret;
1623 s64 bytes_left = ((s64)size) - 1;
1624 struct extent_buffer *eb = eb_in;
1625 struct btrfs_key found_key;
1626 int leave_spinning = path->leave_spinning;
1627 struct btrfs_inode_ref *iref;
1629 if (bytes_left >= 0)
1630 dest[bytes_left] = '\0';
1632 path->leave_spinning = 1;
1633 while (1) {
1634 bytes_left -= name_len;
1635 if (bytes_left >= 0)
1636 read_extent_buffer(eb, dest + bytes_left,
1637 name_off, name_len);
1638 if (eb != eb_in) {
1639 if (!path->skip_locking)
1640 btrfs_tree_read_unlock_blocking(eb);
1641 free_extent_buffer(eb);
1643 ret = btrfs_find_item(fs_root, path, parent, 0,
1644 BTRFS_INODE_REF_KEY, &found_key);
1645 if (ret > 0)
1646 ret = -ENOENT;
1647 if (ret)
1648 break;
1650 next_inum = found_key.offset;
1652 /* regular exit ahead */
1653 if (parent == next_inum)
1654 break;
1656 slot = path->slots[0];
1657 eb = path->nodes[0];
1658 /* make sure we can use eb after releasing the path */
1659 if (eb != eb_in) {
1660 if (!path->skip_locking)
1661 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1662 path->nodes[0] = NULL;
1663 path->locks[0] = 0;
1665 btrfs_release_path(path);
1666 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1668 name_len = btrfs_inode_ref_name_len(eb, iref);
1669 name_off = (unsigned long)(iref + 1);
1671 parent = next_inum;
1672 --bytes_left;
1673 if (bytes_left >= 0)
1674 dest[bytes_left] = '/';
1677 btrfs_release_path(path);
1678 path->leave_spinning = leave_spinning;
1680 if (ret)
1681 return ERR_PTR(ret);
1683 return dest + bytes_left;
1687 * this makes the path point to (logical EXTENT_ITEM *)
1688 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1689 * tree blocks and <0 on error.
1691 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1692 struct btrfs_path *path, struct btrfs_key *found_key,
1693 u64 *flags_ret)
1695 int ret;
1696 u64 flags;
1697 u64 size = 0;
1698 u32 item_size;
1699 const struct extent_buffer *eb;
1700 struct btrfs_extent_item *ei;
1701 struct btrfs_key key;
1703 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1704 key.type = BTRFS_METADATA_ITEM_KEY;
1705 else
1706 key.type = BTRFS_EXTENT_ITEM_KEY;
1707 key.objectid = logical;
1708 key.offset = (u64)-1;
1710 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1711 if (ret < 0)
1712 return ret;
1714 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1715 if (ret) {
1716 if (ret > 0)
1717 ret = -ENOENT;
1718 return ret;
1720 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1721 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1722 size = fs_info->nodesize;
1723 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1724 size = found_key->offset;
1726 if (found_key->objectid > logical ||
1727 found_key->objectid + size <= logical) {
1728 btrfs_debug(fs_info,
1729 "logical %llu is not within any extent", logical);
1730 return -ENOENT;
1733 eb = path->nodes[0];
1734 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1735 BUG_ON(item_size < sizeof(*ei));
1737 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1738 flags = btrfs_extent_flags(eb, ei);
1740 btrfs_debug(fs_info,
1741 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1742 logical, logical - found_key->objectid, found_key->objectid,
1743 found_key->offset, flags, item_size);
1745 WARN_ON(!flags_ret);
1746 if (flags_ret) {
1747 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1748 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1749 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1750 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1751 else
1752 BUG_ON(1);
1753 return 0;
1756 return -EIO;
1760 * helper function to iterate extent inline refs. ptr must point to a 0 value
1761 * for the first call and may be modified. it is used to track state.
1762 * if more refs exist, 0 is returned and the next call to
1763 * get_extent_inline_ref must pass the modified ptr parameter to get the
1764 * next ref. after the last ref was processed, 1 is returned.
1765 * returns <0 on error
1767 static int get_extent_inline_ref(unsigned long *ptr,
1768 const struct extent_buffer *eb,
1769 const struct btrfs_key *key,
1770 const struct btrfs_extent_item *ei,
1771 u32 item_size,
1772 struct btrfs_extent_inline_ref **out_eiref,
1773 int *out_type)
1775 unsigned long end;
1776 u64 flags;
1777 struct btrfs_tree_block_info *info;
1779 if (!*ptr) {
1780 /* first call */
1781 flags = btrfs_extent_flags(eb, ei);
1782 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1783 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1784 /* a skinny metadata extent */
1785 *out_eiref =
1786 (struct btrfs_extent_inline_ref *)(ei + 1);
1787 } else {
1788 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1789 info = (struct btrfs_tree_block_info *)(ei + 1);
1790 *out_eiref =
1791 (struct btrfs_extent_inline_ref *)(info + 1);
1793 } else {
1794 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1796 *ptr = (unsigned long)*out_eiref;
1797 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1798 return -ENOENT;
1801 end = (unsigned long)ei + item_size;
1802 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1803 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1804 BTRFS_REF_TYPE_ANY);
1805 if (*out_type == BTRFS_REF_TYPE_INVALID)
1806 return -EINVAL;
1808 *ptr += btrfs_extent_inline_ref_size(*out_type);
1809 WARN_ON(*ptr > end);
1810 if (*ptr == end)
1811 return 1; /* last */
1813 return 0;
1817 * reads the tree block backref for an extent. tree level and root are returned
1818 * through out_level and out_root. ptr must point to a 0 value for the first
1819 * call and may be modified (see get_extent_inline_ref comment).
1820 * returns 0 if data was provided, 1 if there was no more data to provide or
1821 * <0 on error.
1823 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1824 struct btrfs_key *key, struct btrfs_extent_item *ei,
1825 u32 item_size, u64 *out_root, u8 *out_level)
1827 int ret;
1828 int type;
1829 struct btrfs_extent_inline_ref *eiref;
1831 if (*ptr == (unsigned long)-1)
1832 return 1;
1834 while (1) {
1835 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1836 &eiref, &type);
1837 if (ret < 0)
1838 return ret;
1840 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1841 type == BTRFS_SHARED_BLOCK_REF_KEY)
1842 break;
1844 if (ret == 1)
1845 return 1;
1848 /* we can treat both ref types equally here */
1849 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1851 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1852 struct btrfs_tree_block_info *info;
1854 info = (struct btrfs_tree_block_info *)(ei + 1);
1855 *out_level = btrfs_tree_block_level(eb, info);
1856 } else {
1857 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1858 *out_level = (u8)key->offset;
1861 if (ret == 1)
1862 *ptr = (unsigned long)-1;
1864 return 0;
1867 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1868 struct extent_inode_elem *inode_list,
1869 u64 root, u64 extent_item_objectid,
1870 iterate_extent_inodes_t *iterate, void *ctx)
1872 struct extent_inode_elem *eie;
1873 int ret = 0;
1875 for (eie = inode_list; eie; eie = eie->next) {
1876 btrfs_debug(fs_info,
1877 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1878 extent_item_objectid, eie->inum,
1879 eie->offset, root);
1880 ret = iterate(eie->inum, eie->offset, root, ctx);
1881 if (ret) {
1882 btrfs_debug(fs_info,
1883 "stopping iteration for %llu due to ret=%d",
1884 extent_item_objectid, ret);
1885 break;
1889 return ret;
1893 * calls iterate() for every inode that references the extent identified by
1894 * the given parameters.
1895 * when the iterator function returns a non-zero value, iteration stops.
1897 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1898 u64 extent_item_objectid, u64 extent_item_pos,
1899 int search_commit_root,
1900 iterate_extent_inodes_t *iterate, void *ctx)
1902 int ret;
1903 struct btrfs_trans_handle *trans = NULL;
1904 struct ulist *refs = NULL;
1905 struct ulist *roots = NULL;
1906 struct ulist_node *ref_node = NULL;
1907 struct ulist_node *root_node = NULL;
1908 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1909 struct ulist_iterator ref_uiter;
1910 struct ulist_iterator root_uiter;
1912 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1913 extent_item_objectid);
1915 if (!search_commit_root) {
1916 trans = btrfs_attach_transaction(fs_info->extent_root);
1917 if (IS_ERR(trans)) {
1918 if (PTR_ERR(trans) != -ENOENT &&
1919 PTR_ERR(trans) != -EROFS)
1920 return PTR_ERR(trans);
1921 trans = NULL;
1925 if (trans)
1926 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1927 else
1928 down_read(&fs_info->commit_root_sem);
1930 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1931 tree_mod_seq_elem.seq, &refs,
1932 &extent_item_pos);
1933 if (ret)
1934 goto out;
1936 ULIST_ITER_INIT(&ref_uiter);
1937 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1938 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1939 tree_mod_seq_elem.seq, &roots);
1940 if (ret)
1941 break;
1942 ULIST_ITER_INIT(&root_uiter);
1943 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1944 btrfs_debug(fs_info,
1945 "root %llu references leaf %llu, data list %#llx",
1946 root_node->val, ref_node->val,
1947 ref_node->aux);
1948 ret = iterate_leaf_refs(fs_info,
1949 (struct extent_inode_elem *)
1950 (uintptr_t)ref_node->aux,
1951 root_node->val,
1952 extent_item_objectid,
1953 iterate, ctx);
1955 ulist_free(roots);
1958 free_leaf_list(refs);
1959 out:
1960 if (trans) {
1961 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1962 btrfs_end_transaction(trans);
1963 } else {
1964 up_read(&fs_info->commit_root_sem);
1967 return ret;
1970 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1971 struct btrfs_path *path,
1972 iterate_extent_inodes_t *iterate, void *ctx)
1974 int ret;
1975 u64 extent_item_pos;
1976 u64 flags = 0;
1977 struct btrfs_key found_key;
1978 int search_commit_root = path->search_commit_root;
1980 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1981 btrfs_release_path(path);
1982 if (ret < 0)
1983 return ret;
1984 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985 return -EINVAL;
1987 extent_item_pos = logical - found_key.objectid;
1988 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1989 extent_item_pos, search_commit_root,
1990 iterate, ctx);
1992 return ret;
1995 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1996 struct extent_buffer *eb, void *ctx);
1998 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1999 struct btrfs_path *path,
2000 iterate_irefs_t *iterate, void *ctx)
2002 int ret = 0;
2003 int slot;
2004 u32 cur;
2005 u32 len;
2006 u32 name_len;
2007 u64 parent = 0;
2008 int found = 0;
2009 struct extent_buffer *eb;
2010 struct btrfs_item *item;
2011 struct btrfs_inode_ref *iref;
2012 struct btrfs_key found_key;
2014 while (!ret) {
2015 ret = btrfs_find_item(fs_root, path, inum,
2016 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2017 &found_key);
2019 if (ret < 0)
2020 break;
2021 if (ret) {
2022 ret = found ? 0 : -ENOENT;
2023 break;
2025 ++found;
2027 parent = found_key.offset;
2028 slot = path->slots[0];
2029 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2030 if (!eb) {
2031 ret = -ENOMEM;
2032 break;
2034 extent_buffer_get(eb);
2035 btrfs_tree_read_lock(eb);
2036 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2037 btrfs_release_path(path);
2039 item = btrfs_item_nr(slot);
2040 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2042 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2043 name_len = btrfs_inode_ref_name_len(eb, iref);
2044 /* path must be released before calling iterate()! */
2045 btrfs_debug(fs_root->fs_info,
2046 "following ref at offset %u for inode %llu in tree %llu",
2047 cur, found_key.objectid, fs_root->objectid);
2048 ret = iterate(parent, name_len,
2049 (unsigned long)(iref + 1), eb, ctx);
2050 if (ret)
2051 break;
2052 len = sizeof(*iref) + name_len;
2053 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2055 btrfs_tree_read_unlock_blocking(eb);
2056 free_extent_buffer(eb);
2059 btrfs_release_path(path);
2061 return ret;
2064 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2065 struct btrfs_path *path,
2066 iterate_irefs_t *iterate, void *ctx)
2068 int ret;
2069 int slot;
2070 u64 offset = 0;
2071 u64 parent;
2072 int found = 0;
2073 struct extent_buffer *eb;
2074 struct btrfs_inode_extref *extref;
2075 u32 item_size;
2076 u32 cur_offset;
2077 unsigned long ptr;
2079 while (1) {
2080 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2081 &offset);
2082 if (ret < 0)
2083 break;
2084 if (ret) {
2085 ret = found ? 0 : -ENOENT;
2086 break;
2088 ++found;
2090 slot = path->slots[0];
2091 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2092 if (!eb) {
2093 ret = -ENOMEM;
2094 break;
2096 extent_buffer_get(eb);
2098 btrfs_tree_read_lock(eb);
2099 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2100 btrfs_release_path(path);
2102 item_size = btrfs_item_size_nr(eb, slot);
2103 ptr = btrfs_item_ptr_offset(eb, slot);
2104 cur_offset = 0;
2106 while (cur_offset < item_size) {
2107 u32 name_len;
2109 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2110 parent = btrfs_inode_extref_parent(eb, extref);
2111 name_len = btrfs_inode_extref_name_len(eb, extref);
2112 ret = iterate(parent, name_len,
2113 (unsigned long)&extref->name, eb, ctx);
2114 if (ret)
2115 break;
2117 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2118 cur_offset += sizeof(*extref);
2120 btrfs_tree_read_unlock_blocking(eb);
2121 free_extent_buffer(eb);
2123 offset++;
2126 btrfs_release_path(path);
2128 return ret;
2131 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2132 struct btrfs_path *path, iterate_irefs_t *iterate,
2133 void *ctx)
2135 int ret;
2136 int found_refs = 0;
2138 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2139 if (!ret)
2140 ++found_refs;
2141 else if (ret != -ENOENT)
2142 return ret;
2144 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2145 if (ret == -ENOENT && found_refs)
2146 return 0;
2148 return ret;
2152 * returns 0 if the path could be dumped (probably truncated)
2153 * returns <0 in case of an error
2155 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2156 struct extent_buffer *eb, void *ctx)
2158 struct inode_fs_paths *ipath = ctx;
2159 char *fspath;
2160 char *fspath_min;
2161 int i = ipath->fspath->elem_cnt;
2162 const int s_ptr = sizeof(char *);
2163 u32 bytes_left;
2165 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2166 ipath->fspath->bytes_left - s_ptr : 0;
2168 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2169 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2170 name_off, eb, inum, fspath_min, bytes_left);
2171 if (IS_ERR(fspath))
2172 return PTR_ERR(fspath);
2174 if (fspath > fspath_min) {
2175 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2176 ++ipath->fspath->elem_cnt;
2177 ipath->fspath->bytes_left = fspath - fspath_min;
2178 } else {
2179 ++ipath->fspath->elem_missed;
2180 ipath->fspath->bytes_missing += fspath_min - fspath;
2181 ipath->fspath->bytes_left = 0;
2184 return 0;
2188 * this dumps all file system paths to the inode into the ipath struct, provided
2189 * is has been created large enough. each path is zero-terminated and accessed
2190 * from ipath->fspath->val[i].
2191 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2192 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2193 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2194 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2195 * have been needed to return all paths.
2197 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2199 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2200 inode_to_path, ipath);
2203 struct btrfs_data_container *init_data_container(u32 total_bytes)
2205 struct btrfs_data_container *data;
2206 size_t alloc_bytes;
2208 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2209 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2210 if (!data)
2211 return ERR_PTR(-ENOMEM);
2213 if (total_bytes >= sizeof(*data)) {
2214 data->bytes_left = total_bytes - sizeof(*data);
2215 data->bytes_missing = 0;
2216 } else {
2217 data->bytes_missing = sizeof(*data) - total_bytes;
2218 data->bytes_left = 0;
2221 data->elem_cnt = 0;
2222 data->elem_missed = 0;
2224 return data;
2228 * allocates space to return multiple file system paths for an inode.
2229 * total_bytes to allocate are passed, note that space usable for actual path
2230 * information will be total_bytes - sizeof(struct inode_fs_paths).
2231 * the returned pointer must be freed with free_ipath() in the end.
2233 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2234 struct btrfs_path *path)
2236 struct inode_fs_paths *ifp;
2237 struct btrfs_data_container *fspath;
2239 fspath = init_data_container(total_bytes);
2240 if (IS_ERR(fspath))
2241 return (void *)fspath;
2243 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2244 if (!ifp) {
2245 kvfree(fspath);
2246 return ERR_PTR(-ENOMEM);
2249 ifp->btrfs_path = path;
2250 ifp->fspath = fspath;
2251 ifp->fs_root = fs_root;
2253 return ifp;
2256 void free_ipath(struct inode_fs_paths *ipath)
2258 if (!ipath)
2259 return;
2260 kvfree(ipath->fspath);
2261 kfree(ipath);