2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
32 #include "print-tree.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
42 #undef SCRAMBLE_DELAYED_REFS
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
59 CHUNK_ALLOC_NO_FORCE
= 0,
60 CHUNK_ALLOC_LIMITED
= 1,
61 CHUNK_ALLOC_FORCE
= 2,
64 static int update_block_group(struct btrfs_trans_handle
*trans
,
65 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
66 u64 num_bytes
, int alloc
);
67 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
68 struct btrfs_fs_info
*fs_info
,
69 struct btrfs_delayed_ref_node
*node
, u64 parent
,
70 u64 root_objectid
, u64 owner_objectid
,
71 u64 owner_offset
, int refs_to_drop
,
72 struct btrfs_delayed_extent_op
*extra_op
);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
74 struct extent_buffer
*leaf
,
75 struct btrfs_extent_item
*ei
);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
77 struct btrfs_fs_info
*fs_info
,
78 u64 parent
, u64 root_objectid
,
79 u64 flags
, u64 owner
, u64 offset
,
80 struct btrfs_key
*ins
, int ref_mod
);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
82 struct btrfs_fs_info
*fs_info
,
83 u64 parent
, u64 root_objectid
,
84 u64 flags
, struct btrfs_disk_key
*key
,
85 int level
, struct btrfs_key
*ins
);
86 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
87 struct btrfs_fs_info
*fs_info
, u64 flags
,
89 static int find_next_key(struct btrfs_path
*path
, int level
,
90 struct btrfs_key
*key
);
91 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
92 struct btrfs_space_info
*info
, u64 bytes
,
93 int dump_block_groups
);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
95 u64 ram_bytes
, u64 num_bytes
, int delalloc
);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
97 u64 num_bytes
, int delalloc
);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
100 static int __reserve_metadata_bytes(struct btrfs_fs_info
*fs_info
,
101 struct btrfs_space_info
*space_info
,
103 enum btrfs_reserve_flush_enum flush
,
105 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
106 struct btrfs_space_info
*space_info
,
108 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
109 struct btrfs_space_info
*space_info
,
113 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
116 return cache
->cached
== BTRFS_CACHE_FINISHED
||
117 cache
->cached
== BTRFS_CACHE_ERROR
;
120 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
122 return (cache
->flags
& bits
) == bits
;
125 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
127 atomic_inc(&cache
->count
);
130 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
132 if (atomic_dec_and_test(&cache
->count
)) {
133 WARN_ON(cache
->pinned
> 0);
134 WARN_ON(cache
->reserved
> 0);
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
142 * No better way to resolve, but only to warn.
144 WARN_ON(!RB_EMPTY_ROOT(&cache
->full_stripe_locks_root
.root
));
145 kfree(cache
->free_space_ctl
);
151 * this adds the block group to the fs_info rb tree for the block group
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
155 struct btrfs_block_group_cache
*block_group
)
158 struct rb_node
*parent
= NULL
;
159 struct btrfs_block_group_cache
*cache
;
161 spin_lock(&info
->block_group_cache_lock
);
162 p
= &info
->block_group_cache_tree
.rb_node
;
166 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
168 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
170 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
173 spin_unlock(&info
->block_group_cache_lock
);
178 rb_link_node(&block_group
->cache_node
, parent
, p
);
179 rb_insert_color(&block_group
->cache_node
,
180 &info
->block_group_cache_tree
);
182 if (info
->first_logical_byte
> block_group
->key
.objectid
)
183 info
->first_logical_byte
= block_group
->key
.objectid
;
185 spin_unlock(&info
->block_group_cache_lock
);
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
194 static struct btrfs_block_group_cache
*
195 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
198 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
202 spin_lock(&info
->block_group_cache_lock
);
203 n
= info
->block_group_cache_tree
.rb_node
;
206 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
208 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
209 start
= cache
->key
.objectid
;
211 if (bytenr
< start
) {
212 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
215 } else if (bytenr
> start
) {
216 if (contains
&& bytenr
<= end
) {
227 btrfs_get_block_group(ret
);
228 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
229 info
->first_logical_byte
= ret
->key
.objectid
;
231 spin_unlock(&info
->block_group_cache_lock
);
236 static int add_excluded_extent(struct btrfs_fs_info
*fs_info
,
237 u64 start
, u64 num_bytes
)
239 u64 end
= start
+ num_bytes
- 1;
240 set_extent_bits(&fs_info
->freed_extents
[0],
241 start
, end
, EXTENT_UPTODATE
);
242 set_extent_bits(&fs_info
->freed_extents
[1],
243 start
, end
, EXTENT_UPTODATE
);
247 static void free_excluded_extents(struct btrfs_fs_info
*fs_info
,
248 struct btrfs_block_group_cache
*cache
)
252 start
= cache
->key
.objectid
;
253 end
= start
+ cache
->key
.offset
- 1;
255 clear_extent_bits(&fs_info
->freed_extents
[0],
256 start
, end
, EXTENT_UPTODATE
);
257 clear_extent_bits(&fs_info
->freed_extents
[1],
258 start
, end
, EXTENT_UPTODATE
);
261 static int exclude_super_stripes(struct btrfs_fs_info
*fs_info
,
262 struct btrfs_block_group_cache
*cache
)
269 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
270 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
271 cache
->bytes_super
+= stripe_len
;
272 ret
= add_excluded_extent(fs_info
, cache
->key
.objectid
,
278 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
279 bytenr
= btrfs_sb_offset(i
);
280 ret
= btrfs_rmap_block(fs_info
, cache
->key
.objectid
,
281 bytenr
, 0, &logical
, &nr
, &stripe_len
);
288 if (logical
[nr
] > cache
->key
.objectid
+
292 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
296 if (start
< cache
->key
.objectid
) {
297 start
= cache
->key
.objectid
;
298 len
= (logical
[nr
] + stripe_len
) - start
;
300 len
= min_t(u64
, stripe_len
,
301 cache
->key
.objectid
+
302 cache
->key
.offset
- start
);
305 cache
->bytes_super
+= len
;
306 ret
= add_excluded_extent(fs_info
, start
, len
);
318 static struct btrfs_caching_control
*
319 get_caching_control(struct btrfs_block_group_cache
*cache
)
321 struct btrfs_caching_control
*ctl
;
323 spin_lock(&cache
->lock
);
324 if (!cache
->caching_ctl
) {
325 spin_unlock(&cache
->lock
);
329 ctl
= cache
->caching_ctl
;
330 refcount_inc(&ctl
->count
);
331 spin_unlock(&cache
->lock
);
335 static void put_caching_control(struct btrfs_caching_control
*ctl
)
337 if (refcount_dec_and_test(&ctl
->count
))
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache
*block_group
)
344 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
345 u64 start
= block_group
->key
.objectid
;
346 u64 len
= block_group
->key
.offset
;
347 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
348 fs_info
->nodesize
: fs_info
->sectorsize
;
349 u64 step
= chunk
<< 1;
351 while (len
> chunk
) {
352 btrfs_remove_free_space(block_group
, start
, chunk
);
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
367 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
368 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
370 u64 extent_start
, extent_end
, size
, total_added
= 0;
373 while (start
< end
) {
374 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
375 &extent_start
, &extent_end
,
376 EXTENT_DIRTY
| EXTENT_UPTODATE
,
381 if (extent_start
<= start
) {
382 start
= extent_end
+ 1;
383 } else if (extent_start
> start
&& extent_start
< end
) {
384 size
= extent_start
- start
;
386 ret
= btrfs_add_free_space(block_group
, start
,
388 BUG_ON(ret
); /* -ENOMEM or logic error */
389 start
= extent_end
+ 1;
398 ret
= btrfs_add_free_space(block_group
, start
, size
);
399 BUG_ON(ret
); /* -ENOMEM or logic error */
405 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
407 struct btrfs_block_group_cache
*block_group
= caching_ctl
->block_group
;
408 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
409 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
410 struct btrfs_path
*path
;
411 struct extent_buffer
*leaf
;
412 struct btrfs_key key
;
419 path
= btrfs_alloc_path();
423 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
425 #ifdef CONFIG_BTRFS_DEBUG
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
431 if (btrfs_should_fragment_free_space(block_group
))
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
440 path
->skip_locking
= 1;
441 path
->search_commit_root
= 1;
442 path
->reada
= READA_FORWARD
;
446 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
449 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
453 leaf
= path
->nodes
[0];
454 nritems
= btrfs_header_nritems(leaf
);
457 if (btrfs_fs_closing(fs_info
) > 1) {
462 if (path
->slots
[0] < nritems
) {
463 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
465 ret
= find_next_key(path
, 0, &key
);
469 if (need_resched() ||
470 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
472 caching_ctl
->progress
= last
;
473 btrfs_release_path(path
);
474 up_read(&fs_info
->commit_root_sem
);
475 mutex_unlock(&caching_ctl
->mutex
);
477 mutex_lock(&caching_ctl
->mutex
);
478 down_read(&fs_info
->commit_root_sem
);
482 ret
= btrfs_next_leaf(extent_root
, path
);
487 leaf
= path
->nodes
[0];
488 nritems
= btrfs_header_nritems(leaf
);
492 if (key
.objectid
< last
) {
495 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
498 caching_ctl
->progress
= last
;
499 btrfs_release_path(path
);
503 if (key
.objectid
< block_group
->key
.objectid
) {
508 if (key
.objectid
>= block_group
->key
.objectid
+
509 block_group
->key
.offset
)
512 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
513 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
514 total_found
+= add_new_free_space(block_group
,
517 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
518 last
= key
.objectid
+
521 last
= key
.objectid
+ key
.offset
;
523 if (total_found
> CACHING_CTL_WAKE_UP
) {
526 wake_up(&caching_ctl
->wait
);
533 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
534 block_group
->key
.objectid
+
535 block_group
->key
.offset
);
536 caching_ctl
->progress
= (u64
)-1;
539 btrfs_free_path(path
);
543 static noinline
void caching_thread(struct btrfs_work
*work
)
545 struct btrfs_block_group_cache
*block_group
;
546 struct btrfs_fs_info
*fs_info
;
547 struct btrfs_caching_control
*caching_ctl
;
548 struct btrfs_root
*extent_root
;
551 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
552 block_group
= caching_ctl
->block_group
;
553 fs_info
= block_group
->fs_info
;
554 extent_root
= fs_info
->extent_root
;
556 mutex_lock(&caching_ctl
->mutex
);
557 down_read(&fs_info
->commit_root_sem
);
559 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
560 ret
= load_free_space_tree(caching_ctl
);
562 ret
= load_extent_tree_free(caching_ctl
);
564 spin_lock(&block_group
->lock
);
565 block_group
->caching_ctl
= NULL
;
566 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
567 spin_unlock(&block_group
->lock
);
569 #ifdef CONFIG_BTRFS_DEBUG
570 if (btrfs_should_fragment_free_space(block_group
)) {
573 spin_lock(&block_group
->space_info
->lock
);
574 spin_lock(&block_group
->lock
);
575 bytes_used
= block_group
->key
.offset
-
576 btrfs_block_group_used(&block_group
->item
);
577 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
578 spin_unlock(&block_group
->lock
);
579 spin_unlock(&block_group
->space_info
->lock
);
580 fragment_free_space(block_group
);
584 caching_ctl
->progress
= (u64
)-1;
586 up_read(&fs_info
->commit_root_sem
);
587 free_excluded_extents(fs_info
, block_group
);
588 mutex_unlock(&caching_ctl
->mutex
);
590 wake_up(&caching_ctl
->wait
);
592 put_caching_control(caching_ctl
);
593 btrfs_put_block_group(block_group
);
596 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
600 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
601 struct btrfs_caching_control
*caching_ctl
;
604 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
608 INIT_LIST_HEAD(&caching_ctl
->list
);
609 mutex_init(&caching_ctl
->mutex
);
610 init_waitqueue_head(&caching_ctl
->wait
);
611 caching_ctl
->block_group
= cache
;
612 caching_ctl
->progress
= cache
->key
.objectid
;
613 refcount_set(&caching_ctl
->count
, 1);
614 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
615 caching_thread
, NULL
, NULL
);
617 spin_lock(&cache
->lock
);
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
630 while (cache
->cached
== BTRFS_CACHE_FAST
) {
631 struct btrfs_caching_control
*ctl
;
633 ctl
= cache
->caching_ctl
;
634 refcount_inc(&ctl
->count
);
635 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
636 spin_unlock(&cache
->lock
);
640 finish_wait(&ctl
->wait
, &wait
);
641 put_caching_control(ctl
);
642 spin_lock(&cache
->lock
);
645 if (cache
->cached
!= BTRFS_CACHE_NO
) {
646 spin_unlock(&cache
->lock
);
650 WARN_ON(cache
->caching_ctl
);
651 cache
->caching_ctl
= caching_ctl
;
652 cache
->cached
= BTRFS_CACHE_FAST
;
653 spin_unlock(&cache
->lock
);
655 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
656 mutex_lock(&caching_ctl
->mutex
);
657 ret
= load_free_space_cache(fs_info
, cache
);
659 spin_lock(&cache
->lock
);
661 cache
->caching_ctl
= NULL
;
662 cache
->cached
= BTRFS_CACHE_FINISHED
;
663 cache
->last_byte_to_unpin
= (u64
)-1;
664 caching_ctl
->progress
= (u64
)-1;
666 if (load_cache_only
) {
667 cache
->caching_ctl
= NULL
;
668 cache
->cached
= BTRFS_CACHE_NO
;
670 cache
->cached
= BTRFS_CACHE_STARTED
;
671 cache
->has_caching_ctl
= 1;
674 spin_unlock(&cache
->lock
);
675 #ifdef CONFIG_BTRFS_DEBUG
677 btrfs_should_fragment_free_space(cache
)) {
680 spin_lock(&cache
->space_info
->lock
);
681 spin_lock(&cache
->lock
);
682 bytes_used
= cache
->key
.offset
-
683 btrfs_block_group_used(&cache
->item
);
684 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
685 spin_unlock(&cache
->lock
);
686 spin_unlock(&cache
->space_info
->lock
);
687 fragment_free_space(cache
);
690 mutex_unlock(&caching_ctl
->mutex
);
692 wake_up(&caching_ctl
->wait
);
694 put_caching_control(caching_ctl
);
695 free_excluded_extents(fs_info
, cache
);
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
703 spin_lock(&cache
->lock
);
704 if (load_cache_only
) {
705 cache
->caching_ctl
= NULL
;
706 cache
->cached
= BTRFS_CACHE_NO
;
708 cache
->cached
= BTRFS_CACHE_STARTED
;
709 cache
->has_caching_ctl
= 1;
711 spin_unlock(&cache
->lock
);
712 wake_up(&caching_ctl
->wait
);
715 if (load_cache_only
) {
716 put_caching_control(caching_ctl
);
720 down_write(&fs_info
->commit_root_sem
);
721 refcount_inc(&caching_ctl
->count
);
722 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
723 up_write(&fs_info
->commit_root_sem
);
725 btrfs_get_block_group(cache
);
727 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
733 * return the block group that starts at or after bytenr
735 static struct btrfs_block_group_cache
*
736 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
738 return block_group_cache_tree_search(info
, bytenr
, 0);
742 * return the block group that contains the given bytenr
744 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
745 struct btrfs_fs_info
*info
,
748 return block_group_cache_tree_search(info
, bytenr
, 1);
751 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
754 struct list_head
*head
= &info
->space_info
;
755 struct btrfs_space_info
*found
;
757 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
760 list_for_each_entry_rcu(found
, head
, list
) {
761 if (found
->flags
& flags
) {
770 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, s64 num_bytes
,
771 u64 owner
, u64 root_objectid
)
773 struct btrfs_space_info
*space_info
;
776 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
777 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
778 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
780 flags
= BTRFS_BLOCK_GROUP_METADATA
;
782 flags
= BTRFS_BLOCK_GROUP_DATA
;
785 space_info
= __find_space_info(fs_info
, flags
);
787 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
794 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
796 struct list_head
*head
= &info
->space_info
;
797 struct btrfs_space_info
*found
;
800 list_for_each_entry_rcu(found
, head
, list
)
805 /* simple helper to search for an existing data extent at a given offset */
806 int btrfs_lookup_data_extent(struct btrfs_fs_info
*fs_info
, u64 start
, u64 len
)
809 struct btrfs_key key
;
810 struct btrfs_path
*path
;
812 path
= btrfs_alloc_path();
816 key
.objectid
= start
;
818 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
819 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
820 btrfs_free_path(path
);
825 * helper function to lookup reference count and flags of a tree block.
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
833 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
834 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
835 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
837 struct btrfs_delayed_ref_head
*head
;
838 struct btrfs_delayed_ref_root
*delayed_refs
;
839 struct btrfs_path
*path
;
840 struct btrfs_extent_item
*ei
;
841 struct extent_buffer
*leaf
;
842 struct btrfs_key key
;
849 * If we don't have skinny metadata, don't bother doing anything
852 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
)) {
853 offset
= fs_info
->nodesize
;
857 path
= btrfs_alloc_path();
862 path
->skip_locking
= 1;
863 path
->search_commit_root
= 1;
867 key
.objectid
= bytenr
;
870 key
.type
= BTRFS_METADATA_ITEM_KEY
;
872 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
874 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
878 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
879 if (path
->slots
[0]) {
881 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
883 if (key
.objectid
== bytenr
&&
884 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
885 key
.offset
== fs_info
->nodesize
)
891 leaf
= path
->nodes
[0];
892 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
893 if (item_size
>= sizeof(*ei
)) {
894 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
895 struct btrfs_extent_item
);
896 num_refs
= btrfs_extent_refs(leaf
, ei
);
897 extent_flags
= btrfs_extent_flags(leaf
, ei
);
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0
*ei0
;
901 BUG_ON(item_size
!= sizeof(*ei0
));
902 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
903 struct btrfs_extent_item_v0
);
904 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
905 /* FIXME: this isn't correct for data */
906 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
911 BUG_ON(num_refs
== 0);
921 delayed_refs
= &trans
->transaction
->delayed_refs
;
922 spin_lock(&delayed_refs
->lock
);
923 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
925 if (!mutex_trylock(&head
->mutex
)) {
926 refcount_inc(&head
->node
.refs
);
927 spin_unlock(&delayed_refs
->lock
);
929 btrfs_release_path(path
);
932 * Mutex was contended, block until it's released and try
935 mutex_lock(&head
->mutex
);
936 mutex_unlock(&head
->mutex
);
937 btrfs_put_delayed_ref(&head
->node
);
940 spin_lock(&head
->lock
);
941 if (head
->extent_op
&& head
->extent_op
->update_flags
)
942 extent_flags
|= head
->extent_op
->flags_to_set
;
944 BUG_ON(num_refs
== 0);
946 num_refs
+= head
->node
.ref_mod
;
947 spin_unlock(&head
->lock
);
948 mutex_unlock(&head
->mutex
);
950 spin_unlock(&delayed_refs
->lock
);
952 WARN_ON(num_refs
== 0);
956 *flags
= extent_flags
;
958 btrfs_free_path(path
);
963 * Back reference rules. Back refs have three main goals:
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
994 * When a tree block is COWed through a tree, there are four cases:
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1014 * Back Reference Key composing:
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1021 * File extents can be referenced by:
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
1024 * - different files inside a single subvolume
1025 * - different offsets inside a file (bookend extents in file.c)
1027 * The extent ref structure for the implicit back refs has fields for:
1029 * - Objectid of the subvolume root
1030 * - objectid of the file holding the reference
1031 * - original offset in the file
1032 * - how many bookend extents
1034 * The key offset for the implicit back refs is hash of the first
1037 * The extent ref structure for the full back refs has field for:
1039 * - number of pointers in the tree leaf
1041 * The key offset for the implicit back refs is the first byte of
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
1047 * (root_key.objectid, inode objectid, offset in file, 1)
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1054 * Btree extents can be referenced by:
1056 * - Different subvolumes
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1070 struct btrfs_fs_info
*fs_info
,
1071 struct btrfs_path
*path
,
1072 u64 owner
, u32 extra_size
)
1074 struct btrfs_root
*root
= fs_info
->extent_root
;
1075 struct btrfs_extent_item
*item
;
1076 struct btrfs_extent_item_v0
*ei0
;
1077 struct btrfs_extent_ref_v0
*ref0
;
1078 struct btrfs_tree_block_info
*bi
;
1079 struct extent_buffer
*leaf
;
1080 struct btrfs_key key
;
1081 struct btrfs_key found_key
;
1082 u32 new_size
= sizeof(*item
);
1086 leaf
= path
->nodes
[0];
1087 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1089 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1090 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1091 struct btrfs_extent_item_v0
);
1092 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1094 if (owner
== (u64
)-1) {
1096 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1097 ret
= btrfs_next_leaf(root
, path
);
1100 BUG_ON(ret
> 0); /* Corruption */
1101 leaf
= path
->nodes
[0];
1103 btrfs_item_key_to_cpu(leaf
, &found_key
,
1105 BUG_ON(key
.objectid
!= found_key
.objectid
);
1106 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1110 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1111 struct btrfs_extent_ref_v0
);
1112 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1116 btrfs_release_path(path
);
1118 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1119 new_size
+= sizeof(*bi
);
1121 new_size
-= sizeof(*ei0
);
1122 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1123 new_size
+ extra_size
, 1);
1126 BUG_ON(ret
); /* Corruption */
1128 btrfs_extend_item(fs_info
, path
, new_size
);
1130 leaf
= path
->nodes
[0];
1131 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1132 btrfs_set_extent_refs(leaf
, item
, refs
);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf
, item
, 0);
1135 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1136 btrfs_set_extent_flags(leaf
, item
,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1139 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1140 /* FIXME: get first key of the block */
1141 memzero_extent_buffer(leaf
, (unsigned long)bi
, sizeof(*bi
));
1142 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1144 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1146 btrfs_mark_buffer_dirty(leaf
);
1152 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1153 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1154 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1156 int btrfs_get_extent_inline_ref_type(const struct extent_buffer
*eb
,
1157 struct btrfs_extent_inline_ref
*iref
,
1158 enum btrfs_inline_ref_type is_data
)
1160 int type
= btrfs_extent_inline_ref_type(eb
, iref
);
1161 u64 offset
= btrfs_extent_inline_ref_offset(eb
, iref
);
1163 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1164 type
== BTRFS_SHARED_BLOCK_REF_KEY
||
1165 type
== BTRFS_SHARED_DATA_REF_KEY
||
1166 type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1167 if (is_data
== BTRFS_REF_TYPE_BLOCK
) {
1168 if (type
== BTRFS_TREE_BLOCK_REF_KEY
)
1170 if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1171 ASSERT(eb
->fs_info
);
1173 * Every shared one has parent tree block,
1174 * which must be aligned to sector size.
1177 IS_ALIGNED(offset
, eb
->fs_info
->sectorsize
))
1180 } else if (is_data
== BTRFS_REF_TYPE_DATA
) {
1181 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1183 if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1184 ASSERT(eb
->fs_info
);
1186 * Every shared one has parent tree block,
1187 * which must be aligned to sector size.
1190 IS_ALIGNED(offset
, eb
->fs_info
->sectorsize
))
1194 ASSERT(is_data
== BTRFS_REF_TYPE_ANY
);
1199 btrfs_print_leaf((struct extent_buffer
*)eb
);
1200 btrfs_err(eb
->fs_info
,
1201 "eb %llu iref 0x%lx invalid extent inline ref type %d",
1202 eb
->start
, (unsigned long)iref
, type
);
1205 return BTRFS_REF_TYPE_INVALID
;
1208 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1210 u32 high_crc
= ~(u32
)0;
1211 u32 low_crc
= ~(u32
)0;
1214 lenum
= cpu_to_le64(root_objectid
);
1215 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1216 lenum
= cpu_to_le64(owner
);
1217 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1218 lenum
= cpu_to_le64(offset
);
1219 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1221 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1224 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1225 struct btrfs_extent_data_ref
*ref
)
1227 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1228 btrfs_extent_data_ref_objectid(leaf
, ref
),
1229 btrfs_extent_data_ref_offset(leaf
, ref
));
1232 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1233 struct btrfs_extent_data_ref
*ref
,
1234 u64 root_objectid
, u64 owner
, u64 offset
)
1236 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1237 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1238 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1243 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1244 struct btrfs_fs_info
*fs_info
,
1245 struct btrfs_path
*path
,
1246 u64 bytenr
, u64 parent
,
1248 u64 owner
, u64 offset
)
1250 struct btrfs_root
*root
= fs_info
->extent_root
;
1251 struct btrfs_key key
;
1252 struct btrfs_extent_data_ref
*ref
;
1253 struct extent_buffer
*leaf
;
1259 key
.objectid
= bytenr
;
1261 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1262 key
.offset
= parent
;
1264 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1265 key
.offset
= hash_extent_data_ref(root_objectid
,
1270 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1279 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1280 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1281 btrfs_release_path(path
);
1282 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1293 leaf
= path
->nodes
[0];
1294 nritems
= btrfs_header_nritems(leaf
);
1296 if (path
->slots
[0] >= nritems
) {
1297 ret
= btrfs_next_leaf(root
, path
);
1303 leaf
= path
->nodes
[0];
1304 nritems
= btrfs_header_nritems(leaf
);
1308 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1309 if (key
.objectid
!= bytenr
||
1310 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1313 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1314 struct btrfs_extent_data_ref
);
1316 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1319 btrfs_release_path(path
);
1331 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1332 struct btrfs_fs_info
*fs_info
,
1333 struct btrfs_path
*path
,
1334 u64 bytenr
, u64 parent
,
1335 u64 root_objectid
, u64 owner
,
1336 u64 offset
, int refs_to_add
)
1338 struct btrfs_root
*root
= fs_info
->extent_root
;
1339 struct btrfs_key key
;
1340 struct extent_buffer
*leaf
;
1345 key
.objectid
= bytenr
;
1347 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1348 key
.offset
= parent
;
1349 size
= sizeof(struct btrfs_shared_data_ref
);
1351 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1352 key
.offset
= hash_extent_data_ref(root_objectid
,
1354 size
= sizeof(struct btrfs_extent_data_ref
);
1357 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1358 if (ret
&& ret
!= -EEXIST
)
1361 leaf
= path
->nodes
[0];
1363 struct btrfs_shared_data_ref
*ref
;
1364 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1365 struct btrfs_shared_data_ref
);
1367 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1369 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1370 num_refs
+= refs_to_add
;
1371 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1374 struct btrfs_extent_data_ref
*ref
;
1375 while (ret
== -EEXIST
) {
1376 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1377 struct btrfs_extent_data_ref
);
1378 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1381 btrfs_release_path(path
);
1383 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1385 if (ret
&& ret
!= -EEXIST
)
1388 leaf
= path
->nodes
[0];
1390 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1391 struct btrfs_extent_data_ref
);
1393 btrfs_set_extent_data_ref_root(leaf
, ref
,
1395 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1396 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1397 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1399 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1400 num_refs
+= refs_to_add
;
1401 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1404 btrfs_mark_buffer_dirty(leaf
);
1407 btrfs_release_path(path
);
1411 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1412 struct btrfs_fs_info
*fs_info
,
1413 struct btrfs_path
*path
,
1414 int refs_to_drop
, int *last_ref
)
1416 struct btrfs_key key
;
1417 struct btrfs_extent_data_ref
*ref1
= NULL
;
1418 struct btrfs_shared_data_ref
*ref2
= NULL
;
1419 struct extent_buffer
*leaf
;
1423 leaf
= path
->nodes
[0];
1424 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1426 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1427 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1428 struct btrfs_extent_data_ref
);
1429 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1430 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1431 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1432 struct btrfs_shared_data_ref
);
1433 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1434 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1435 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1436 struct btrfs_extent_ref_v0
*ref0
;
1437 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1438 struct btrfs_extent_ref_v0
);
1439 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1445 BUG_ON(num_refs
< refs_to_drop
);
1446 num_refs
-= refs_to_drop
;
1448 if (num_refs
== 0) {
1449 ret
= btrfs_del_item(trans
, fs_info
->extent_root
, path
);
1452 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1453 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1454 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1455 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1458 struct btrfs_extent_ref_v0
*ref0
;
1459 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1460 struct btrfs_extent_ref_v0
);
1461 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1464 btrfs_mark_buffer_dirty(leaf
);
1469 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1470 struct btrfs_extent_inline_ref
*iref
)
1472 struct btrfs_key key
;
1473 struct extent_buffer
*leaf
;
1474 struct btrfs_extent_data_ref
*ref1
;
1475 struct btrfs_shared_data_ref
*ref2
;
1479 leaf
= path
->nodes
[0];
1480 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1483 * If type is invalid, we should have bailed out earlier than
1486 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
1487 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
1488 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1489 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1490 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1492 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1493 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1495 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1496 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1497 struct btrfs_extent_data_ref
);
1498 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1499 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1500 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1501 struct btrfs_shared_data_ref
);
1502 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1503 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1504 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1505 struct btrfs_extent_ref_v0
*ref0
;
1506 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1507 struct btrfs_extent_ref_v0
);
1508 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1516 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1517 struct btrfs_fs_info
*fs_info
,
1518 struct btrfs_path
*path
,
1519 u64 bytenr
, u64 parent
,
1522 struct btrfs_root
*root
= fs_info
->extent_root
;
1523 struct btrfs_key key
;
1526 key
.objectid
= bytenr
;
1528 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1529 key
.offset
= parent
;
1531 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1532 key
.offset
= root_objectid
;
1535 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1538 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1539 if (ret
== -ENOENT
&& parent
) {
1540 btrfs_release_path(path
);
1541 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1542 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1550 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1551 struct btrfs_fs_info
*fs_info
,
1552 struct btrfs_path
*path
,
1553 u64 bytenr
, u64 parent
,
1556 struct btrfs_key key
;
1559 key
.objectid
= bytenr
;
1561 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1562 key
.offset
= parent
;
1564 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1565 key
.offset
= root_objectid
;
1568 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
,
1570 btrfs_release_path(path
);
1574 static inline int extent_ref_type(u64 parent
, u64 owner
)
1577 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1579 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1581 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1584 type
= BTRFS_SHARED_DATA_REF_KEY
;
1586 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1591 static int find_next_key(struct btrfs_path
*path
, int level
,
1592 struct btrfs_key
*key
)
1595 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1596 if (!path
->nodes
[level
])
1598 if (path
->slots
[level
] + 1 >=
1599 btrfs_header_nritems(path
->nodes
[level
]))
1602 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1603 path
->slots
[level
] + 1);
1605 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1606 path
->slots
[level
] + 1);
1613 * look for inline back ref. if back ref is found, *ref_ret is set
1614 * to the address of inline back ref, and 0 is returned.
1616 * if back ref isn't found, *ref_ret is set to the address where it
1617 * should be inserted, and -ENOENT is returned.
1619 * if insert is true and there are too many inline back refs, the path
1620 * points to the extent item, and -EAGAIN is returned.
1622 * NOTE: inline back refs are ordered in the same way that back ref
1623 * items in the tree are ordered.
1625 static noinline_for_stack
1626 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1627 struct btrfs_fs_info
*fs_info
,
1628 struct btrfs_path
*path
,
1629 struct btrfs_extent_inline_ref
**ref_ret
,
1630 u64 bytenr
, u64 num_bytes
,
1631 u64 parent
, u64 root_objectid
,
1632 u64 owner
, u64 offset
, int insert
)
1634 struct btrfs_root
*root
= fs_info
->extent_root
;
1635 struct btrfs_key key
;
1636 struct extent_buffer
*leaf
;
1637 struct btrfs_extent_item
*ei
;
1638 struct btrfs_extent_inline_ref
*iref
;
1648 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
1651 key
.objectid
= bytenr
;
1652 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1653 key
.offset
= num_bytes
;
1655 want
= extent_ref_type(parent
, owner
);
1657 extra_size
= btrfs_extent_inline_ref_size(want
);
1658 path
->keep_locks
= 1;
1663 * Owner is our parent level, so we can just add one to get the level
1664 * for the block we are interested in.
1666 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1667 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1672 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1679 * We may be a newly converted file system which still has the old fat
1680 * extent entries for metadata, so try and see if we have one of those.
1682 if (ret
> 0 && skinny_metadata
) {
1683 skinny_metadata
= false;
1684 if (path
->slots
[0]) {
1686 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1688 if (key
.objectid
== bytenr
&&
1689 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1690 key
.offset
== num_bytes
)
1694 key
.objectid
= bytenr
;
1695 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1696 key
.offset
= num_bytes
;
1697 btrfs_release_path(path
);
1702 if (ret
&& !insert
) {
1705 } else if (WARN_ON(ret
)) {
1710 leaf
= path
->nodes
[0];
1711 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1712 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1713 if (item_size
< sizeof(*ei
)) {
1718 ret
= convert_extent_item_v0(trans
, fs_info
, path
, owner
,
1724 leaf
= path
->nodes
[0];
1725 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1728 BUG_ON(item_size
< sizeof(*ei
));
1730 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1731 flags
= btrfs_extent_flags(leaf
, ei
);
1733 ptr
= (unsigned long)(ei
+ 1);
1734 end
= (unsigned long)ei
+ item_size
;
1736 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1737 ptr
+= sizeof(struct btrfs_tree_block_info
);
1741 if (owner
>= BTRFS_FIRST_FREE_OBJECTID
)
1742 needed
= BTRFS_REF_TYPE_DATA
;
1744 needed
= BTRFS_REF_TYPE_BLOCK
;
1752 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1753 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, needed
);
1754 if (type
== BTRFS_REF_TYPE_INVALID
) {
1762 ptr
+= btrfs_extent_inline_ref_size(type
);
1766 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1767 struct btrfs_extent_data_ref
*dref
;
1768 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1769 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1774 if (hash_extent_data_ref_item(leaf
, dref
) <
1775 hash_extent_data_ref(root_objectid
, owner
, offset
))
1779 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1781 if (parent
== ref_offset
) {
1785 if (ref_offset
< parent
)
1788 if (root_objectid
== ref_offset
) {
1792 if (ref_offset
< root_objectid
)
1796 ptr
+= btrfs_extent_inline_ref_size(type
);
1798 if (err
== -ENOENT
&& insert
) {
1799 if (item_size
+ extra_size
>=
1800 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1805 * To add new inline back ref, we have to make sure
1806 * there is no corresponding back ref item.
1807 * For simplicity, we just do not add new inline back
1808 * ref if there is any kind of item for this block
1810 if (find_next_key(path
, 0, &key
) == 0 &&
1811 key
.objectid
== bytenr
&&
1812 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1817 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1820 path
->keep_locks
= 0;
1821 btrfs_unlock_up_safe(path
, 1);
1827 * helper to add new inline back ref
1829 static noinline_for_stack
1830 void setup_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1831 struct btrfs_path
*path
,
1832 struct btrfs_extent_inline_ref
*iref
,
1833 u64 parent
, u64 root_objectid
,
1834 u64 owner
, u64 offset
, int refs_to_add
,
1835 struct btrfs_delayed_extent_op
*extent_op
)
1837 struct extent_buffer
*leaf
;
1838 struct btrfs_extent_item
*ei
;
1841 unsigned long item_offset
;
1846 leaf
= path
->nodes
[0];
1847 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1848 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1850 type
= extent_ref_type(parent
, owner
);
1851 size
= btrfs_extent_inline_ref_size(type
);
1853 btrfs_extend_item(fs_info
, path
, size
);
1855 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1856 refs
= btrfs_extent_refs(leaf
, ei
);
1857 refs
+= refs_to_add
;
1858 btrfs_set_extent_refs(leaf
, ei
, refs
);
1860 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1862 ptr
= (unsigned long)ei
+ item_offset
;
1863 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1864 if (ptr
< end
- size
)
1865 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1868 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1869 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1870 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1871 struct btrfs_extent_data_ref
*dref
;
1872 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1873 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1874 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1875 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1876 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1877 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1878 struct btrfs_shared_data_ref
*sref
;
1879 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1880 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1881 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1882 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1883 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1885 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1887 btrfs_mark_buffer_dirty(leaf
);
1890 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1891 struct btrfs_fs_info
*fs_info
,
1892 struct btrfs_path
*path
,
1893 struct btrfs_extent_inline_ref
**ref_ret
,
1894 u64 bytenr
, u64 num_bytes
, u64 parent
,
1895 u64 root_objectid
, u64 owner
, u64 offset
)
1899 ret
= lookup_inline_extent_backref(trans
, fs_info
, path
, ref_ret
,
1900 bytenr
, num_bytes
, parent
,
1901 root_objectid
, owner
, offset
, 0);
1905 btrfs_release_path(path
);
1908 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1909 ret
= lookup_tree_block_ref(trans
, fs_info
, path
, bytenr
,
1910 parent
, root_objectid
);
1912 ret
= lookup_extent_data_ref(trans
, fs_info
, path
, bytenr
,
1913 parent
, root_objectid
, owner
,
1920 * helper to update/remove inline back ref
1922 static noinline_for_stack
1923 void update_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1924 struct btrfs_path
*path
,
1925 struct btrfs_extent_inline_ref
*iref
,
1927 struct btrfs_delayed_extent_op
*extent_op
,
1930 struct extent_buffer
*leaf
;
1931 struct btrfs_extent_item
*ei
;
1932 struct btrfs_extent_data_ref
*dref
= NULL
;
1933 struct btrfs_shared_data_ref
*sref
= NULL
;
1941 leaf
= path
->nodes
[0];
1942 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1943 refs
= btrfs_extent_refs(leaf
, ei
);
1944 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1945 refs
+= refs_to_mod
;
1946 btrfs_set_extent_refs(leaf
, ei
, refs
);
1948 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1951 * If type is invalid, we should have bailed out after
1952 * lookup_inline_extent_backref().
1954 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_ANY
);
1955 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
1957 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1958 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1959 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1960 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1961 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1962 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1965 BUG_ON(refs_to_mod
!= -1);
1968 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1969 refs
+= refs_to_mod
;
1972 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1973 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1975 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1978 size
= btrfs_extent_inline_ref_size(type
);
1979 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1980 ptr
= (unsigned long)iref
;
1981 end
= (unsigned long)ei
+ item_size
;
1982 if (ptr
+ size
< end
)
1983 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1986 btrfs_truncate_item(fs_info
, path
, item_size
, 1);
1988 btrfs_mark_buffer_dirty(leaf
);
1991 static noinline_for_stack
1992 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1993 struct btrfs_fs_info
*fs_info
,
1994 struct btrfs_path
*path
,
1995 u64 bytenr
, u64 num_bytes
, u64 parent
,
1996 u64 root_objectid
, u64 owner
,
1997 u64 offset
, int refs_to_add
,
1998 struct btrfs_delayed_extent_op
*extent_op
)
2000 struct btrfs_extent_inline_ref
*iref
;
2003 ret
= lookup_inline_extent_backref(trans
, fs_info
, path
, &iref
,
2004 bytenr
, num_bytes
, parent
,
2005 root_objectid
, owner
, offset
, 1);
2007 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
2008 update_inline_extent_backref(fs_info
, path
, iref
,
2009 refs_to_add
, extent_op
, NULL
);
2010 } else if (ret
== -ENOENT
) {
2011 setup_inline_extent_backref(fs_info
, path
, iref
, parent
,
2012 root_objectid
, owner
, offset
,
2013 refs_to_add
, extent_op
);
2019 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
2020 struct btrfs_fs_info
*fs_info
,
2021 struct btrfs_path
*path
,
2022 u64 bytenr
, u64 parent
, u64 root_objectid
,
2023 u64 owner
, u64 offset
, int refs_to_add
)
2026 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2027 BUG_ON(refs_to_add
!= 1);
2028 ret
= insert_tree_block_ref(trans
, fs_info
, path
, bytenr
,
2029 parent
, root_objectid
);
2031 ret
= insert_extent_data_ref(trans
, fs_info
, path
, bytenr
,
2032 parent
, root_objectid
,
2033 owner
, offset
, refs_to_add
);
2038 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
2039 struct btrfs_fs_info
*fs_info
,
2040 struct btrfs_path
*path
,
2041 struct btrfs_extent_inline_ref
*iref
,
2042 int refs_to_drop
, int is_data
, int *last_ref
)
2046 BUG_ON(!is_data
&& refs_to_drop
!= 1);
2048 update_inline_extent_backref(fs_info
, path
, iref
,
2049 -refs_to_drop
, NULL
, last_ref
);
2050 } else if (is_data
) {
2051 ret
= remove_extent_data_ref(trans
, fs_info
, path
, refs_to_drop
,
2055 ret
= btrfs_del_item(trans
, fs_info
->extent_root
, path
);
2060 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2061 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
2062 u64
*discarded_bytes
)
2065 u64 bytes_left
, end
;
2066 u64 aligned_start
= ALIGN(start
, 1 << 9);
2068 if (WARN_ON(start
!= aligned_start
)) {
2069 len
-= aligned_start
- start
;
2070 len
= round_down(len
, 1 << 9);
2071 start
= aligned_start
;
2074 *discarded_bytes
= 0;
2082 /* Skip any superblocks on this device. */
2083 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
2084 u64 sb_start
= btrfs_sb_offset(j
);
2085 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
2086 u64 size
= sb_start
- start
;
2088 if (!in_range(sb_start
, start
, bytes_left
) &&
2089 !in_range(sb_end
, start
, bytes_left
) &&
2090 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
2094 * Superblock spans beginning of range. Adjust start and
2097 if (sb_start
<= start
) {
2098 start
+= sb_end
- start
;
2103 bytes_left
= end
- start
;
2108 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
2111 *discarded_bytes
+= size
;
2112 else if (ret
!= -EOPNOTSUPP
)
2121 bytes_left
= end
- start
;
2125 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2128 *discarded_bytes
+= bytes_left
;
2133 int btrfs_discard_extent(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
2134 u64 num_bytes
, u64
*actual_bytes
)
2137 u64 discarded_bytes
= 0;
2138 struct btrfs_bio
*bbio
= NULL
;
2142 * Avoid races with device replace and make sure our bbio has devices
2143 * associated to its stripes that don't go away while we are discarding.
2145 btrfs_bio_counter_inc_blocked(fs_info
);
2146 /* Tell the block device(s) that the sectors can be discarded */
2147 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_DISCARD
, bytenr
, &num_bytes
,
2149 /* Error condition is -ENOMEM */
2151 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2155 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2157 if (!stripe
->dev
->can_discard
)
2160 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2165 discarded_bytes
+= bytes
;
2166 else if (ret
!= -EOPNOTSUPP
)
2167 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2170 * Just in case we get back EOPNOTSUPP for some reason,
2171 * just ignore the return value so we don't screw up
2172 * people calling discard_extent.
2176 btrfs_put_bbio(bbio
);
2178 btrfs_bio_counter_dec(fs_info
);
2181 *actual_bytes
= discarded_bytes
;
2184 if (ret
== -EOPNOTSUPP
)
2189 /* Can return -ENOMEM */
2190 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2191 struct btrfs_fs_info
*fs_info
,
2192 u64 bytenr
, u64 num_bytes
, u64 parent
,
2193 u64 root_objectid
, u64 owner
, u64 offset
)
2195 int old_ref_mod
, new_ref_mod
;
2198 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2199 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2201 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2202 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2204 root_objectid
, (int)owner
,
2205 BTRFS_ADD_DELAYED_REF
, NULL
,
2206 &old_ref_mod
, &new_ref_mod
);
2208 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2210 root_objectid
, owner
, offset
,
2211 0, BTRFS_ADD_DELAYED_REF
,
2212 &old_ref_mod
, &new_ref_mod
);
2215 if (ret
== 0 && old_ref_mod
< 0 && new_ref_mod
>= 0)
2216 add_pinned_bytes(fs_info
, -num_bytes
, owner
, root_objectid
);
2221 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2222 struct btrfs_fs_info
*fs_info
,
2223 struct btrfs_delayed_ref_node
*node
,
2224 u64 parent
, u64 root_objectid
,
2225 u64 owner
, u64 offset
, int refs_to_add
,
2226 struct btrfs_delayed_extent_op
*extent_op
)
2228 struct btrfs_path
*path
;
2229 struct extent_buffer
*leaf
;
2230 struct btrfs_extent_item
*item
;
2231 struct btrfs_key key
;
2232 u64 bytenr
= node
->bytenr
;
2233 u64 num_bytes
= node
->num_bytes
;
2237 path
= btrfs_alloc_path();
2241 path
->reada
= READA_FORWARD
;
2242 path
->leave_spinning
= 1;
2243 /* this will setup the path even if it fails to insert the back ref */
2244 ret
= insert_inline_extent_backref(trans
, fs_info
, path
, bytenr
,
2245 num_bytes
, parent
, root_objectid
,
2247 refs_to_add
, extent_op
);
2248 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2252 * Ok we had -EAGAIN which means we didn't have space to insert and
2253 * inline extent ref, so just update the reference count and add a
2256 leaf
= path
->nodes
[0];
2257 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2258 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2259 refs
= btrfs_extent_refs(leaf
, item
);
2260 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2262 __run_delayed_extent_op(extent_op
, leaf
, item
);
2264 btrfs_mark_buffer_dirty(leaf
);
2265 btrfs_release_path(path
);
2267 path
->reada
= READA_FORWARD
;
2268 path
->leave_spinning
= 1;
2269 /* now insert the actual backref */
2270 ret
= insert_extent_backref(trans
, fs_info
, path
, bytenr
, parent
,
2271 root_objectid
, owner
, offset
, refs_to_add
);
2273 btrfs_abort_transaction(trans
, ret
);
2275 btrfs_free_path(path
);
2279 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2280 struct btrfs_fs_info
*fs_info
,
2281 struct btrfs_delayed_ref_node
*node
,
2282 struct btrfs_delayed_extent_op
*extent_op
,
2283 int insert_reserved
)
2286 struct btrfs_delayed_data_ref
*ref
;
2287 struct btrfs_key ins
;
2292 ins
.objectid
= node
->bytenr
;
2293 ins
.offset
= node
->num_bytes
;
2294 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2296 ref
= btrfs_delayed_node_to_data_ref(node
);
2297 trace_run_delayed_data_ref(fs_info
, node
, ref
, node
->action
);
2299 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2300 parent
= ref
->parent
;
2301 ref_root
= ref
->root
;
2303 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2305 flags
|= extent_op
->flags_to_set
;
2306 ret
= alloc_reserved_file_extent(trans
, fs_info
,
2307 parent
, ref_root
, flags
,
2308 ref
->objectid
, ref
->offset
,
2309 &ins
, node
->ref_mod
);
2310 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2311 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
, parent
,
2312 ref_root
, ref
->objectid
,
2313 ref
->offset
, node
->ref_mod
,
2315 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2316 ret
= __btrfs_free_extent(trans
, fs_info
, node
, parent
,
2317 ref_root
, ref
->objectid
,
2318 ref
->offset
, node
->ref_mod
,
2326 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2327 struct extent_buffer
*leaf
,
2328 struct btrfs_extent_item
*ei
)
2330 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2331 if (extent_op
->update_flags
) {
2332 flags
|= extent_op
->flags_to_set
;
2333 btrfs_set_extent_flags(leaf
, ei
, flags
);
2336 if (extent_op
->update_key
) {
2337 struct btrfs_tree_block_info
*bi
;
2338 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2339 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2340 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2344 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2345 struct btrfs_fs_info
*fs_info
,
2346 struct btrfs_delayed_ref_node
*node
,
2347 struct btrfs_delayed_extent_op
*extent_op
)
2349 struct btrfs_key key
;
2350 struct btrfs_path
*path
;
2351 struct btrfs_extent_item
*ei
;
2352 struct extent_buffer
*leaf
;
2356 int metadata
= !extent_op
->is_data
;
2361 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2364 path
= btrfs_alloc_path();
2368 key
.objectid
= node
->bytenr
;
2371 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2372 key
.offset
= extent_op
->level
;
2374 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2375 key
.offset
= node
->num_bytes
;
2379 path
->reada
= READA_FORWARD
;
2380 path
->leave_spinning
= 1;
2381 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 1);
2388 if (path
->slots
[0] > 0) {
2390 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2392 if (key
.objectid
== node
->bytenr
&&
2393 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2394 key
.offset
== node
->num_bytes
)
2398 btrfs_release_path(path
);
2401 key
.objectid
= node
->bytenr
;
2402 key
.offset
= node
->num_bytes
;
2403 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2412 leaf
= path
->nodes
[0];
2413 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2415 if (item_size
< sizeof(*ei
)) {
2416 ret
= convert_extent_item_v0(trans
, fs_info
, path
, (u64
)-1, 0);
2421 leaf
= path
->nodes
[0];
2422 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2425 BUG_ON(item_size
< sizeof(*ei
));
2426 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2427 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2429 btrfs_mark_buffer_dirty(leaf
);
2431 btrfs_free_path(path
);
2435 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2436 struct btrfs_fs_info
*fs_info
,
2437 struct btrfs_delayed_ref_node
*node
,
2438 struct btrfs_delayed_extent_op
*extent_op
,
2439 int insert_reserved
)
2442 struct btrfs_delayed_tree_ref
*ref
;
2443 struct btrfs_key ins
;
2446 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
2448 ref
= btrfs_delayed_node_to_tree_ref(node
);
2449 trace_run_delayed_tree_ref(fs_info
, node
, ref
, node
->action
);
2451 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2452 parent
= ref
->parent
;
2453 ref_root
= ref
->root
;
2455 ins
.objectid
= node
->bytenr
;
2456 if (skinny_metadata
) {
2457 ins
.offset
= ref
->level
;
2458 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2460 ins
.offset
= node
->num_bytes
;
2461 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2464 if (node
->ref_mod
!= 1) {
2466 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2467 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
2471 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2472 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2473 ret
= alloc_reserved_tree_block(trans
, fs_info
,
2475 extent_op
->flags_to_set
,
2478 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2479 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
,
2483 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2484 ret
= __btrfs_free_extent(trans
, fs_info
, node
,
2486 ref
->level
, 0, 1, extent_op
);
2493 /* helper function to actually process a single delayed ref entry */
2494 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2495 struct btrfs_fs_info
*fs_info
,
2496 struct btrfs_delayed_ref_node
*node
,
2497 struct btrfs_delayed_extent_op
*extent_op
,
2498 int insert_reserved
)
2502 if (trans
->aborted
) {
2503 if (insert_reserved
)
2504 btrfs_pin_extent(fs_info
, node
->bytenr
,
2505 node
->num_bytes
, 1);
2509 if (btrfs_delayed_ref_is_head(node
)) {
2510 struct btrfs_delayed_ref_head
*head
;
2512 * we've hit the end of the chain and we were supposed
2513 * to insert this extent into the tree. But, it got
2514 * deleted before we ever needed to insert it, so all
2515 * we have to do is clean up the accounting
2518 head
= btrfs_delayed_node_to_head(node
);
2519 trace_run_delayed_ref_head(fs_info
, node
, head
, node
->action
);
2521 if (head
->total_ref_mod
< 0) {
2522 struct btrfs_block_group_cache
*cache
;
2524 cache
= btrfs_lookup_block_group(fs_info
, node
->bytenr
);
2526 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
,
2528 btrfs_put_block_group(cache
);
2531 if (insert_reserved
) {
2532 btrfs_pin_extent(fs_info
, node
->bytenr
,
2533 node
->num_bytes
, 1);
2534 if (head
->is_data
) {
2535 ret
= btrfs_del_csums(trans
, fs_info
,
2541 /* Also free its reserved qgroup space */
2542 btrfs_qgroup_free_delayed_ref(fs_info
, head
->qgroup_ref_root
,
2543 head
->qgroup_reserved
);
2547 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2548 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2549 ret
= run_delayed_tree_ref(trans
, fs_info
, node
, extent_op
,
2551 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2552 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2553 ret
= run_delayed_data_ref(trans
, fs_info
, node
, extent_op
,
2560 static inline struct btrfs_delayed_ref_node
*
2561 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2563 struct btrfs_delayed_ref_node
*ref
;
2565 if (list_empty(&head
->ref_list
))
2569 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2570 * This is to prevent a ref count from going down to zero, which deletes
2571 * the extent item from the extent tree, when there still are references
2572 * to add, which would fail because they would not find the extent item.
2574 if (!list_empty(&head
->ref_add_list
))
2575 return list_first_entry(&head
->ref_add_list
,
2576 struct btrfs_delayed_ref_node
, add_list
);
2578 ref
= list_first_entry(&head
->ref_list
, struct btrfs_delayed_ref_node
,
2580 ASSERT(list_empty(&ref
->add_list
));
2585 * Returns 0 on success or if called with an already aborted transaction.
2586 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2588 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2589 struct btrfs_fs_info
*fs_info
,
2592 struct btrfs_delayed_ref_root
*delayed_refs
;
2593 struct btrfs_delayed_ref_node
*ref
;
2594 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2595 struct btrfs_delayed_extent_op
*extent_op
;
2596 ktime_t start
= ktime_get();
2598 unsigned long count
= 0;
2599 unsigned long actual_count
= 0;
2600 int must_insert_reserved
= 0;
2602 delayed_refs
= &trans
->transaction
->delayed_refs
;
2608 spin_lock(&delayed_refs
->lock
);
2609 locked_ref
= btrfs_select_ref_head(trans
);
2611 spin_unlock(&delayed_refs
->lock
);
2615 /* grab the lock that says we are going to process
2616 * all the refs for this head */
2617 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2618 spin_unlock(&delayed_refs
->lock
);
2620 * we may have dropped the spin lock to get the head
2621 * mutex lock, and that might have given someone else
2622 * time to free the head. If that's true, it has been
2623 * removed from our list and we can move on.
2625 if (ret
== -EAGAIN
) {
2633 * We need to try and merge add/drops of the same ref since we
2634 * can run into issues with relocate dropping the implicit ref
2635 * and then it being added back again before the drop can
2636 * finish. If we merged anything we need to re-loop so we can
2638 * Or we can get node references of the same type that weren't
2639 * merged when created due to bumps in the tree mod seq, and
2640 * we need to merge them to prevent adding an inline extent
2641 * backref before dropping it (triggering a BUG_ON at
2642 * insert_inline_extent_backref()).
2644 spin_lock(&locked_ref
->lock
);
2645 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2649 * locked_ref is the head node, so we have to go one
2650 * node back for any delayed ref updates
2652 ref
= select_delayed_ref(locked_ref
);
2654 if (ref
&& ref
->seq
&&
2655 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2656 spin_unlock(&locked_ref
->lock
);
2657 spin_lock(&delayed_refs
->lock
);
2658 locked_ref
->processing
= 0;
2659 delayed_refs
->num_heads_ready
++;
2660 spin_unlock(&delayed_refs
->lock
);
2661 btrfs_delayed_ref_unlock(locked_ref
);
2669 * record the must insert reserved flag before we
2670 * drop the spin lock.
2672 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2673 locked_ref
->must_insert_reserved
= 0;
2675 extent_op
= locked_ref
->extent_op
;
2676 locked_ref
->extent_op
= NULL
;
2681 /* All delayed refs have been processed, Go ahead
2682 * and send the head node to run_one_delayed_ref,
2683 * so that any accounting fixes can happen
2685 ref
= &locked_ref
->node
;
2687 if (extent_op
&& must_insert_reserved
) {
2688 btrfs_free_delayed_extent_op(extent_op
);
2693 spin_unlock(&locked_ref
->lock
);
2694 ret
= run_delayed_extent_op(trans
, fs_info
,
2696 btrfs_free_delayed_extent_op(extent_op
);
2700 * Need to reset must_insert_reserved if
2701 * there was an error so the abort stuff
2702 * can cleanup the reserved space
2705 if (must_insert_reserved
)
2706 locked_ref
->must_insert_reserved
= 1;
2707 spin_lock(&delayed_refs
->lock
);
2708 locked_ref
->processing
= 0;
2709 delayed_refs
->num_heads_ready
++;
2710 spin_unlock(&delayed_refs
->lock
);
2711 btrfs_debug(fs_info
,
2712 "run_delayed_extent_op returned %d",
2714 btrfs_delayed_ref_unlock(locked_ref
);
2721 * Need to drop our head ref lock and re-acquire the
2722 * delayed ref lock and then re-check to make sure
2725 spin_unlock(&locked_ref
->lock
);
2726 spin_lock(&delayed_refs
->lock
);
2727 spin_lock(&locked_ref
->lock
);
2728 if (!list_empty(&locked_ref
->ref_list
) ||
2729 locked_ref
->extent_op
) {
2730 spin_unlock(&locked_ref
->lock
);
2731 spin_unlock(&delayed_refs
->lock
);
2735 delayed_refs
->num_heads
--;
2736 rb_erase(&locked_ref
->href_node
,
2737 &delayed_refs
->href_root
);
2738 spin_unlock(&delayed_refs
->lock
);
2742 list_del(&ref
->list
);
2743 if (!list_empty(&ref
->add_list
))
2744 list_del(&ref
->add_list
);
2746 atomic_dec(&delayed_refs
->num_entries
);
2748 if (!btrfs_delayed_ref_is_head(ref
)) {
2750 * when we play the delayed ref, also correct the
2753 switch (ref
->action
) {
2754 case BTRFS_ADD_DELAYED_REF
:
2755 case BTRFS_ADD_DELAYED_EXTENT
:
2756 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2758 case BTRFS_DROP_DELAYED_REF
:
2759 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2765 spin_unlock(&locked_ref
->lock
);
2767 ret
= run_one_delayed_ref(trans
, fs_info
, ref
, extent_op
,
2768 must_insert_reserved
);
2770 btrfs_free_delayed_extent_op(extent_op
);
2772 spin_lock(&delayed_refs
->lock
);
2773 locked_ref
->processing
= 0;
2774 delayed_refs
->num_heads_ready
++;
2775 spin_unlock(&delayed_refs
->lock
);
2776 btrfs_delayed_ref_unlock(locked_ref
);
2777 btrfs_put_delayed_ref(ref
);
2778 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
2784 * If this node is a head, that means all the refs in this head
2785 * have been dealt with, and we will pick the next head to deal
2786 * with, so we must unlock the head and drop it from the cluster
2787 * list before we release it.
2789 if (btrfs_delayed_ref_is_head(ref
)) {
2790 if (locked_ref
->is_data
&&
2791 locked_ref
->total_ref_mod
< 0) {
2792 spin_lock(&delayed_refs
->lock
);
2793 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2794 spin_unlock(&delayed_refs
->lock
);
2796 btrfs_delayed_ref_unlock(locked_ref
);
2799 btrfs_put_delayed_ref(ref
);
2805 * We don't want to include ref heads since we can have empty ref heads
2806 * and those will drastically skew our runtime down since we just do
2807 * accounting, no actual extent tree updates.
2809 if (actual_count
> 0) {
2810 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2814 * We weigh the current average higher than our current runtime
2815 * to avoid large swings in the average.
2817 spin_lock(&delayed_refs
->lock
);
2818 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2819 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2820 spin_unlock(&delayed_refs
->lock
);
2825 #ifdef SCRAMBLE_DELAYED_REFS
2827 * Normally delayed refs get processed in ascending bytenr order. This
2828 * correlates in most cases to the order added. To expose dependencies on this
2829 * order, we start to process the tree in the middle instead of the beginning
2831 static u64
find_middle(struct rb_root
*root
)
2833 struct rb_node
*n
= root
->rb_node
;
2834 struct btrfs_delayed_ref_node
*entry
;
2837 u64 first
= 0, last
= 0;
2841 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2842 first
= entry
->bytenr
;
2846 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2847 last
= entry
->bytenr
;
2852 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2853 WARN_ON(!entry
->in_tree
);
2855 middle
= entry
->bytenr
;
2868 static inline u64
heads_to_leaves(struct btrfs_fs_info
*fs_info
, u64 heads
)
2872 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2873 sizeof(struct btrfs_extent_inline_ref
));
2874 if (!btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2875 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2878 * We don't ever fill up leaves all the way so multiply by 2 just to be
2879 * closer to what we're really going to want to use.
2881 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(fs_info
));
2885 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2886 * would require to store the csums for that many bytes.
2888 u64
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info
*fs_info
, u64 csum_bytes
)
2891 u64 num_csums_per_leaf
;
2894 csum_size
= BTRFS_MAX_ITEM_SIZE(fs_info
);
2895 num_csums_per_leaf
= div64_u64(csum_size
,
2896 (u64
)btrfs_super_csum_size(fs_info
->super_copy
));
2897 num_csums
= div64_u64(csum_bytes
, fs_info
->sectorsize
);
2898 num_csums
+= num_csums_per_leaf
- 1;
2899 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2903 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2904 struct btrfs_fs_info
*fs_info
)
2906 struct btrfs_block_rsv
*global_rsv
;
2907 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2908 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2909 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2910 u64 num_bytes
, num_dirty_bgs_bytes
;
2913 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2914 num_heads
= heads_to_leaves(fs_info
, num_heads
);
2916 num_bytes
+= (num_heads
- 1) * fs_info
->nodesize
;
2918 num_bytes
+= btrfs_csum_bytes_to_leaves(fs_info
, csum_bytes
) *
2920 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(fs_info
,
2922 global_rsv
= &fs_info
->global_block_rsv
;
2925 * If we can't allocate any more chunks lets make sure we have _lots_ of
2926 * wiggle room since running delayed refs can create more delayed refs.
2928 if (global_rsv
->space_info
->full
) {
2929 num_dirty_bgs_bytes
<<= 1;
2933 spin_lock(&global_rsv
->lock
);
2934 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2936 spin_unlock(&global_rsv
->lock
);
2940 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2941 struct btrfs_fs_info
*fs_info
)
2944 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2949 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2950 val
= num_entries
* avg_runtime
;
2951 if (val
>= NSEC_PER_SEC
)
2953 if (val
>= NSEC_PER_SEC
/ 2)
2956 return btrfs_check_space_for_delayed_refs(trans
, fs_info
);
2959 struct async_delayed_refs
{
2960 struct btrfs_root
*root
;
2965 struct completion wait
;
2966 struct btrfs_work work
;
2969 static inline struct async_delayed_refs
*
2970 to_async_delayed_refs(struct btrfs_work
*work
)
2972 return container_of(work
, struct async_delayed_refs
, work
);
2975 static void delayed_ref_async_start(struct btrfs_work
*work
)
2977 struct async_delayed_refs
*async
= to_async_delayed_refs(work
);
2978 struct btrfs_trans_handle
*trans
;
2979 struct btrfs_fs_info
*fs_info
= async
->root
->fs_info
;
2982 /* if the commit is already started, we don't need to wait here */
2983 if (btrfs_transaction_blocked(fs_info
))
2986 trans
= btrfs_join_transaction(async
->root
);
2987 if (IS_ERR(trans
)) {
2988 async
->error
= PTR_ERR(trans
);
2993 * trans->sync means that when we call end_transaction, we won't
2994 * wait on delayed refs
2998 /* Don't bother flushing if we got into a different transaction */
2999 if (trans
->transid
> async
->transid
)
3002 ret
= btrfs_run_delayed_refs(trans
, fs_info
, async
->count
);
3006 ret
= btrfs_end_transaction(trans
);
3007 if (ret
&& !async
->error
)
3011 complete(&async
->wait
);
3016 int btrfs_async_run_delayed_refs(struct btrfs_fs_info
*fs_info
,
3017 unsigned long count
, u64 transid
, int wait
)
3019 struct async_delayed_refs
*async
;
3022 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
3026 async
->root
= fs_info
->tree_root
;
3027 async
->count
= count
;
3029 async
->transid
= transid
;
3034 init_completion(&async
->wait
);
3036 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
3037 delayed_ref_async_start
, NULL
, NULL
);
3039 btrfs_queue_work(fs_info
->extent_workers
, &async
->work
);
3042 wait_for_completion(&async
->wait
);
3051 * this starts processing the delayed reference count updates and
3052 * extent insertions we have queued up so far. count can be
3053 * 0, which means to process everything in the tree at the start
3054 * of the run (but not newly added entries), or it can be some target
3055 * number you'd like to process.
3057 * Returns 0 on success or if called with an aborted transaction
3058 * Returns <0 on error and aborts the transaction
3060 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
3061 struct btrfs_fs_info
*fs_info
, unsigned long count
)
3063 struct rb_node
*node
;
3064 struct btrfs_delayed_ref_root
*delayed_refs
;
3065 struct btrfs_delayed_ref_head
*head
;
3067 int run_all
= count
== (unsigned long)-1;
3068 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
3070 /* We'll clean this up in btrfs_cleanup_transaction */
3074 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &fs_info
->flags
))
3077 delayed_refs
= &trans
->transaction
->delayed_refs
;
3079 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
3082 #ifdef SCRAMBLE_DELAYED_REFS
3083 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
3085 trans
->can_flush_pending_bgs
= false;
3086 ret
= __btrfs_run_delayed_refs(trans
, fs_info
, count
);
3088 btrfs_abort_transaction(trans
, ret
);
3093 if (!list_empty(&trans
->new_bgs
))
3094 btrfs_create_pending_block_groups(trans
, fs_info
);
3096 spin_lock(&delayed_refs
->lock
);
3097 node
= rb_first(&delayed_refs
->href_root
);
3099 spin_unlock(&delayed_refs
->lock
);
3104 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
3106 if (btrfs_delayed_ref_is_head(&head
->node
)) {
3107 struct btrfs_delayed_ref_node
*ref
;
3110 refcount_inc(&ref
->refs
);
3112 spin_unlock(&delayed_refs
->lock
);
3114 * Mutex was contended, block until it's
3115 * released and try again
3117 mutex_lock(&head
->mutex
);
3118 mutex_unlock(&head
->mutex
);
3120 btrfs_put_delayed_ref(ref
);
3126 node
= rb_next(node
);
3128 spin_unlock(&delayed_refs
->lock
);
3133 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
3137 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
3138 struct btrfs_fs_info
*fs_info
,
3139 u64 bytenr
, u64 num_bytes
, u64 flags
,
3140 int level
, int is_data
)
3142 struct btrfs_delayed_extent_op
*extent_op
;
3145 extent_op
= btrfs_alloc_delayed_extent_op();
3149 extent_op
->flags_to_set
= flags
;
3150 extent_op
->update_flags
= true;
3151 extent_op
->update_key
= false;
3152 extent_op
->is_data
= is_data
? true : false;
3153 extent_op
->level
= level
;
3155 ret
= btrfs_add_delayed_extent_op(fs_info
, trans
, bytenr
,
3156 num_bytes
, extent_op
);
3158 btrfs_free_delayed_extent_op(extent_op
);
3162 static noinline
int check_delayed_ref(struct btrfs_root
*root
,
3163 struct btrfs_path
*path
,
3164 u64 objectid
, u64 offset
, u64 bytenr
)
3166 struct btrfs_delayed_ref_head
*head
;
3167 struct btrfs_delayed_ref_node
*ref
;
3168 struct btrfs_delayed_data_ref
*data_ref
;
3169 struct btrfs_delayed_ref_root
*delayed_refs
;
3170 struct btrfs_transaction
*cur_trans
;
3173 spin_lock(&root
->fs_info
->trans_lock
);
3174 cur_trans
= root
->fs_info
->running_transaction
;
3176 refcount_inc(&cur_trans
->use_count
);
3177 spin_unlock(&root
->fs_info
->trans_lock
);
3181 delayed_refs
= &cur_trans
->delayed_refs
;
3182 spin_lock(&delayed_refs
->lock
);
3183 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
3185 spin_unlock(&delayed_refs
->lock
);
3186 btrfs_put_transaction(cur_trans
);
3190 if (!mutex_trylock(&head
->mutex
)) {
3191 refcount_inc(&head
->node
.refs
);
3192 spin_unlock(&delayed_refs
->lock
);
3194 btrfs_release_path(path
);
3197 * Mutex was contended, block until it's released and let
3200 mutex_lock(&head
->mutex
);
3201 mutex_unlock(&head
->mutex
);
3202 btrfs_put_delayed_ref(&head
->node
);
3203 btrfs_put_transaction(cur_trans
);
3206 spin_unlock(&delayed_refs
->lock
);
3208 spin_lock(&head
->lock
);
3209 list_for_each_entry(ref
, &head
->ref_list
, list
) {
3210 /* If it's a shared ref we know a cross reference exists */
3211 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3216 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3219 * If our ref doesn't match the one we're currently looking at
3220 * then we have a cross reference.
3222 if (data_ref
->root
!= root
->root_key
.objectid
||
3223 data_ref
->objectid
!= objectid
||
3224 data_ref
->offset
!= offset
) {
3229 spin_unlock(&head
->lock
);
3230 mutex_unlock(&head
->mutex
);
3231 btrfs_put_transaction(cur_trans
);
3235 static noinline
int check_committed_ref(struct btrfs_root
*root
,
3236 struct btrfs_path
*path
,
3237 u64 objectid
, u64 offset
, u64 bytenr
)
3239 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3240 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3241 struct extent_buffer
*leaf
;
3242 struct btrfs_extent_data_ref
*ref
;
3243 struct btrfs_extent_inline_ref
*iref
;
3244 struct btrfs_extent_item
*ei
;
3245 struct btrfs_key key
;
3250 key
.objectid
= bytenr
;
3251 key
.offset
= (u64
)-1;
3252 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3254 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3257 BUG_ON(ret
== 0); /* Corruption */
3260 if (path
->slots
[0] == 0)
3264 leaf
= path
->nodes
[0];
3265 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3267 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3271 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3273 if (item_size
< sizeof(*ei
)) {
3274 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3278 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3280 if (item_size
!= sizeof(*ei
) +
3281 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3284 if (btrfs_extent_generation(leaf
, ei
) <=
3285 btrfs_root_last_snapshot(&root
->root_item
))
3288 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3290 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
3291 if (type
!= BTRFS_EXTENT_DATA_REF_KEY
)
3294 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3295 if (btrfs_extent_refs(leaf
, ei
) !=
3296 btrfs_extent_data_ref_count(leaf
, ref
) ||
3297 btrfs_extent_data_ref_root(leaf
, ref
) !=
3298 root
->root_key
.objectid
||
3299 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3300 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3308 int btrfs_cross_ref_exist(struct btrfs_root
*root
, u64 objectid
, u64 offset
,
3311 struct btrfs_path
*path
;
3315 path
= btrfs_alloc_path();
3320 ret
= check_committed_ref(root
, path
, objectid
,
3322 if (ret
&& ret
!= -ENOENT
)
3325 ret2
= check_delayed_ref(root
, path
, objectid
,
3327 } while (ret2
== -EAGAIN
);
3329 if (ret2
&& ret2
!= -ENOENT
) {
3334 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3337 btrfs_free_path(path
);
3338 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3343 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3344 struct btrfs_root
*root
,
3345 struct extent_buffer
*buf
,
3346 int full_backref
, int inc
)
3348 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3354 struct btrfs_key key
;
3355 struct btrfs_file_extent_item
*fi
;
3359 int (*process_func
)(struct btrfs_trans_handle
*,
3360 struct btrfs_fs_info
*,
3361 u64
, u64
, u64
, u64
, u64
, u64
);
3364 if (btrfs_is_testing(fs_info
))
3367 ref_root
= btrfs_header_owner(buf
);
3368 nritems
= btrfs_header_nritems(buf
);
3369 level
= btrfs_header_level(buf
);
3371 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3375 process_func
= btrfs_inc_extent_ref
;
3377 process_func
= btrfs_free_extent
;
3380 parent
= buf
->start
;
3384 for (i
= 0; i
< nritems
; i
++) {
3386 btrfs_item_key_to_cpu(buf
, &key
, i
);
3387 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3389 fi
= btrfs_item_ptr(buf
, i
,
3390 struct btrfs_file_extent_item
);
3391 if (btrfs_file_extent_type(buf
, fi
) ==
3392 BTRFS_FILE_EXTENT_INLINE
)
3394 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3398 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3399 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3400 ret
= process_func(trans
, fs_info
, bytenr
, num_bytes
,
3401 parent
, ref_root
, key
.objectid
,
3406 bytenr
= btrfs_node_blockptr(buf
, i
);
3407 num_bytes
= fs_info
->nodesize
;
3408 ret
= process_func(trans
, fs_info
, bytenr
, num_bytes
,
3409 parent
, ref_root
, level
- 1, 0);
3419 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3420 struct extent_buffer
*buf
, int full_backref
)
3422 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3425 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3426 struct extent_buffer
*buf
, int full_backref
)
3428 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3431 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3432 struct btrfs_fs_info
*fs_info
,
3433 struct btrfs_path
*path
,
3434 struct btrfs_block_group_cache
*cache
)
3437 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3439 struct extent_buffer
*leaf
;
3441 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3448 leaf
= path
->nodes
[0];
3449 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3450 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3451 btrfs_mark_buffer_dirty(leaf
);
3453 btrfs_release_path(path
);
3458 static struct btrfs_block_group_cache
*
3459 next_block_group(struct btrfs_fs_info
*fs_info
,
3460 struct btrfs_block_group_cache
*cache
)
3462 struct rb_node
*node
;
3464 spin_lock(&fs_info
->block_group_cache_lock
);
3466 /* If our block group was removed, we need a full search. */
3467 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3468 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3470 spin_unlock(&fs_info
->block_group_cache_lock
);
3471 btrfs_put_block_group(cache
);
3472 cache
= btrfs_lookup_first_block_group(fs_info
, next_bytenr
); return cache
;
3474 node
= rb_next(&cache
->cache_node
);
3475 btrfs_put_block_group(cache
);
3477 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3479 btrfs_get_block_group(cache
);
3482 spin_unlock(&fs_info
->block_group_cache_lock
);
3486 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3487 struct btrfs_trans_handle
*trans
,
3488 struct btrfs_path
*path
)
3490 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3491 struct btrfs_root
*root
= fs_info
->tree_root
;
3492 struct inode
*inode
= NULL
;
3493 struct extent_changeset
*data_reserved
= NULL
;
3495 int dcs
= BTRFS_DC_ERROR
;
3501 * If this block group is smaller than 100 megs don't bother caching the
3504 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3505 spin_lock(&block_group
->lock
);
3506 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3507 spin_unlock(&block_group
->lock
);
3514 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
3515 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3516 ret
= PTR_ERR(inode
);
3517 btrfs_release_path(path
);
3521 if (IS_ERR(inode
)) {
3525 if (block_group
->ro
)
3528 ret
= create_free_space_inode(fs_info
, trans
, block_group
,
3536 * We want to set the generation to 0, that way if anything goes wrong
3537 * from here on out we know not to trust this cache when we load up next
3540 BTRFS_I(inode
)->generation
= 0;
3541 ret
= btrfs_update_inode(trans
, root
, inode
);
3544 * So theoretically we could recover from this, simply set the
3545 * super cache generation to 0 so we know to invalidate the
3546 * cache, but then we'd have to keep track of the block groups
3547 * that fail this way so we know we _have_ to reset this cache
3548 * before the next commit or risk reading stale cache. So to
3549 * limit our exposure to horrible edge cases lets just abort the
3550 * transaction, this only happens in really bad situations
3553 btrfs_abort_transaction(trans
, ret
);
3558 /* We've already setup this transaction, go ahead and exit */
3559 if (block_group
->cache_generation
== trans
->transid
&&
3560 i_size_read(inode
)) {
3561 dcs
= BTRFS_DC_SETUP
;
3565 if (i_size_read(inode
) > 0) {
3566 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
3567 &fs_info
->global_block_rsv
);
3571 ret
= btrfs_truncate_free_space_cache(trans
, NULL
, inode
);
3576 spin_lock(&block_group
->lock
);
3577 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3578 !btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
3580 * don't bother trying to write stuff out _if_
3581 * a) we're not cached,
3582 * b) we're with nospace_cache mount option,
3583 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3585 dcs
= BTRFS_DC_WRITTEN
;
3586 spin_unlock(&block_group
->lock
);
3589 spin_unlock(&block_group
->lock
);
3592 * We hit an ENOSPC when setting up the cache in this transaction, just
3593 * skip doing the setup, we've already cleared the cache so we're safe.
3595 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3601 * Try to preallocate enough space based on how big the block group is.
3602 * Keep in mind this has to include any pinned space which could end up
3603 * taking up quite a bit since it's not folded into the other space
3606 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3611 num_pages
*= PAGE_SIZE
;
3613 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, 0, num_pages
);
3617 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3618 num_pages
, num_pages
,
3621 * Our cache requires contiguous chunks so that we don't modify a bunch
3622 * of metadata or split extents when writing the cache out, which means
3623 * we can enospc if we are heavily fragmented in addition to just normal
3624 * out of space conditions. So if we hit this just skip setting up any
3625 * other block groups for this transaction, maybe we'll unpin enough
3626 * space the next time around.
3629 dcs
= BTRFS_DC_SETUP
;
3630 else if (ret
== -ENOSPC
)
3631 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3636 btrfs_release_path(path
);
3638 spin_lock(&block_group
->lock
);
3639 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3640 block_group
->cache_generation
= trans
->transid
;
3641 block_group
->disk_cache_state
= dcs
;
3642 spin_unlock(&block_group
->lock
);
3644 extent_changeset_free(data_reserved
);
3648 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3649 struct btrfs_fs_info
*fs_info
)
3651 struct btrfs_block_group_cache
*cache
, *tmp
;
3652 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3653 struct btrfs_path
*path
;
3655 if (list_empty(&cur_trans
->dirty_bgs
) ||
3656 !btrfs_test_opt(fs_info
, SPACE_CACHE
))
3659 path
= btrfs_alloc_path();
3663 /* Could add new block groups, use _safe just in case */
3664 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3666 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3667 cache_save_setup(cache
, trans
, path
);
3670 btrfs_free_path(path
);
3675 * transaction commit does final block group cache writeback during a
3676 * critical section where nothing is allowed to change the FS. This is
3677 * required in order for the cache to actually match the block group,
3678 * but can introduce a lot of latency into the commit.
3680 * So, btrfs_start_dirty_block_groups is here to kick off block group
3681 * cache IO. There's a chance we'll have to redo some of it if the
3682 * block group changes again during the commit, but it greatly reduces
3683 * the commit latency by getting rid of the easy block groups while
3684 * we're still allowing others to join the commit.
3686 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3687 struct btrfs_fs_info
*fs_info
)
3689 struct btrfs_block_group_cache
*cache
;
3690 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3693 struct btrfs_path
*path
= NULL
;
3695 struct list_head
*io
= &cur_trans
->io_bgs
;
3696 int num_started
= 0;
3699 spin_lock(&cur_trans
->dirty_bgs_lock
);
3700 if (list_empty(&cur_trans
->dirty_bgs
)) {
3701 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3704 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3705 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3709 * make sure all the block groups on our dirty list actually
3712 btrfs_create_pending_block_groups(trans
, fs_info
);
3715 path
= btrfs_alloc_path();
3721 * cache_write_mutex is here only to save us from balance or automatic
3722 * removal of empty block groups deleting this block group while we are
3723 * writing out the cache
3725 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3726 while (!list_empty(&dirty
)) {
3727 cache
= list_first_entry(&dirty
,
3728 struct btrfs_block_group_cache
,
3731 * this can happen if something re-dirties a block
3732 * group that is already under IO. Just wait for it to
3733 * finish and then do it all again
3735 if (!list_empty(&cache
->io_list
)) {
3736 list_del_init(&cache
->io_list
);
3737 btrfs_wait_cache_io(trans
, cache
, path
);
3738 btrfs_put_block_group(cache
);
3743 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3744 * if it should update the cache_state. Don't delete
3745 * until after we wait.
3747 * Since we're not running in the commit critical section
3748 * we need the dirty_bgs_lock to protect from update_block_group
3750 spin_lock(&cur_trans
->dirty_bgs_lock
);
3751 list_del_init(&cache
->dirty_list
);
3752 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3756 cache_save_setup(cache
, trans
, path
);
3758 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3759 cache
->io_ctl
.inode
= NULL
;
3760 ret
= btrfs_write_out_cache(fs_info
, trans
,
3762 if (ret
== 0 && cache
->io_ctl
.inode
) {
3767 * the cache_write_mutex is protecting
3770 list_add_tail(&cache
->io_list
, io
);
3773 * if we failed to write the cache, the
3774 * generation will be bad and life goes on
3780 ret
= write_one_cache_group(trans
, fs_info
,
3783 * Our block group might still be attached to the list
3784 * of new block groups in the transaction handle of some
3785 * other task (struct btrfs_trans_handle->new_bgs). This
3786 * means its block group item isn't yet in the extent
3787 * tree. If this happens ignore the error, as we will
3788 * try again later in the critical section of the
3789 * transaction commit.
3791 if (ret
== -ENOENT
) {
3793 spin_lock(&cur_trans
->dirty_bgs_lock
);
3794 if (list_empty(&cache
->dirty_list
)) {
3795 list_add_tail(&cache
->dirty_list
,
3796 &cur_trans
->dirty_bgs
);
3797 btrfs_get_block_group(cache
);
3799 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3801 btrfs_abort_transaction(trans
, ret
);
3805 /* if its not on the io list, we need to put the block group */
3807 btrfs_put_block_group(cache
);
3813 * Avoid blocking other tasks for too long. It might even save
3814 * us from writing caches for block groups that are going to be
3817 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3818 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3820 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3823 * go through delayed refs for all the stuff we've just kicked off
3824 * and then loop back (just once)
3826 ret
= btrfs_run_delayed_refs(trans
, fs_info
, 0);
3827 if (!ret
&& loops
== 0) {
3829 spin_lock(&cur_trans
->dirty_bgs_lock
);
3830 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3832 * dirty_bgs_lock protects us from concurrent block group
3833 * deletes too (not just cache_write_mutex).
3835 if (!list_empty(&dirty
)) {
3836 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3839 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3840 } else if (ret
< 0) {
3841 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
3844 btrfs_free_path(path
);
3848 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3849 struct btrfs_fs_info
*fs_info
)
3851 struct btrfs_block_group_cache
*cache
;
3852 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3855 struct btrfs_path
*path
;
3856 struct list_head
*io
= &cur_trans
->io_bgs
;
3857 int num_started
= 0;
3859 path
= btrfs_alloc_path();
3864 * Even though we are in the critical section of the transaction commit,
3865 * we can still have concurrent tasks adding elements to this
3866 * transaction's list of dirty block groups. These tasks correspond to
3867 * endio free space workers started when writeback finishes for a
3868 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3869 * allocate new block groups as a result of COWing nodes of the root
3870 * tree when updating the free space inode. The writeback for the space
3871 * caches is triggered by an earlier call to
3872 * btrfs_start_dirty_block_groups() and iterations of the following
3874 * Also we want to do the cache_save_setup first and then run the
3875 * delayed refs to make sure we have the best chance at doing this all
3878 spin_lock(&cur_trans
->dirty_bgs_lock
);
3879 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3880 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3881 struct btrfs_block_group_cache
,
3885 * this can happen if cache_save_setup re-dirties a block
3886 * group that is already under IO. Just wait for it to
3887 * finish and then do it all again
3889 if (!list_empty(&cache
->io_list
)) {
3890 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3891 list_del_init(&cache
->io_list
);
3892 btrfs_wait_cache_io(trans
, cache
, path
);
3893 btrfs_put_block_group(cache
);
3894 spin_lock(&cur_trans
->dirty_bgs_lock
);
3898 * don't remove from the dirty list until after we've waited
3901 list_del_init(&cache
->dirty_list
);
3902 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3905 cache_save_setup(cache
, trans
, path
);
3908 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
3909 (unsigned long) -1);
3911 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3912 cache
->io_ctl
.inode
= NULL
;
3913 ret
= btrfs_write_out_cache(fs_info
, trans
,
3915 if (ret
== 0 && cache
->io_ctl
.inode
) {
3918 list_add_tail(&cache
->io_list
, io
);
3921 * if we failed to write the cache, the
3922 * generation will be bad and life goes on
3928 ret
= write_one_cache_group(trans
, fs_info
,
3931 * One of the free space endio workers might have
3932 * created a new block group while updating a free space
3933 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3934 * and hasn't released its transaction handle yet, in
3935 * which case the new block group is still attached to
3936 * its transaction handle and its creation has not
3937 * finished yet (no block group item in the extent tree
3938 * yet, etc). If this is the case, wait for all free
3939 * space endio workers to finish and retry. This is a
3940 * a very rare case so no need for a more efficient and
3943 if (ret
== -ENOENT
) {
3944 wait_event(cur_trans
->writer_wait
,
3945 atomic_read(&cur_trans
->num_writers
) == 1);
3946 ret
= write_one_cache_group(trans
, fs_info
,
3950 btrfs_abort_transaction(trans
, ret
);
3953 /* if its not on the io list, we need to put the block group */
3955 btrfs_put_block_group(cache
);
3956 spin_lock(&cur_trans
->dirty_bgs_lock
);
3958 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3960 while (!list_empty(io
)) {
3961 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3963 list_del_init(&cache
->io_list
);
3964 btrfs_wait_cache_io(trans
, cache
, path
);
3965 btrfs_put_block_group(cache
);
3968 btrfs_free_path(path
);
3972 int btrfs_extent_readonly(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3974 struct btrfs_block_group_cache
*block_group
;
3977 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
3978 if (!block_group
|| block_group
->ro
)
3981 btrfs_put_block_group(block_group
);
3985 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3987 struct btrfs_block_group_cache
*bg
;
3990 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3994 spin_lock(&bg
->lock
);
3998 atomic_inc(&bg
->nocow_writers
);
3999 spin_unlock(&bg
->lock
);
4001 /* no put on block group, done by btrfs_dec_nocow_writers */
4003 btrfs_put_block_group(bg
);
4009 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
4011 struct btrfs_block_group_cache
*bg
;
4013 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
4015 if (atomic_dec_and_test(&bg
->nocow_writers
))
4016 wake_up_atomic_t(&bg
->nocow_writers
);
4018 * Once for our lookup and once for the lookup done by a previous call
4019 * to btrfs_inc_nocow_writers()
4021 btrfs_put_block_group(bg
);
4022 btrfs_put_block_group(bg
);
4025 static int btrfs_wait_nocow_writers_atomic_t(atomic_t
*a
)
4031 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
4033 wait_on_atomic_t(&bg
->nocow_writers
,
4034 btrfs_wait_nocow_writers_atomic_t
,
4035 TASK_UNINTERRUPTIBLE
);
4038 static const char *alloc_name(u64 flags
)
4041 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
4043 case BTRFS_BLOCK_GROUP_METADATA
:
4045 case BTRFS_BLOCK_GROUP_DATA
:
4047 case BTRFS_BLOCK_GROUP_SYSTEM
:
4051 return "invalid-combination";
4055 static int create_space_info(struct btrfs_fs_info
*info
, u64 flags
,
4056 struct btrfs_space_info
**new)
4059 struct btrfs_space_info
*space_info
;
4063 space_info
= kzalloc(sizeof(*space_info
), GFP_NOFS
);
4067 ret
= percpu_counter_init(&space_info
->total_bytes_pinned
, 0,
4074 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
4075 INIT_LIST_HEAD(&space_info
->block_groups
[i
]);
4076 init_rwsem(&space_info
->groups_sem
);
4077 spin_lock_init(&space_info
->lock
);
4078 space_info
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
4079 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4080 init_waitqueue_head(&space_info
->wait
);
4081 INIT_LIST_HEAD(&space_info
->ro_bgs
);
4082 INIT_LIST_HEAD(&space_info
->tickets
);
4083 INIT_LIST_HEAD(&space_info
->priority_tickets
);
4085 ret
= kobject_init_and_add(&space_info
->kobj
, &space_info_ktype
,
4086 info
->space_info_kobj
, "%s",
4087 alloc_name(space_info
->flags
));
4089 kobject_put(&space_info
->kobj
);
4094 list_add_rcu(&space_info
->list
, &info
->space_info
);
4095 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4096 info
->data_sinfo
= space_info
;
4101 static void update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
4102 u64 total_bytes
, u64 bytes_used
,
4104 struct btrfs_space_info
**space_info
)
4106 struct btrfs_space_info
*found
;
4109 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
4110 BTRFS_BLOCK_GROUP_RAID10
))
4115 found
= __find_space_info(info
, flags
);
4117 spin_lock(&found
->lock
);
4118 found
->total_bytes
+= total_bytes
;
4119 found
->disk_total
+= total_bytes
* factor
;
4120 found
->bytes_used
+= bytes_used
;
4121 found
->disk_used
+= bytes_used
* factor
;
4122 found
->bytes_readonly
+= bytes_readonly
;
4123 if (total_bytes
> 0)
4125 space_info_add_new_bytes(info
, found
, total_bytes
-
4126 bytes_used
- bytes_readonly
);
4127 spin_unlock(&found
->lock
);
4128 *space_info
= found
;
4131 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
4133 u64 extra_flags
= chunk_to_extended(flags
) &
4134 BTRFS_EXTENDED_PROFILE_MASK
;
4136 write_seqlock(&fs_info
->profiles_lock
);
4137 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4138 fs_info
->avail_data_alloc_bits
|= extra_flags
;
4139 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4140 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
4141 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4142 fs_info
->avail_system_alloc_bits
|= extra_flags
;
4143 write_sequnlock(&fs_info
->profiles_lock
);
4147 * returns target flags in extended format or 0 if restripe for this
4148 * chunk_type is not in progress
4150 * should be called with either volume_mutex or balance_lock held
4152 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
4154 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4160 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4161 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4162 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4163 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4164 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4165 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4166 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4167 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4168 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4175 * @flags: available profiles in extended format (see ctree.h)
4177 * Returns reduced profile in chunk format. If profile changing is in
4178 * progress (either running or paused) picks the target profile (if it's
4179 * already available), otherwise falls back to plain reducing.
4181 static u64
btrfs_reduce_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 flags
)
4183 u64 num_devices
= fs_info
->fs_devices
->rw_devices
;
4189 * see if restripe for this chunk_type is in progress, if so
4190 * try to reduce to the target profile
4192 spin_lock(&fs_info
->balance_lock
);
4193 target
= get_restripe_target(fs_info
, flags
);
4195 /* pick target profile only if it's already available */
4196 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4197 spin_unlock(&fs_info
->balance_lock
);
4198 return extended_to_chunk(target
);
4201 spin_unlock(&fs_info
->balance_lock
);
4203 /* First, mask out the RAID levels which aren't possible */
4204 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4205 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4206 allowed
|= btrfs_raid_group
[raid_type
];
4210 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4211 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4212 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4213 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4214 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4215 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4216 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4217 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4218 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4219 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4221 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4223 return extended_to_chunk(flags
| allowed
);
4226 static u64
get_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 orig_flags
)
4233 seq
= read_seqbegin(&fs_info
->profiles_lock
);
4235 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4236 flags
|= fs_info
->avail_data_alloc_bits
;
4237 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4238 flags
|= fs_info
->avail_system_alloc_bits
;
4239 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4240 flags
|= fs_info
->avail_metadata_alloc_bits
;
4241 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
4243 return btrfs_reduce_alloc_profile(fs_info
, flags
);
4246 static u64
get_alloc_profile_by_root(struct btrfs_root
*root
, int data
)
4248 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4253 flags
= BTRFS_BLOCK_GROUP_DATA
;
4254 else if (root
== fs_info
->chunk_root
)
4255 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4257 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4259 ret
= get_alloc_profile(fs_info
, flags
);
4263 u64
btrfs_data_alloc_profile(struct btrfs_fs_info
*fs_info
)
4265 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4268 u64
btrfs_metadata_alloc_profile(struct btrfs_fs_info
*fs_info
)
4270 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4273 u64
btrfs_system_alloc_profile(struct btrfs_fs_info
*fs_info
)
4275 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4278 static u64
btrfs_space_info_used(struct btrfs_space_info
*s_info
,
4279 bool may_use_included
)
4282 return s_info
->bytes_used
+ s_info
->bytes_reserved
+
4283 s_info
->bytes_pinned
+ s_info
->bytes_readonly
+
4284 (may_use_included
? s_info
->bytes_may_use
: 0);
4287 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode
*inode
, u64 bytes
)
4289 struct btrfs_root
*root
= inode
->root
;
4290 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4291 struct btrfs_space_info
*data_sinfo
= fs_info
->data_sinfo
;
4294 int need_commit
= 2;
4295 int have_pinned_space
;
4297 /* make sure bytes are sectorsize aligned */
4298 bytes
= ALIGN(bytes
, fs_info
->sectorsize
);
4300 if (btrfs_is_free_space_inode(inode
)) {
4302 ASSERT(current
->journal_info
);
4306 /* make sure we have enough space to handle the data first */
4307 spin_lock(&data_sinfo
->lock
);
4308 used
= btrfs_space_info_used(data_sinfo
, true);
4310 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4311 struct btrfs_trans_handle
*trans
;
4314 * if we don't have enough free bytes in this space then we need
4315 * to alloc a new chunk.
4317 if (!data_sinfo
->full
) {
4320 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4321 spin_unlock(&data_sinfo
->lock
);
4323 alloc_target
= btrfs_data_alloc_profile(fs_info
);
4325 * It is ugly that we don't call nolock join
4326 * transaction for the free space inode case here.
4327 * But it is safe because we only do the data space
4328 * reservation for the free space cache in the
4329 * transaction context, the common join transaction
4330 * just increase the counter of the current transaction
4331 * handler, doesn't try to acquire the trans_lock of
4334 trans
= btrfs_join_transaction(root
);
4336 return PTR_ERR(trans
);
4338 ret
= do_chunk_alloc(trans
, fs_info
, alloc_target
,
4339 CHUNK_ALLOC_NO_FORCE
);
4340 btrfs_end_transaction(trans
);
4345 have_pinned_space
= 1;
4354 * If we don't have enough pinned space to deal with this
4355 * allocation, and no removed chunk in current transaction,
4356 * don't bother committing the transaction.
4358 have_pinned_space
= percpu_counter_compare(
4359 &data_sinfo
->total_bytes_pinned
,
4360 used
+ bytes
- data_sinfo
->total_bytes
);
4361 spin_unlock(&data_sinfo
->lock
);
4363 /* commit the current transaction and try again */
4366 !atomic_read(&fs_info
->open_ioctl_trans
)) {
4369 if (need_commit
> 0) {
4370 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4371 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0,
4375 trans
= btrfs_join_transaction(root
);
4377 return PTR_ERR(trans
);
4378 if (have_pinned_space
>= 0 ||
4379 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4380 &trans
->transaction
->flags
) ||
4382 ret
= btrfs_commit_transaction(trans
);
4386 * The cleaner kthread might still be doing iput
4387 * operations. Wait for it to finish so that
4388 * more space is released.
4390 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
4391 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
4394 btrfs_end_transaction(trans
);
4398 trace_btrfs_space_reservation(fs_info
,
4399 "space_info:enospc",
4400 data_sinfo
->flags
, bytes
, 1);
4403 data_sinfo
->bytes_may_use
+= bytes
;
4404 trace_btrfs_space_reservation(fs_info
, "space_info",
4405 data_sinfo
->flags
, bytes
, 1);
4406 spin_unlock(&data_sinfo
->lock
);
4411 int btrfs_check_data_free_space(struct inode
*inode
,
4412 struct extent_changeset
**reserved
, u64 start
, u64 len
)
4414 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4417 /* align the range */
4418 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4419 round_down(start
, fs_info
->sectorsize
);
4420 start
= round_down(start
, fs_info
->sectorsize
);
4422 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
), len
);
4426 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4427 ret
= btrfs_qgroup_reserve_data(inode
, reserved
, start
, len
);
4429 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4436 * Called if we need to clear a data reservation for this inode
4437 * Normally in a error case.
4439 * This one will *NOT* use accurate qgroup reserved space API, just for case
4440 * which we can't sleep and is sure it won't affect qgroup reserved space.
4441 * Like clear_bit_hook().
4443 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4446 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4447 struct btrfs_space_info
*data_sinfo
;
4449 /* Make sure the range is aligned to sectorsize */
4450 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4451 round_down(start
, fs_info
->sectorsize
);
4452 start
= round_down(start
, fs_info
->sectorsize
);
4454 data_sinfo
= fs_info
->data_sinfo
;
4455 spin_lock(&data_sinfo
->lock
);
4456 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4457 data_sinfo
->bytes_may_use
= 0;
4459 data_sinfo
->bytes_may_use
-= len
;
4460 trace_btrfs_space_reservation(fs_info
, "space_info",
4461 data_sinfo
->flags
, len
, 0);
4462 spin_unlock(&data_sinfo
->lock
);
4466 * Called if we need to clear a data reservation for this inode
4467 * Normally in a error case.
4469 * This one will handle the per-inode data rsv map for accurate reserved
4472 void btrfs_free_reserved_data_space(struct inode
*inode
,
4473 struct extent_changeset
*reserved
, u64 start
, u64 len
)
4475 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4477 /* Make sure the range is aligned to sectorsize */
4478 len
= round_up(start
+ len
, root
->fs_info
->sectorsize
) -
4479 round_down(start
, root
->fs_info
->sectorsize
);
4480 start
= round_down(start
, root
->fs_info
->sectorsize
);
4482 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4483 btrfs_qgroup_free_data(inode
, reserved
, start
, len
);
4486 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4488 struct list_head
*head
= &info
->space_info
;
4489 struct btrfs_space_info
*found
;
4492 list_for_each_entry_rcu(found
, head
, list
) {
4493 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4494 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4499 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4501 return (global
->size
<< 1);
4504 static int should_alloc_chunk(struct btrfs_fs_info
*fs_info
,
4505 struct btrfs_space_info
*sinfo
, int force
)
4507 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4508 u64 bytes_used
= btrfs_space_info_used(sinfo
, false);
4511 if (force
== CHUNK_ALLOC_FORCE
)
4515 * We need to take into account the global rsv because for all intents
4516 * and purposes it's used space. Don't worry about locking the
4517 * global_rsv, it doesn't change except when the transaction commits.
4519 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4520 bytes_used
+= calc_global_rsv_need_space(global_rsv
);
4523 * in limited mode, we want to have some free space up to
4524 * about 1% of the FS size.
4526 if (force
== CHUNK_ALLOC_LIMITED
) {
4527 thresh
= btrfs_super_total_bytes(fs_info
->super_copy
);
4528 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4530 if (sinfo
->total_bytes
- bytes_used
< thresh
)
4534 if (bytes_used
+ SZ_2M
< div_factor(sinfo
->total_bytes
, 8))
4539 static u64
get_profile_num_devs(struct btrfs_fs_info
*fs_info
, u64 type
)
4543 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4544 BTRFS_BLOCK_GROUP_RAID0
|
4545 BTRFS_BLOCK_GROUP_RAID5
|
4546 BTRFS_BLOCK_GROUP_RAID6
))
4547 num_dev
= fs_info
->fs_devices
->rw_devices
;
4548 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4551 num_dev
= 1; /* DUP or single */
4557 * If @is_allocation is true, reserve space in the system space info necessary
4558 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4561 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4562 struct btrfs_fs_info
*fs_info
, u64 type
)
4564 struct btrfs_space_info
*info
;
4571 * Needed because we can end up allocating a system chunk and for an
4572 * atomic and race free space reservation in the chunk block reserve.
4574 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
4576 info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4577 spin_lock(&info
->lock
);
4578 left
= info
->total_bytes
- btrfs_space_info_used(info
, true);
4579 spin_unlock(&info
->lock
);
4581 num_devs
= get_profile_num_devs(fs_info
, type
);
4583 /* num_devs device items to update and 1 chunk item to add or remove */
4584 thresh
= btrfs_calc_trunc_metadata_size(fs_info
, num_devs
) +
4585 btrfs_calc_trans_metadata_size(fs_info
, 1);
4587 if (left
< thresh
&& btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
4588 btrfs_info(fs_info
, "left=%llu, need=%llu, flags=%llu",
4589 left
, thresh
, type
);
4590 dump_space_info(fs_info
, info
, 0, 0);
4593 if (left
< thresh
) {
4594 u64 flags
= btrfs_system_alloc_profile(fs_info
);
4597 * Ignore failure to create system chunk. We might end up not
4598 * needing it, as we might not need to COW all nodes/leafs from
4599 * the paths we visit in the chunk tree (they were already COWed
4600 * or created in the current transaction for example).
4602 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4606 ret
= btrfs_block_rsv_add(fs_info
->chunk_root
,
4607 &fs_info
->chunk_block_rsv
,
4608 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4610 trans
->chunk_bytes_reserved
+= thresh
;
4615 * If force is CHUNK_ALLOC_FORCE:
4616 * - return 1 if it successfully allocates a chunk,
4617 * - return errors including -ENOSPC otherwise.
4618 * If force is NOT CHUNK_ALLOC_FORCE:
4619 * - return 0 if it doesn't need to allocate a new chunk,
4620 * - return 1 if it successfully allocates a chunk,
4621 * - return errors including -ENOSPC otherwise.
4623 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4624 struct btrfs_fs_info
*fs_info
, u64 flags
, int force
)
4626 struct btrfs_space_info
*space_info
;
4627 int wait_for_alloc
= 0;
4630 /* Don't re-enter if we're already allocating a chunk */
4631 if (trans
->allocating_chunk
)
4634 space_info
= __find_space_info(fs_info
, flags
);
4636 ret
= create_space_info(fs_info
, flags
, &space_info
);
4642 spin_lock(&space_info
->lock
);
4643 if (force
< space_info
->force_alloc
)
4644 force
= space_info
->force_alloc
;
4645 if (space_info
->full
) {
4646 if (should_alloc_chunk(fs_info
, space_info
, force
))
4650 spin_unlock(&space_info
->lock
);
4654 if (!should_alloc_chunk(fs_info
, space_info
, force
)) {
4655 spin_unlock(&space_info
->lock
);
4657 } else if (space_info
->chunk_alloc
) {
4660 space_info
->chunk_alloc
= 1;
4663 spin_unlock(&space_info
->lock
);
4665 mutex_lock(&fs_info
->chunk_mutex
);
4668 * The chunk_mutex is held throughout the entirety of a chunk
4669 * allocation, so once we've acquired the chunk_mutex we know that the
4670 * other guy is done and we need to recheck and see if we should
4673 if (wait_for_alloc
) {
4674 mutex_unlock(&fs_info
->chunk_mutex
);
4680 trans
->allocating_chunk
= true;
4683 * If we have mixed data/metadata chunks we want to make sure we keep
4684 * allocating mixed chunks instead of individual chunks.
4686 if (btrfs_mixed_space_info(space_info
))
4687 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4690 * if we're doing a data chunk, go ahead and make sure that
4691 * we keep a reasonable number of metadata chunks allocated in the
4694 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4695 fs_info
->data_chunk_allocations
++;
4696 if (!(fs_info
->data_chunk_allocations
%
4697 fs_info
->metadata_ratio
))
4698 force_metadata_allocation(fs_info
);
4702 * Check if we have enough space in SYSTEM chunk because we may need
4703 * to update devices.
4705 check_system_chunk(trans
, fs_info
, flags
);
4707 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4708 trans
->allocating_chunk
= false;
4710 spin_lock(&space_info
->lock
);
4711 if (ret
< 0 && ret
!= -ENOSPC
)
4714 space_info
->full
= 1;
4718 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4720 space_info
->chunk_alloc
= 0;
4721 spin_unlock(&space_info
->lock
);
4722 mutex_unlock(&fs_info
->chunk_mutex
);
4724 * When we allocate a new chunk we reserve space in the chunk block
4725 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4726 * add new nodes/leafs to it if we end up needing to do it when
4727 * inserting the chunk item and updating device items as part of the
4728 * second phase of chunk allocation, performed by
4729 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4730 * large number of new block groups to create in our transaction
4731 * handle's new_bgs list to avoid exhausting the chunk block reserve
4732 * in extreme cases - like having a single transaction create many new
4733 * block groups when starting to write out the free space caches of all
4734 * the block groups that were made dirty during the lifetime of the
4737 if (trans
->can_flush_pending_bgs
&&
4738 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4739 btrfs_create_pending_block_groups(trans
, fs_info
);
4740 btrfs_trans_release_chunk_metadata(trans
);
4745 static int can_overcommit(struct btrfs_fs_info
*fs_info
,
4746 struct btrfs_space_info
*space_info
, u64 bytes
,
4747 enum btrfs_reserve_flush_enum flush
,
4750 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4756 /* Don't overcommit when in mixed mode. */
4757 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4761 profile
= btrfs_system_alloc_profile(fs_info
);
4763 profile
= btrfs_metadata_alloc_profile(fs_info
);
4765 used
= btrfs_space_info_used(space_info
, false);
4768 * We only want to allow over committing if we have lots of actual space
4769 * free, but if we don't have enough space to handle the global reserve
4770 * space then we could end up having a real enospc problem when trying
4771 * to allocate a chunk or some other such important allocation.
4773 spin_lock(&global_rsv
->lock
);
4774 space_size
= calc_global_rsv_need_space(global_rsv
);
4775 spin_unlock(&global_rsv
->lock
);
4776 if (used
+ space_size
>= space_info
->total_bytes
)
4779 used
+= space_info
->bytes_may_use
;
4781 avail
= atomic64_read(&fs_info
->free_chunk_space
);
4784 * If we have dup, raid1 or raid10 then only half of the free
4785 * space is actually useable. For raid56, the space info used
4786 * doesn't include the parity drive, so we don't have to
4789 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4790 BTRFS_BLOCK_GROUP_RAID1
|
4791 BTRFS_BLOCK_GROUP_RAID10
))
4795 * If we aren't flushing all things, let us overcommit up to
4796 * 1/2th of the space. If we can flush, don't let us overcommit
4797 * too much, let it overcommit up to 1/8 of the space.
4799 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4804 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4809 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info
*fs_info
,
4810 unsigned long nr_pages
, int nr_items
)
4812 struct super_block
*sb
= fs_info
->sb
;
4814 if (down_read_trylock(&sb
->s_umount
)) {
4815 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4816 up_read(&sb
->s_umount
);
4819 * We needn't worry the filesystem going from r/w to r/o though
4820 * we don't acquire ->s_umount mutex, because the filesystem
4821 * should guarantee the delalloc inodes list be empty after
4822 * the filesystem is readonly(all dirty pages are written to
4825 btrfs_start_delalloc_roots(fs_info
, 0, nr_items
);
4826 if (!current
->journal_info
)
4827 btrfs_wait_ordered_roots(fs_info
, nr_items
, 0, (u64
)-1);
4831 static inline u64
calc_reclaim_items_nr(struct btrfs_fs_info
*fs_info
,
4837 bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
4838 nr
= div64_u64(to_reclaim
, bytes
);
4844 #define EXTENT_SIZE_PER_ITEM SZ_256K
4847 * shrink metadata reservation for delalloc
4849 static void shrink_delalloc(struct btrfs_fs_info
*fs_info
, u64 to_reclaim
,
4850 u64 orig
, bool wait_ordered
)
4852 struct btrfs_block_rsv
*block_rsv
;
4853 struct btrfs_space_info
*space_info
;
4854 struct btrfs_trans_handle
*trans
;
4859 unsigned long nr_pages
;
4861 enum btrfs_reserve_flush_enum flush
;
4863 /* Calc the number of the pages we need flush for space reservation */
4864 items
= calc_reclaim_items_nr(fs_info
, to_reclaim
);
4865 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4867 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4868 block_rsv
= &fs_info
->delalloc_block_rsv
;
4869 space_info
= block_rsv
->space_info
;
4871 delalloc_bytes
= percpu_counter_sum_positive(
4872 &fs_info
->delalloc_bytes
);
4873 if (delalloc_bytes
== 0) {
4877 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4882 while (delalloc_bytes
&& loops
< 3) {
4883 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4884 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4885 btrfs_writeback_inodes_sb_nr(fs_info
, nr_pages
, items
);
4887 * We need to wait for the async pages to actually start before
4890 max_reclaim
= atomic_read(&fs_info
->async_delalloc_pages
);
4894 if (max_reclaim
<= nr_pages
)
4897 max_reclaim
-= nr_pages
;
4899 wait_event(fs_info
->async_submit_wait
,
4900 atomic_read(&fs_info
->async_delalloc_pages
) <=
4904 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4906 flush
= BTRFS_RESERVE_NO_FLUSH
;
4907 spin_lock(&space_info
->lock
);
4908 if (list_empty(&space_info
->tickets
) &&
4909 list_empty(&space_info
->priority_tickets
)) {
4910 spin_unlock(&space_info
->lock
);
4913 spin_unlock(&space_info
->lock
);
4916 if (wait_ordered
&& !trans
) {
4917 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4919 time_left
= schedule_timeout_killable(1);
4923 delalloc_bytes
= percpu_counter_sum_positive(
4924 &fs_info
->delalloc_bytes
);
4928 struct reserve_ticket
{
4931 struct list_head list
;
4932 wait_queue_head_t wait
;
4936 * maybe_commit_transaction - possibly commit the transaction if its ok to
4937 * @root - the root we're allocating for
4938 * @bytes - the number of bytes we want to reserve
4939 * @force - force the commit
4941 * This will check to make sure that committing the transaction will actually
4942 * get us somewhere and then commit the transaction if it does. Otherwise it
4943 * will return -ENOSPC.
4945 static int may_commit_transaction(struct btrfs_fs_info
*fs_info
,
4946 struct btrfs_space_info
*space_info
)
4948 struct reserve_ticket
*ticket
= NULL
;
4949 struct btrfs_block_rsv
*delayed_rsv
= &fs_info
->delayed_block_rsv
;
4950 struct btrfs_trans_handle
*trans
;
4953 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4957 spin_lock(&space_info
->lock
);
4958 if (!list_empty(&space_info
->priority_tickets
))
4959 ticket
= list_first_entry(&space_info
->priority_tickets
,
4960 struct reserve_ticket
, list
);
4961 else if (!list_empty(&space_info
->tickets
))
4962 ticket
= list_first_entry(&space_info
->tickets
,
4963 struct reserve_ticket
, list
);
4964 bytes
= (ticket
) ? ticket
->bytes
: 0;
4965 spin_unlock(&space_info
->lock
);
4970 /* See if there is enough pinned space to make this reservation */
4971 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4976 * See if there is some space in the delayed insertion reservation for
4979 if (space_info
!= delayed_rsv
->space_info
)
4982 spin_lock(&delayed_rsv
->lock
);
4983 if (delayed_rsv
->size
> bytes
)
4986 bytes
-= delayed_rsv
->size
;
4987 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4989 spin_unlock(&delayed_rsv
->lock
);
4992 spin_unlock(&delayed_rsv
->lock
);
4995 trans
= btrfs_join_transaction(fs_info
->extent_root
);
4999 return btrfs_commit_transaction(trans
);
5003 * Try to flush some data based on policy set by @state. This is only advisory
5004 * and may fail for various reasons. The caller is supposed to examine the
5005 * state of @space_info to detect the outcome.
5007 static void flush_space(struct btrfs_fs_info
*fs_info
,
5008 struct btrfs_space_info
*space_info
, u64 num_bytes
,
5011 struct btrfs_root
*root
= fs_info
->extent_root
;
5012 struct btrfs_trans_handle
*trans
;
5017 case FLUSH_DELAYED_ITEMS_NR
:
5018 case FLUSH_DELAYED_ITEMS
:
5019 if (state
== FLUSH_DELAYED_ITEMS_NR
)
5020 nr
= calc_reclaim_items_nr(fs_info
, num_bytes
) * 2;
5024 trans
= btrfs_join_transaction(root
);
5025 if (IS_ERR(trans
)) {
5026 ret
= PTR_ERR(trans
);
5029 ret
= btrfs_run_delayed_items_nr(trans
, fs_info
, nr
);
5030 btrfs_end_transaction(trans
);
5032 case FLUSH_DELALLOC
:
5033 case FLUSH_DELALLOC_WAIT
:
5034 shrink_delalloc(fs_info
, num_bytes
* 2, num_bytes
,
5035 state
== FLUSH_DELALLOC_WAIT
);
5038 trans
= btrfs_join_transaction(root
);
5039 if (IS_ERR(trans
)) {
5040 ret
= PTR_ERR(trans
);
5043 ret
= do_chunk_alloc(trans
, fs_info
,
5044 btrfs_metadata_alloc_profile(fs_info
),
5045 CHUNK_ALLOC_NO_FORCE
);
5046 btrfs_end_transaction(trans
);
5047 if (ret
> 0 || ret
== -ENOSPC
)
5051 ret
= may_commit_transaction(fs_info
, space_info
);
5058 trace_btrfs_flush_space(fs_info
, space_info
->flags
, num_bytes
, state
,
5064 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info
*fs_info
,
5065 struct btrfs_space_info
*space_info
,
5068 struct reserve_ticket
*ticket
;
5073 list_for_each_entry(ticket
, &space_info
->tickets
, list
)
5074 to_reclaim
+= ticket
->bytes
;
5075 list_for_each_entry(ticket
, &space_info
->priority_tickets
, list
)
5076 to_reclaim
+= ticket
->bytes
;
5080 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
5081 if (can_overcommit(fs_info
, space_info
, to_reclaim
,
5082 BTRFS_RESERVE_FLUSH_ALL
, system_chunk
))
5085 used
= btrfs_space_info_used(space_info
, true);
5087 if (can_overcommit(fs_info
, space_info
, SZ_1M
,
5088 BTRFS_RESERVE_FLUSH_ALL
, system_chunk
))
5089 expected
= div_factor_fine(space_info
->total_bytes
, 95);
5091 expected
= div_factor_fine(space_info
->total_bytes
, 90);
5093 if (used
> expected
)
5094 to_reclaim
= used
- expected
;
5097 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
5098 space_info
->bytes_reserved
);
5102 static inline int need_do_async_reclaim(struct btrfs_fs_info
*fs_info
,
5103 struct btrfs_space_info
*space_info
,
5104 u64 used
, bool system_chunk
)
5106 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
5108 /* If we're just plain full then async reclaim just slows us down. */
5109 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
5112 if (!btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5116 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
5117 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
5120 static void wake_all_tickets(struct list_head
*head
)
5122 struct reserve_ticket
*ticket
;
5124 while (!list_empty(head
)) {
5125 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
5126 list_del_init(&ticket
->list
);
5127 ticket
->error
= -ENOSPC
;
5128 wake_up(&ticket
->wait
);
5133 * This is for normal flushers, we can wait all goddamned day if we want to. We
5134 * will loop and continuously try to flush as long as we are making progress.
5135 * We count progress as clearing off tickets each time we have to loop.
5137 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
5139 struct btrfs_fs_info
*fs_info
;
5140 struct btrfs_space_info
*space_info
;
5143 int commit_cycles
= 0;
5144 u64 last_tickets_id
;
5146 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
5147 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5149 spin_lock(&space_info
->lock
);
5150 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5153 space_info
->flush
= 0;
5154 spin_unlock(&space_info
->lock
);
5157 last_tickets_id
= space_info
->tickets_id
;
5158 spin_unlock(&space_info
->lock
);
5160 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5162 flush_space(fs_info
, space_info
, to_reclaim
, flush_state
);
5163 spin_lock(&space_info
->lock
);
5164 if (list_empty(&space_info
->tickets
)) {
5165 space_info
->flush
= 0;
5166 spin_unlock(&space_info
->lock
);
5169 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
,
5172 if (last_tickets_id
== space_info
->tickets_id
) {
5175 last_tickets_id
= space_info
->tickets_id
;
5176 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5181 if (flush_state
> COMMIT_TRANS
) {
5183 if (commit_cycles
> 2) {
5184 wake_all_tickets(&space_info
->tickets
);
5185 space_info
->flush
= 0;
5187 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5190 spin_unlock(&space_info
->lock
);
5191 } while (flush_state
<= COMMIT_TRANS
);
5194 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
5196 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
5199 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
5200 struct btrfs_space_info
*space_info
,
5201 struct reserve_ticket
*ticket
)
5204 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5206 spin_lock(&space_info
->lock
);
5207 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5210 spin_unlock(&space_info
->lock
);
5213 spin_unlock(&space_info
->lock
);
5216 flush_space(fs_info
, space_info
, to_reclaim
, flush_state
);
5218 spin_lock(&space_info
->lock
);
5219 if (ticket
->bytes
== 0) {
5220 spin_unlock(&space_info
->lock
);
5223 spin_unlock(&space_info
->lock
);
5226 * Priority flushers can't wait on delalloc without
5229 if (flush_state
== FLUSH_DELALLOC
||
5230 flush_state
== FLUSH_DELALLOC_WAIT
)
5231 flush_state
= ALLOC_CHUNK
;
5232 } while (flush_state
< COMMIT_TRANS
);
5235 static int wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
5236 struct btrfs_space_info
*space_info
,
5237 struct reserve_ticket
*ticket
, u64 orig_bytes
)
5243 spin_lock(&space_info
->lock
);
5244 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
5245 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
5250 spin_unlock(&space_info
->lock
);
5254 finish_wait(&ticket
->wait
, &wait
);
5255 spin_lock(&space_info
->lock
);
5258 ret
= ticket
->error
;
5259 if (!list_empty(&ticket
->list
))
5260 list_del_init(&ticket
->list
);
5261 if (ticket
->bytes
&& ticket
->bytes
< orig_bytes
) {
5262 u64 num_bytes
= orig_bytes
- ticket
->bytes
;
5263 space_info
->bytes_may_use
-= num_bytes
;
5264 trace_btrfs_space_reservation(fs_info
, "space_info",
5265 space_info
->flags
, num_bytes
, 0);
5267 spin_unlock(&space_info
->lock
);
5273 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5274 * @root - the root we're allocating for
5275 * @space_info - the space info we want to allocate from
5276 * @orig_bytes - the number of bytes we want
5277 * @flush - whether or not we can flush to make our reservation
5279 * This will reserve orig_bytes number of bytes from the space info associated
5280 * with the block_rsv. If there is not enough space it will make an attempt to
5281 * flush out space to make room. It will do this by flushing delalloc if
5282 * possible or committing the transaction. If flush is 0 then no attempts to
5283 * regain reservations will be made and this will fail if there is not enough
5286 static int __reserve_metadata_bytes(struct btrfs_fs_info
*fs_info
,
5287 struct btrfs_space_info
*space_info
,
5289 enum btrfs_reserve_flush_enum flush
,
5292 struct reserve_ticket ticket
;
5297 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
5299 spin_lock(&space_info
->lock
);
5301 used
= btrfs_space_info_used(space_info
, true);
5304 * If we have enough space then hooray, make our reservation and carry
5305 * on. If not see if we can overcommit, and if we can, hooray carry on.
5306 * If not things get more complicated.
5308 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5309 space_info
->bytes_may_use
+= orig_bytes
;
5310 trace_btrfs_space_reservation(fs_info
, "space_info",
5311 space_info
->flags
, orig_bytes
, 1);
5313 } else if (can_overcommit(fs_info
, space_info
, orig_bytes
, flush
,
5315 space_info
->bytes_may_use
+= orig_bytes
;
5316 trace_btrfs_space_reservation(fs_info
, "space_info",
5317 space_info
->flags
, orig_bytes
, 1);
5322 * If we couldn't make a reservation then setup our reservation ticket
5323 * and kick the async worker if it's not already running.
5325 * If we are a priority flusher then we just need to add our ticket to
5326 * the list and we will do our own flushing further down.
5328 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5329 ticket
.bytes
= orig_bytes
;
5331 init_waitqueue_head(&ticket
.wait
);
5332 if (flush
== BTRFS_RESERVE_FLUSH_ALL
) {
5333 list_add_tail(&ticket
.list
, &space_info
->tickets
);
5334 if (!space_info
->flush
) {
5335 space_info
->flush
= 1;
5336 trace_btrfs_trigger_flush(fs_info
,
5340 queue_work(system_unbound_wq
,
5341 &fs_info
->async_reclaim_work
);
5344 list_add_tail(&ticket
.list
,
5345 &space_info
->priority_tickets
);
5347 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5350 * We will do the space reservation dance during log replay,
5351 * which means we won't have fs_info->fs_root set, so don't do
5352 * the async reclaim as we will panic.
5354 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
) &&
5355 need_do_async_reclaim(fs_info
, space_info
,
5356 used
, system_chunk
) &&
5357 !work_busy(&fs_info
->async_reclaim_work
)) {
5358 trace_btrfs_trigger_flush(fs_info
, space_info
->flags
,
5359 orig_bytes
, flush
, "preempt");
5360 queue_work(system_unbound_wq
,
5361 &fs_info
->async_reclaim_work
);
5364 spin_unlock(&space_info
->lock
);
5365 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5368 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
5369 return wait_reserve_ticket(fs_info
, space_info
, &ticket
,
5373 priority_reclaim_metadata_space(fs_info
, space_info
, &ticket
);
5374 spin_lock(&space_info
->lock
);
5376 if (ticket
.bytes
< orig_bytes
) {
5377 u64 num_bytes
= orig_bytes
- ticket
.bytes
;
5378 space_info
->bytes_may_use
-= num_bytes
;
5379 trace_btrfs_space_reservation(fs_info
, "space_info",
5384 list_del_init(&ticket
.list
);
5387 spin_unlock(&space_info
->lock
);
5388 ASSERT(list_empty(&ticket
.list
));
5393 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5394 * @root - the root we're allocating for
5395 * @block_rsv - the block_rsv we're allocating for
5396 * @orig_bytes - the number of bytes we want
5397 * @flush - whether or not we can flush to make our reservation
5399 * This will reserve orgi_bytes number of bytes from the space info associated
5400 * with the block_rsv. If there is not enough space it will make an attempt to
5401 * flush out space to make room. It will do this by flushing delalloc if
5402 * possible or committing the transaction. If flush is 0 then no attempts to
5403 * regain reservations will be made and this will fail if there is not enough
5406 static int reserve_metadata_bytes(struct btrfs_root
*root
,
5407 struct btrfs_block_rsv
*block_rsv
,
5409 enum btrfs_reserve_flush_enum flush
)
5411 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5412 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5414 bool system_chunk
= (root
== fs_info
->chunk_root
);
5416 ret
= __reserve_metadata_bytes(fs_info
, block_rsv
->space_info
,
5417 orig_bytes
, flush
, system_chunk
);
5418 if (ret
== -ENOSPC
&&
5419 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5420 if (block_rsv
!= global_rsv
&&
5421 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5425 trace_btrfs_space_reservation(fs_info
, "space_info:enospc",
5426 block_rsv
->space_info
->flags
,
5431 static struct btrfs_block_rsv
*get_block_rsv(
5432 const struct btrfs_trans_handle
*trans
,
5433 const struct btrfs_root
*root
)
5435 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5436 struct btrfs_block_rsv
*block_rsv
= NULL
;
5438 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5439 (root
== fs_info
->csum_root
&& trans
->adding_csums
) ||
5440 (root
== fs_info
->uuid_root
))
5441 block_rsv
= trans
->block_rsv
;
5444 block_rsv
= root
->block_rsv
;
5447 block_rsv
= &fs_info
->empty_block_rsv
;
5452 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5456 spin_lock(&block_rsv
->lock
);
5457 if (block_rsv
->reserved
>= num_bytes
) {
5458 block_rsv
->reserved
-= num_bytes
;
5459 if (block_rsv
->reserved
< block_rsv
->size
)
5460 block_rsv
->full
= 0;
5463 spin_unlock(&block_rsv
->lock
);
5467 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5468 u64 num_bytes
, int update_size
)
5470 spin_lock(&block_rsv
->lock
);
5471 block_rsv
->reserved
+= num_bytes
;
5473 block_rsv
->size
+= num_bytes
;
5474 else if (block_rsv
->reserved
>= block_rsv
->size
)
5475 block_rsv
->full
= 1;
5476 spin_unlock(&block_rsv
->lock
);
5479 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5480 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5483 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5486 if (global_rsv
->space_info
!= dest
->space_info
)
5489 spin_lock(&global_rsv
->lock
);
5490 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5491 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5492 spin_unlock(&global_rsv
->lock
);
5495 global_rsv
->reserved
-= num_bytes
;
5496 if (global_rsv
->reserved
< global_rsv
->size
)
5497 global_rsv
->full
= 0;
5498 spin_unlock(&global_rsv
->lock
);
5500 block_rsv_add_bytes(dest
, num_bytes
, 1);
5505 * This is for space we already have accounted in space_info->bytes_may_use, so
5506 * basically when we're returning space from block_rsv's.
5508 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
5509 struct btrfs_space_info
*space_info
,
5512 struct reserve_ticket
*ticket
;
5513 struct list_head
*head
;
5515 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
5516 bool check_overcommit
= false;
5518 spin_lock(&space_info
->lock
);
5519 head
= &space_info
->priority_tickets
;
5522 * If we are over our limit then we need to check and see if we can
5523 * overcommit, and if we can't then we just need to free up our space
5524 * and not satisfy any requests.
5526 used
= btrfs_space_info_used(space_info
, true);
5527 if (used
- num_bytes
>= space_info
->total_bytes
)
5528 check_overcommit
= true;
5530 while (!list_empty(head
) && num_bytes
) {
5531 ticket
= list_first_entry(head
, struct reserve_ticket
,
5534 * We use 0 bytes because this space is already reserved, so
5535 * adding the ticket space would be a double count.
5537 if (check_overcommit
&&
5538 !can_overcommit(fs_info
, space_info
, 0, flush
, false))
5540 if (num_bytes
>= ticket
->bytes
) {
5541 list_del_init(&ticket
->list
);
5542 num_bytes
-= ticket
->bytes
;
5544 space_info
->tickets_id
++;
5545 wake_up(&ticket
->wait
);
5547 ticket
->bytes
-= num_bytes
;
5552 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5553 head
= &space_info
->tickets
;
5554 flush
= BTRFS_RESERVE_FLUSH_ALL
;
5557 space_info
->bytes_may_use
-= num_bytes
;
5558 trace_btrfs_space_reservation(fs_info
, "space_info",
5559 space_info
->flags
, num_bytes
, 0);
5560 spin_unlock(&space_info
->lock
);
5564 * This is for newly allocated space that isn't accounted in
5565 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5566 * we use this helper.
5568 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
5569 struct btrfs_space_info
*space_info
,
5572 struct reserve_ticket
*ticket
;
5573 struct list_head
*head
= &space_info
->priority_tickets
;
5576 while (!list_empty(head
) && num_bytes
) {
5577 ticket
= list_first_entry(head
, struct reserve_ticket
,
5579 if (num_bytes
>= ticket
->bytes
) {
5580 trace_btrfs_space_reservation(fs_info
, "space_info",
5583 list_del_init(&ticket
->list
);
5584 num_bytes
-= ticket
->bytes
;
5585 space_info
->bytes_may_use
+= ticket
->bytes
;
5587 space_info
->tickets_id
++;
5588 wake_up(&ticket
->wait
);
5590 trace_btrfs_space_reservation(fs_info
, "space_info",
5593 space_info
->bytes_may_use
+= num_bytes
;
5594 ticket
->bytes
-= num_bytes
;
5599 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5600 head
= &space_info
->tickets
;
5605 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5606 struct btrfs_block_rsv
*block_rsv
,
5607 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5609 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5611 spin_lock(&block_rsv
->lock
);
5612 if (num_bytes
== (u64
)-1)
5613 num_bytes
= block_rsv
->size
;
5614 block_rsv
->size
-= num_bytes
;
5615 if (block_rsv
->reserved
>= block_rsv
->size
) {
5616 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5617 block_rsv
->reserved
= block_rsv
->size
;
5618 block_rsv
->full
= 1;
5622 spin_unlock(&block_rsv
->lock
);
5624 if (num_bytes
> 0) {
5626 spin_lock(&dest
->lock
);
5630 bytes_to_add
= dest
->size
- dest
->reserved
;
5631 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5632 dest
->reserved
+= bytes_to_add
;
5633 if (dest
->reserved
>= dest
->size
)
5635 num_bytes
-= bytes_to_add
;
5637 spin_unlock(&dest
->lock
);
5640 space_info_add_old_bytes(fs_info
, space_info
,
5645 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src
,
5646 struct btrfs_block_rsv
*dst
, u64 num_bytes
,
5651 ret
= block_rsv_use_bytes(src
, num_bytes
);
5655 block_rsv_add_bytes(dst
, num_bytes
, update_size
);
5659 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5661 memset(rsv
, 0, sizeof(*rsv
));
5662 spin_lock_init(&rsv
->lock
);
5666 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_fs_info
*fs_info
,
5667 unsigned short type
)
5669 struct btrfs_block_rsv
*block_rsv
;
5671 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5675 btrfs_init_block_rsv(block_rsv
, type
);
5676 block_rsv
->space_info
= __find_space_info(fs_info
,
5677 BTRFS_BLOCK_GROUP_METADATA
);
5681 void btrfs_free_block_rsv(struct btrfs_fs_info
*fs_info
,
5682 struct btrfs_block_rsv
*rsv
)
5686 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
5690 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5695 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5696 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5697 enum btrfs_reserve_flush_enum flush
)
5704 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5706 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5713 int btrfs_block_rsv_check(struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5721 spin_lock(&block_rsv
->lock
);
5722 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5723 if (block_rsv
->reserved
>= num_bytes
)
5725 spin_unlock(&block_rsv
->lock
);
5730 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5731 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5732 enum btrfs_reserve_flush_enum flush
)
5740 spin_lock(&block_rsv
->lock
);
5741 num_bytes
= min_reserved
;
5742 if (block_rsv
->reserved
>= num_bytes
)
5745 num_bytes
-= block_rsv
->reserved
;
5746 spin_unlock(&block_rsv
->lock
);
5751 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5753 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5760 void btrfs_block_rsv_release(struct btrfs_fs_info
*fs_info
,
5761 struct btrfs_block_rsv
*block_rsv
,
5764 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5766 if (global_rsv
== block_rsv
||
5767 block_rsv
->space_info
!= global_rsv
->space_info
)
5769 block_rsv_release_bytes(fs_info
, block_rsv
, global_rsv
, num_bytes
);
5772 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5774 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5775 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5779 * The global block rsv is based on the size of the extent tree, the
5780 * checksum tree and the root tree. If the fs is empty we want to set
5781 * it to a minimal amount for safety.
5783 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
) +
5784 btrfs_root_used(&fs_info
->csum_root
->root_item
) +
5785 btrfs_root_used(&fs_info
->tree_root
->root_item
);
5786 num_bytes
= max_t(u64
, num_bytes
, SZ_16M
);
5788 spin_lock(&sinfo
->lock
);
5789 spin_lock(&block_rsv
->lock
);
5791 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5793 if (block_rsv
->reserved
< block_rsv
->size
) {
5794 num_bytes
= btrfs_space_info_used(sinfo
, true);
5795 if (sinfo
->total_bytes
> num_bytes
) {
5796 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5797 num_bytes
= min(num_bytes
,
5798 block_rsv
->size
- block_rsv
->reserved
);
5799 block_rsv
->reserved
+= num_bytes
;
5800 sinfo
->bytes_may_use
+= num_bytes
;
5801 trace_btrfs_space_reservation(fs_info
, "space_info",
5802 sinfo
->flags
, num_bytes
,
5805 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5806 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5807 sinfo
->bytes_may_use
-= num_bytes
;
5808 trace_btrfs_space_reservation(fs_info
, "space_info",
5809 sinfo
->flags
, num_bytes
, 0);
5810 block_rsv
->reserved
= block_rsv
->size
;
5813 if (block_rsv
->reserved
== block_rsv
->size
)
5814 block_rsv
->full
= 1;
5816 block_rsv
->full
= 0;
5818 spin_unlock(&block_rsv
->lock
);
5819 spin_unlock(&sinfo
->lock
);
5822 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5824 struct btrfs_space_info
*space_info
;
5826 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5827 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5829 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5830 fs_info
->global_block_rsv
.space_info
= space_info
;
5831 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5832 fs_info
->trans_block_rsv
.space_info
= space_info
;
5833 fs_info
->empty_block_rsv
.space_info
= space_info
;
5834 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5836 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5837 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5838 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5839 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5840 if (fs_info
->quota_root
)
5841 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5842 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5844 update_global_block_rsv(fs_info
);
5847 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5849 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5851 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5852 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5853 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5854 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5855 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5856 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5857 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5858 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5861 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5862 struct btrfs_fs_info
*fs_info
)
5864 if (!trans
->block_rsv
)
5867 if (!trans
->bytes_reserved
)
5870 trace_btrfs_space_reservation(fs_info
, "transaction",
5871 trans
->transid
, trans
->bytes_reserved
, 0);
5872 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
5873 trans
->bytes_reserved
);
5874 trans
->bytes_reserved
= 0;
5878 * To be called after all the new block groups attached to the transaction
5879 * handle have been created (btrfs_create_pending_block_groups()).
5881 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5883 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5885 if (!trans
->chunk_bytes_reserved
)
5888 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5890 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5891 trans
->chunk_bytes_reserved
);
5892 trans
->chunk_bytes_reserved
= 0;
5895 /* Can only return 0 or -ENOSPC */
5896 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5897 struct btrfs_inode
*inode
)
5899 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5900 struct btrfs_root
*root
= inode
->root
;
5902 * We always use trans->block_rsv here as we will have reserved space
5903 * for our orphan when starting the transaction, using get_block_rsv()
5904 * here will sometimes make us choose the wrong block rsv as we could be
5905 * doing a reloc inode for a non refcounted root.
5907 struct btrfs_block_rsv
*src_rsv
= trans
->block_rsv
;
5908 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5911 * We need to hold space in order to delete our orphan item once we've
5912 * added it, so this takes the reservation so we can release it later
5913 * when we are truly done with the orphan item.
5915 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5917 trace_btrfs_space_reservation(fs_info
, "orphan", btrfs_ino(inode
),
5919 return btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
5922 void btrfs_orphan_release_metadata(struct btrfs_inode
*inode
)
5924 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5925 struct btrfs_root
*root
= inode
->root
;
5926 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5928 trace_btrfs_space_reservation(fs_info
, "orphan", btrfs_ino(inode
),
5930 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
, num_bytes
);
5934 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5935 * root: the root of the parent directory
5936 * rsv: block reservation
5937 * items: the number of items that we need do reservation
5938 * qgroup_reserved: used to return the reserved size in qgroup
5940 * This function is used to reserve the space for snapshot/subvolume
5941 * creation and deletion. Those operations are different with the
5942 * common file/directory operations, they change two fs/file trees
5943 * and root tree, the number of items that the qgroup reserves is
5944 * different with the free space reservation. So we can not use
5945 * the space reservation mechanism in start_transaction().
5947 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5948 struct btrfs_block_rsv
*rsv
,
5950 u64
*qgroup_reserved
,
5951 bool use_global_rsv
)
5955 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5956 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5958 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
5959 /* One for parent inode, two for dir entries */
5960 num_bytes
= 3 * fs_info
->nodesize
;
5961 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
, true);
5968 *qgroup_reserved
= num_bytes
;
5970 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, items
);
5971 rsv
->space_info
= __find_space_info(fs_info
,
5972 BTRFS_BLOCK_GROUP_METADATA
);
5973 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5974 BTRFS_RESERVE_FLUSH_ALL
);
5976 if (ret
== -ENOSPC
&& use_global_rsv
)
5977 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, 1);
5979 if (ret
&& *qgroup_reserved
)
5980 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
5985 void btrfs_subvolume_release_metadata(struct btrfs_fs_info
*fs_info
,
5986 struct btrfs_block_rsv
*rsv
)
5988 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
5992 * drop_outstanding_extent - drop an outstanding extent
5993 * @inode: the inode we're dropping the extent for
5994 * @num_bytes: the number of bytes we're releasing.
5996 * This is called when we are freeing up an outstanding extent, either called
5997 * after an error or after an extent is written. This will return the number of
5998 * reserved extents that need to be freed. This must be called with
5999 * BTRFS_I(inode)->lock held.
6001 static unsigned drop_outstanding_extent(struct btrfs_inode
*inode
,
6004 unsigned drop_inode_space
= 0;
6005 unsigned dropped_extents
= 0;
6006 unsigned num_extents
;
6008 num_extents
= count_max_extents(num_bytes
);
6009 ASSERT(num_extents
);
6010 ASSERT(inode
->outstanding_extents
>= num_extents
);
6011 inode
->outstanding_extents
-= num_extents
;
6013 if (inode
->outstanding_extents
== 0 &&
6014 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
6015 &inode
->runtime_flags
))
6016 drop_inode_space
= 1;
6019 * If we have more or the same amount of outstanding extents than we have
6020 * reserved then we need to leave the reserved extents count alone.
6022 if (inode
->outstanding_extents
>= inode
->reserved_extents
)
6023 return drop_inode_space
;
6025 dropped_extents
= inode
->reserved_extents
- inode
->outstanding_extents
;
6026 inode
->reserved_extents
-= dropped_extents
;
6027 return dropped_extents
+ drop_inode_space
;
6031 * calc_csum_metadata_size - return the amount of metadata space that must be
6032 * reserved/freed for the given bytes.
6033 * @inode: the inode we're manipulating
6034 * @num_bytes: the number of bytes in question
6035 * @reserve: 1 if we are reserving space, 0 if we are freeing space
6037 * This adjusts the number of csum_bytes in the inode and then returns the
6038 * correct amount of metadata that must either be reserved or freed. We
6039 * calculate how many checksums we can fit into one leaf and then divide the
6040 * number of bytes that will need to be checksumed by this value to figure out
6041 * how many checksums will be required. If we are adding bytes then the number
6042 * may go up and we will return the number of additional bytes that must be
6043 * reserved. If it is going down we will return the number of bytes that must
6046 * This must be called with BTRFS_I(inode)->lock held.
6048 static u64
calc_csum_metadata_size(struct btrfs_inode
*inode
, u64 num_bytes
,
6051 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6052 u64 old_csums
, num_csums
;
6054 if (inode
->flags
& BTRFS_INODE_NODATASUM
&& inode
->csum_bytes
== 0)
6057 old_csums
= btrfs_csum_bytes_to_leaves(fs_info
, inode
->csum_bytes
);
6059 inode
->csum_bytes
+= num_bytes
;
6061 inode
->csum_bytes
-= num_bytes
;
6062 num_csums
= btrfs_csum_bytes_to_leaves(fs_info
, inode
->csum_bytes
);
6064 /* No change, no need to reserve more */
6065 if (old_csums
== num_csums
)
6069 return btrfs_calc_trans_metadata_size(fs_info
,
6070 num_csums
- old_csums
);
6072 return btrfs_calc_trans_metadata_size(fs_info
, old_csums
- num_csums
);
6075 int btrfs_delalloc_reserve_metadata(struct btrfs_inode
*inode
, u64 num_bytes
)
6077 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6078 struct btrfs_root
*root
= inode
->root
;
6079 struct btrfs_block_rsv
*block_rsv
= &fs_info
->delalloc_block_rsv
;
6082 unsigned nr_extents
;
6083 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
6085 bool delalloc_lock
= true;
6088 bool release_extra
= false;
6090 /* If we are a free space inode we need to not flush since we will be in
6091 * the middle of a transaction commit. We also don't need the delalloc
6092 * mutex since we won't race with anybody. We need this mostly to make
6093 * lockdep shut its filthy mouth.
6095 * If we have a transaction open (can happen if we call truncate_block
6096 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6098 if (btrfs_is_free_space_inode(inode
)) {
6099 flush
= BTRFS_RESERVE_NO_FLUSH
;
6100 delalloc_lock
= false;
6101 } else if (current
->journal_info
) {
6102 flush
= BTRFS_RESERVE_FLUSH_LIMIT
;
6105 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
6106 btrfs_transaction_in_commit(fs_info
))
6107 schedule_timeout(1);
6110 mutex_lock(&inode
->delalloc_mutex
);
6112 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
6114 spin_lock(&inode
->lock
);
6115 nr_extents
= count_max_extents(num_bytes
);
6116 inode
->outstanding_extents
+= nr_extents
;
6119 if (inode
->outstanding_extents
> inode
->reserved_extents
)
6120 nr_extents
+= inode
->outstanding_extents
-
6121 inode
->reserved_extents
;
6123 /* We always want to reserve a slot for updating the inode. */
6124 to_reserve
= btrfs_calc_trans_metadata_size(fs_info
, nr_extents
+ 1);
6125 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
6126 csum_bytes
= inode
->csum_bytes
;
6127 spin_unlock(&inode
->lock
);
6129 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
6130 ret
= btrfs_qgroup_reserve_meta(root
,
6131 nr_extents
* fs_info
->nodesize
, true);
6136 ret
= btrfs_block_rsv_add(root
, block_rsv
, to_reserve
, flush
);
6137 if (unlikely(ret
)) {
6138 btrfs_qgroup_free_meta(root
,
6139 nr_extents
* fs_info
->nodesize
);
6143 spin_lock(&inode
->lock
);
6144 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
6145 &inode
->runtime_flags
)) {
6146 to_reserve
-= btrfs_calc_trans_metadata_size(fs_info
, 1);
6147 release_extra
= true;
6149 inode
->reserved_extents
+= nr_extents
;
6150 spin_unlock(&inode
->lock
);
6153 mutex_unlock(&inode
->delalloc_mutex
);
6156 trace_btrfs_space_reservation(fs_info
, "delalloc",
6157 btrfs_ino(inode
), to_reserve
, 1);
6159 btrfs_block_rsv_release(fs_info
, block_rsv
,
6160 btrfs_calc_trans_metadata_size(fs_info
, 1));
6164 spin_lock(&inode
->lock
);
6165 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6167 * If the inodes csum_bytes is the same as the original
6168 * csum_bytes then we know we haven't raced with any free()ers
6169 * so we can just reduce our inodes csum bytes and carry on.
6171 if (inode
->csum_bytes
== csum_bytes
) {
6172 calc_csum_metadata_size(inode
, num_bytes
, 0);
6174 u64 orig_csum_bytes
= inode
->csum_bytes
;
6178 * This is tricky, but first we need to figure out how much we
6179 * freed from any free-ers that occurred during this
6180 * reservation, so we reset ->csum_bytes to the csum_bytes
6181 * before we dropped our lock, and then call the free for the
6182 * number of bytes that were freed while we were trying our
6185 bytes
= csum_bytes
- inode
->csum_bytes
;
6186 inode
->csum_bytes
= csum_bytes
;
6187 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
6191 * Now we need to see how much we would have freed had we not
6192 * been making this reservation and our ->csum_bytes were not
6193 * artificially inflated.
6195 inode
->csum_bytes
= csum_bytes
- num_bytes
;
6196 bytes
= csum_bytes
- orig_csum_bytes
;
6197 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
6200 * Now reset ->csum_bytes to what it should be. If bytes is
6201 * more than to_free then we would have freed more space had we
6202 * not had an artificially high ->csum_bytes, so we need to free
6203 * the remainder. If bytes is the same or less then we don't
6204 * need to do anything, the other free-ers did the correct
6207 inode
->csum_bytes
= orig_csum_bytes
- num_bytes
;
6208 if (bytes
> to_free
)
6209 to_free
= bytes
- to_free
;
6213 spin_unlock(&inode
->lock
);
6215 to_free
+= btrfs_calc_trans_metadata_size(fs_info
, dropped
);
6218 btrfs_block_rsv_release(fs_info
, block_rsv
, to_free
);
6219 trace_btrfs_space_reservation(fs_info
, "delalloc",
6220 btrfs_ino(inode
), to_free
, 0);
6223 mutex_unlock(&inode
->delalloc_mutex
);
6228 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6229 * @inode: the inode to release the reservation for
6230 * @num_bytes: the number of bytes we're releasing
6232 * This will release the metadata reservation for an inode. This can be called
6233 * once we complete IO for a given set of bytes to release their metadata
6236 void btrfs_delalloc_release_metadata(struct btrfs_inode
*inode
, u64 num_bytes
)
6238 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6242 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
6243 spin_lock(&inode
->lock
);
6244 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6247 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
6248 spin_unlock(&inode
->lock
);
6250 to_free
+= btrfs_calc_trans_metadata_size(fs_info
, dropped
);
6252 if (btrfs_is_testing(fs_info
))
6255 trace_btrfs_space_reservation(fs_info
, "delalloc", btrfs_ino(inode
),
6258 btrfs_block_rsv_release(fs_info
, &fs_info
->delalloc_block_rsv
, to_free
);
6262 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6264 * @inode: inode we're writing to
6265 * @start: start range we are writing to
6266 * @len: how long the range we are writing to
6267 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6268 * current reservation.
6270 * This will do the following things
6272 * o reserve space in data space info for num bytes
6273 * and reserve precious corresponding qgroup space
6274 * (Done in check_data_free_space)
6276 * o reserve space for metadata space, based on the number of outstanding
6277 * extents and how much csums will be needed
6278 * also reserve metadata space in a per root over-reserve method.
6279 * o add to the inodes->delalloc_bytes
6280 * o add it to the fs_info's delalloc inodes list.
6281 * (Above 3 all done in delalloc_reserve_metadata)
6283 * Return 0 for success
6284 * Return <0 for error(-ENOSPC or -EQUOT)
6286 int btrfs_delalloc_reserve_space(struct inode
*inode
,
6287 struct extent_changeset
**reserved
, u64 start
, u64 len
)
6291 ret
= btrfs_check_data_free_space(inode
, reserved
, start
, len
);
6294 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
), len
);
6296 btrfs_free_reserved_data_space(inode
, *reserved
, start
, len
);
6301 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6302 * @inode: inode we're releasing space for
6303 * @start: start position of the space already reserved
6304 * @len: the len of the space already reserved
6306 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6307 * called in the case that we don't need the metadata AND data reservations
6308 * anymore. So if there is an error or we insert an inline extent.
6310 * This function will release the metadata space that was not used and will
6311 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6312 * list if there are no delalloc bytes left.
6313 * Also it will handle the qgroup reserved space.
6315 void btrfs_delalloc_release_space(struct inode
*inode
,
6316 struct extent_changeset
*reserved
, u64 start
, u64 len
)
6318 btrfs_delalloc_release_metadata(BTRFS_I(inode
), len
);
6319 btrfs_free_reserved_data_space(inode
, reserved
, start
, len
);
6322 static int update_block_group(struct btrfs_trans_handle
*trans
,
6323 struct btrfs_fs_info
*info
, u64 bytenr
,
6324 u64 num_bytes
, int alloc
)
6326 struct btrfs_block_group_cache
*cache
= NULL
;
6327 u64 total
= num_bytes
;
6332 /* block accounting for super block */
6333 spin_lock(&info
->delalloc_root_lock
);
6334 old_val
= btrfs_super_bytes_used(info
->super_copy
);
6336 old_val
+= num_bytes
;
6338 old_val
-= num_bytes
;
6339 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
6340 spin_unlock(&info
->delalloc_root_lock
);
6343 cache
= btrfs_lookup_block_group(info
, bytenr
);
6346 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
6347 BTRFS_BLOCK_GROUP_RAID1
|
6348 BTRFS_BLOCK_GROUP_RAID10
))
6353 * If this block group has free space cache written out, we
6354 * need to make sure to load it if we are removing space. This
6355 * is because we need the unpinning stage to actually add the
6356 * space back to the block group, otherwise we will leak space.
6358 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
6359 cache_block_group(cache
, 1);
6361 byte_in_group
= bytenr
- cache
->key
.objectid
;
6362 WARN_ON(byte_in_group
> cache
->key
.offset
);
6364 spin_lock(&cache
->space_info
->lock
);
6365 spin_lock(&cache
->lock
);
6367 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
6368 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6369 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6371 old_val
= btrfs_block_group_used(&cache
->item
);
6372 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6374 old_val
+= num_bytes
;
6375 btrfs_set_block_group_used(&cache
->item
, old_val
);
6376 cache
->reserved
-= num_bytes
;
6377 cache
->space_info
->bytes_reserved
-= num_bytes
;
6378 cache
->space_info
->bytes_used
+= num_bytes
;
6379 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6380 spin_unlock(&cache
->lock
);
6381 spin_unlock(&cache
->space_info
->lock
);
6383 old_val
-= num_bytes
;
6384 btrfs_set_block_group_used(&cache
->item
, old_val
);
6385 cache
->pinned
+= num_bytes
;
6386 cache
->space_info
->bytes_pinned
+= num_bytes
;
6387 cache
->space_info
->bytes_used
-= num_bytes
;
6388 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6389 spin_unlock(&cache
->lock
);
6390 spin_unlock(&cache
->space_info
->lock
);
6392 trace_btrfs_space_reservation(info
, "pinned",
6393 cache
->space_info
->flags
,
6395 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
,
6397 set_extent_dirty(info
->pinned_extents
,
6398 bytenr
, bytenr
+ num_bytes
- 1,
6399 GFP_NOFS
| __GFP_NOFAIL
);
6402 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6403 if (list_empty(&cache
->dirty_list
)) {
6404 list_add_tail(&cache
->dirty_list
,
6405 &trans
->transaction
->dirty_bgs
);
6406 trans
->transaction
->num_dirty_bgs
++;
6407 btrfs_get_block_group(cache
);
6409 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6412 * No longer have used bytes in this block group, queue it for
6413 * deletion. We do this after adding the block group to the
6414 * dirty list to avoid races between cleaner kthread and space
6417 if (!alloc
&& old_val
== 0) {
6418 spin_lock(&info
->unused_bgs_lock
);
6419 if (list_empty(&cache
->bg_list
)) {
6420 btrfs_get_block_group(cache
);
6421 list_add_tail(&cache
->bg_list
,
6424 spin_unlock(&info
->unused_bgs_lock
);
6427 btrfs_put_block_group(cache
);
6429 bytenr
+= num_bytes
;
6434 static u64
first_logical_byte(struct btrfs_fs_info
*fs_info
, u64 search_start
)
6436 struct btrfs_block_group_cache
*cache
;
6439 spin_lock(&fs_info
->block_group_cache_lock
);
6440 bytenr
= fs_info
->first_logical_byte
;
6441 spin_unlock(&fs_info
->block_group_cache_lock
);
6443 if (bytenr
< (u64
)-1)
6446 cache
= btrfs_lookup_first_block_group(fs_info
, search_start
);
6450 bytenr
= cache
->key
.objectid
;
6451 btrfs_put_block_group(cache
);
6456 static int pin_down_extent(struct btrfs_fs_info
*fs_info
,
6457 struct btrfs_block_group_cache
*cache
,
6458 u64 bytenr
, u64 num_bytes
, int reserved
)
6460 spin_lock(&cache
->space_info
->lock
);
6461 spin_lock(&cache
->lock
);
6462 cache
->pinned
+= num_bytes
;
6463 cache
->space_info
->bytes_pinned
+= num_bytes
;
6465 cache
->reserved
-= num_bytes
;
6466 cache
->space_info
->bytes_reserved
-= num_bytes
;
6468 spin_unlock(&cache
->lock
);
6469 spin_unlock(&cache
->space_info
->lock
);
6471 trace_btrfs_space_reservation(fs_info
, "pinned",
6472 cache
->space_info
->flags
, num_bytes
, 1);
6473 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
, num_bytes
);
6474 set_extent_dirty(fs_info
->pinned_extents
, bytenr
,
6475 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6480 * this function must be called within transaction
6482 int btrfs_pin_extent(struct btrfs_fs_info
*fs_info
,
6483 u64 bytenr
, u64 num_bytes
, int reserved
)
6485 struct btrfs_block_group_cache
*cache
;
6487 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6488 BUG_ON(!cache
); /* Logic error */
6490 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, reserved
);
6492 btrfs_put_block_group(cache
);
6497 * this function must be called within transaction
6499 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info
*fs_info
,
6500 u64 bytenr
, u64 num_bytes
)
6502 struct btrfs_block_group_cache
*cache
;
6505 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6510 * pull in the free space cache (if any) so that our pin
6511 * removes the free space from the cache. We have load_only set
6512 * to one because the slow code to read in the free extents does check
6513 * the pinned extents.
6515 cache_block_group(cache
, 1);
6517 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, 0);
6519 /* remove us from the free space cache (if we're there at all) */
6520 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6521 btrfs_put_block_group(cache
);
6525 static int __exclude_logged_extent(struct btrfs_fs_info
*fs_info
,
6526 u64 start
, u64 num_bytes
)
6529 struct btrfs_block_group_cache
*block_group
;
6530 struct btrfs_caching_control
*caching_ctl
;
6532 block_group
= btrfs_lookup_block_group(fs_info
, start
);
6536 cache_block_group(block_group
, 0);
6537 caching_ctl
= get_caching_control(block_group
);
6541 BUG_ON(!block_group_cache_done(block_group
));
6542 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6544 mutex_lock(&caching_ctl
->mutex
);
6546 if (start
>= caching_ctl
->progress
) {
6547 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6548 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6549 ret
= btrfs_remove_free_space(block_group
,
6552 num_bytes
= caching_ctl
->progress
- start
;
6553 ret
= btrfs_remove_free_space(block_group
,
6558 num_bytes
= (start
+ num_bytes
) -
6559 caching_ctl
->progress
;
6560 start
= caching_ctl
->progress
;
6561 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6564 mutex_unlock(&caching_ctl
->mutex
);
6565 put_caching_control(caching_ctl
);
6567 btrfs_put_block_group(block_group
);
6571 int btrfs_exclude_logged_extents(struct btrfs_fs_info
*fs_info
,
6572 struct extent_buffer
*eb
)
6574 struct btrfs_file_extent_item
*item
;
6575 struct btrfs_key key
;
6579 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
))
6582 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6583 btrfs_item_key_to_cpu(eb
, &key
, i
);
6584 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6586 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6587 found_type
= btrfs_file_extent_type(eb
, item
);
6588 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6590 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6592 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6593 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6594 __exclude_logged_extent(fs_info
, key
.objectid
, key
.offset
);
6601 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6603 atomic_inc(&bg
->reservations
);
6606 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6609 struct btrfs_block_group_cache
*bg
;
6611 bg
= btrfs_lookup_block_group(fs_info
, start
);
6613 if (atomic_dec_and_test(&bg
->reservations
))
6614 wake_up_atomic_t(&bg
->reservations
);
6615 btrfs_put_block_group(bg
);
6618 static int btrfs_wait_bg_reservations_atomic_t(atomic_t
*a
)
6624 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6626 struct btrfs_space_info
*space_info
= bg
->space_info
;
6630 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6634 * Our block group is read only but before we set it to read only,
6635 * some task might have had allocated an extent from it already, but it
6636 * has not yet created a respective ordered extent (and added it to a
6637 * root's list of ordered extents).
6638 * Therefore wait for any task currently allocating extents, since the
6639 * block group's reservations counter is incremented while a read lock
6640 * on the groups' semaphore is held and decremented after releasing
6641 * the read access on that semaphore and creating the ordered extent.
6643 down_write(&space_info
->groups_sem
);
6644 up_write(&space_info
->groups_sem
);
6646 wait_on_atomic_t(&bg
->reservations
,
6647 btrfs_wait_bg_reservations_atomic_t
,
6648 TASK_UNINTERRUPTIBLE
);
6652 * btrfs_add_reserved_bytes - update the block_group and space info counters
6653 * @cache: The cache we are manipulating
6654 * @ram_bytes: The number of bytes of file content, and will be same to
6655 * @num_bytes except for the compress path.
6656 * @num_bytes: The number of bytes in question
6657 * @delalloc: The blocks are allocated for the delalloc write
6659 * This is called by the allocator when it reserves space. If this is a
6660 * reservation and the block group has become read only we cannot make the
6661 * reservation and return -EAGAIN, otherwise this function always succeeds.
6663 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6664 u64 ram_bytes
, u64 num_bytes
, int delalloc
)
6666 struct btrfs_space_info
*space_info
= cache
->space_info
;
6669 spin_lock(&space_info
->lock
);
6670 spin_lock(&cache
->lock
);
6674 cache
->reserved
+= num_bytes
;
6675 space_info
->bytes_reserved
+= num_bytes
;
6677 trace_btrfs_space_reservation(cache
->fs_info
,
6678 "space_info", space_info
->flags
,
6680 space_info
->bytes_may_use
-= ram_bytes
;
6682 cache
->delalloc_bytes
+= num_bytes
;
6684 spin_unlock(&cache
->lock
);
6685 spin_unlock(&space_info
->lock
);
6690 * btrfs_free_reserved_bytes - update the block_group and space info counters
6691 * @cache: The cache we are manipulating
6692 * @num_bytes: The number of bytes in question
6693 * @delalloc: The blocks are allocated for the delalloc write
6695 * This is called by somebody who is freeing space that was never actually used
6696 * on disk. For example if you reserve some space for a new leaf in transaction
6697 * A and before transaction A commits you free that leaf, you call this with
6698 * reserve set to 0 in order to clear the reservation.
6701 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6702 u64 num_bytes
, int delalloc
)
6704 struct btrfs_space_info
*space_info
= cache
->space_info
;
6707 spin_lock(&space_info
->lock
);
6708 spin_lock(&cache
->lock
);
6710 space_info
->bytes_readonly
+= num_bytes
;
6711 cache
->reserved
-= num_bytes
;
6712 space_info
->bytes_reserved
-= num_bytes
;
6715 cache
->delalloc_bytes
-= num_bytes
;
6716 spin_unlock(&cache
->lock
);
6717 spin_unlock(&space_info
->lock
);
6720 void btrfs_prepare_extent_commit(struct btrfs_fs_info
*fs_info
)
6722 struct btrfs_caching_control
*next
;
6723 struct btrfs_caching_control
*caching_ctl
;
6724 struct btrfs_block_group_cache
*cache
;
6726 down_write(&fs_info
->commit_root_sem
);
6728 list_for_each_entry_safe(caching_ctl
, next
,
6729 &fs_info
->caching_block_groups
, list
) {
6730 cache
= caching_ctl
->block_group
;
6731 if (block_group_cache_done(cache
)) {
6732 cache
->last_byte_to_unpin
= (u64
)-1;
6733 list_del_init(&caching_ctl
->list
);
6734 put_caching_control(caching_ctl
);
6736 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6740 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6741 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6743 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6745 up_write(&fs_info
->commit_root_sem
);
6747 update_global_block_rsv(fs_info
);
6751 * Returns the free cluster for the given space info and sets empty_cluster to
6752 * what it should be based on the mount options.
6754 static struct btrfs_free_cluster
*
6755 fetch_cluster_info(struct btrfs_fs_info
*fs_info
,
6756 struct btrfs_space_info
*space_info
, u64
*empty_cluster
)
6758 struct btrfs_free_cluster
*ret
= NULL
;
6761 if (btrfs_mixed_space_info(space_info
))
6764 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6765 ret
= &fs_info
->meta_alloc_cluster
;
6766 if (btrfs_test_opt(fs_info
, SSD
))
6767 *empty_cluster
= SZ_2M
;
6769 *empty_cluster
= SZ_64K
;
6770 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) &&
6771 btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
6772 *empty_cluster
= SZ_2M
;
6773 ret
= &fs_info
->data_alloc_cluster
;
6779 static int unpin_extent_range(struct btrfs_fs_info
*fs_info
,
6781 const bool return_free_space
)
6783 struct btrfs_block_group_cache
*cache
= NULL
;
6784 struct btrfs_space_info
*space_info
;
6785 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6786 struct btrfs_free_cluster
*cluster
= NULL
;
6788 u64 total_unpinned
= 0;
6789 u64 empty_cluster
= 0;
6792 while (start
<= end
) {
6795 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6797 btrfs_put_block_group(cache
);
6799 cache
= btrfs_lookup_block_group(fs_info
, start
);
6800 BUG_ON(!cache
); /* Logic error */
6802 cluster
= fetch_cluster_info(fs_info
,
6805 empty_cluster
<<= 1;
6808 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6809 len
= min(len
, end
+ 1 - start
);
6811 if (start
< cache
->last_byte_to_unpin
) {
6812 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6813 if (return_free_space
)
6814 btrfs_add_free_space(cache
, start
, len
);
6818 total_unpinned
+= len
;
6819 space_info
= cache
->space_info
;
6822 * If this space cluster has been marked as fragmented and we've
6823 * unpinned enough in this block group to potentially allow a
6824 * cluster to be created inside of it go ahead and clear the
6827 if (cluster
&& cluster
->fragmented
&&
6828 total_unpinned
> empty_cluster
) {
6829 spin_lock(&cluster
->lock
);
6830 cluster
->fragmented
= 0;
6831 spin_unlock(&cluster
->lock
);
6834 spin_lock(&space_info
->lock
);
6835 spin_lock(&cache
->lock
);
6836 cache
->pinned
-= len
;
6837 space_info
->bytes_pinned
-= len
;
6839 trace_btrfs_space_reservation(fs_info
, "pinned",
6840 space_info
->flags
, len
, 0);
6841 space_info
->max_extent_size
= 0;
6842 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6844 space_info
->bytes_readonly
+= len
;
6847 spin_unlock(&cache
->lock
);
6848 if (!readonly
&& return_free_space
&&
6849 global_rsv
->space_info
== space_info
) {
6852 spin_lock(&global_rsv
->lock
);
6853 if (!global_rsv
->full
) {
6854 to_add
= min(len
, global_rsv
->size
-
6855 global_rsv
->reserved
);
6856 global_rsv
->reserved
+= to_add
;
6857 space_info
->bytes_may_use
+= to_add
;
6858 if (global_rsv
->reserved
>= global_rsv
->size
)
6859 global_rsv
->full
= 1;
6860 trace_btrfs_space_reservation(fs_info
,
6866 spin_unlock(&global_rsv
->lock
);
6867 /* Add to any tickets we may have */
6869 space_info_add_new_bytes(fs_info
, space_info
,
6872 spin_unlock(&space_info
->lock
);
6876 btrfs_put_block_group(cache
);
6880 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6881 struct btrfs_fs_info
*fs_info
)
6883 struct btrfs_block_group_cache
*block_group
, *tmp
;
6884 struct list_head
*deleted_bgs
;
6885 struct extent_io_tree
*unpin
;
6890 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6891 unpin
= &fs_info
->freed_extents
[1];
6893 unpin
= &fs_info
->freed_extents
[0];
6895 while (!trans
->aborted
) {
6896 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6897 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6898 EXTENT_DIRTY
, NULL
);
6900 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6904 if (btrfs_test_opt(fs_info
, DISCARD
))
6905 ret
= btrfs_discard_extent(fs_info
, start
,
6906 end
+ 1 - start
, NULL
);
6908 clear_extent_dirty(unpin
, start
, end
);
6909 unpin_extent_range(fs_info
, start
, end
, true);
6910 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6915 * Transaction is finished. We don't need the lock anymore. We
6916 * do need to clean up the block groups in case of a transaction
6919 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6920 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6924 if (!trans
->aborted
)
6925 ret
= btrfs_discard_extent(fs_info
,
6926 block_group
->key
.objectid
,
6927 block_group
->key
.offset
,
6930 list_del_init(&block_group
->bg_list
);
6931 btrfs_put_block_group_trimming(block_group
);
6932 btrfs_put_block_group(block_group
);
6935 const char *errstr
= btrfs_decode_error(ret
);
6937 "discard failed while removing blockgroup: errno=%d %s",
6945 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6946 struct btrfs_fs_info
*info
,
6947 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6948 u64 root_objectid
, u64 owner_objectid
,
6949 u64 owner_offset
, int refs_to_drop
,
6950 struct btrfs_delayed_extent_op
*extent_op
)
6952 struct btrfs_key key
;
6953 struct btrfs_path
*path
;
6954 struct btrfs_root
*extent_root
= info
->extent_root
;
6955 struct extent_buffer
*leaf
;
6956 struct btrfs_extent_item
*ei
;
6957 struct btrfs_extent_inline_ref
*iref
;
6960 int extent_slot
= 0;
6961 int found_extent
= 0;
6965 u64 bytenr
= node
->bytenr
;
6966 u64 num_bytes
= node
->num_bytes
;
6968 bool skinny_metadata
= btrfs_fs_incompat(info
, SKINNY_METADATA
);
6970 path
= btrfs_alloc_path();
6974 path
->reada
= READA_FORWARD
;
6975 path
->leave_spinning
= 1;
6977 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6978 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6981 skinny_metadata
= 0;
6983 ret
= lookup_extent_backref(trans
, info
, path
, &iref
,
6984 bytenr
, num_bytes
, parent
,
6985 root_objectid
, owner_objectid
,
6988 extent_slot
= path
->slots
[0];
6989 while (extent_slot
>= 0) {
6990 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6992 if (key
.objectid
!= bytenr
)
6994 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6995 key
.offset
== num_bytes
) {
6999 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
7000 key
.offset
== owner_objectid
) {
7004 if (path
->slots
[0] - extent_slot
> 5)
7008 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7009 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
7010 if (found_extent
&& item_size
< sizeof(*ei
))
7013 if (!found_extent
) {
7015 ret
= remove_extent_backref(trans
, info
, path
, NULL
,
7017 is_data
, &last_ref
);
7019 btrfs_abort_transaction(trans
, ret
);
7022 btrfs_release_path(path
);
7023 path
->leave_spinning
= 1;
7025 key
.objectid
= bytenr
;
7026 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7027 key
.offset
= num_bytes
;
7029 if (!is_data
&& skinny_metadata
) {
7030 key
.type
= BTRFS_METADATA_ITEM_KEY
;
7031 key
.offset
= owner_objectid
;
7034 ret
= btrfs_search_slot(trans
, extent_root
,
7036 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
7038 * Couldn't find our skinny metadata item,
7039 * see if we have ye olde extent item.
7042 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
7044 if (key
.objectid
== bytenr
&&
7045 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
7046 key
.offset
== num_bytes
)
7050 if (ret
> 0 && skinny_metadata
) {
7051 skinny_metadata
= false;
7052 key
.objectid
= bytenr
;
7053 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7054 key
.offset
= num_bytes
;
7055 btrfs_release_path(path
);
7056 ret
= btrfs_search_slot(trans
, extent_root
,
7062 "umm, got %d back from search, was looking for %llu",
7065 btrfs_print_leaf(path
->nodes
[0]);
7068 btrfs_abort_transaction(trans
, ret
);
7071 extent_slot
= path
->slots
[0];
7073 } else if (WARN_ON(ret
== -ENOENT
)) {
7074 btrfs_print_leaf(path
->nodes
[0]);
7076 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
7077 bytenr
, parent
, root_objectid
, owner_objectid
,
7079 btrfs_abort_transaction(trans
, ret
);
7082 btrfs_abort_transaction(trans
, ret
);
7086 leaf
= path
->nodes
[0];
7087 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
7088 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7089 if (item_size
< sizeof(*ei
)) {
7090 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
7091 ret
= convert_extent_item_v0(trans
, info
, path
, owner_objectid
,
7094 btrfs_abort_transaction(trans
, ret
);
7098 btrfs_release_path(path
);
7099 path
->leave_spinning
= 1;
7101 key
.objectid
= bytenr
;
7102 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7103 key
.offset
= num_bytes
;
7105 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
7109 "umm, got %d back from search, was looking for %llu",
7111 btrfs_print_leaf(path
->nodes
[0]);
7114 btrfs_abort_transaction(trans
, ret
);
7118 extent_slot
= path
->slots
[0];
7119 leaf
= path
->nodes
[0];
7120 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
7123 BUG_ON(item_size
< sizeof(*ei
));
7124 ei
= btrfs_item_ptr(leaf
, extent_slot
,
7125 struct btrfs_extent_item
);
7126 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
7127 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
7128 struct btrfs_tree_block_info
*bi
;
7129 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
7130 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
7131 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
7134 refs
= btrfs_extent_refs(leaf
, ei
);
7135 if (refs
< refs_to_drop
) {
7137 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7138 refs_to_drop
, refs
, bytenr
);
7140 btrfs_abort_transaction(trans
, ret
);
7143 refs
-= refs_to_drop
;
7147 __run_delayed_extent_op(extent_op
, leaf
, ei
);
7149 * In the case of inline back ref, reference count will
7150 * be updated by remove_extent_backref
7153 BUG_ON(!found_extent
);
7155 btrfs_set_extent_refs(leaf
, ei
, refs
);
7156 btrfs_mark_buffer_dirty(leaf
);
7159 ret
= remove_extent_backref(trans
, info
, path
,
7161 is_data
, &last_ref
);
7163 btrfs_abort_transaction(trans
, ret
);
7169 BUG_ON(is_data
&& refs_to_drop
!=
7170 extent_data_ref_count(path
, iref
));
7172 BUG_ON(path
->slots
[0] != extent_slot
);
7174 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
7175 path
->slots
[0] = extent_slot
;
7181 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
7184 btrfs_abort_transaction(trans
, ret
);
7187 btrfs_release_path(path
);
7190 ret
= btrfs_del_csums(trans
, info
, bytenr
, num_bytes
);
7192 btrfs_abort_transaction(trans
, ret
);
7197 ret
= add_to_free_space_tree(trans
, info
, bytenr
, num_bytes
);
7199 btrfs_abort_transaction(trans
, ret
);
7203 ret
= update_block_group(trans
, info
, bytenr
, num_bytes
, 0);
7205 btrfs_abort_transaction(trans
, ret
);
7209 btrfs_release_path(path
);
7212 btrfs_free_path(path
);
7217 * when we free an block, it is possible (and likely) that we free the last
7218 * delayed ref for that extent as well. This searches the delayed ref tree for
7219 * a given extent, and if there are no other delayed refs to be processed, it
7220 * removes it from the tree.
7222 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
7225 struct btrfs_delayed_ref_head
*head
;
7226 struct btrfs_delayed_ref_root
*delayed_refs
;
7229 delayed_refs
= &trans
->transaction
->delayed_refs
;
7230 spin_lock(&delayed_refs
->lock
);
7231 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
7233 goto out_delayed_unlock
;
7235 spin_lock(&head
->lock
);
7236 if (!list_empty(&head
->ref_list
))
7239 if (head
->extent_op
) {
7240 if (!head
->must_insert_reserved
)
7242 btrfs_free_delayed_extent_op(head
->extent_op
);
7243 head
->extent_op
= NULL
;
7247 * waiting for the lock here would deadlock. If someone else has it
7248 * locked they are already in the process of dropping it anyway
7250 if (!mutex_trylock(&head
->mutex
))
7254 * at this point we have a head with no other entries. Go
7255 * ahead and process it.
7257 head
->node
.in_tree
= 0;
7258 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
7260 atomic_dec(&delayed_refs
->num_entries
);
7263 * we don't take a ref on the node because we're removing it from the
7264 * tree, so we just steal the ref the tree was holding.
7266 delayed_refs
->num_heads
--;
7267 if (head
->processing
== 0)
7268 delayed_refs
->num_heads_ready
--;
7269 head
->processing
= 0;
7270 spin_unlock(&head
->lock
);
7271 spin_unlock(&delayed_refs
->lock
);
7273 BUG_ON(head
->extent_op
);
7274 if (head
->must_insert_reserved
)
7277 mutex_unlock(&head
->mutex
);
7278 btrfs_put_delayed_ref(&head
->node
);
7281 spin_unlock(&head
->lock
);
7284 spin_unlock(&delayed_refs
->lock
);
7288 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
7289 struct btrfs_root
*root
,
7290 struct extent_buffer
*buf
,
7291 u64 parent
, int last_ref
)
7293 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7297 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7298 int old_ref_mod
, new_ref_mod
;
7300 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, buf
->start
,
7302 root
->root_key
.objectid
,
7303 btrfs_header_level(buf
),
7304 BTRFS_DROP_DELAYED_REF
, NULL
,
7305 &old_ref_mod
, &new_ref_mod
);
7306 BUG_ON(ret
); /* -ENOMEM */
7307 pin
= old_ref_mod
>= 0 && new_ref_mod
< 0;
7310 if (last_ref
&& btrfs_header_generation(buf
) == trans
->transid
) {
7311 struct btrfs_block_group_cache
*cache
;
7313 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7314 ret
= check_ref_cleanup(trans
, buf
->start
);
7320 cache
= btrfs_lookup_block_group(fs_info
, buf
->start
);
7322 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
7323 pin_down_extent(fs_info
, cache
, buf
->start
,
7325 btrfs_put_block_group(cache
);
7329 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
7331 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
7332 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
7333 btrfs_put_block_group(cache
);
7334 trace_btrfs_reserved_extent_free(fs_info
, buf
->start
, buf
->len
);
7338 add_pinned_bytes(fs_info
, buf
->len
, btrfs_header_level(buf
),
7339 root
->root_key
.objectid
);
7343 * Deleting the buffer, clear the corrupt flag since it doesn't
7346 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
7350 /* Can return -ENOMEM */
7351 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
7352 struct btrfs_fs_info
*fs_info
,
7353 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
7354 u64 owner
, u64 offset
)
7356 int old_ref_mod
, new_ref_mod
;
7359 if (btrfs_is_testing(fs_info
))
7364 * tree log blocks never actually go into the extent allocation
7365 * tree, just update pinning info and exit early.
7367 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7368 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
7369 /* unlocks the pinned mutex */
7370 btrfs_pin_extent(fs_info
, bytenr
, num_bytes
, 1);
7371 old_ref_mod
= new_ref_mod
= 0;
7373 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7374 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7376 root_objectid
, (int)owner
,
7377 BTRFS_DROP_DELAYED_REF
, NULL
,
7378 &old_ref_mod
, &new_ref_mod
);
7380 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7382 root_objectid
, owner
, offset
,
7383 0, BTRFS_DROP_DELAYED_REF
,
7384 &old_ref_mod
, &new_ref_mod
);
7387 if (ret
== 0 && old_ref_mod
>= 0 && new_ref_mod
< 0)
7388 add_pinned_bytes(fs_info
, num_bytes
, owner
, root_objectid
);
7394 * when we wait for progress in the block group caching, its because
7395 * our allocation attempt failed at least once. So, we must sleep
7396 * and let some progress happen before we try again.
7398 * This function will sleep at least once waiting for new free space to
7399 * show up, and then it will check the block group free space numbers
7400 * for our min num_bytes. Another option is to have it go ahead
7401 * and look in the rbtree for a free extent of a given size, but this
7404 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7405 * any of the information in this block group.
7407 static noinline
void
7408 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7411 struct btrfs_caching_control
*caching_ctl
;
7413 caching_ctl
= get_caching_control(cache
);
7417 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7418 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7420 put_caching_control(caching_ctl
);
7424 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7426 struct btrfs_caching_control
*caching_ctl
;
7429 caching_ctl
= get_caching_control(cache
);
7431 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7433 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7434 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7436 put_caching_control(caching_ctl
);
7440 int __get_raid_index(u64 flags
)
7442 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7443 return BTRFS_RAID_RAID10
;
7444 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7445 return BTRFS_RAID_RAID1
;
7446 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7447 return BTRFS_RAID_DUP
;
7448 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7449 return BTRFS_RAID_RAID0
;
7450 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7451 return BTRFS_RAID_RAID5
;
7452 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7453 return BTRFS_RAID_RAID6
;
7455 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7458 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7460 return __get_raid_index(cache
->flags
);
7463 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7464 [BTRFS_RAID_RAID10
] = "raid10",
7465 [BTRFS_RAID_RAID1
] = "raid1",
7466 [BTRFS_RAID_DUP
] = "dup",
7467 [BTRFS_RAID_RAID0
] = "raid0",
7468 [BTRFS_RAID_SINGLE
] = "single",
7469 [BTRFS_RAID_RAID5
] = "raid5",
7470 [BTRFS_RAID_RAID6
] = "raid6",
7473 static const char *get_raid_name(enum btrfs_raid_types type
)
7475 if (type
>= BTRFS_NR_RAID_TYPES
)
7478 return btrfs_raid_type_names
[type
];
7481 enum btrfs_loop_type
{
7482 LOOP_CACHING_NOWAIT
= 0,
7483 LOOP_CACHING_WAIT
= 1,
7484 LOOP_ALLOC_CHUNK
= 2,
7485 LOOP_NO_EMPTY_SIZE
= 3,
7489 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7493 down_read(&cache
->data_rwsem
);
7497 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7500 btrfs_get_block_group(cache
);
7502 down_read(&cache
->data_rwsem
);
7505 static struct btrfs_block_group_cache
*
7506 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7507 struct btrfs_free_cluster
*cluster
,
7510 struct btrfs_block_group_cache
*used_bg
= NULL
;
7512 spin_lock(&cluster
->refill_lock
);
7514 used_bg
= cluster
->block_group
;
7518 if (used_bg
== block_group
)
7521 btrfs_get_block_group(used_bg
);
7526 if (down_read_trylock(&used_bg
->data_rwsem
))
7529 spin_unlock(&cluster
->refill_lock
);
7531 /* We should only have one-level nested. */
7532 down_read_nested(&used_bg
->data_rwsem
, SINGLE_DEPTH_NESTING
);
7534 spin_lock(&cluster
->refill_lock
);
7535 if (used_bg
== cluster
->block_group
)
7538 up_read(&used_bg
->data_rwsem
);
7539 btrfs_put_block_group(used_bg
);
7544 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7548 up_read(&cache
->data_rwsem
);
7549 btrfs_put_block_group(cache
);
7553 * walks the btree of allocated extents and find a hole of a given size.
7554 * The key ins is changed to record the hole:
7555 * ins->objectid == start position
7556 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7557 * ins->offset == the size of the hole.
7558 * Any available blocks before search_start are skipped.
7560 * If there is no suitable free space, we will record the max size of
7561 * the free space extent currently.
7563 static noinline
int find_free_extent(struct btrfs_fs_info
*fs_info
,
7564 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
7565 u64 hint_byte
, struct btrfs_key
*ins
,
7566 u64 flags
, int delalloc
)
7569 struct btrfs_root
*root
= fs_info
->extent_root
;
7570 struct btrfs_free_cluster
*last_ptr
= NULL
;
7571 struct btrfs_block_group_cache
*block_group
= NULL
;
7572 u64 search_start
= 0;
7573 u64 max_extent_size
= 0;
7574 u64 max_free_space
= 0;
7575 u64 empty_cluster
= 0;
7576 struct btrfs_space_info
*space_info
;
7578 int index
= __get_raid_index(flags
);
7579 bool failed_cluster_refill
= false;
7580 bool failed_alloc
= false;
7581 bool use_cluster
= true;
7582 bool have_caching_bg
= false;
7583 bool orig_have_caching_bg
= false;
7584 bool full_search
= false;
7586 WARN_ON(num_bytes
< fs_info
->sectorsize
);
7587 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7591 trace_find_free_extent(fs_info
, num_bytes
, empty_size
, flags
);
7593 space_info
= __find_space_info(fs_info
, flags
);
7595 btrfs_err(fs_info
, "No space info for %llu", flags
);
7600 * If our free space is heavily fragmented we may not be able to make
7601 * big contiguous allocations, so instead of doing the expensive search
7602 * for free space, simply return ENOSPC with our max_extent_size so we
7603 * can go ahead and search for a more manageable chunk.
7605 * If our max_extent_size is large enough for our allocation simply
7606 * disable clustering since we will likely not be able to find enough
7607 * space to create a cluster and induce latency trying.
7609 if (unlikely(space_info
->max_extent_size
)) {
7610 spin_lock(&space_info
->lock
);
7611 if (space_info
->max_extent_size
&&
7612 num_bytes
> space_info
->max_extent_size
) {
7613 ins
->offset
= space_info
->max_extent_size
;
7614 spin_unlock(&space_info
->lock
);
7616 } else if (space_info
->max_extent_size
) {
7617 use_cluster
= false;
7619 spin_unlock(&space_info
->lock
);
7622 last_ptr
= fetch_cluster_info(fs_info
, space_info
, &empty_cluster
);
7624 spin_lock(&last_ptr
->lock
);
7625 if (last_ptr
->block_group
)
7626 hint_byte
= last_ptr
->window_start
;
7627 if (last_ptr
->fragmented
) {
7629 * We still set window_start so we can keep track of the
7630 * last place we found an allocation to try and save
7633 hint_byte
= last_ptr
->window_start
;
7634 use_cluster
= false;
7636 spin_unlock(&last_ptr
->lock
);
7639 search_start
= max(search_start
, first_logical_byte(fs_info
, 0));
7640 search_start
= max(search_start
, hint_byte
);
7641 if (search_start
== hint_byte
) {
7642 block_group
= btrfs_lookup_block_group(fs_info
, search_start
);
7644 * we don't want to use the block group if it doesn't match our
7645 * allocation bits, or if its not cached.
7647 * However if we are re-searching with an ideal block group
7648 * picked out then we don't care that the block group is cached.
7650 if (block_group
&& block_group_bits(block_group
, flags
) &&
7651 block_group
->cached
!= BTRFS_CACHE_NO
) {
7652 down_read(&space_info
->groups_sem
);
7653 if (list_empty(&block_group
->list
) ||
7656 * someone is removing this block group,
7657 * we can't jump into the have_block_group
7658 * target because our list pointers are not
7661 btrfs_put_block_group(block_group
);
7662 up_read(&space_info
->groups_sem
);
7664 index
= get_block_group_index(block_group
);
7665 btrfs_lock_block_group(block_group
, delalloc
);
7666 goto have_block_group
;
7668 } else if (block_group
) {
7669 btrfs_put_block_group(block_group
);
7673 have_caching_bg
= false;
7674 if (index
== 0 || index
== __get_raid_index(flags
))
7676 down_read(&space_info
->groups_sem
);
7677 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7682 /* If the block group is read-only, we can skip it entirely. */
7683 if (unlikely(block_group
->ro
))
7686 btrfs_grab_block_group(block_group
, delalloc
);
7687 search_start
= block_group
->key
.objectid
;
7690 * this can happen if we end up cycling through all the
7691 * raid types, but we want to make sure we only allocate
7692 * for the proper type.
7694 if (!block_group_bits(block_group
, flags
)) {
7695 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7696 BTRFS_BLOCK_GROUP_RAID1
|
7697 BTRFS_BLOCK_GROUP_RAID5
|
7698 BTRFS_BLOCK_GROUP_RAID6
|
7699 BTRFS_BLOCK_GROUP_RAID10
;
7702 * if they asked for extra copies and this block group
7703 * doesn't provide them, bail. This does allow us to
7704 * fill raid0 from raid1.
7706 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7710 * This block group has different flags than we want.
7711 * It's possible that we have MIXED_GROUP flag but no
7712 * block group is mixed. Just skip such block group.
7714 btrfs_release_block_group(block_group
, delalloc
);
7719 cached
= block_group_cache_done(block_group
);
7720 if (unlikely(!cached
)) {
7721 have_caching_bg
= true;
7722 ret
= cache_block_group(block_group
, 0);
7727 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7731 * Ok we want to try and use the cluster allocator, so
7734 if (last_ptr
&& use_cluster
) {
7735 struct btrfs_block_group_cache
*used_block_group
;
7736 unsigned long aligned_cluster
;
7738 * the refill lock keeps out other
7739 * people trying to start a new cluster
7741 used_block_group
= btrfs_lock_cluster(block_group
,
7744 if (!used_block_group
)
7745 goto refill_cluster
;
7747 if (used_block_group
!= block_group
&&
7748 (used_block_group
->ro
||
7749 !block_group_bits(used_block_group
, flags
)))
7750 goto release_cluster
;
7752 offset
= btrfs_alloc_from_cluster(used_block_group
,
7755 used_block_group
->key
.objectid
,
7758 /* we have a block, we're done */
7759 spin_unlock(&last_ptr
->refill_lock
);
7760 trace_btrfs_reserve_extent_cluster(fs_info
,
7762 search_start
, num_bytes
);
7763 if (used_block_group
!= block_group
) {
7764 btrfs_release_block_group(block_group
,
7766 block_group
= used_block_group
;
7771 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7773 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7774 * set up a new clusters, so lets just skip it
7775 * and let the allocator find whatever block
7776 * it can find. If we reach this point, we
7777 * will have tried the cluster allocator
7778 * plenty of times and not have found
7779 * anything, so we are likely way too
7780 * fragmented for the clustering stuff to find
7783 * However, if the cluster is taken from the
7784 * current block group, release the cluster
7785 * first, so that we stand a better chance of
7786 * succeeding in the unclustered
7788 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7789 used_block_group
!= block_group
) {
7790 spin_unlock(&last_ptr
->refill_lock
);
7791 btrfs_release_block_group(used_block_group
,
7793 goto unclustered_alloc
;
7797 * this cluster didn't work out, free it and
7800 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7802 if (used_block_group
!= block_group
)
7803 btrfs_release_block_group(used_block_group
,
7806 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7807 spin_unlock(&last_ptr
->refill_lock
);
7808 goto unclustered_alloc
;
7811 aligned_cluster
= max_t(unsigned long,
7812 empty_cluster
+ empty_size
,
7813 block_group
->full_stripe_len
);
7815 /* allocate a cluster in this block group */
7816 ret
= btrfs_find_space_cluster(fs_info
, block_group
,
7817 last_ptr
, search_start
,
7822 * now pull our allocation out of this
7825 offset
= btrfs_alloc_from_cluster(block_group
,
7831 /* we found one, proceed */
7832 spin_unlock(&last_ptr
->refill_lock
);
7833 trace_btrfs_reserve_extent_cluster(fs_info
,
7834 block_group
, search_start
,
7838 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7839 && !failed_cluster_refill
) {
7840 spin_unlock(&last_ptr
->refill_lock
);
7842 failed_cluster_refill
= true;
7843 wait_block_group_cache_progress(block_group
,
7844 num_bytes
+ empty_cluster
+ empty_size
);
7845 goto have_block_group
;
7849 * at this point we either didn't find a cluster
7850 * or we weren't able to allocate a block from our
7851 * cluster. Free the cluster we've been trying
7852 * to use, and go to the next block group
7854 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7855 spin_unlock(&last_ptr
->refill_lock
);
7861 * We are doing an unclustered alloc, set the fragmented flag so
7862 * we don't bother trying to setup a cluster again until we get
7865 if (unlikely(last_ptr
)) {
7866 spin_lock(&last_ptr
->lock
);
7867 last_ptr
->fragmented
= 1;
7868 spin_unlock(&last_ptr
->lock
);
7871 struct btrfs_free_space_ctl
*ctl
=
7872 block_group
->free_space_ctl
;
7874 spin_lock(&ctl
->tree_lock
);
7875 if (ctl
->free_space
<
7876 num_bytes
+ empty_cluster
+ empty_size
) {
7877 max_free_space
= max(max_free_space
,
7879 spin_unlock(&ctl
->tree_lock
);
7882 spin_unlock(&ctl
->tree_lock
);
7885 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7886 num_bytes
, empty_size
,
7889 * If we didn't find a chunk, and we haven't failed on this
7890 * block group before, and this block group is in the middle of
7891 * caching and we are ok with waiting, then go ahead and wait
7892 * for progress to be made, and set failed_alloc to true.
7894 * If failed_alloc is true then we've already waited on this
7895 * block group once and should move on to the next block group.
7897 if (!offset
&& !failed_alloc
&& !cached
&&
7898 loop
> LOOP_CACHING_NOWAIT
) {
7899 wait_block_group_cache_progress(block_group
,
7900 num_bytes
+ empty_size
);
7901 failed_alloc
= true;
7902 goto have_block_group
;
7903 } else if (!offset
) {
7907 search_start
= ALIGN(offset
, fs_info
->stripesize
);
7909 /* move on to the next group */
7910 if (search_start
+ num_bytes
>
7911 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7912 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7916 if (offset
< search_start
)
7917 btrfs_add_free_space(block_group
, offset
,
7918 search_start
- offset
);
7919 BUG_ON(offset
> search_start
);
7921 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
7922 num_bytes
, delalloc
);
7923 if (ret
== -EAGAIN
) {
7924 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7927 btrfs_inc_block_group_reservations(block_group
);
7929 /* we are all good, lets return */
7930 ins
->objectid
= search_start
;
7931 ins
->offset
= num_bytes
;
7933 trace_btrfs_reserve_extent(fs_info
, block_group
,
7934 search_start
, num_bytes
);
7935 btrfs_release_block_group(block_group
, delalloc
);
7938 failed_cluster_refill
= false;
7939 failed_alloc
= false;
7940 BUG_ON(index
!= get_block_group_index(block_group
));
7941 btrfs_release_block_group(block_group
, delalloc
);
7944 up_read(&space_info
->groups_sem
);
7946 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7947 && !orig_have_caching_bg
)
7948 orig_have_caching_bg
= true;
7950 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7953 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7957 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7958 * caching kthreads as we move along
7959 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7960 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7961 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7964 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7966 if (loop
== LOOP_CACHING_NOWAIT
) {
7968 * We want to skip the LOOP_CACHING_WAIT step if we
7969 * don't have any uncached bgs and we've already done a
7970 * full search through.
7972 if (orig_have_caching_bg
|| !full_search
)
7973 loop
= LOOP_CACHING_WAIT
;
7975 loop
= LOOP_ALLOC_CHUNK
;
7980 if (loop
== LOOP_ALLOC_CHUNK
) {
7981 struct btrfs_trans_handle
*trans
;
7984 trans
= current
->journal_info
;
7988 trans
= btrfs_join_transaction(root
);
7990 if (IS_ERR(trans
)) {
7991 ret
= PTR_ERR(trans
);
7995 ret
= do_chunk_alloc(trans
, fs_info
, flags
,
7999 * If we can't allocate a new chunk we've already looped
8000 * through at least once, move on to the NO_EMPTY_SIZE
8004 loop
= LOOP_NO_EMPTY_SIZE
;
8007 * Do not bail out on ENOSPC since we
8008 * can do more things.
8010 if (ret
< 0 && ret
!= -ENOSPC
)
8011 btrfs_abort_transaction(trans
, ret
);
8015 btrfs_end_transaction(trans
);
8020 if (loop
== LOOP_NO_EMPTY_SIZE
) {
8022 * Don't loop again if we already have no empty_size and
8025 if (empty_size
== 0 &&
8026 empty_cluster
== 0) {
8035 } else if (!ins
->objectid
) {
8037 } else if (ins
->objectid
) {
8038 if (!use_cluster
&& last_ptr
) {
8039 spin_lock(&last_ptr
->lock
);
8040 last_ptr
->window_start
= ins
->objectid
;
8041 spin_unlock(&last_ptr
->lock
);
8046 if (ret
== -ENOSPC
) {
8047 if (!max_extent_size
)
8048 max_extent_size
= max_free_space
;
8049 spin_lock(&space_info
->lock
);
8050 space_info
->max_extent_size
= max_extent_size
;
8051 spin_unlock(&space_info
->lock
);
8052 ins
->offset
= max_extent_size
;
8057 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
8058 struct btrfs_space_info
*info
, u64 bytes
,
8059 int dump_block_groups
)
8061 struct btrfs_block_group_cache
*cache
;
8064 spin_lock(&info
->lock
);
8065 btrfs_info(fs_info
, "space_info %llu has %llu free, is %sfull",
8067 info
->total_bytes
- btrfs_space_info_used(info
, true),
8068 info
->full
? "" : "not ");
8070 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8071 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
8072 info
->bytes_reserved
, info
->bytes_may_use
,
8073 info
->bytes_readonly
);
8074 spin_unlock(&info
->lock
);
8076 if (!dump_block_groups
)
8079 down_read(&info
->groups_sem
);
8081 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
8082 spin_lock(&cache
->lock
);
8084 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8085 cache
->key
.objectid
, cache
->key
.offset
,
8086 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
8087 cache
->reserved
, cache
->ro
? "[readonly]" : "");
8088 btrfs_dump_free_space(cache
, bytes
);
8089 spin_unlock(&cache
->lock
);
8091 if (++index
< BTRFS_NR_RAID_TYPES
)
8093 up_read(&info
->groups_sem
);
8096 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
8097 u64 num_bytes
, u64 min_alloc_size
,
8098 u64 empty_size
, u64 hint_byte
,
8099 struct btrfs_key
*ins
, int is_data
, int delalloc
)
8101 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8102 bool final_tried
= num_bytes
== min_alloc_size
;
8106 flags
= get_alloc_profile_by_root(root
, is_data
);
8108 WARN_ON(num_bytes
< fs_info
->sectorsize
);
8109 ret
= find_free_extent(fs_info
, ram_bytes
, num_bytes
, empty_size
,
8110 hint_byte
, ins
, flags
, delalloc
);
8111 if (!ret
&& !is_data
) {
8112 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
8113 } else if (ret
== -ENOSPC
) {
8114 if (!final_tried
&& ins
->offset
) {
8115 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
8116 num_bytes
= round_down(num_bytes
,
8117 fs_info
->sectorsize
);
8118 num_bytes
= max(num_bytes
, min_alloc_size
);
8119 ram_bytes
= num_bytes
;
8120 if (num_bytes
== min_alloc_size
)
8123 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
8124 struct btrfs_space_info
*sinfo
;
8126 sinfo
= __find_space_info(fs_info
, flags
);
8128 "allocation failed flags %llu, wanted %llu",
8131 dump_space_info(fs_info
, sinfo
, num_bytes
, 1);
8138 static int __btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
8140 int pin
, int delalloc
)
8142 struct btrfs_block_group_cache
*cache
;
8145 cache
= btrfs_lookup_block_group(fs_info
, start
);
8147 btrfs_err(fs_info
, "Unable to find block group for %llu",
8153 pin_down_extent(fs_info
, cache
, start
, len
, 1);
8155 if (btrfs_test_opt(fs_info
, DISCARD
))
8156 ret
= btrfs_discard_extent(fs_info
, start
, len
, NULL
);
8157 btrfs_add_free_space(cache
, start
, len
);
8158 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
8159 trace_btrfs_reserved_extent_free(fs_info
, start
, len
);
8162 btrfs_put_block_group(cache
);
8166 int btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
8167 u64 start
, u64 len
, int delalloc
)
8169 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 0, delalloc
);
8172 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info
*fs_info
,
8175 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 1, 0);
8178 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8179 struct btrfs_fs_info
*fs_info
,
8180 u64 parent
, u64 root_objectid
,
8181 u64 flags
, u64 owner
, u64 offset
,
8182 struct btrfs_key
*ins
, int ref_mod
)
8185 struct btrfs_extent_item
*extent_item
;
8186 struct btrfs_extent_inline_ref
*iref
;
8187 struct btrfs_path
*path
;
8188 struct extent_buffer
*leaf
;
8193 type
= BTRFS_SHARED_DATA_REF_KEY
;
8195 type
= BTRFS_EXTENT_DATA_REF_KEY
;
8197 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
8199 path
= btrfs_alloc_path();
8203 path
->leave_spinning
= 1;
8204 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8207 btrfs_free_path(path
);
8211 leaf
= path
->nodes
[0];
8212 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8213 struct btrfs_extent_item
);
8214 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
8215 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8216 btrfs_set_extent_flags(leaf
, extent_item
,
8217 flags
| BTRFS_EXTENT_FLAG_DATA
);
8219 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8220 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
8222 struct btrfs_shared_data_ref
*ref
;
8223 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
8224 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8225 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
8227 struct btrfs_extent_data_ref
*ref
;
8228 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
8229 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
8230 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
8231 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
8232 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
8235 btrfs_mark_buffer_dirty(path
->nodes
[0]);
8236 btrfs_free_path(path
);
8238 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8243 ret
= update_block_group(trans
, fs_info
, ins
->objectid
, ins
->offset
, 1);
8244 if (ret
) { /* -ENOENT, logic error */
8245 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8246 ins
->objectid
, ins
->offset
);
8249 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
, ins
->offset
);
8253 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
8254 struct btrfs_fs_info
*fs_info
,
8255 u64 parent
, u64 root_objectid
,
8256 u64 flags
, struct btrfs_disk_key
*key
,
8257 int level
, struct btrfs_key
*ins
)
8260 struct btrfs_extent_item
*extent_item
;
8261 struct btrfs_tree_block_info
*block_info
;
8262 struct btrfs_extent_inline_ref
*iref
;
8263 struct btrfs_path
*path
;
8264 struct extent_buffer
*leaf
;
8265 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
8266 u64 num_bytes
= ins
->offset
;
8267 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8269 if (!skinny_metadata
)
8270 size
+= sizeof(*block_info
);
8272 path
= btrfs_alloc_path();
8274 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8279 path
->leave_spinning
= 1;
8280 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8283 btrfs_free_path(path
);
8284 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8289 leaf
= path
->nodes
[0];
8290 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8291 struct btrfs_extent_item
);
8292 btrfs_set_extent_refs(leaf
, extent_item
, 1);
8293 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8294 btrfs_set_extent_flags(leaf
, extent_item
,
8295 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
8297 if (skinny_metadata
) {
8298 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8299 num_bytes
= fs_info
->nodesize
;
8301 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
8302 btrfs_set_tree_block_key(leaf
, block_info
, key
);
8303 btrfs_set_tree_block_level(leaf
, block_info
, level
);
8304 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
8308 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
8309 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8310 BTRFS_SHARED_BLOCK_REF_KEY
);
8311 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8313 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8314 BTRFS_TREE_BLOCK_REF_KEY
);
8315 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
8318 btrfs_mark_buffer_dirty(leaf
);
8319 btrfs_free_path(path
);
8321 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8326 ret
= update_block_group(trans
, fs_info
, ins
->objectid
,
8327 fs_info
->nodesize
, 1);
8328 if (ret
) { /* -ENOENT, logic error */
8329 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8330 ins
->objectid
, ins
->offset
);
8334 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
,
8339 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8340 u64 root_objectid
, u64 owner
,
8341 u64 offset
, u64 ram_bytes
,
8342 struct btrfs_key
*ins
)
8344 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
8347 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
8349 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, ins
->objectid
,
8350 ins
->offset
, 0, root_objectid
, owner
,
8352 BTRFS_ADD_DELAYED_EXTENT
, NULL
, NULL
);
8357 * this is used by the tree logging recovery code. It records that
8358 * an extent has been allocated and makes sure to clear the free
8359 * space cache bits as well
8361 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
8362 struct btrfs_fs_info
*fs_info
,
8363 u64 root_objectid
, u64 owner
, u64 offset
,
8364 struct btrfs_key
*ins
)
8367 struct btrfs_block_group_cache
*block_group
;
8368 struct btrfs_space_info
*space_info
;
8371 * Mixed block groups will exclude before processing the log so we only
8372 * need to do the exclude dance if this fs isn't mixed.
8374 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
8375 ret
= __exclude_logged_extent(fs_info
, ins
->objectid
,
8381 block_group
= btrfs_lookup_block_group(fs_info
, ins
->objectid
);
8385 space_info
= block_group
->space_info
;
8386 spin_lock(&space_info
->lock
);
8387 spin_lock(&block_group
->lock
);
8388 space_info
->bytes_reserved
+= ins
->offset
;
8389 block_group
->reserved
+= ins
->offset
;
8390 spin_unlock(&block_group
->lock
);
8391 spin_unlock(&space_info
->lock
);
8393 ret
= alloc_reserved_file_extent(trans
, fs_info
, 0, root_objectid
,
8394 0, owner
, offset
, ins
, 1);
8395 btrfs_put_block_group(block_group
);
8399 static struct extent_buffer
*
8400 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8401 u64 bytenr
, int level
)
8403 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8404 struct extent_buffer
*buf
;
8406 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8411 * Extra safety check in case the extent tree is corrupted and extent
8412 * allocator chooses to use a tree block which is already used and
8415 if (buf
->lock_owner
== current
->pid
) {
8416 btrfs_err_rl(fs_info
,
8417 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8418 buf
->start
, btrfs_header_owner(buf
), current
->pid
);
8419 free_extent_buffer(buf
);
8420 return ERR_PTR(-EUCLEAN
);
8423 btrfs_set_header_generation(buf
, trans
->transid
);
8424 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8425 btrfs_tree_lock(buf
);
8426 clean_tree_block(fs_info
, buf
);
8427 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8429 btrfs_set_lock_blocking(buf
);
8430 set_extent_buffer_uptodate(buf
);
8432 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8433 buf
->log_index
= root
->log_transid
% 2;
8435 * we allow two log transactions at a time, use different
8436 * EXENT bit to differentiate dirty pages.
8438 if (buf
->log_index
== 0)
8439 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8440 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8442 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8443 buf
->start
+ buf
->len
- 1);
8445 buf
->log_index
= -1;
8446 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8447 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8449 trans
->dirty
= true;
8450 /* this returns a buffer locked for blocking */
8454 static struct btrfs_block_rsv
*
8455 use_block_rsv(struct btrfs_trans_handle
*trans
,
8456 struct btrfs_root
*root
, u32 blocksize
)
8458 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8459 struct btrfs_block_rsv
*block_rsv
;
8460 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
8462 bool global_updated
= false;
8464 block_rsv
= get_block_rsv(trans
, root
);
8466 if (unlikely(block_rsv
->size
== 0))
8469 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8473 if (block_rsv
->failfast
)
8474 return ERR_PTR(ret
);
8476 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8477 global_updated
= true;
8478 update_global_block_rsv(fs_info
);
8482 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
8483 static DEFINE_RATELIMIT_STATE(_rs
,
8484 DEFAULT_RATELIMIT_INTERVAL
* 10,
8485 /*DEFAULT_RATELIMIT_BURST*/ 1);
8486 if (__ratelimit(&_rs
))
8488 "BTRFS: block rsv returned %d\n", ret
);
8491 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8492 BTRFS_RESERVE_NO_FLUSH
);
8496 * If we couldn't reserve metadata bytes try and use some from
8497 * the global reserve if its space type is the same as the global
8500 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8501 block_rsv
->space_info
== global_rsv
->space_info
) {
8502 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8506 return ERR_PTR(ret
);
8509 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8510 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8512 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8513 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8517 * finds a free extent and does all the dirty work required for allocation
8518 * returns the tree buffer or an ERR_PTR on error.
8520 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8521 struct btrfs_root
*root
,
8522 u64 parent
, u64 root_objectid
,
8523 const struct btrfs_disk_key
*key
,
8524 int level
, u64 hint
,
8527 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8528 struct btrfs_key ins
;
8529 struct btrfs_block_rsv
*block_rsv
;
8530 struct extent_buffer
*buf
;
8531 struct btrfs_delayed_extent_op
*extent_op
;
8534 u32 blocksize
= fs_info
->nodesize
;
8535 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8537 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8538 if (btrfs_is_testing(fs_info
)) {
8539 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8542 root
->alloc_bytenr
+= blocksize
;
8547 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8548 if (IS_ERR(block_rsv
))
8549 return ERR_CAST(block_rsv
);
8551 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
8552 empty_size
, hint
, &ins
, 0, 0);
8556 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8559 goto out_free_reserved
;
8562 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8564 parent
= ins
.objectid
;
8565 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8569 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8570 extent_op
= btrfs_alloc_delayed_extent_op();
8576 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8578 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8579 extent_op
->flags_to_set
= flags
;
8580 extent_op
->update_key
= skinny_metadata
? false : true;
8581 extent_op
->update_flags
= true;
8582 extent_op
->is_data
= false;
8583 extent_op
->level
= level
;
8585 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, ins
.objectid
,
8587 root_objectid
, level
,
8588 BTRFS_ADD_DELAYED_EXTENT
,
8589 extent_op
, NULL
, NULL
);
8591 goto out_free_delayed
;
8596 btrfs_free_delayed_extent_op(extent_op
);
8598 free_extent_buffer(buf
);
8600 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 0);
8602 unuse_block_rsv(fs_info
, block_rsv
, blocksize
);
8603 return ERR_PTR(ret
);
8606 struct walk_control
{
8607 u64 refs
[BTRFS_MAX_LEVEL
];
8608 u64 flags
[BTRFS_MAX_LEVEL
];
8609 struct btrfs_key update_progress
;
8620 #define DROP_REFERENCE 1
8621 #define UPDATE_BACKREF 2
8623 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8624 struct btrfs_root
*root
,
8625 struct walk_control
*wc
,
8626 struct btrfs_path
*path
)
8628 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8634 struct btrfs_key key
;
8635 struct extent_buffer
*eb
;
8640 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8641 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8642 wc
->reada_count
= max(wc
->reada_count
, 2);
8644 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8645 wc
->reada_count
= min_t(int, wc
->reada_count
,
8646 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
8649 eb
= path
->nodes
[wc
->level
];
8650 nritems
= btrfs_header_nritems(eb
);
8652 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8653 if (nread
>= wc
->reada_count
)
8657 bytenr
= btrfs_node_blockptr(eb
, slot
);
8658 generation
= btrfs_node_ptr_generation(eb
, slot
);
8660 if (slot
== path
->slots
[wc
->level
])
8663 if (wc
->stage
== UPDATE_BACKREF
&&
8664 generation
<= root
->root_key
.offset
)
8667 /* We don't lock the tree block, it's OK to be racy here */
8668 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
,
8669 wc
->level
- 1, 1, &refs
,
8671 /* We don't care about errors in readahead. */
8676 if (wc
->stage
== DROP_REFERENCE
) {
8680 if (wc
->level
== 1 &&
8681 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8683 if (!wc
->update_ref
||
8684 generation
<= root
->root_key
.offset
)
8686 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8687 ret
= btrfs_comp_cpu_keys(&key
,
8688 &wc
->update_progress
);
8692 if (wc
->level
== 1 &&
8693 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8697 readahead_tree_block(fs_info
, bytenr
);
8700 wc
->reada_slot
= slot
;
8704 * helper to process tree block while walking down the tree.
8706 * when wc->stage == UPDATE_BACKREF, this function updates
8707 * back refs for pointers in the block.
8709 * NOTE: return value 1 means we should stop walking down.
8711 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8712 struct btrfs_root
*root
,
8713 struct btrfs_path
*path
,
8714 struct walk_control
*wc
, int lookup_info
)
8716 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8717 int level
= wc
->level
;
8718 struct extent_buffer
*eb
= path
->nodes
[level
];
8719 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8722 if (wc
->stage
== UPDATE_BACKREF
&&
8723 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8727 * when reference count of tree block is 1, it won't increase
8728 * again. once full backref flag is set, we never clear it.
8731 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8732 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8733 BUG_ON(!path
->locks
[level
]);
8734 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
8735 eb
->start
, level
, 1,
8738 BUG_ON(ret
== -ENOMEM
);
8741 BUG_ON(wc
->refs
[level
] == 0);
8744 if (wc
->stage
== DROP_REFERENCE
) {
8745 if (wc
->refs
[level
] > 1)
8748 if (path
->locks
[level
] && !wc
->keep_locks
) {
8749 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8750 path
->locks
[level
] = 0;
8755 /* wc->stage == UPDATE_BACKREF */
8756 if (!(wc
->flags
[level
] & flag
)) {
8757 BUG_ON(!path
->locks
[level
]);
8758 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8759 BUG_ON(ret
); /* -ENOMEM */
8760 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8761 BUG_ON(ret
); /* -ENOMEM */
8762 ret
= btrfs_set_disk_extent_flags(trans
, fs_info
, eb
->start
,
8764 btrfs_header_level(eb
), 0);
8765 BUG_ON(ret
); /* -ENOMEM */
8766 wc
->flags
[level
] |= flag
;
8770 * the block is shared by multiple trees, so it's not good to
8771 * keep the tree lock
8773 if (path
->locks
[level
] && level
> 0) {
8774 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8775 path
->locks
[level
] = 0;
8781 * helper to process tree block pointer.
8783 * when wc->stage == DROP_REFERENCE, this function checks
8784 * reference count of the block pointed to. if the block
8785 * is shared and we need update back refs for the subtree
8786 * rooted at the block, this function changes wc->stage to
8787 * UPDATE_BACKREF. if the block is shared and there is no
8788 * need to update back, this function drops the reference
8791 * NOTE: return value 1 means we should stop walking down.
8793 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8794 struct btrfs_root
*root
,
8795 struct btrfs_path
*path
,
8796 struct walk_control
*wc
, int *lookup_info
)
8798 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8803 struct btrfs_key key
;
8804 struct extent_buffer
*next
;
8805 int level
= wc
->level
;
8808 bool need_account
= false;
8810 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8811 path
->slots
[level
]);
8813 * if the lower level block was created before the snapshot
8814 * was created, we know there is no need to update back refs
8817 if (wc
->stage
== UPDATE_BACKREF
&&
8818 generation
<= root
->root_key
.offset
) {
8823 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8824 blocksize
= fs_info
->nodesize
;
8826 next
= find_extent_buffer(fs_info
, bytenr
);
8828 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8830 return PTR_ERR(next
);
8832 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8836 btrfs_tree_lock(next
);
8837 btrfs_set_lock_blocking(next
);
8839 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
, level
- 1, 1,
8840 &wc
->refs
[level
- 1],
8841 &wc
->flags
[level
- 1]);
8845 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8846 btrfs_err(fs_info
, "Missing references.");
8852 if (wc
->stage
== DROP_REFERENCE
) {
8853 if (wc
->refs
[level
- 1] > 1) {
8854 need_account
= true;
8856 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8859 if (!wc
->update_ref
||
8860 generation
<= root
->root_key
.offset
)
8863 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8864 path
->slots
[level
]);
8865 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8869 wc
->stage
= UPDATE_BACKREF
;
8870 wc
->shared_level
= level
- 1;
8874 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8878 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8879 btrfs_tree_unlock(next
);
8880 free_extent_buffer(next
);
8886 if (reada
&& level
== 1)
8887 reada_walk_down(trans
, root
, wc
, path
);
8888 next
= read_tree_block(fs_info
, bytenr
, generation
);
8890 return PTR_ERR(next
);
8891 } else if (!extent_buffer_uptodate(next
)) {
8892 free_extent_buffer(next
);
8895 btrfs_tree_lock(next
);
8896 btrfs_set_lock_blocking(next
);
8900 ASSERT(level
== btrfs_header_level(next
));
8901 if (level
!= btrfs_header_level(next
)) {
8902 btrfs_err(root
->fs_info
, "mismatched level");
8906 path
->nodes
[level
] = next
;
8907 path
->slots
[level
] = 0;
8908 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8914 wc
->refs
[level
- 1] = 0;
8915 wc
->flags
[level
- 1] = 0;
8916 if (wc
->stage
== DROP_REFERENCE
) {
8917 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8918 parent
= path
->nodes
[level
]->start
;
8920 ASSERT(root
->root_key
.objectid
==
8921 btrfs_header_owner(path
->nodes
[level
]));
8922 if (root
->root_key
.objectid
!=
8923 btrfs_header_owner(path
->nodes
[level
])) {
8924 btrfs_err(root
->fs_info
,
8925 "mismatched block owner");
8933 ret
= btrfs_qgroup_trace_subtree(trans
, root
, next
,
8934 generation
, level
- 1);
8936 btrfs_err_rl(fs_info
,
8937 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8941 ret
= btrfs_free_extent(trans
, fs_info
, bytenr
, blocksize
,
8942 parent
, root
->root_key
.objectid
,
8952 btrfs_tree_unlock(next
);
8953 free_extent_buffer(next
);
8959 * helper to process tree block while walking up the tree.
8961 * when wc->stage == DROP_REFERENCE, this function drops
8962 * reference count on the block.
8964 * when wc->stage == UPDATE_BACKREF, this function changes
8965 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8966 * to UPDATE_BACKREF previously while processing the block.
8968 * NOTE: return value 1 means we should stop walking up.
8970 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
8971 struct btrfs_root
*root
,
8972 struct btrfs_path
*path
,
8973 struct walk_control
*wc
)
8975 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8977 int level
= wc
->level
;
8978 struct extent_buffer
*eb
= path
->nodes
[level
];
8981 if (wc
->stage
== UPDATE_BACKREF
) {
8982 BUG_ON(wc
->shared_level
< level
);
8983 if (level
< wc
->shared_level
)
8986 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
8990 wc
->stage
= DROP_REFERENCE
;
8991 wc
->shared_level
= -1;
8992 path
->slots
[level
] = 0;
8995 * check reference count again if the block isn't locked.
8996 * we should start walking down the tree again if reference
8999 if (!path
->locks
[level
]) {
9001 btrfs_tree_lock(eb
);
9002 btrfs_set_lock_blocking(eb
);
9003 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9005 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
9006 eb
->start
, level
, 1,
9010 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9011 path
->locks
[level
] = 0;
9014 BUG_ON(wc
->refs
[level
] == 0);
9015 if (wc
->refs
[level
] == 1) {
9016 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9017 path
->locks
[level
] = 0;
9023 /* wc->stage == DROP_REFERENCE */
9024 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
9026 if (wc
->refs
[level
] == 1) {
9028 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9029 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
9031 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
9032 BUG_ON(ret
); /* -ENOMEM */
9033 ret
= btrfs_qgroup_trace_leaf_items(trans
, fs_info
, eb
);
9035 btrfs_err_rl(fs_info
,
9036 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9040 /* make block locked assertion in clean_tree_block happy */
9041 if (!path
->locks
[level
] &&
9042 btrfs_header_generation(eb
) == trans
->transid
) {
9043 btrfs_tree_lock(eb
);
9044 btrfs_set_lock_blocking(eb
);
9045 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9047 clean_tree_block(fs_info
, eb
);
9050 if (eb
== root
->node
) {
9051 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9053 else if (root
->root_key
.objectid
!= btrfs_header_owner(eb
))
9054 goto owner_mismatch
;
9056 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9057 parent
= path
->nodes
[level
+ 1]->start
;
9058 else if (root
->root_key
.objectid
!=
9059 btrfs_header_owner(path
->nodes
[level
+ 1]))
9060 goto owner_mismatch
;
9063 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
9065 wc
->refs
[level
] = 0;
9066 wc
->flags
[level
] = 0;
9070 btrfs_err_rl(fs_info
, "unexpected tree owner, have %llu expect %llu",
9071 btrfs_header_owner(eb
), root
->root_key
.objectid
);
9075 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
9076 struct btrfs_root
*root
,
9077 struct btrfs_path
*path
,
9078 struct walk_control
*wc
)
9080 int level
= wc
->level
;
9081 int lookup_info
= 1;
9084 while (level
>= 0) {
9085 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
9092 if (path
->slots
[level
] >=
9093 btrfs_header_nritems(path
->nodes
[level
]))
9096 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
9098 path
->slots
[level
]++;
9107 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
9108 struct btrfs_root
*root
,
9109 struct btrfs_path
*path
,
9110 struct walk_control
*wc
, int max_level
)
9112 int level
= wc
->level
;
9115 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
9116 while (level
< max_level
&& path
->nodes
[level
]) {
9118 if (path
->slots
[level
] + 1 <
9119 btrfs_header_nritems(path
->nodes
[level
])) {
9120 path
->slots
[level
]++;
9123 ret
= walk_up_proc(trans
, root
, path
, wc
);
9129 if (path
->locks
[level
]) {
9130 btrfs_tree_unlock_rw(path
->nodes
[level
],
9131 path
->locks
[level
]);
9132 path
->locks
[level
] = 0;
9134 free_extent_buffer(path
->nodes
[level
]);
9135 path
->nodes
[level
] = NULL
;
9143 * drop a subvolume tree.
9145 * this function traverses the tree freeing any blocks that only
9146 * referenced by the tree.
9148 * when a shared tree block is found. this function decreases its
9149 * reference count by one. if update_ref is true, this function
9150 * also make sure backrefs for the shared block and all lower level
9151 * blocks are properly updated.
9153 * If called with for_reloc == 0, may exit early with -EAGAIN
9155 int btrfs_drop_snapshot(struct btrfs_root
*root
,
9156 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
9159 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9160 struct btrfs_path
*path
;
9161 struct btrfs_trans_handle
*trans
;
9162 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
9163 struct btrfs_root_item
*root_item
= &root
->root_item
;
9164 struct walk_control
*wc
;
9165 struct btrfs_key key
;
9169 bool root_dropped
= false;
9171 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->objectid
);
9173 path
= btrfs_alloc_path();
9179 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9181 btrfs_free_path(path
);
9186 trans
= btrfs_start_transaction(tree_root
, 0);
9187 if (IS_ERR(trans
)) {
9188 err
= PTR_ERR(trans
);
9193 trans
->block_rsv
= block_rsv
;
9195 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9196 level
= btrfs_header_level(root
->node
);
9197 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9198 btrfs_set_lock_blocking(path
->nodes
[level
]);
9199 path
->slots
[level
] = 0;
9200 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9201 memset(&wc
->update_progress
, 0,
9202 sizeof(wc
->update_progress
));
9204 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9205 memcpy(&wc
->update_progress
, &key
,
9206 sizeof(wc
->update_progress
));
9208 level
= root_item
->drop_level
;
9210 path
->lowest_level
= level
;
9211 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9212 path
->lowest_level
= 0;
9220 * unlock our path, this is safe because only this
9221 * function is allowed to delete this snapshot
9223 btrfs_unlock_up_safe(path
, 0);
9225 level
= btrfs_header_level(root
->node
);
9227 btrfs_tree_lock(path
->nodes
[level
]);
9228 btrfs_set_lock_blocking(path
->nodes
[level
]);
9229 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9231 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
9232 path
->nodes
[level
]->start
,
9233 level
, 1, &wc
->refs
[level
],
9239 BUG_ON(wc
->refs
[level
] == 0);
9241 if (level
== root_item
->drop_level
)
9244 btrfs_tree_unlock(path
->nodes
[level
]);
9245 path
->locks
[level
] = 0;
9246 WARN_ON(wc
->refs
[level
] != 1);
9252 wc
->shared_level
= -1;
9253 wc
->stage
= DROP_REFERENCE
;
9254 wc
->update_ref
= update_ref
;
9256 wc
->for_reloc
= for_reloc
;
9257 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9261 ret
= walk_down_tree(trans
, root
, path
, wc
);
9267 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9274 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9278 if (wc
->stage
== DROP_REFERENCE
) {
9280 btrfs_node_key(path
->nodes
[level
],
9281 &root_item
->drop_progress
,
9282 path
->slots
[level
]);
9283 root_item
->drop_level
= level
;
9286 BUG_ON(wc
->level
== 0);
9287 if (btrfs_should_end_transaction(trans
) ||
9288 (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
))) {
9289 ret
= btrfs_update_root(trans
, tree_root
,
9293 btrfs_abort_transaction(trans
, ret
);
9298 btrfs_end_transaction_throttle(trans
);
9299 if (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
)) {
9300 btrfs_debug(fs_info
,
9301 "drop snapshot early exit");
9306 trans
= btrfs_start_transaction(tree_root
, 0);
9307 if (IS_ERR(trans
)) {
9308 err
= PTR_ERR(trans
);
9312 trans
->block_rsv
= block_rsv
;
9315 btrfs_release_path(path
);
9319 ret
= btrfs_del_root(trans
, fs_info
, &root
->root_key
);
9321 btrfs_abort_transaction(trans
, ret
);
9326 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9327 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9330 btrfs_abort_transaction(trans
, ret
);
9333 } else if (ret
> 0) {
9334 /* if we fail to delete the orphan item this time
9335 * around, it'll get picked up the next time.
9337 * The most common failure here is just -ENOENT.
9339 btrfs_del_orphan_item(trans
, tree_root
,
9340 root
->root_key
.objectid
);
9344 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9345 btrfs_add_dropped_root(trans
, root
);
9347 free_extent_buffer(root
->node
);
9348 free_extent_buffer(root
->commit_root
);
9349 btrfs_put_fs_root(root
);
9351 root_dropped
= true;
9353 btrfs_end_transaction_throttle(trans
);
9356 btrfs_free_path(path
);
9359 * So if we need to stop dropping the snapshot for whatever reason we
9360 * need to make sure to add it back to the dead root list so that we
9361 * keep trying to do the work later. This also cleans up roots if we
9362 * don't have it in the radix (like when we recover after a power fail
9363 * or unmount) so we don't leak memory.
9365 if (!for_reloc
&& root_dropped
== false)
9366 btrfs_add_dead_root(root
);
9371 * drop subtree rooted at tree block 'node'.
9373 * NOTE: this function will unlock and release tree block 'node'
9374 * only used by relocation code
9376 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9377 struct btrfs_root
*root
,
9378 struct extent_buffer
*node
,
9379 struct extent_buffer
*parent
)
9381 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9382 struct btrfs_path
*path
;
9383 struct walk_control
*wc
;
9389 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9391 path
= btrfs_alloc_path();
9395 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9397 btrfs_free_path(path
);
9401 btrfs_assert_tree_locked(parent
);
9402 parent_level
= btrfs_header_level(parent
);
9403 extent_buffer_get(parent
);
9404 path
->nodes
[parent_level
] = parent
;
9405 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9407 btrfs_assert_tree_locked(node
);
9408 level
= btrfs_header_level(node
);
9409 path
->nodes
[level
] = node
;
9410 path
->slots
[level
] = 0;
9411 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9413 wc
->refs
[parent_level
] = 1;
9414 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9416 wc
->shared_level
= -1;
9417 wc
->stage
= DROP_REFERENCE
;
9421 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9424 wret
= walk_down_tree(trans
, root
, path
, wc
);
9430 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9438 btrfs_free_path(path
);
9442 static u64
update_block_group_flags(struct btrfs_fs_info
*fs_info
, u64 flags
)
9448 * if restripe for this chunk_type is on pick target profile and
9449 * return, otherwise do the usual balance
9451 stripped
= get_restripe_target(fs_info
, flags
);
9453 return extended_to_chunk(stripped
);
9455 num_devices
= fs_info
->fs_devices
->rw_devices
;
9457 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9458 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9459 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9461 if (num_devices
== 1) {
9462 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9463 stripped
= flags
& ~stripped
;
9465 /* turn raid0 into single device chunks */
9466 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9469 /* turn mirroring into duplication */
9470 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9471 BTRFS_BLOCK_GROUP_RAID10
))
9472 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9474 /* they already had raid on here, just return */
9475 if (flags
& stripped
)
9478 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9479 stripped
= flags
& ~stripped
;
9481 /* switch duplicated blocks with raid1 */
9482 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9483 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9485 /* this is drive concat, leave it alone */
9491 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9493 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9495 u64 min_allocable_bytes
;
9499 * We need some metadata space and system metadata space for
9500 * allocating chunks in some corner cases until we force to set
9501 * it to be readonly.
9504 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9506 min_allocable_bytes
= SZ_1M
;
9508 min_allocable_bytes
= 0;
9510 spin_lock(&sinfo
->lock
);
9511 spin_lock(&cache
->lock
);
9519 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9520 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9522 if (btrfs_space_info_used(sinfo
, true) + num_bytes
+
9523 min_allocable_bytes
<= sinfo
->total_bytes
) {
9524 sinfo
->bytes_readonly
+= num_bytes
;
9526 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9530 spin_unlock(&cache
->lock
);
9531 spin_unlock(&sinfo
->lock
);
9535 int btrfs_inc_block_group_ro(struct btrfs_fs_info
*fs_info
,
9536 struct btrfs_block_group_cache
*cache
)
9539 struct btrfs_trans_handle
*trans
;
9544 trans
= btrfs_join_transaction(fs_info
->extent_root
);
9546 return PTR_ERR(trans
);
9549 * we're not allowed to set block groups readonly after the dirty
9550 * block groups cache has started writing. If it already started,
9551 * back off and let this transaction commit
9553 mutex_lock(&fs_info
->ro_block_group_mutex
);
9554 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9555 u64 transid
= trans
->transid
;
9557 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9558 btrfs_end_transaction(trans
);
9560 ret
= btrfs_wait_for_commit(fs_info
, transid
);
9567 * if we are changing raid levels, try to allocate a corresponding
9568 * block group with the new raid level.
9570 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9571 if (alloc_flags
!= cache
->flags
) {
9572 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9575 * ENOSPC is allowed here, we may have enough space
9576 * already allocated at the new raid level to
9585 ret
= inc_block_group_ro(cache
, 0);
9588 alloc_flags
= get_alloc_profile(fs_info
, cache
->space_info
->flags
);
9589 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9593 ret
= inc_block_group_ro(cache
, 0);
9595 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9596 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9597 mutex_lock(&fs_info
->chunk_mutex
);
9598 check_system_chunk(trans
, fs_info
, alloc_flags
);
9599 mutex_unlock(&fs_info
->chunk_mutex
);
9601 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9603 btrfs_end_transaction(trans
);
9607 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9608 struct btrfs_fs_info
*fs_info
, u64 type
)
9610 u64 alloc_flags
= get_alloc_profile(fs_info
, type
);
9612 return do_chunk_alloc(trans
, fs_info
, alloc_flags
, CHUNK_ALLOC_FORCE
);
9616 * helper to account the unused space of all the readonly block group in the
9617 * space_info. takes mirrors into account.
9619 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9621 struct btrfs_block_group_cache
*block_group
;
9625 /* It's df, we don't care if it's racy */
9626 if (list_empty(&sinfo
->ro_bgs
))
9629 spin_lock(&sinfo
->lock
);
9630 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9631 spin_lock(&block_group
->lock
);
9633 if (!block_group
->ro
) {
9634 spin_unlock(&block_group
->lock
);
9638 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9639 BTRFS_BLOCK_GROUP_RAID10
|
9640 BTRFS_BLOCK_GROUP_DUP
))
9645 free_bytes
+= (block_group
->key
.offset
-
9646 btrfs_block_group_used(&block_group
->item
)) *
9649 spin_unlock(&block_group
->lock
);
9651 spin_unlock(&sinfo
->lock
);
9656 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache
*cache
)
9658 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9663 spin_lock(&sinfo
->lock
);
9664 spin_lock(&cache
->lock
);
9666 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9667 cache
->pinned
- cache
->bytes_super
-
9668 btrfs_block_group_used(&cache
->item
);
9669 sinfo
->bytes_readonly
-= num_bytes
;
9670 list_del_init(&cache
->ro_list
);
9672 spin_unlock(&cache
->lock
);
9673 spin_unlock(&sinfo
->lock
);
9677 * checks to see if its even possible to relocate this block group.
9679 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9680 * ok to go ahead and try.
9682 int btrfs_can_relocate(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
9684 struct btrfs_root
*root
= fs_info
->extent_root
;
9685 struct btrfs_block_group_cache
*block_group
;
9686 struct btrfs_space_info
*space_info
;
9687 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
9688 struct btrfs_device
*device
;
9689 struct btrfs_trans_handle
*trans
;
9699 debug
= btrfs_test_opt(fs_info
, ENOSPC_DEBUG
);
9701 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
9703 /* odd, couldn't find the block group, leave it alone */
9707 "can't find block group for bytenr %llu",
9712 min_free
= btrfs_block_group_used(&block_group
->item
);
9714 /* no bytes used, we're good */
9718 space_info
= block_group
->space_info
;
9719 spin_lock(&space_info
->lock
);
9721 full
= space_info
->full
;
9724 * if this is the last block group we have in this space, we can't
9725 * relocate it unless we're able to allocate a new chunk below.
9727 * Otherwise, we need to make sure we have room in the space to handle
9728 * all of the extents from this block group. If we can, we're good
9730 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9731 (btrfs_space_info_used(space_info
, false) + min_free
<
9732 space_info
->total_bytes
)) {
9733 spin_unlock(&space_info
->lock
);
9736 spin_unlock(&space_info
->lock
);
9739 * ok we don't have enough space, but maybe we have free space on our
9740 * devices to allocate new chunks for relocation, so loop through our
9741 * alloc devices and guess if we have enough space. if this block
9742 * group is going to be restriped, run checks against the target
9743 * profile instead of the current one.
9755 target
= get_restripe_target(fs_info
, block_group
->flags
);
9757 index
= __get_raid_index(extended_to_chunk(target
));
9760 * this is just a balance, so if we were marked as full
9761 * we know there is no space for a new chunk
9766 "no space to alloc new chunk for block group %llu",
9767 block_group
->key
.objectid
);
9771 index
= get_block_group_index(block_group
);
9774 if (index
== BTRFS_RAID_RAID10
) {
9778 } else if (index
== BTRFS_RAID_RAID1
) {
9780 } else if (index
== BTRFS_RAID_DUP
) {
9783 } else if (index
== BTRFS_RAID_RAID0
) {
9784 dev_min
= fs_devices
->rw_devices
;
9785 min_free
= div64_u64(min_free
, dev_min
);
9788 /* We need to do this so that we can look at pending chunks */
9789 trans
= btrfs_join_transaction(root
);
9790 if (IS_ERR(trans
)) {
9791 ret
= PTR_ERR(trans
);
9795 mutex_lock(&fs_info
->chunk_mutex
);
9796 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9800 * check to make sure we can actually find a chunk with enough
9801 * space to fit our block group in.
9803 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9804 !device
->is_tgtdev_for_dev_replace
) {
9805 ret
= find_free_dev_extent(trans
, device
, min_free
,
9810 if (dev_nr
>= dev_min
)
9816 if (debug
&& ret
== -1)
9818 "no space to allocate a new chunk for block group %llu",
9819 block_group
->key
.objectid
);
9820 mutex_unlock(&fs_info
->chunk_mutex
);
9821 btrfs_end_transaction(trans
);
9823 btrfs_put_block_group(block_group
);
9827 static int find_first_block_group(struct btrfs_fs_info
*fs_info
,
9828 struct btrfs_path
*path
,
9829 struct btrfs_key
*key
)
9831 struct btrfs_root
*root
= fs_info
->extent_root
;
9833 struct btrfs_key found_key
;
9834 struct extent_buffer
*leaf
;
9835 struct btrfs_block_group_item bg
;
9839 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9844 slot
= path
->slots
[0];
9845 leaf
= path
->nodes
[0];
9846 if (slot
>= btrfs_header_nritems(leaf
)) {
9847 ret
= btrfs_next_leaf(root
, path
);
9854 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9856 if (found_key
.objectid
>= key
->objectid
&&
9857 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9858 struct extent_map_tree
*em_tree
;
9859 struct extent_map
*em
;
9861 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9862 read_lock(&em_tree
->lock
);
9863 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9865 read_unlock(&em_tree
->lock
);
9868 "logical %llu len %llu found bg but no related chunk",
9869 found_key
.objectid
, found_key
.offset
);
9871 } else if (em
->start
!= found_key
.objectid
||
9872 em
->len
!= found_key
.offset
) {
9874 "block group %llu len %llu mismatch with chunk %llu len %llu",
9875 found_key
.objectid
, found_key
.offset
,
9876 em
->start
, em
->len
);
9879 read_extent_buffer(leaf
, &bg
,
9880 btrfs_item_ptr_offset(leaf
, slot
),
9882 flags
= btrfs_block_group_flags(&bg
) &
9883 BTRFS_BLOCK_GROUP_TYPE_MASK
;
9885 if (flags
!= (em
->map_lookup
->type
&
9886 BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
9888 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9890 found_key
.offset
, flags
,
9891 (BTRFS_BLOCK_GROUP_TYPE_MASK
&
9892 em
->map_lookup
->type
));
9898 free_extent_map(em
);
9907 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9909 struct btrfs_block_group_cache
*block_group
;
9913 struct inode
*inode
;
9915 block_group
= btrfs_lookup_first_block_group(info
, last
);
9916 while (block_group
) {
9917 wait_block_group_cache_done(block_group
);
9918 spin_lock(&block_group
->lock
);
9919 if (block_group
->iref
)
9921 spin_unlock(&block_group
->lock
);
9922 block_group
= next_block_group(info
, block_group
);
9931 inode
= block_group
->inode
;
9932 block_group
->iref
= 0;
9933 block_group
->inode
= NULL
;
9934 spin_unlock(&block_group
->lock
);
9935 ASSERT(block_group
->io_ctl
.inode
== NULL
);
9937 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9938 btrfs_put_block_group(block_group
);
9943 * Must be called only after stopping all workers, since we could have block
9944 * group caching kthreads running, and therefore they could race with us if we
9945 * freed the block groups before stopping them.
9947 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9949 struct btrfs_block_group_cache
*block_group
;
9950 struct btrfs_space_info
*space_info
;
9951 struct btrfs_caching_control
*caching_ctl
;
9954 down_write(&info
->commit_root_sem
);
9955 while (!list_empty(&info
->caching_block_groups
)) {
9956 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9957 struct btrfs_caching_control
, list
);
9958 list_del(&caching_ctl
->list
);
9959 put_caching_control(caching_ctl
);
9961 up_write(&info
->commit_root_sem
);
9963 spin_lock(&info
->unused_bgs_lock
);
9964 while (!list_empty(&info
->unused_bgs
)) {
9965 block_group
= list_first_entry(&info
->unused_bgs
,
9966 struct btrfs_block_group_cache
,
9968 list_del_init(&block_group
->bg_list
);
9969 btrfs_put_block_group(block_group
);
9971 spin_unlock(&info
->unused_bgs_lock
);
9973 spin_lock(&info
->block_group_cache_lock
);
9974 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9975 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9977 rb_erase(&block_group
->cache_node
,
9978 &info
->block_group_cache_tree
);
9979 RB_CLEAR_NODE(&block_group
->cache_node
);
9980 spin_unlock(&info
->block_group_cache_lock
);
9982 down_write(&block_group
->space_info
->groups_sem
);
9983 list_del(&block_group
->list
);
9984 up_write(&block_group
->space_info
->groups_sem
);
9987 * We haven't cached this block group, which means we could
9988 * possibly have excluded extents on this block group.
9990 if (block_group
->cached
== BTRFS_CACHE_NO
||
9991 block_group
->cached
== BTRFS_CACHE_ERROR
)
9992 free_excluded_extents(info
, block_group
);
9994 btrfs_remove_free_space_cache(block_group
);
9995 ASSERT(block_group
->cached
!= BTRFS_CACHE_STARTED
);
9996 ASSERT(list_empty(&block_group
->dirty_list
));
9997 ASSERT(list_empty(&block_group
->io_list
));
9998 ASSERT(list_empty(&block_group
->bg_list
));
9999 ASSERT(atomic_read(&block_group
->count
) == 1);
10000 btrfs_put_block_group(block_group
);
10002 spin_lock(&info
->block_group_cache_lock
);
10004 spin_unlock(&info
->block_group_cache_lock
);
10006 /* now that all the block groups are freed, go through and
10007 * free all the space_info structs. This is only called during
10008 * the final stages of unmount, and so we know nobody is
10009 * using them. We call synchronize_rcu() once before we start,
10010 * just to be on the safe side.
10014 release_global_block_rsv(info
);
10016 while (!list_empty(&info
->space_info
)) {
10019 space_info
= list_entry(info
->space_info
.next
,
10020 struct btrfs_space_info
,
10024 * Do not hide this behind enospc_debug, this is actually
10025 * important and indicates a real bug if this happens.
10027 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
10028 space_info
->bytes_reserved
> 0 ||
10029 space_info
->bytes_may_use
> 0))
10030 dump_space_info(info
, space_info
, 0, 0);
10031 list_del(&space_info
->list
);
10032 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
10033 struct kobject
*kobj
;
10034 kobj
= space_info
->block_group_kobjs
[i
];
10035 space_info
->block_group_kobjs
[i
] = NULL
;
10041 kobject_del(&space_info
->kobj
);
10042 kobject_put(&space_info
->kobj
);
10047 static void __link_block_group(struct btrfs_space_info
*space_info
,
10048 struct btrfs_block_group_cache
*cache
)
10050 int index
= get_block_group_index(cache
);
10051 bool first
= false;
10053 down_write(&space_info
->groups_sem
);
10054 if (list_empty(&space_info
->block_groups
[index
]))
10056 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
10057 up_write(&space_info
->groups_sem
);
10060 struct raid_kobject
*rkobj
;
10063 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
10066 rkobj
->raid_type
= index
;
10067 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
10068 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
10069 "%s", get_raid_name(index
));
10071 kobject_put(&rkobj
->kobj
);
10074 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
10079 btrfs_warn(cache
->fs_info
,
10080 "failed to add kobject for block cache, ignoring");
10083 static struct btrfs_block_group_cache
*
10084 btrfs_create_block_group_cache(struct btrfs_fs_info
*fs_info
,
10085 u64 start
, u64 size
)
10087 struct btrfs_block_group_cache
*cache
;
10089 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
10093 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
10095 if (!cache
->free_space_ctl
) {
10100 cache
->key
.objectid
= start
;
10101 cache
->key
.offset
= size
;
10102 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10104 cache
->fs_info
= fs_info
;
10105 cache
->full_stripe_len
= btrfs_full_stripe_len(fs_info
, start
);
10106 set_free_space_tree_thresholds(cache
);
10108 atomic_set(&cache
->count
, 1);
10109 spin_lock_init(&cache
->lock
);
10110 init_rwsem(&cache
->data_rwsem
);
10111 INIT_LIST_HEAD(&cache
->list
);
10112 INIT_LIST_HEAD(&cache
->cluster_list
);
10113 INIT_LIST_HEAD(&cache
->bg_list
);
10114 INIT_LIST_HEAD(&cache
->ro_list
);
10115 INIT_LIST_HEAD(&cache
->dirty_list
);
10116 INIT_LIST_HEAD(&cache
->io_list
);
10117 btrfs_init_free_space_ctl(cache
);
10118 atomic_set(&cache
->trimming
, 0);
10119 mutex_init(&cache
->free_space_lock
);
10120 btrfs_init_full_stripe_locks_tree(&cache
->full_stripe_locks_root
);
10127 * Iterate all chunks and verify that each of them has the corresponding block
10130 static int check_chunk_block_group_mappings(struct btrfs_fs_info
*fs_info
)
10132 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
10133 struct extent_map
*em
;
10134 struct btrfs_block_group_cache
*bg
;
10139 read_lock(&map_tree
->map_tree
.lock
);
10141 * lookup_extent_mapping will return the first extent map
10142 * intersecting the range, so setting @len to 1 is enough to
10143 * get the first chunk.
10145 em
= lookup_extent_mapping(&map_tree
->map_tree
, start
, 1);
10146 read_unlock(&map_tree
->map_tree
.lock
);
10150 bg
= btrfs_lookup_block_group(fs_info
, em
->start
);
10153 "chunk start=%llu len=%llu doesn't have corresponding block group",
10154 em
->start
, em
->len
);
10156 free_extent_map(em
);
10159 if (bg
->key
.objectid
!= em
->start
||
10160 bg
->key
.offset
!= em
->len
||
10161 (bg
->flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
) !=
10162 (em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
10164 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10165 em
->start
, em
->len
,
10166 em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_TYPE_MASK
,
10167 bg
->key
.objectid
, bg
->key
.offset
,
10168 bg
->flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
);
10170 free_extent_map(em
);
10171 btrfs_put_block_group(bg
);
10174 start
= em
->start
+ em
->len
;
10175 free_extent_map(em
);
10176 btrfs_put_block_group(bg
);
10181 int btrfs_read_block_groups(struct btrfs_fs_info
*info
)
10183 struct btrfs_path
*path
;
10185 struct btrfs_block_group_cache
*cache
;
10186 struct btrfs_space_info
*space_info
;
10187 struct btrfs_key key
;
10188 struct btrfs_key found_key
;
10189 struct extent_buffer
*leaf
;
10190 int need_clear
= 0;
10195 feature
= btrfs_super_incompat_flags(info
->super_copy
);
10196 mixed
= !!(feature
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
);
10200 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10201 path
= btrfs_alloc_path();
10204 path
->reada
= READA_FORWARD
;
10206 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
10207 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
10208 btrfs_super_generation(info
->super_copy
) != cache_gen
)
10210 if (btrfs_test_opt(info
, CLEAR_CACHE
))
10214 ret
= find_first_block_group(info
, path
, &key
);
10220 leaf
= path
->nodes
[0];
10221 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
10223 cache
= btrfs_create_block_group_cache(info
, found_key
.objectid
,
10232 * When we mount with old space cache, we need to
10233 * set BTRFS_DC_CLEAR and set dirty flag.
10235 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10236 * truncate the old free space cache inode and
10238 * b) Setting 'dirty flag' makes sure that we flush
10239 * the new space cache info onto disk.
10241 if (btrfs_test_opt(info
, SPACE_CACHE
))
10242 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
10245 read_extent_buffer(leaf
, &cache
->item
,
10246 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
10247 sizeof(cache
->item
));
10248 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
10250 ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
10251 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
10253 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10254 cache
->key
.objectid
);
10255 btrfs_put_block_group(cache
);
10260 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
10261 btrfs_release_path(path
);
10264 * We need to exclude the super stripes now so that the space
10265 * info has super bytes accounted for, otherwise we'll think
10266 * we have more space than we actually do.
10268 ret
= exclude_super_stripes(info
, cache
);
10271 * We may have excluded something, so call this just in
10274 free_excluded_extents(info
, cache
);
10275 btrfs_put_block_group(cache
);
10280 * check for two cases, either we are full, and therefore
10281 * don't need to bother with the caching work since we won't
10282 * find any space, or we are empty, and we can just add all
10283 * the space in and be done with it. This saves us _alot_ of
10284 * time, particularly in the full case.
10286 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
10287 cache
->last_byte_to_unpin
= (u64
)-1;
10288 cache
->cached
= BTRFS_CACHE_FINISHED
;
10289 free_excluded_extents(info
, cache
);
10290 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10291 cache
->last_byte_to_unpin
= (u64
)-1;
10292 cache
->cached
= BTRFS_CACHE_FINISHED
;
10293 add_new_free_space(cache
, info
,
10294 found_key
.objectid
,
10295 found_key
.objectid
+
10297 free_excluded_extents(info
, cache
);
10300 ret
= btrfs_add_block_group_cache(info
, cache
);
10302 btrfs_remove_free_space_cache(cache
);
10303 btrfs_put_block_group(cache
);
10307 trace_btrfs_add_block_group(info
, cache
, 0);
10308 update_space_info(info
, cache
->flags
, found_key
.offset
,
10309 btrfs_block_group_used(&cache
->item
),
10310 cache
->bytes_super
, &space_info
);
10312 cache
->space_info
= space_info
;
10314 __link_block_group(space_info
, cache
);
10316 set_avail_alloc_bits(info
, cache
->flags
);
10317 if (btrfs_chunk_readonly(info
, cache
->key
.objectid
)) {
10318 inc_block_group_ro(cache
, 1);
10319 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10320 spin_lock(&info
->unused_bgs_lock
);
10321 /* Should always be true but just in case. */
10322 if (list_empty(&cache
->bg_list
)) {
10323 btrfs_get_block_group(cache
);
10324 list_add_tail(&cache
->bg_list
,
10325 &info
->unused_bgs
);
10327 spin_unlock(&info
->unused_bgs_lock
);
10331 list_for_each_entry_rcu(space_info
, &info
->space_info
, list
) {
10332 if (!(get_alloc_profile(info
, space_info
->flags
) &
10333 (BTRFS_BLOCK_GROUP_RAID10
|
10334 BTRFS_BLOCK_GROUP_RAID1
|
10335 BTRFS_BLOCK_GROUP_RAID5
|
10336 BTRFS_BLOCK_GROUP_RAID6
|
10337 BTRFS_BLOCK_GROUP_DUP
)))
10340 * avoid allocating from un-mirrored block group if there are
10341 * mirrored block groups.
10343 list_for_each_entry(cache
,
10344 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10346 inc_block_group_ro(cache
, 1);
10347 list_for_each_entry(cache
,
10348 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10350 inc_block_group_ro(cache
, 1);
10353 init_global_block_rsv(info
);
10354 ret
= check_chunk_block_group_mappings(info
);
10356 btrfs_free_path(path
);
10360 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10361 struct btrfs_fs_info
*fs_info
)
10363 struct btrfs_block_group_cache
*block_group
;
10364 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
10365 struct btrfs_block_group_item item
;
10366 struct btrfs_key key
;
10368 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10370 trans
->can_flush_pending_bgs
= false;
10371 while (!list_empty(&trans
->new_bgs
)) {
10372 block_group
= list_first_entry(&trans
->new_bgs
,
10373 struct btrfs_block_group_cache
,
10378 spin_lock(&block_group
->lock
);
10379 memcpy(&item
, &block_group
->item
, sizeof(item
));
10380 memcpy(&key
, &block_group
->key
, sizeof(key
));
10381 spin_unlock(&block_group
->lock
);
10383 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10386 btrfs_abort_transaction(trans
, ret
);
10387 ret
= btrfs_finish_chunk_alloc(trans
, fs_info
, key
.objectid
,
10390 btrfs_abort_transaction(trans
, ret
);
10391 add_block_group_free_space(trans
, fs_info
, block_group
);
10392 /* already aborted the transaction if it failed. */
10394 list_del_init(&block_group
->bg_list
);
10396 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10399 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10400 struct btrfs_fs_info
*fs_info
, u64 bytes_used
,
10401 u64 type
, u64 chunk_offset
, u64 size
)
10403 struct btrfs_block_group_cache
*cache
;
10406 btrfs_set_log_full_commit(fs_info
, trans
);
10408 cache
= btrfs_create_block_group_cache(fs_info
, chunk_offset
, size
);
10412 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10413 btrfs_set_block_group_chunk_objectid(&cache
->item
,
10414 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
10415 btrfs_set_block_group_flags(&cache
->item
, type
);
10417 cache
->flags
= type
;
10418 cache
->last_byte_to_unpin
= (u64
)-1;
10419 cache
->cached
= BTRFS_CACHE_FINISHED
;
10420 cache
->needs_free_space
= 1;
10421 ret
= exclude_super_stripes(fs_info
, cache
);
10424 * We may have excluded something, so call this just in
10427 free_excluded_extents(fs_info
, cache
);
10428 btrfs_put_block_group(cache
);
10432 add_new_free_space(cache
, fs_info
, chunk_offset
, chunk_offset
+ size
);
10434 free_excluded_extents(fs_info
, cache
);
10436 #ifdef CONFIG_BTRFS_DEBUG
10437 if (btrfs_should_fragment_free_space(cache
)) {
10438 u64 new_bytes_used
= size
- bytes_used
;
10440 bytes_used
+= new_bytes_used
>> 1;
10441 fragment_free_space(cache
);
10445 * Ensure the corresponding space_info object is created and
10446 * assigned to our block group. We want our bg to be added to the rbtree
10447 * with its ->space_info set.
10449 cache
->space_info
= __find_space_info(fs_info
, cache
->flags
);
10450 if (!cache
->space_info
) {
10451 ret
= create_space_info(fs_info
, cache
->flags
,
10452 &cache
->space_info
);
10454 btrfs_remove_free_space_cache(cache
);
10455 btrfs_put_block_group(cache
);
10460 ret
= btrfs_add_block_group_cache(fs_info
, cache
);
10462 btrfs_remove_free_space_cache(cache
);
10463 btrfs_put_block_group(cache
);
10468 * Now that our block group has its ->space_info set and is inserted in
10469 * the rbtree, update the space info's counters.
10471 trace_btrfs_add_block_group(fs_info
, cache
, 1);
10472 update_space_info(fs_info
, cache
->flags
, size
, bytes_used
,
10473 cache
->bytes_super
, &cache
->space_info
);
10474 update_global_block_rsv(fs_info
);
10476 __link_block_group(cache
->space_info
, cache
);
10478 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10480 set_avail_alloc_bits(fs_info
, type
);
10484 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10486 u64 extra_flags
= chunk_to_extended(flags
) &
10487 BTRFS_EXTENDED_PROFILE_MASK
;
10489 write_seqlock(&fs_info
->profiles_lock
);
10490 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10491 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10492 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10493 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10494 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10495 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10496 write_sequnlock(&fs_info
->profiles_lock
);
10499 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10500 struct btrfs_fs_info
*fs_info
, u64 group_start
,
10501 struct extent_map
*em
)
10503 struct btrfs_root
*root
= fs_info
->extent_root
;
10504 struct btrfs_path
*path
;
10505 struct btrfs_block_group_cache
*block_group
;
10506 struct btrfs_free_cluster
*cluster
;
10507 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
10508 struct btrfs_key key
;
10509 struct inode
*inode
;
10510 struct kobject
*kobj
= NULL
;
10514 struct btrfs_caching_control
*caching_ctl
= NULL
;
10517 block_group
= btrfs_lookup_block_group(fs_info
, group_start
);
10518 BUG_ON(!block_group
);
10519 BUG_ON(!block_group
->ro
);
10522 * Free the reserved super bytes from this block group before
10525 free_excluded_extents(fs_info
, block_group
);
10527 memcpy(&key
, &block_group
->key
, sizeof(key
));
10528 index
= get_block_group_index(block_group
);
10529 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10530 BTRFS_BLOCK_GROUP_RAID1
|
10531 BTRFS_BLOCK_GROUP_RAID10
))
10536 /* make sure this block group isn't part of an allocation cluster */
10537 cluster
= &fs_info
->data_alloc_cluster
;
10538 spin_lock(&cluster
->refill_lock
);
10539 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10540 spin_unlock(&cluster
->refill_lock
);
10543 * make sure this block group isn't part of a metadata
10544 * allocation cluster
10546 cluster
= &fs_info
->meta_alloc_cluster
;
10547 spin_lock(&cluster
->refill_lock
);
10548 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10549 spin_unlock(&cluster
->refill_lock
);
10551 path
= btrfs_alloc_path();
10558 * get the inode first so any iput calls done for the io_list
10559 * aren't the final iput (no unlinks allowed now)
10561 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
10563 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10565 * make sure our free spache cache IO is done before remove the
10568 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10569 if (!list_empty(&block_group
->io_list
)) {
10570 list_del_init(&block_group
->io_list
);
10572 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10574 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10575 btrfs_wait_cache_io(trans
, block_group
, path
);
10576 btrfs_put_block_group(block_group
);
10577 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10580 if (!list_empty(&block_group
->dirty_list
)) {
10581 list_del_init(&block_group
->dirty_list
);
10582 btrfs_put_block_group(block_group
);
10584 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10585 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10587 if (!IS_ERR(inode
)) {
10588 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10590 btrfs_add_delayed_iput(inode
);
10593 clear_nlink(inode
);
10594 /* One for the block groups ref */
10595 spin_lock(&block_group
->lock
);
10596 if (block_group
->iref
) {
10597 block_group
->iref
= 0;
10598 block_group
->inode
= NULL
;
10599 spin_unlock(&block_group
->lock
);
10602 spin_unlock(&block_group
->lock
);
10604 /* One for our lookup ref */
10605 btrfs_add_delayed_iput(inode
);
10608 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10609 key
.offset
= block_group
->key
.objectid
;
10612 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10616 btrfs_release_path(path
);
10618 ret
= btrfs_del_item(trans
, tree_root
, path
);
10621 btrfs_release_path(path
);
10624 spin_lock(&fs_info
->block_group_cache_lock
);
10625 rb_erase(&block_group
->cache_node
,
10626 &fs_info
->block_group_cache_tree
);
10627 RB_CLEAR_NODE(&block_group
->cache_node
);
10629 /* Once for the block groups rbtree */
10630 btrfs_put_block_group(block_group
);
10632 if (fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10633 fs_info
->first_logical_byte
= (u64
)-1;
10634 spin_unlock(&fs_info
->block_group_cache_lock
);
10636 down_write(&block_group
->space_info
->groups_sem
);
10638 * we must use list_del_init so people can check to see if they
10639 * are still on the list after taking the semaphore
10641 list_del_init(&block_group
->list
);
10642 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10643 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10644 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10645 clear_avail_alloc_bits(fs_info
, block_group
->flags
);
10647 up_write(&block_group
->space_info
->groups_sem
);
10653 if (block_group
->has_caching_ctl
)
10654 caching_ctl
= get_caching_control(block_group
);
10655 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10656 wait_block_group_cache_done(block_group
);
10657 if (block_group
->has_caching_ctl
) {
10658 down_write(&fs_info
->commit_root_sem
);
10659 if (!caching_ctl
) {
10660 struct btrfs_caching_control
*ctl
;
10662 list_for_each_entry(ctl
,
10663 &fs_info
->caching_block_groups
, list
)
10664 if (ctl
->block_group
== block_group
) {
10666 refcount_inc(&caching_ctl
->count
);
10671 list_del_init(&caching_ctl
->list
);
10672 up_write(&fs_info
->commit_root_sem
);
10674 /* Once for the caching bgs list and once for us. */
10675 put_caching_control(caching_ctl
);
10676 put_caching_control(caching_ctl
);
10680 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10681 if (!list_empty(&block_group
->dirty_list
)) {
10684 if (!list_empty(&block_group
->io_list
)) {
10687 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10688 btrfs_remove_free_space_cache(block_group
);
10690 spin_lock(&block_group
->space_info
->lock
);
10691 list_del_init(&block_group
->ro_list
);
10693 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
10694 WARN_ON(block_group
->space_info
->total_bytes
10695 < block_group
->key
.offset
);
10696 WARN_ON(block_group
->space_info
->bytes_readonly
10697 < block_group
->key
.offset
);
10698 WARN_ON(block_group
->space_info
->disk_total
10699 < block_group
->key
.offset
* factor
);
10701 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10702 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10703 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10705 spin_unlock(&block_group
->space_info
->lock
);
10707 memcpy(&key
, &block_group
->key
, sizeof(key
));
10709 mutex_lock(&fs_info
->chunk_mutex
);
10710 if (!list_empty(&em
->list
)) {
10711 /* We're in the transaction->pending_chunks list. */
10712 free_extent_map(em
);
10714 spin_lock(&block_group
->lock
);
10715 block_group
->removed
= 1;
10717 * At this point trimming can't start on this block group, because we
10718 * removed the block group from the tree fs_info->block_group_cache_tree
10719 * so no one can't find it anymore and even if someone already got this
10720 * block group before we removed it from the rbtree, they have already
10721 * incremented block_group->trimming - if they didn't, they won't find
10722 * any free space entries because we already removed them all when we
10723 * called btrfs_remove_free_space_cache().
10725 * And we must not remove the extent map from the fs_info->mapping_tree
10726 * to prevent the same logical address range and physical device space
10727 * ranges from being reused for a new block group. This is because our
10728 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10729 * completely transactionless, so while it is trimming a range the
10730 * currently running transaction might finish and a new one start,
10731 * allowing for new block groups to be created that can reuse the same
10732 * physical device locations unless we take this special care.
10734 * There may also be an implicit trim operation if the file system
10735 * is mounted with -odiscard. The same protections must remain
10736 * in place until the extents have been discarded completely when
10737 * the transaction commit has completed.
10739 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10741 * Make sure a trimmer task always sees the em in the pinned_chunks list
10742 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10743 * before checking block_group->removed).
10747 * Our em might be in trans->transaction->pending_chunks which
10748 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10749 * and so is the fs_info->pinned_chunks list.
10751 * So at this point we must be holding the chunk_mutex to avoid
10752 * any races with chunk allocation (more specifically at
10753 * volumes.c:contains_pending_extent()), to ensure it always
10754 * sees the em, either in the pending_chunks list or in the
10755 * pinned_chunks list.
10757 list_move_tail(&em
->list
, &fs_info
->pinned_chunks
);
10759 spin_unlock(&block_group
->lock
);
10762 struct extent_map_tree
*em_tree
;
10764 em_tree
= &fs_info
->mapping_tree
.map_tree
;
10765 write_lock(&em_tree
->lock
);
10767 * The em might be in the pending_chunks list, so make sure the
10768 * chunk mutex is locked, since remove_extent_mapping() will
10769 * delete us from that list.
10771 remove_extent_mapping(em_tree
, em
);
10772 write_unlock(&em_tree
->lock
);
10773 /* once for the tree */
10774 free_extent_map(em
);
10777 mutex_unlock(&fs_info
->chunk_mutex
);
10779 ret
= remove_block_group_free_space(trans
, fs_info
, block_group
);
10783 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10789 ret
= btrfs_del_item(trans
, root
, path
);
10792 /* Once for the lookup reference */
10793 btrfs_put_block_group(block_group
);
10794 btrfs_free_path(path
);
10798 struct btrfs_trans_handle
*
10799 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10800 const u64 chunk_offset
)
10802 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10803 struct extent_map
*em
;
10804 struct map_lookup
*map
;
10805 unsigned int num_items
;
10807 read_lock(&em_tree
->lock
);
10808 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10809 read_unlock(&em_tree
->lock
);
10810 ASSERT(em
&& em
->start
== chunk_offset
);
10813 * We need to reserve 3 + N units from the metadata space info in order
10814 * to remove a block group (done at btrfs_remove_chunk() and at
10815 * btrfs_remove_block_group()), which are used for:
10817 * 1 unit for adding the free space inode's orphan (located in the tree
10819 * 1 unit for deleting the block group item (located in the extent
10821 * 1 unit for deleting the free space item (located in tree of tree
10823 * N units for deleting N device extent items corresponding to each
10824 * stripe (located in the device tree).
10826 * In order to remove a block group we also need to reserve units in the
10827 * system space info in order to update the chunk tree (update one or
10828 * more device items and remove one chunk item), but this is done at
10829 * btrfs_remove_chunk() through a call to check_system_chunk().
10831 map
= em
->map_lookup
;
10832 num_items
= 3 + map
->num_stripes
;
10833 free_extent_map(em
);
10835 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10840 * Process the unused_bgs list and remove any that don't have any allocated
10841 * space inside of them.
10843 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10845 struct btrfs_block_group_cache
*block_group
;
10846 struct btrfs_space_info
*space_info
;
10847 struct btrfs_trans_handle
*trans
;
10850 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
10853 spin_lock(&fs_info
->unused_bgs_lock
);
10854 while (!list_empty(&fs_info
->unused_bgs
)) {
10858 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10859 struct btrfs_block_group_cache
,
10861 list_del_init(&block_group
->bg_list
);
10863 space_info
= block_group
->space_info
;
10865 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10866 btrfs_put_block_group(block_group
);
10869 spin_unlock(&fs_info
->unused_bgs_lock
);
10871 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10873 /* Don't want to race with allocators so take the groups_sem */
10874 down_write(&space_info
->groups_sem
);
10875 spin_lock(&block_group
->lock
);
10876 if (block_group
->reserved
|| block_group
->pinned
||
10877 btrfs_block_group_used(&block_group
->item
) ||
10879 list_is_singular(&block_group
->list
)) {
10881 * We want to bail if we made new allocations or have
10882 * outstanding allocations in this block group. We do
10883 * the ro check in case balance is currently acting on
10884 * this block group.
10886 spin_unlock(&block_group
->lock
);
10887 up_write(&space_info
->groups_sem
);
10890 spin_unlock(&block_group
->lock
);
10892 /* We don't want to force the issue, only flip if it's ok. */
10893 ret
= inc_block_group_ro(block_group
, 0);
10894 up_write(&space_info
->groups_sem
);
10901 * Want to do this before we do anything else so we can recover
10902 * properly if we fail to join the transaction.
10904 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10905 block_group
->key
.objectid
);
10906 if (IS_ERR(trans
)) {
10907 btrfs_dec_block_group_ro(block_group
);
10908 ret
= PTR_ERR(trans
);
10913 * We could have pending pinned extents for this block group,
10914 * just delete them, we don't care about them anymore.
10916 start
= block_group
->key
.objectid
;
10917 end
= start
+ block_group
->key
.offset
- 1;
10919 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10920 * btrfs_finish_extent_commit(). If we are at transaction N,
10921 * another task might be running finish_extent_commit() for the
10922 * previous transaction N - 1, and have seen a range belonging
10923 * to the block group in freed_extents[] before we were able to
10924 * clear the whole block group range from freed_extents[]. This
10925 * means that task can lookup for the block group after we
10926 * unpinned it from freed_extents[] and removed it, leading to
10927 * a BUG_ON() at btrfs_unpin_extent_range().
10929 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10930 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10933 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10934 btrfs_dec_block_group_ro(block_group
);
10937 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10940 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10941 btrfs_dec_block_group_ro(block_group
);
10944 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10946 /* Reset pinned so btrfs_put_block_group doesn't complain */
10947 spin_lock(&space_info
->lock
);
10948 spin_lock(&block_group
->lock
);
10950 space_info
->bytes_pinned
-= block_group
->pinned
;
10951 space_info
->bytes_readonly
+= block_group
->pinned
;
10952 percpu_counter_add(&space_info
->total_bytes_pinned
,
10953 -block_group
->pinned
);
10954 block_group
->pinned
= 0;
10956 spin_unlock(&block_group
->lock
);
10957 spin_unlock(&space_info
->lock
);
10959 /* DISCARD can flip during remount */
10960 trimming
= btrfs_test_opt(fs_info
, DISCARD
);
10962 /* Implicit trim during transaction commit. */
10964 btrfs_get_block_group_trimming(block_group
);
10967 * Btrfs_remove_chunk will abort the transaction if things go
10970 ret
= btrfs_remove_chunk(trans
, fs_info
,
10971 block_group
->key
.objectid
);
10975 btrfs_put_block_group_trimming(block_group
);
10980 * If we're not mounted with -odiscard, we can just forget
10981 * about this block group. Otherwise we'll need to wait
10982 * until transaction commit to do the actual discard.
10985 spin_lock(&fs_info
->unused_bgs_lock
);
10987 * A concurrent scrub might have added us to the list
10988 * fs_info->unused_bgs, so use a list_move operation
10989 * to add the block group to the deleted_bgs list.
10991 list_move(&block_group
->bg_list
,
10992 &trans
->transaction
->deleted_bgs
);
10993 spin_unlock(&fs_info
->unused_bgs_lock
);
10994 btrfs_get_block_group(block_group
);
10997 btrfs_end_transaction(trans
);
10999 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
11000 btrfs_put_block_group(block_group
);
11001 spin_lock(&fs_info
->unused_bgs_lock
);
11003 spin_unlock(&fs_info
->unused_bgs_lock
);
11006 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
11008 struct btrfs_space_info
*space_info
;
11009 struct btrfs_super_block
*disk_super
;
11015 disk_super
= fs_info
->super_copy
;
11016 if (!btrfs_super_root(disk_super
))
11019 features
= btrfs_super_incompat_flags(disk_super
);
11020 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
11023 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
11024 ret
= create_space_info(fs_info
, flags
, &space_info
);
11029 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
11030 ret
= create_space_info(fs_info
, flags
, &space_info
);
11032 flags
= BTRFS_BLOCK_GROUP_METADATA
;
11033 ret
= create_space_info(fs_info
, flags
, &space_info
);
11037 flags
= BTRFS_BLOCK_GROUP_DATA
;
11038 ret
= create_space_info(fs_info
, flags
, &space_info
);
11044 int btrfs_error_unpin_extent_range(struct btrfs_fs_info
*fs_info
,
11045 u64 start
, u64 end
)
11047 return unpin_extent_range(fs_info
, start
, end
, false);
11051 * It used to be that old block groups would be left around forever.
11052 * Iterating over them would be enough to trim unused space. Since we
11053 * now automatically remove them, we also need to iterate over unallocated
11056 * We don't want a transaction for this since the discard may take a
11057 * substantial amount of time. We don't require that a transaction be
11058 * running, but we do need to take a running transaction into account
11059 * to ensure that we're not discarding chunks that were released in
11060 * the current transaction.
11062 * Holding the chunks lock will prevent other threads from allocating
11063 * or releasing chunks, but it won't prevent a running transaction
11064 * from committing and releasing the memory that the pending chunks
11065 * list head uses. For that, we need to take a reference to the
11068 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
11069 u64 minlen
, u64
*trimmed
)
11071 u64 start
= 0, len
= 0;
11076 /* Discard not supported = nothing to do. */
11077 if (!blk_queue_discard(bdev_get_queue(device
->bdev
)))
11080 /* Not writeable = nothing to do. */
11081 if (!device
->writeable
)
11084 /* No free space = nothing to do. */
11085 if (device
->total_bytes
<= device
->bytes_used
)
11091 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
11092 struct btrfs_transaction
*trans
;
11095 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
11099 down_read(&fs_info
->commit_root_sem
);
11101 spin_lock(&fs_info
->trans_lock
);
11102 trans
= fs_info
->running_transaction
;
11104 refcount_inc(&trans
->use_count
);
11105 spin_unlock(&fs_info
->trans_lock
);
11107 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
11110 btrfs_put_transaction(trans
);
11113 up_read(&fs_info
->commit_root_sem
);
11114 mutex_unlock(&fs_info
->chunk_mutex
);
11115 if (ret
== -ENOSPC
)
11120 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
11121 up_read(&fs_info
->commit_root_sem
);
11122 mutex_unlock(&fs_info
->chunk_mutex
);
11130 if (fatal_signal_pending(current
)) {
11131 ret
= -ERESTARTSYS
;
11142 * Trim the whole filesystem by:
11143 * 1) trimming the free space in each block group
11144 * 2) trimming the unallocated space on each device
11146 * This will also continue trimming even if a block group or device encounters
11147 * an error. The return value will be the last error, or 0 if nothing bad
11150 int btrfs_trim_fs(struct btrfs_fs_info
*fs_info
, struct fstrim_range
*range
)
11152 struct btrfs_block_group_cache
*cache
= NULL
;
11153 struct btrfs_device
*device
;
11154 struct list_head
*devices
;
11160 u64 dev_failed
= 0;
11165 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
11166 for (; cache
; cache
= next_block_group(fs_info
, cache
)) {
11167 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
11168 btrfs_put_block_group(cache
);
11172 start
= max(range
->start
, cache
->key
.objectid
);
11173 end
= min(range
->start
+ range
->len
,
11174 cache
->key
.objectid
+ cache
->key
.offset
);
11176 if (end
- start
>= range
->minlen
) {
11177 if (!block_group_cache_done(cache
)) {
11178 ret
= cache_block_group(cache
, 0);
11184 ret
= wait_block_group_cache_done(cache
);
11191 ret
= btrfs_trim_block_group(cache
,
11197 trimmed
+= group_trimmed
;
11207 btrfs_warn(fs_info
,
11208 "failed to trim %llu block group(s), last error %d",
11209 bg_failed
, bg_ret
);
11210 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
11211 devices
= &fs_info
->fs_devices
->devices
;
11212 list_for_each_entry(device
, devices
, dev_list
) {
11213 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
11221 trimmed
+= group_trimmed
;
11223 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
11226 btrfs_warn(fs_info
,
11227 "failed to trim %llu device(s), last error %d",
11228 dev_failed
, dev_ret
);
11229 range
->len
= trimmed
;
11236 * btrfs_{start,end}_write_no_snapshotting() are similar to
11237 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11238 * data into the page cache through nocow before the subvolume is snapshoted,
11239 * but flush the data into disk after the snapshot creation, or to prevent
11240 * operations while snapshotting is ongoing and that cause the snapshot to be
11241 * inconsistent (writes followed by expanding truncates for example).
11243 void btrfs_end_write_no_snapshotting(struct btrfs_root
*root
)
11245 percpu_counter_dec(&root
->subv_writers
->counter
);
11247 * Make sure counter is updated before we wake up waiters.
11250 if (waitqueue_active(&root
->subv_writers
->wait
))
11251 wake_up(&root
->subv_writers
->wait
);
11254 int btrfs_start_write_no_snapshotting(struct btrfs_root
*root
)
11256 if (atomic_read(&root
->will_be_snapshotted
))
11259 percpu_counter_inc(&root
->subv_writers
->counter
);
11261 * Make sure counter is updated before we check for snapshot creation.
11264 if (atomic_read(&root
->will_be_snapshotted
)) {
11265 btrfs_end_write_no_snapshotting(root
);
11271 static int wait_snapshotting_atomic_t(atomic_t
*a
)
11277 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
11282 ret
= btrfs_start_write_no_snapshotting(root
);
11285 wait_on_atomic_t(&root
->will_be_snapshotted
,
11286 wait_snapshotting_atomic_t
,
11287 TASK_UNINTERRUPTIBLE
);