mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / fs / btrfs / transaction.c
bloba066ad58197690178d722639053004ee71656659
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
63 WARN_ON(refcount_read(&transaction->use_count) == 0);
64 if (refcount_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
77 free_extent_map(em);
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
91 bg_list);
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
96 kfree(transaction);
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
102 spin_lock(&tree->lock);
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
106 * called.
108 smp_mb();
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
124 cond_resched_lock(&tree->lock);
126 spin_unlock(&tree->lock);
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
132 struct btrfs_root *root, *tmp;
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 dirty_list) {
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 unsigned int type)
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 unsigned int type)
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 unsigned int type)
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
181 return atomic_read(&trans->num_extwriters);
185 * either allocate a new transaction or hop into the existing one
187 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188 unsigned int type)
190 struct btrfs_transaction *cur_trans;
192 spin_lock(&fs_info->trans_lock);
193 loop:
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
197 return -EROFS;
200 cur_trans = fs_info->running_transaction;
201 if (cur_trans) {
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
208 return -EBUSY;
210 refcount_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
214 return 0;
216 spin_unlock(&fs_info->trans_lock);
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
222 if (type == TRANS_ATTACH)
223 return -ENOENT;
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
231 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
232 if (!cur_trans)
233 return -ENOMEM;
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
241 kfree(cur_trans);
242 goto loop;
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kfree(cur_trans);
246 return -EROFS;
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
260 refcount_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
275 smp_mb();
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
282 spin_lock_init(&cur_trans->delayed_refs.lock);
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
304 return 0;
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
317 struct btrfs_fs_info *fs_info = root->fs_info;
319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 root->last_trans < trans->transid) || force) {
321 WARN_ON(root == fs_info->extent_root);
322 WARN_ON(!force && root->commit_root != root->node);
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
334 smp_wmb();
336 spin_lock(&fs_info->fs_roots_radix_lock);
337 if (root->last_trans == trans->transid && !force) {
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 return 0;
341 radix_tree_tag_set(&fs_info->fs_roots_radix,
342 (unsigned long)root->root_key.objectid,
343 BTRFS_ROOT_TRANS_TAG);
344 spin_unlock(&fs_info->fs_roots_radix_lock);
345 root->last_trans = trans->transid;
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
350 * this transaction.
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
366 btrfs_init_reloc_root(trans, root);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
370 return 0;
374 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
377 struct btrfs_fs_info *fs_info = root->fs_info;
378 struct btrfs_transaction *cur_trans = trans->transaction;
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans->dropped_roots_lock);
382 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 spin_unlock(&cur_trans->dropped_roots_lock);
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info->fs_roots_radix_lock);
387 radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 (unsigned long)root->root_key.objectid,
389 BTRFS_ROOT_TRANS_TAG);
390 spin_unlock(&fs_info->fs_roots_radix_lock);
393 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 struct btrfs_root *root)
396 struct btrfs_fs_info *fs_info = root->fs_info;
398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 return 0;
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 * and barriers
405 smp_rmb();
406 if (root->last_trans == trans->transid &&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 return 0;
410 mutex_lock(&fs_info->reloc_mutex);
411 record_root_in_trans(trans, root, 0);
412 mutex_unlock(&fs_info->reloc_mutex);
414 return 0;
417 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
419 return (trans->state >= TRANS_STATE_BLOCKED &&
420 trans->state < TRANS_STATE_UNBLOCKED &&
421 !trans->aborted);
424 /* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
428 static void wait_current_trans(struct btrfs_fs_info *fs_info)
430 struct btrfs_transaction *cur_trans;
432 spin_lock(&fs_info->trans_lock);
433 cur_trans = fs_info->running_transaction;
434 if (cur_trans && is_transaction_blocked(cur_trans)) {
435 refcount_inc(&cur_trans->use_count);
436 spin_unlock(&fs_info->trans_lock);
438 wait_event(fs_info->transaction_wait,
439 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440 cur_trans->aborted);
441 btrfs_put_transaction(cur_trans);
442 } else {
443 spin_unlock(&fs_info->trans_lock);
447 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450 return 0;
452 if (type == TRANS_USERSPACE)
453 return 1;
455 if (type == TRANS_START &&
456 !atomic_read(&fs_info->open_ioctl_trans))
457 return 1;
459 return 0;
462 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
464 struct btrfs_fs_info *fs_info = root->fs_info;
466 if (!fs_info->reloc_ctl ||
467 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469 root->reloc_root)
470 return false;
472 return true;
475 static struct btrfs_trans_handle *
476 start_transaction(struct btrfs_root *root, unsigned int num_items,
477 unsigned int type, enum btrfs_reserve_flush_enum flush,
478 bool enforce_qgroups)
480 struct btrfs_fs_info *fs_info = root->fs_info;
482 struct btrfs_trans_handle *h;
483 struct btrfs_transaction *cur_trans;
484 u64 num_bytes = 0;
485 u64 qgroup_reserved = 0;
486 bool reloc_reserved = false;
487 int ret;
489 /* Send isn't supposed to start transactions. */
490 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
492 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
493 return ERR_PTR(-EROFS);
495 if (current->journal_info) {
496 WARN_ON(type & TRANS_EXTWRITERS);
497 h = current->journal_info;
498 h->use_count++;
499 WARN_ON(h->use_count > 2);
500 h->orig_rsv = h->block_rsv;
501 h->block_rsv = NULL;
502 goto got_it;
506 * Do the reservation before we join the transaction so we can do all
507 * the appropriate flushing if need be.
509 if (num_items && root != fs_info->chunk_root) {
510 qgroup_reserved = num_items * fs_info->nodesize;
511 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
512 enforce_qgroups);
513 if (ret)
514 return ERR_PTR(ret);
516 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
518 * Do the reservation for the relocation root creation
520 if (need_reserve_reloc_root(root)) {
521 num_bytes += fs_info->nodesize;
522 reloc_reserved = true;
525 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
526 num_bytes, flush);
527 if (ret)
528 goto reserve_fail;
530 again:
531 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
532 if (!h) {
533 ret = -ENOMEM;
534 goto alloc_fail;
538 * If we are JOIN_NOLOCK we're already committing a transaction and
539 * waiting on this guy, so we don't need to do the sb_start_intwrite
540 * because we're already holding a ref. We need this because we could
541 * have raced in and did an fsync() on a file which can kick a commit
542 * and then we deadlock with somebody doing a freeze.
544 * If we are ATTACH, it means we just want to catch the current
545 * transaction and commit it, so we needn't do sb_start_intwrite().
547 if (type & __TRANS_FREEZABLE)
548 sb_start_intwrite(fs_info->sb);
550 if (may_wait_transaction(fs_info, type))
551 wait_current_trans(fs_info);
553 do {
554 ret = join_transaction(fs_info, type);
555 if (ret == -EBUSY) {
556 wait_current_trans(fs_info);
557 if (unlikely(type == TRANS_ATTACH))
558 ret = -ENOENT;
560 } while (ret == -EBUSY);
562 if (ret < 0)
563 goto join_fail;
565 cur_trans = fs_info->running_transaction;
567 h->transid = cur_trans->transid;
568 h->transaction = cur_trans;
569 h->root = root;
570 h->use_count = 1;
571 h->fs_info = root->fs_info;
573 h->type = type;
574 h->can_flush_pending_bgs = true;
575 INIT_LIST_HEAD(&h->new_bgs);
577 smp_mb();
578 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
579 may_wait_transaction(fs_info, type)) {
580 current->journal_info = h;
581 btrfs_commit_transaction(h);
582 goto again;
585 if (num_bytes) {
586 trace_btrfs_space_reservation(fs_info, "transaction",
587 h->transid, num_bytes, 1);
588 h->block_rsv = &fs_info->trans_block_rsv;
589 h->bytes_reserved = num_bytes;
590 h->reloc_reserved = reloc_reserved;
593 got_it:
594 btrfs_record_root_in_trans(h, root);
596 if (!current->journal_info && type != TRANS_USERSPACE)
597 current->journal_info = h;
598 return h;
600 join_fail:
601 if (type & __TRANS_FREEZABLE)
602 sb_end_intwrite(fs_info->sb);
603 kmem_cache_free(btrfs_trans_handle_cachep, h);
604 alloc_fail:
605 if (num_bytes)
606 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
607 num_bytes);
608 reserve_fail:
609 btrfs_qgroup_free_meta(root, qgroup_reserved);
610 return ERR_PTR(ret);
613 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
614 unsigned int num_items)
616 return start_transaction(root, num_items, TRANS_START,
617 BTRFS_RESERVE_FLUSH_ALL, true);
620 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
621 struct btrfs_root *root,
622 unsigned int num_items,
623 int min_factor)
625 struct btrfs_fs_info *fs_info = root->fs_info;
626 struct btrfs_trans_handle *trans;
627 u64 num_bytes;
628 int ret;
631 * We have two callers: unlink and block group removal. The
632 * former should succeed even if we will temporarily exceed
633 * quota and the latter operates on the extent root so
634 * qgroup enforcement is ignored anyway.
636 trans = start_transaction(root, num_items, TRANS_START,
637 BTRFS_RESERVE_FLUSH_ALL, false);
638 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
639 return trans;
641 trans = btrfs_start_transaction(root, 0);
642 if (IS_ERR(trans))
643 return trans;
645 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
646 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
647 num_bytes, min_factor);
648 if (ret) {
649 btrfs_end_transaction(trans);
650 return ERR_PTR(ret);
653 trans->block_rsv = &fs_info->trans_block_rsv;
654 trans->bytes_reserved = num_bytes;
655 trace_btrfs_space_reservation(fs_info, "transaction",
656 trans->transid, num_bytes, 1);
658 return trans;
661 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
662 struct btrfs_root *root,
663 unsigned int num_items)
665 return start_transaction(root, num_items, TRANS_START,
666 BTRFS_RESERVE_FLUSH_LIMIT, true);
669 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
671 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
672 true);
675 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
677 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
678 BTRFS_RESERVE_NO_FLUSH, true);
681 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
683 return start_transaction(root, 0, TRANS_USERSPACE,
684 BTRFS_RESERVE_NO_FLUSH, true);
688 * btrfs_attach_transaction() - catch the running transaction
690 * It is used when we want to commit the current the transaction, but
691 * don't want to start a new one.
693 * Note: If this function return -ENOENT, it just means there is no
694 * running transaction. But it is possible that the inactive transaction
695 * is still in the memory, not fully on disk. If you hope there is no
696 * inactive transaction in the fs when -ENOENT is returned, you should
697 * invoke
698 * btrfs_attach_transaction_barrier()
700 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
702 return start_transaction(root, 0, TRANS_ATTACH,
703 BTRFS_RESERVE_NO_FLUSH, true);
707 * btrfs_attach_transaction_barrier() - catch the running transaction
709 * It is similar to the above function, the differentia is this one
710 * will wait for all the inactive transactions until they fully
711 * complete.
713 struct btrfs_trans_handle *
714 btrfs_attach_transaction_barrier(struct btrfs_root *root)
716 struct btrfs_trans_handle *trans;
718 trans = start_transaction(root, 0, TRANS_ATTACH,
719 BTRFS_RESERVE_NO_FLUSH, true);
720 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
721 btrfs_wait_for_commit(root->fs_info, 0);
723 return trans;
726 /* wait for a transaction commit to be fully complete */
727 static noinline void wait_for_commit(struct btrfs_transaction *commit)
729 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
732 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
734 struct btrfs_transaction *cur_trans = NULL, *t;
735 int ret = 0;
737 if (transid) {
738 if (transid <= fs_info->last_trans_committed)
739 goto out;
741 /* find specified transaction */
742 spin_lock(&fs_info->trans_lock);
743 list_for_each_entry(t, &fs_info->trans_list, list) {
744 if (t->transid == transid) {
745 cur_trans = t;
746 refcount_inc(&cur_trans->use_count);
747 ret = 0;
748 break;
750 if (t->transid > transid) {
751 ret = 0;
752 break;
755 spin_unlock(&fs_info->trans_lock);
758 * The specified transaction doesn't exist, or we
759 * raced with btrfs_commit_transaction
761 if (!cur_trans) {
762 if (transid > fs_info->last_trans_committed)
763 ret = -EINVAL;
764 goto out;
766 } else {
767 /* find newest transaction that is committing | committed */
768 spin_lock(&fs_info->trans_lock);
769 list_for_each_entry_reverse(t, &fs_info->trans_list,
770 list) {
771 if (t->state >= TRANS_STATE_COMMIT_START) {
772 if (t->state == TRANS_STATE_COMPLETED)
773 break;
774 cur_trans = t;
775 refcount_inc(&cur_trans->use_count);
776 break;
779 spin_unlock(&fs_info->trans_lock);
780 if (!cur_trans)
781 goto out; /* nothing committing|committed */
784 wait_for_commit(cur_trans);
785 btrfs_put_transaction(cur_trans);
786 out:
787 return ret;
790 void btrfs_throttle(struct btrfs_fs_info *fs_info)
792 if (!atomic_read(&fs_info->open_ioctl_trans))
793 wait_current_trans(fs_info);
796 static int should_end_transaction(struct btrfs_trans_handle *trans)
798 struct btrfs_fs_info *fs_info = trans->fs_info;
800 if (fs_info->global_block_rsv.space_info->full &&
801 btrfs_check_space_for_delayed_refs(trans, fs_info))
802 return 1;
804 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
807 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
809 struct btrfs_transaction *cur_trans = trans->transaction;
810 struct btrfs_fs_info *fs_info = trans->fs_info;
811 int updates;
812 int err;
814 smp_mb();
815 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
816 cur_trans->delayed_refs.flushing)
817 return 1;
819 updates = trans->delayed_ref_updates;
820 trans->delayed_ref_updates = 0;
821 if (updates) {
822 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
823 if (err) /* Error code will also eval true */
824 return err;
827 return should_end_transaction(trans);
830 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
831 int throttle)
833 struct btrfs_fs_info *info = trans->fs_info;
834 struct btrfs_transaction *cur_trans = trans->transaction;
835 u64 transid = trans->transid;
836 unsigned long cur = trans->delayed_ref_updates;
837 int lock = (trans->type != TRANS_JOIN_NOLOCK);
838 int err = 0;
839 int must_run_delayed_refs = 0;
841 if (trans->use_count > 1) {
842 trans->use_count--;
843 trans->block_rsv = trans->orig_rsv;
844 return 0;
847 btrfs_trans_release_metadata(trans, info);
848 trans->block_rsv = NULL;
850 if (!list_empty(&trans->new_bgs))
851 btrfs_create_pending_block_groups(trans, info);
853 trans->delayed_ref_updates = 0;
854 if (!trans->sync) {
855 must_run_delayed_refs =
856 btrfs_should_throttle_delayed_refs(trans, info);
857 cur = max_t(unsigned long, cur, 32);
860 * don't make the caller wait if they are from a NOLOCK
861 * or ATTACH transaction, it will deadlock with commit
863 if (must_run_delayed_refs == 1 &&
864 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
865 must_run_delayed_refs = 2;
868 btrfs_trans_release_metadata(trans, info);
869 trans->block_rsv = NULL;
871 if (!list_empty(&trans->new_bgs))
872 btrfs_create_pending_block_groups(trans, info);
874 btrfs_trans_release_chunk_metadata(trans);
876 if (lock && !atomic_read(&info->open_ioctl_trans) &&
877 should_end_transaction(trans) &&
878 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
879 spin_lock(&info->trans_lock);
880 if (cur_trans->state == TRANS_STATE_RUNNING)
881 cur_trans->state = TRANS_STATE_BLOCKED;
882 spin_unlock(&info->trans_lock);
885 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
886 if (throttle)
887 return btrfs_commit_transaction(trans);
888 else
889 wake_up_process(info->transaction_kthread);
892 if (trans->type & __TRANS_FREEZABLE)
893 sb_end_intwrite(info->sb);
895 WARN_ON(cur_trans != info->running_transaction);
896 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
897 atomic_dec(&cur_trans->num_writers);
898 extwriter_counter_dec(cur_trans, trans->type);
901 * Make sure counter is updated before we wake up waiters.
903 smp_mb();
904 if (waitqueue_active(&cur_trans->writer_wait))
905 wake_up(&cur_trans->writer_wait);
906 btrfs_put_transaction(cur_trans);
908 if (current->journal_info == trans)
909 current->journal_info = NULL;
911 if (throttle)
912 btrfs_run_delayed_iputs(info);
914 if (trans->aborted ||
915 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
916 wake_up_process(info->transaction_kthread);
917 err = -EIO;
920 kmem_cache_free(btrfs_trans_handle_cachep, trans);
921 if (must_run_delayed_refs) {
922 btrfs_async_run_delayed_refs(info, cur, transid,
923 must_run_delayed_refs == 1);
925 return err;
928 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
930 return __btrfs_end_transaction(trans, 0);
933 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
935 return __btrfs_end_transaction(trans, 1);
939 * when btree blocks are allocated, they have some corresponding bits set for
940 * them in one of two extent_io trees. This is used to make sure all of
941 * those extents are sent to disk but does not wait on them
943 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
944 struct extent_io_tree *dirty_pages, int mark)
946 int err = 0;
947 int werr = 0;
948 struct address_space *mapping = fs_info->btree_inode->i_mapping;
949 struct extent_state *cached_state = NULL;
950 u64 start = 0;
951 u64 end;
953 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
954 mark, &cached_state)) {
955 bool wait_writeback = false;
957 err = convert_extent_bit(dirty_pages, start, end,
958 EXTENT_NEED_WAIT,
959 mark, &cached_state);
961 * convert_extent_bit can return -ENOMEM, which is most of the
962 * time a temporary error. So when it happens, ignore the error
963 * and wait for writeback of this range to finish - because we
964 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
965 * to __btrfs_wait_marked_extents() would not know that
966 * writeback for this range started and therefore wouldn't
967 * wait for it to finish - we don't want to commit a
968 * superblock that points to btree nodes/leafs for which
969 * writeback hasn't finished yet (and without errors).
970 * We cleanup any entries left in the io tree when committing
971 * the transaction (through clear_btree_io_tree()).
973 if (err == -ENOMEM) {
974 err = 0;
975 wait_writeback = true;
977 if (!err)
978 err = filemap_fdatawrite_range(mapping, start, end);
979 if (err)
980 werr = err;
981 else if (wait_writeback)
982 werr = filemap_fdatawait_range(mapping, start, end);
983 free_extent_state(cached_state);
984 cached_state = NULL;
985 cond_resched();
986 start = end + 1;
988 return werr;
992 * when btree blocks are allocated, they have some corresponding bits set for
993 * them in one of two extent_io trees. This is used to make sure all of
994 * those extents are on disk for transaction or log commit. We wait
995 * on all the pages and clear them from the dirty pages state tree
997 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
998 struct extent_io_tree *dirty_pages)
1000 int err = 0;
1001 int werr = 0;
1002 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1003 struct extent_state *cached_state = NULL;
1004 u64 start = 0;
1005 u64 end;
1007 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1008 EXTENT_NEED_WAIT, &cached_state)) {
1010 * Ignore -ENOMEM errors returned by clear_extent_bit().
1011 * When committing the transaction, we'll remove any entries
1012 * left in the io tree. For a log commit, we don't remove them
1013 * after committing the log because the tree can be accessed
1014 * concurrently - we do it only at transaction commit time when
1015 * it's safe to do it (through clear_btree_io_tree()).
1017 err = clear_extent_bit(dirty_pages, start, end,
1018 EXTENT_NEED_WAIT,
1019 0, 0, &cached_state, GFP_NOFS);
1020 if (err == -ENOMEM)
1021 err = 0;
1022 if (!err)
1023 err = filemap_fdatawait_range(mapping, start, end);
1024 if (err)
1025 werr = err;
1026 free_extent_state(cached_state);
1027 cached_state = NULL;
1028 cond_resched();
1029 start = end + 1;
1031 if (err)
1032 werr = err;
1033 return werr;
1036 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1037 struct extent_io_tree *dirty_pages)
1039 bool errors = false;
1040 int err;
1042 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1043 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1044 errors = true;
1046 if (errors && !err)
1047 err = -EIO;
1048 return err;
1051 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1053 struct btrfs_fs_info *fs_info = log_root->fs_info;
1054 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1055 bool errors = false;
1056 int err;
1058 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1060 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1061 if ((mark & EXTENT_DIRTY) &&
1062 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1063 errors = true;
1065 if ((mark & EXTENT_NEW) &&
1066 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1067 errors = true;
1069 if (errors && !err)
1070 err = -EIO;
1071 return err;
1075 * when btree blocks are allocated, they have some corresponding bits set for
1076 * them in one of two extent_io trees. This is used to make sure all of
1077 * those extents are on disk for transaction or log commit
1079 static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1080 struct extent_io_tree *dirty_pages, int mark)
1082 int ret;
1083 int ret2;
1084 struct blk_plug plug;
1086 blk_start_plug(&plug);
1087 ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1088 blk_finish_plug(&plug);
1089 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1091 if (ret)
1092 return ret;
1093 if (ret2)
1094 return ret2;
1095 return 0;
1098 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1099 struct btrfs_fs_info *fs_info)
1101 int ret;
1103 ret = btrfs_write_and_wait_marked_extents(fs_info,
1104 &trans->transaction->dirty_pages,
1105 EXTENT_DIRTY);
1106 clear_btree_io_tree(&trans->transaction->dirty_pages);
1108 return ret;
1112 * this is used to update the root pointer in the tree of tree roots.
1114 * But, in the case of the extent allocation tree, updating the root
1115 * pointer may allocate blocks which may change the root of the extent
1116 * allocation tree.
1118 * So, this loops and repeats and makes sure the cowonly root didn't
1119 * change while the root pointer was being updated in the metadata.
1121 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1122 struct btrfs_root *root)
1124 int ret;
1125 u64 old_root_bytenr;
1126 u64 old_root_used;
1127 struct btrfs_fs_info *fs_info = root->fs_info;
1128 struct btrfs_root *tree_root = fs_info->tree_root;
1130 old_root_used = btrfs_root_used(&root->root_item);
1132 while (1) {
1133 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1134 if (old_root_bytenr == root->node->start &&
1135 old_root_used == btrfs_root_used(&root->root_item))
1136 break;
1138 btrfs_set_root_node(&root->root_item, root->node);
1139 ret = btrfs_update_root(trans, tree_root,
1140 &root->root_key,
1141 &root->root_item);
1142 if (ret)
1143 return ret;
1145 old_root_used = btrfs_root_used(&root->root_item);
1148 return 0;
1152 * update all the cowonly tree roots on disk
1154 * The error handling in this function may not be obvious. Any of the
1155 * failures will cause the file system to go offline. We still need
1156 * to clean up the delayed refs.
1158 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1159 struct btrfs_fs_info *fs_info)
1161 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1162 struct list_head *io_bgs = &trans->transaction->io_bgs;
1163 struct list_head *next;
1164 struct extent_buffer *eb;
1165 int ret;
1167 eb = btrfs_lock_root_node(fs_info->tree_root);
1168 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1169 0, &eb);
1170 btrfs_tree_unlock(eb);
1171 free_extent_buffer(eb);
1173 if (ret)
1174 return ret;
1176 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1177 if (ret)
1178 return ret;
1180 ret = btrfs_run_dev_stats(trans, fs_info);
1181 if (ret)
1182 return ret;
1183 ret = btrfs_run_dev_replace(trans, fs_info);
1184 if (ret)
1185 return ret;
1186 ret = btrfs_run_qgroups(trans, fs_info);
1187 if (ret)
1188 return ret;
1190 ret = btrfs_setup_space_cache(trans, fs_info);
1191 if (ret)
1192 return ret;
1194 /* run_qgroups might have added some more refs */
1195 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1196 if (ret)
1197 return ret;
1198 again:
1199 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1200 struct btrfs_root *root;
1201 next = fs_info->dirty_cowonly_roots.next;
1202 list_del_init(next);
1203 root = list_entry(next, struct btrfs_root, dirty_list);
1204 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1206 if (root != fs_info->extent_root)
1207 list_add_tail(&root->dirty_list,
1208 &trans->transaction->switch_commits);
1209 ret = update_cowonly_root(trans, root);
1210 if (ret)
1211 return ret;
1212 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1213 if (ret)
1214 return ret;
1217 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1218 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1219 if (ret)
1220 return ret;
1221 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1222 if (ret)
1223 return ret;
1226 if (!list_empty(&fs_info->dirty_cowonly_roots))
1227 goto again;
1229 list_add_tail(&fs_info->extent_root->dirty_list,
1230 &trans->transaction->switch_commits);
1231 btrfs_after_dev_replace_commit(fs_info);
1233 return 0;
1237 * dead roots are old snapshots that need to be deleted. This allocates
1238 * a dirty root struct and adds it into the list of dead roots that need to
1239 * be deleted
1241 void btrfs_add_dead_root(struct btrfs_root *root)
1243 struct btrfs_fs_info *fs_info = root->fs_info;
1245 spin_lock(&fs_info->trans_lock);
1246 if (list_empty(&root->root_list))
1247 list_add_tail(&root->root_list, &fs_info->dead_roots);
1248 spin_unlock(&fs_info->trans_lock);
1252 * update all the cowonly tree roots on disk
1254 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1255 struct btrfs_fs_info *fs_info)
1257 struct btrfs_root *gang[8];
1258 int i;
1259 int ret;
1260 int err = 0;
1262 spin_lock(&fs_info->fs_roots_radix_lock);
1263 while (1) {
1264 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1265 (void **)gang, 0,
1266 ARRAY_SIZE(gang),
1267 BTRFS_ROOT_TRANS_TAG);
1268 if (ret == 0)
1269 break;
1270 for (i = 0; i < ret; i++) {
1271 struct btrfs_root *root = gang[i];
1272 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1273 (unsigned long)root->root_key.objectid,
1274 BTRFS_ROOT_TRANS_TAG);
1275 spin_unlock(&fs_info->fs_roots_radix_lock);
1277 btrfs_free_log(trans, root);
1278 btrfs_update_reloc_root(trans, root);
1279 btrfs_orphan_commit_root(trans, root);
1281 btrfs_save_ino_cache(root, trans);
1283 /* see comments in should_cow_block() */
1284 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1285 smp_mb__after_atomic();
1287 if (root->commit_root != root->node) {
1288 list_add_tail(&root->dirty_list,
1289 &trans->transaction->switch_commits);
1290 btrfs_set_root_node(&root->root_item,
1291 root->node);
1294 err = btrfs_update_root(trans, fs_info->tree_root,
1295 &root->root_key,
1296 &root->root_item);
1297 spin_lock(&fs_info->fs_roots_radix_lock);
1298 if (err)
1299 break;
1300 btrfs_qgroup_free_meta_all(root);
1303 spin_unlock(&fs_info->fs_roots_radix_lock);
1304 return err;
1308 * defrag a given btree.
1309 * Every leaf in the btree is read and defragged.
1311 int btrfs_defrag_root(struct btrfs_root *root)
1313 struct btrfs_fs_info *info = root->fs_info;
1314 struct btrfs_trans_handle *trans;
1315 int ret;
1317 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1318 return 0;
1320 while (1) {
1321 trans = btrfs_start_transaction(root, 0);
1322 if (IS_ERR(trans))
1323 return PTR_ERR(trans);
1325 ret = btrfs_defrag_leaves(trans, root);
1327 btrfs_end_transaction(trans);
1328 btrfs_btree_balance_dirty(info);
1329 cond_resched();
1331 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1332 break;
1334 if (btrfs_defrag_cancelled(info)) {
1335 btrfs_debug(info, "defrag_root cancelled");
1336 ret = -EAGAIN;
1337 break;
1340 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1341 return ret;
1345 * Do all special snapshot related qgroup dirty hack.
1347 * Will do all needed qgroup inherit and dirty hack like switch commit
1348 * roots inside one transaction and write all btree into disk, to make
1349 * qgroup works.
1351 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1352 struct btrfs_root *src,
1353 struct btrfs_root *parent,
1354 struct btrfs_qgroup_inherit *inherit,
1355 u64 dst_objectid)
1357 struct btrfs_fs_info *fs_info = src->fs_info;
1358 int ret;
1361 * Save some performance in the case that qgroups are not
1362 * enabled. If this check races with the ioctl, rescan will
1363 * kick in anyway.
1365 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1366 return 0;
1369 * Ensure dirty @src will be commited. Or, after comming
1370 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1371 * recorded root will never be updated again, causing an outdated root
1372 * item.
1374 record_root_in_trans(trans, src, 1);
1377 * We are going to commit transaction, see btrfs_commit_transaction()
1378 * comment for reason locking tree_log_mutex
1380 mutex_lock(&fs_info->tree_log_mutex);
1382 ret = commit_fs_roots(trans, fs_info);
1383 if (ret)
1384 goto out;
1385 ret = btrfs_qgroup_account_extents(trans, fs_info);
1386 if (ret < 0)
1387 goto out;
1389 /* Now qgroup are all updated, we can inherit it to new qgroups */
1390 ret = btrfs_qgroup_inherit(trans, fs_info,
1391 src->root_key.objectid, dst_objectid,
1392 inherit);
1393 if (ret < 0)
1394 goto out;
1397 * Now we do a simplified commit transaction, which will:
1398 * 1) commit all subvolume and extent tree
1399 * To ensure all subvolume and extent tree have a valid
1400 * commit_root to accounting later insert_dir_item()
1401 * 2) write all btree blocks onto disk
1402 * This is to make sure later btree modification will be cowed
1403 * Or commit_root can be populated and cause wrong qgroup numbers
1404 * In this simplified commit, we don't really care about other trees
1405 * like chunk and root tree, as they won't affect qgroup.
1406 * And we don't write super to avoid half committed status.
1408 ret = commit_cowonly_roots(trans, fs_info);
1409 if (ret)
1410 goto out;
1411 switch_commit_roots(trans->transaction, fs_info);
1412 ret = btrfs_write_and_wait_transaction(trans, fs_info);
1413 if (ret)
1414 btrfs_handle_fs_error(fs_info, ret,
1415 "Error while writing out transaction for qgroup");
1417 out:
1418 mutex_unlock(&fs_info->tree_log_mutex);
1421 * Force parent root to be updated, as we recorded it before so its
1422 * last_trans == cur_transid.
1423 * Or it won't be committed again onto disk after later
1424 * insert_dir_item()
1426 if (!ret)
1427 record_root_in_trans(trans, parent, 1);
1428 return ret;
1432 * new snapshots need to be created at a very specific time in the
1433 * transaction commit. This does the actual creation.
1435 * Note:
1436 * If the error which may affect the commitment of the current transaction
1437 * happens, we should return the error number. If the error which just affect
1438 * the creation of the pending snapshots, just return 0.
1440 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1441 struct btrfs_fs_info *fs_info,
1442 struct btrfs_pending_snapshot *pending)
1444 struct btrfs_key key;
1445 struct btrfs_root_item *new_root_item;
1446 struct btrfs_root *tree_root = fs_info->tree_root;
1447 struct btrfs_root *root = pending->root;
1448 struct btrfs_root *parent_root;
1449 struct btrfs_block_rsv *rsv;
1450 struct inode *parent_inode;
1451 struct btrfs_path *path;
1452 struct btrfs_dir_item *dir_item;
1453 struct dentry *dentry;
1454 struct extent_buffer *tmp;
1455 struct extent_buffer *old;
1456 struct timespec cur_time;
1457 int ret = 0;
1458 u64 to_reserve = 0;
1459 u64 index = 0;
1460 u64 objectid;
1461 u64 root_flags;
1462 uuid_le new_uuid;
1464 ASSERT(pending->path);
1465 path = pending->path;
1467 ASSERT(pending->root_item);
1468 new_root_item = pending->root_item;
1470 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1471 if (pending->error)
1472 goto no_free_objectid;
1475 * Make qgroup to skip current new snapshot's qgroupid, as it is
1476 * accounted by later btrfs_qgroup_inherit().
1478 btrfs_set_skip_qgroup(trans, objectid);
1480 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1482 if (to_reserve > 0) {
1483 pending->error = btrfs_block_rsv_add(root,
1484 &pending->block_rsv,
1485 to_reserve,
1486 BTRFS_RESERVE_NO_FLUSH);
1487 if (pending->error)
1488 goto clear_skip_qgroup;
1491 key.objectid = objectid;
1492 key.offset = (u64)-1;
1493 key.type = BTRFS_ROOT_ITEM_KEY;
1495 rsv = trans->block_rsv;
1496 trans->block_rsv = &pending->block_rsv;
1497 trans->bytes_reserved = trans->block_rsv->reserved;
1498 trace_btrfs_space_reservation(fs_info, "transaction",
1499 trans->transid,
1500 trans->bytes_reserved, 1);
1501 dentry = pending->dentry;
1502 parent_inode = pending->dir;
1503 parent_root = BTRFS_I(parent_inode)->root;
1504 record_root_in_trans(trans, parent_root, 0);
1506 cur_time = current_time(parent_inode);
1509 * insert the directory item
1511 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1512 BUG_ON(ret); /* -ENOMEM */
1514 /* check if there is a file/dir which has the same name. */
1515 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1516 btrfs_ino(BTRFS_I(parent_inode)),
1517 dentry->d_name.name,
1518 dentry->d_name.len, 0);
1519 if (dir_item != NULL && !IS_ERR(dir_item)) {
1520 pending->error = -EEXIST;
1521 goto dir_item_existed;
1522 } else if (IS_ERR(dir_item)) {
1523 ret = PTR_ERR(dir_item);
1524 btrfs_abort_transaction(trans, ret);
1525 goto fail;
1527 btrfs_release_path(path);
1530 * pull in the delayed directory update
1531 * and the delayed inode item
1532 * otherwise we corrupt the FS during
1533 * snapshot
1535 ret = btrfs_run_delayed_items(trans, fs_info);
1536 if (ret) { /* Transaction aborted */
1537 btrfs_abort_transaction(trans, ret);
1538 goto fail;
1541 record_root_in_trans(trans, root, 0);
1542 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1543 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1544 btrfs_check_and_init_root_item(new_root_item);
1546 root_flags = btrfs_root_flags(new_root_item);
1547 if (pending->readonly)
1548 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1549 else
1550 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1551 btrfs_set_root_flags(new_root_item, root_flags);
1553 btrfs_set_root_generation_v2(new_root_item,
1554 trans->transid);
1555 uuid_le_gen(&new_uuid);
1556 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1557 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1558 BTRFS_UUID_SIZE);
1559 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1560 memset(new_root_item->received_uuid, 0,
1561 sizeof(new_root_item->received_uuid));
1562 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1563 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1564 btrfs_set_root_stransid(new_root_item, 0);
1565 btrfs_set_root_rtransid(new_root_item, 0);
1567 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1568 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1569 btrfs_set_root_otransid(new_root_item, trans->transid);
1571 old = btrfs_lock_root_node(root);
1572 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1573 if (ret) {
1574 btrfs_tree_unlock(old);
1575 free_extent_buffer(old);
1576 btrfs_abort_transaction(trans, ret);
1577 goto fail;
1580 btrfs_set_lock_blocking(old);
1582 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1583 /* clean up in any case */
1584 btrfs_tree_unlock(old);
1585 free_extent_buffer(old);
1586 if (ret) {
1587 btrfs_abort_transaction(trans, ret);
1588 goto fail;
1590 /* see comments in should_cow_block() */
1591 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1592 smp_wmb();
1594 btrfs_set_root_node(new_root_item, tmp);
1595 /* record when the snapshot was created in key.offset */
1596 key.offset = trans->transid;
1597 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1598 btrfs_tree_unlock(tmp);
1599 free_extent_buffer(tmp);
1600 if (ret) {
1601 btrfs_abort_transaction(trans, ret);
1602 goto fail;
1606 * insert root back/forward references
1608 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1609 parent_root->root_key.objectid,
1610 btrfs_ino(BTRFS_I(parent_inode)), index,
1611 dentry->d_name.name, dentry->d_name.len);
1612 if (ret) {
1613 btrfs_abort_transaction(trans, ret);
1614 goto fail;
1617 key.offset = (u64)-1;
1618 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1619 if (IS_ERR(pending->snap)) {
1620 ret = PTR_ERR(pending->snap);
1621 btrfs_abort_transaction(trans, ret);
1622 goto fail;
1625 ret = btrfs_reloc_post_snapshot(trans, pending);
1626 if (ret) {
1627 btrfs_abort_transaction(trans, ret);
1628 goto fail;
1631 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1632 if (ret) {
1633 btrfs_abort_transaction(trans, ret);
1634 goto fail;
1638 * Do special qgroup accounting for snapshot, as we do some qgroup
1639 * snapshot hack to do fast snapshot.
1640 * To co-operate with that hack, we do hack again.
1641 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1643 ret = qgroup_account_snapshot(trans, root, parent_root,
1644 pending->inherit, objectid);
1645 if (ret < 0)
1646 goto fail;
1648 ret = btrfs_insert_dir_item(trans, parent_root,
1649 dentry->d_name.name, dentry->d_name.len,
1650 BTRFS_I(parent_inode), &key,
1651 BTRFS_FT_DIR, index);
1652 /* We have check then name at the beginning, so it is impossible. */
1653 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1654 if (ret) {
1655 btrfs_abort_transaction(trans, ret);
1656 goto fail;
1659 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1660 dentry->d_name.len * 2);
1661 parent_inode->i_mtime = parent_inode->i_ctime =
1662 current_time(parent_inode);
1663 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1664 if (ret) {
1665 btrfs_abort_transaction(trans, ret);
1666 goto fail;
1668 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1669 BTRFS_UUID_KEY_SUBVOL, objectid);
1670 if (ret) {
1671 btrfs_abort_transaction(trans, ret);
1672 goto fail;
1674 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1675 ret = btrfs_uuid_tree_add(trans, fs_info,
1676 new_root_item->received_uuid,
1677 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1678 objectid);
1679 if (ret && ret != -EEXIST) {
1680 btrfs_abort_transaction(trans, ret);
1681 goto fail;
1685 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1686 if (ret) {
1687 btrfs_abort_transaction(trans, ret);
1688 goto fail;
1691 fail:
1692 pending->error = ret;
1693 dir_item_existed:
1694 trans->block_rsv = rsv;
1695 trans->bytes_reserved = 0;
1696 clear_skip_qgroup:
1697 btrfs_clear_skip_qgroup(trans);
1698 no_free_objectid:
1699 kfree(new_root_item);
1700 pending->root_item = NULL;
1701 btrfs_free_path(path);
1702 pending->path = NULL;
1704 return ret;
1708 * create all the snapshots we've scheduled for creation
1710 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1711 struct btrfs_fs_info *fs_info)
1713 struct btrfs_pending_snapshot *pending, *next;
1714 struct list_head *head = &trans->transaction->pending_snapshots;
1715 int ret = 0;
1717 list_for_each_entry_safe(pending, next, head, list) {
1718 list_del(&pending->list);
1719 ret = create_pending_snapshot(trans, fs_info, pending);
1720 if (ret)
1721 break;
1723 return ret;
1726 static void update_super_roots(struct btrfs_fs_info *fs_info)
1728 struct btrfs_root_item *root_item;
1729 struct btrfs_super_block *super;
1731 super = fs_info->super_copy;
1733 root_item = &fs_info->chunk_root->root_item;
1734 super->chunk_root = root_item->bytenr;
1735 super->chunk_root_generation = root_item->generation;
1736 super->chunk_root_level = root_item->level;
1738 root_item = &fs_info->tree_root->root_item;
1739 super->root = root_item->bytenr;
1740 super->generation = root_item->generation;
1741 super->root_level = root_item->level;
1742 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1743 super->cache_generation = root_item->generation;
1744 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1745 super->uuid_tree_generation = root_item->generation;
1748 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1750 struct btrfs_transaction *trans;
1751 int ret = 0;
1753 spin_lock(&info->trans_lock);
1754 trans = info->running_transaction;
1755 if (trans)
1756 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1757 spin_unlock(&info->trans_lock);
1758 return ret;
1761 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1763 struct btrfs_transaction *trans;
1764 int ret = 0;
1766 spin_lock(&info->trans_lock);
1767 trans = info->running_transaction;
1768 if (trans)
1769 ret = is_transaction_blocked(trans);
1770 spin_unlock(&info->trans_lock);
1771 return ret;
1775 * wait for the current transaction commit to start and block subsequent
1776 * transaction joins
1778 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1779 struct btrfs_transaction *trans)
1781 wait_event(fs_info->transaction_blocked_wait,
1782 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1786 * wait for the current transaction to start and then become unblocked.
1787 * caller holds ref.
1789 static void wait_current_trans_commit_start_and_unblock(
1790 struct btrfs_fs_info *fs_info,
1791 struct btrfs_transaction *trans)
1793 wait_event(fs_info->transaction_wait,
1794 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1798 * commit transactions asynchronously. once btrfs_commit_transaction_async
1799 * returns, any subsequent transaction will not be allowed to join.
1801 struct btrfs_async_commit {
1802 struct btrfs_trans_handle *newtrans;
1803 struct work_struct work;
1806 static void do_async_commit(struct work_struct *work)
1808 struct btrfs_async_commit *ac =
1809 container_of(work, struct btrfs_async_commit, work);
1812 * We've got freeze protection passed with the transaction.
1813 * Tell lockdep about it.
1815 if (ac->newtrans->type & __TRANS_FREEZABLE)
1816 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1818 current->journal_info = ac->newtrans;
1820 btrfs_commit_transaction(ac->newtrans);
1821 kfree(ac);
1824 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1825 int wait_for_unblock)
1827 struct btrfs_fs_info *fs_info = trans->fs_info;
1828 struct btrfs_async_commit *ac;
1829 struct btrfs_transaction *cur_trans;
1831 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1832 if (!ac)
1833 return -ENOMEM;
1835 INIT_WORK(&ac->work, do_async_commit);
1836 ac->newtrans = btrfs_join_transaction(trans->root);
1837 if (IS_ERR(ac->newtrans)) {
1838 int err = PTR_ERR(ac->newtrans);
1839 kfree(ac);
1840 return err;
1843 /* take transaction reference */
1844 cur_trans = trans->transaction;
1845 refcount_inc(&cur_trans->use_count);
1847 btrfs_end_transaction(trans);
1850 * Tell lockdep we've released the freeze rwsem, since the
1851 * async commit thread will be the one to unlock it.
1853 if (ac->newtrans->type & __TRANS_FREEZABLE)
1854 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1856 schedule_work(&ac->work);
1858 /* wait for transaction to start and unblock */
1859 if (wait_for_unblock)
1860 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1861 else
1862 wait_current_trans_commit_start(fs_info, cur_trans);
1864 if (current->journal_info == trans)
1865 current->journal_info = NULL;
1867 btrfs_put_transaction(cur_trans);
1868 return 0;
1872 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1873 struct btrfs_root *root, int err)
1875 struct btrfs_fs_info *fs_info = root->fs_info;
1876 struct btrfs_transaction *cur_trans = trans->transaction;
1877 DEFINE_WAIT(wait);
1879 WARN_ON(trans->use_count > 1);
1881 btrfs_abort_transaction(trans, err);
1883 spin_lock(&fs_info->trans_lock);
1886 * If the transaction is removed from the list, it means this
1887 * transaction has been committed successfully, so it is impossible
1888 * to call the cleanup function.
1890 BUG_ON(list_empty(&cur_trans->list));
1892 list_del_init(&cur_trans->list);
1893 if (cur_trans == fs_info->running_transaction) {
1894 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1895 spin_unlock(&fs_info->trans_lock);
1896 wait_event(cur_trans->writer_wait,
1897 atomic_read(&cur_trans->num_writers) == 1);
1899 spin_lock(&fs_info->trans_lock);
1901 spin_unlock(&fs_info->trans_lock);
1903 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1905 spin_lock(&fs_info->trans_lock);
1906 if (cur_trans == fs_info->running_transaction)
1907 fs_info->running_transaction = NULL;
1908 spin_unlock(&fs_info->trans_lock);
1910 if (trans->type & __TRANS_FREEZABLE)
1911 sb_end_intwrite(fs_info->sb);
1912 btrfs_put_transaction(cur_trans);
1913 btrfs_put_transaction(cur_trans);
1915 trace_btrfs_transaction_commit(root);
1917 if (current->journal_info == trans)
1918 current->journal_info = NULL;
1919 btrfs_scrub_cancel(fs_info);
1921 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1924 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1926 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1927 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1928 return 0;
1931 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1933 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1934 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1937 static inline void
1938 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1940 wait_event(cur_trans->pending_wait,
1941 atomic_read(&cur_trans->pending_ordered) == 0);
1944 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1946 struct btrfs_fs_info *fs_info = trans->fs_info;
1947 struct btrfs_transaction *cur_trans = trans->transaction;
1948 struct btrfs_transaction *prev_trans = NULL;
1949 int ret;
1952 * Some places just start a transaction to commit it. We need to make
1953 * sure that if this commit fails that the abort code actually marks the
1954 * transaction as failed, so set trans->dirty to make the abort code do
1955 * the right thing.
1957 trans->dirty = true;
1959 /* Stop the commit early if ->aborted is set */
1960 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1961 ret = cur_trans->aborted;
1962 btrfs_end_transaction(trans);
1963 return ret;
1966 btrfs_trans_release_metadata(trans, fs_info);
1967 trans->block_rsv = NULL;
1969 /* make a pass through all the delayed refs we have so far
1970 * any runnings procs may add more while we are here
1972 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1973 if (ret) {
1974 btrfs_end_transaction(trans);
1975 return ret;
1978 cur_trans = trans->transaction;
1981 * set the flushing flag so procs in this transaction have to
1982 * start sending their work down.
1984 cur_trans->delayed_refs.flushing = 1;
1985 smp_wmb();
1987 if (!list_empty(&trans->new_bgs))
1988 btrfs_create_pending_block_groups(trans, fs_info);
1990 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1991 if (ret) {
1992 btrfs_end_transaction(trans);
1993 return ret;
1996 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1997 int run_it = 0;
1999 /* this mutex is also taken before trying to set
2000 * block groups readonly. We need to make sure
2001 * that nobody has set a block group readonly
2002 * after a extents from that block group have been
2003 * allocated for cache files. btrfs_set_block_group_ro
2004 * will wait for the transaction to commit if it
2005 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2007 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2008 * only one process starts all the block group IO. It wouldn't
2009 * hurt to have more than one go through, but there's no
2010 * real advantage to it either.
2012 mutex_lock(&fs_info->ro_block_group_mutex);
2013 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2014 &cur_trans->flags))
2015 run_it = 1;
2016 mutex_unlock(&fs_info->ro_block_group_mutex);
2018 if (run_it)
2019 ret = btrfs_start_dirty_block_groups(trans, fs_info);
2021 if (ret) {
2022 btrfs_end_transaction(trans);
2023 return ret;
2026 spin_lock(&fs_info->trans_lock);
2027 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2028 spin_unlock(&fs_info->trans_lock);
2029 refcount_inc(&cur_trans->use_count);
2030 ret = btrfs_end_transaction(trans);
2032 wait_for_commit(cur_trans);
2034 if (unlikely(cur_trans->aborted))
2035 ret = cur_trans->aborted;
2037 btrfs_put_transaction(cur_trans);
2039 return ret;
2042 cur_trans->state = TRANS_STATE_COMMIT_START;
2043 wake_up(&fs_info->transaction_blocked_wait);
2045 if (cur_trans->list.prev != &fs_info->trans_list) {
2046 prev_trans = list_entry(cur_trans->list.prev,
2047 struct btrfs_transaction, list);
2048 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2049 refcount_inc(&prev_trans->use_count);
2050 spin_unlock(&fs_info->trans_lock);
2052 wait_for_commit(prev_trans);
2053 ret = prev_trans->aborted;
2055 btrfs_put_transaction(prev_trans);
2056 if (ret)
2057 goto cleanup_transaction;
2058 } else {
2059 spin_unlock(&fs_info->trans_lock);
2061 } else {
2062 spin_unlock(&fs_info->trans_lock);
2064 * The previous transaction was aborted and was already removed
2065 * from the list of transactions at fs_info->trans_list. So we
2066 * abort to prevent writing a new superblock that reflects a
2067 * corrupt state (pointing to trees with unwritten nodes/leafs).
2069 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2070 ret = -EROFS;
2071 goto cleanup_transaction;
2075 extwriter_counter_dec(cur_trans, trans->type);
2077 ret = btrfs_start_delalloc_flush(fs_info);
2078 if (ret)
2079 goto cleanup_transaction;
2081 ret = btrfs_run_delayed_items(trans, fs_info);
2082 if (ret)
2083 goto cleanup_transaction;
2085 wait_event(cur_trans->writer_wait,
2086 extwriter_counter_read(cur_trans) == 0);
2088 /* some pending stuffs might be added after the previous flush. */
2089 ret = btrfs_run_delayed_items(trans, fs_info);
2090 if (ret)
2091 goto cleanup_transaction;
2093 btrfs_wait_delalloc_flush(fs_info);
2095 btrfs_wait_pending_ordered(cur_trans);
2097 btrfs_scrub_pause(fs_info);
2099 * Ok now we need to make sure to block out any other joins while we
2100 * commit the transaction. We could have started a join before setting
2101 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2103 spin_lock(&fs_info->trans_lock);
2104 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2105 spin_unlock(&fs_info->trans_lock);
2106 wait_event(cur_trans->writer_wait,
2107 atomic_read(&cur_trans->num_writers) == 1);
2109 /* ->aborted might be set after the previous check, so check it */
2110 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2111 ret = cur_trans->aborted;
2112 goto scrub_continue;
2115 * the reloc mutex makes sure that we stop
2116 * the balancing code from coming in and moving
2117 * extents around in the middle of the commit
2119 mutex_lock(&fs_info->reloc_mutex);
2122 * We needn't worry about the delayed items because we will
2123 * deal with them in create_pending_snapshot(), which is the
2124 * core function of the snapshot creation.
2126 ret = create_pending_snapshots(trans, fs_info);
2127 if (ret) {
2128 mutex_unlock(&fs_info->reloc_mutex);
2129 goto scrub_continue;
2133 * We insert the dir indexes of the snapshots and update the inode
2134 * of the snapshots' parents after the snapshot creation, so there
2135 * are some delayed items which are not dealt with. Now deal with
2136 * them.
2138 * We needn't worry that this operation will corrupt the snapshots,
2139 * because all the tree which are snapshoted will be forced to COW
2140 * the nodes and leaves.
2142 ret = btrfs_run_delayed_items(trans, fs_info);
2143 if (ret) {
2144 mutex_unlock(&fs_info->reloc_mutex);
2145 goto scrub_continue;
2148 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2149 if (ret) {
2150 mutex_unlock(&fs_info->reloc_mutex);
2151 goto scrub_continue;
2155 * make sure none of the code above managed to slip in a
2156 * delayed item
2158 btrfs_assert_delayed_root_empty(fs_info);
2160 WARN_ON(cur_trans != trans->transaction);
2162 /* btrfs_commit_tree_roots is responsible for getting the
2163 * various roots consistent with each other. Every pointer
2164 * in the tree of tree roots has to point to the most up to date
2165 * root for every subvolume and other tree. So, we have to keep
2166 * the tree logging code from jumping in and changing any
2167 * of the trees.
2169 * At this point in the commit, there can't be any tree-log
2170 * writers, but a little lower down we drop the trans mutex
2171 * and let new people in. By holding the tree_log_mutex
2172 * from now until after the super is written, we avoid races
2173 * with the tree-log code.
2175 mutex_lock(&fs_info->tree_log_mutex);
2177 ret = commit_fs_roots(trans, fs_info);
2178 if (ret) {
2179 mutex_unlock(&fs_info->tree_log_mutex);
2180 mutex_unlock(&fs_info->reloc_mutex);
2181 goto scrub_continue;
2185 * Since the transaction is done, we can apply the pending changes
2186 * before the next transaction.
2188 btrfs_apply_pending_changes(fs_info);
2190 /* commit_fs_roots gets rid of all the tree log roots, it is now
2191 * safe to free the root of tree log roots
2193 btrfs_free_log_root_tree(trans, fs_info);
2196 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2197 * new delayed refs. Must handle them or qgroup can be wrong.
2199 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2200 if (ret) {
2201 mutex_unlock(&fs_info->tree_log_mutex);
2202 mutex_unlock(&fs_info->reloc_mutex);
2203 goto scrub_continue;
2207 * Since fs roots are all committed, we can get a quite accurate
2208 * new_roots. So let's do quota accounting.
2210 ret = btrfs_qgroup_account_extents(trans, fs_info);
2211 if (ret < 0) {
2212 mutex_unlock(&fs_info->tree_log_mutex);
2213 mutex_unlock(&fs_info->reloc_mutex);
2214 goto scrub_continue;
2217 ret = commit_cowonly_roots(trans, fs_info);
2218 if (ret) {
2219 mutex_unlock(&fs_info->tree_log_mutex);
2220 mutex_unlock(&fs_info->reloc_mutex);
2221 goto scrub_continue;
2225 * The tasks which save the space cache and inode cache may also
2226 * update ->aborted, check it.
2228 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2229 ret = cur_trans->aborted;
2230 mutex_unlock(&fs_info->tree_log_mutex);
2231 mutex_unlock(&fs_info->reloc_mutex);
2232 goto scrub_continue;
2235 btrfs_prepare_extent_commit(fs_info);
2237 cur_trans = fs_info->running_transaction;
2239 btrfs_set_root_node(&fs_info->tree_root->root_item,
2240 fs_info->tree_root->node);
2241 list_add_tail(&fs_info->tree_root->dirty_list,
2242 &cur_trans->switch_commits);
2244 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2245 fs_info->chunk_root->node);
2246 list_add_tail(&fs_info->chunk_root->dirty_list,
2247 &cur_trans->switch_commits);
2249 switch_commit_roots(cur_trans, fs_info);
2251 ASSERT(list_empty(&cur_trans->dirty_bgs));
2252 ASSERT(list_empty(&cur_trans->io_bgs));
2253 update_super_roots(fs_info);
2255 btrfs_set_super_log_root(fs_info->super_copy, 0);
2256 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2257 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2258 sizeof(*fs_info->super_copy));
2260 btrfs_update_commit_device_size(fs_info);
2261 btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2263 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2264 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2266 btrfs_trans_release_chunk_metadata(trans);
2268 spin_lock(&fs_info->trans_lock);
2269 cur_trans->state = TRANS_STATE_UNBLOCKED;
2270 fs_info->running_transaction = NULL;
2271 spin_unlock(&fs_info->trans_lock);
2272 mutex_unlock(&fs_info->reloc_mutex);
2274 wake_up(&fs_info->transaction_wait);
2276 ret = btrfs_write_and_wait_transaction(trans, fs_info);
2277 if (ret) {
2278 btrfs_handle_fs_error(fs_info, ret,
2279 "Error while writing out transaction");
2280 mutex_unlock(&fs_info->tree_log_mutex);
2281 goto scrub_continue;
2284 ret = write_all_supers(fs_info, 0);
2285 if (ret) {
2286 mutex_unlock(&fs_info->tree_log_mutex);
2287 goto scrub_continue;
2291 * the super is written, we can safely allow the tree-loggers
2292 * to go about their business
2294 mutex_unlock(&fs_info->tree_log_mutex);
2296 btrfs_finish_extent_commit(trans, fs_info);
2298 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2299 btrfs_clear_space_info_full(fs_info);
2301 fs_info->last_trans_committed = cur_trans->transid;
2303 * We needn't acquire the lock here because there is no other task
2304 * which can change it.
2306 cur_trans->state = TRANS_STATE_COMPLETED;
2307 wake_up(&cur_trans->commit_wait);
2309 spin_lock(&fs_info->trans_lock);
2310 list_del_init(&cur_trans->list);
2311 spin_unlock(&fs_info->trans_lock);
2313 btrfs_put_transaction(cur_trans);
2314 btrfs_put_transaction(cur_trans);
2316 if (trans->type & __TRANS_FREEZABLE)
2317 sb_end_intwrite(fs_info->sb);
2319 trace_btrfs_transaction_commit(trans->root);
2321 btrfs_scrub_continue(fs_info);
2323 if (current->journal_info == trans)
2324 current->journal_info = NULL;
2326 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2328 return ret;
2330 scrub_continue:
2331 btrfs_scrub_continue(fs_info);
2332 cleanup_transaction:
2333 btrfs_trans_release_metadata(trans, fs_info);
2334 btrfs_trans_release_chunk_metadata(trans);
2335 trans->block_rsv = NULL;
2336 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2337 if (current->journal_info == trans)
2338 current->journal_info = NULL;
2339 cleanup_transaction(trans, trans->root, ret);
2341 return ret;
2345 * return < 0 if error
2346 * 0 if there are no more dead_roots at the time of call
2347 * 1 there are more to be processed, call me again
2349 * The return value indicates there are certainly more snapshots to delete, but
2350 * if there comes a new one during processing, it may return 0. We don't mind,
2351 * because btrfs_commit_super will poke cleaner thread and it will process it a
2352 * few seconds later.
2354 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2356 int ret;
2357 struct btrfs_fs_info *fs_info = root->fs_info;
2359 spin_lock(&fs_info->trans_lock);
2360 if (list_empty(&fs_info->dead_roots)) {
2361 spin_unlock(&fs_info->trans_lock);
2362 return 0;
2364 root = list_first_entry(&fs_info->dead_roots,
2365 struct btrfs_root, root_list);
2366 list_del_init(&root->root_list);
2367 spin_unlock(&fs_info->trans_lock);
2369 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2371 btrfs_kill_all_delayed_nodes(root);
2373 if (btrfs_header_backref_rev(root->node) <
2374 BTRFS_MIXED_BACKREF_REV)
2375 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2376 else
2377 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2379 return (ret < 0) ? 0 : 1;
2382 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2384 unsigned long prev;
2385 unsigned long bit;
2387 prev = xchg(&fs_info->pending_changes, 0);
2388 if (!prev)
2389 return;
2391 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2392 if (prev & bit)
2393 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2394 prev &= ~bit;
2396 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2397 if (prev & bit)
2398 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2399 prev &= ~bit;
2401 bit = 1 << BTRFS_PENDING_COMMIT;
2402 if (prev & bit)
2403 btrfs_debug(fs_info, "pending commit done");
2404 prev &= ~bit;
2406 if (prev)
2407 btrfs_warn(fs_info,
2408 "unknown pending changes left 0x%lx, ignoring", prev);