2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/bio.h>
21 #include <linux/slab.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <linux/uuid.h>
31 #include <asm/div64.h>
33 #include "extent_map.h"
35 #include "transaction.h"
36 #include "print-tree.h"
39 #include "async-thread.h"
40 #include "check-integrity.h"
41 #include "rcu-string.h"
43 #include "dev-replace.h"
46 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
47 [BTRFS_RAID_RAID10
] = {
50 .devs_max
= 0, /* 0 == as many as possible */
52 .tolerated_failures
= 1,
56 [BTRFS_RAID_RAID1
] = {
61 .tolerated_failures
= 1,
70 .tolerated_failures
= 0,
74 [BTRFS_RAID_RAID0
] = {
79 .tolerated_failures
= 0,
83 [BTRFS_RAID_SINGLE
] = {
88 .tolerated_failures
= 0,
92 [BTRFS_RAID_RAID5
] = {
97 .tolerated_failures
= 1,
101 [BTRFS_RAID_RAID6
] = {
106 .tolerated_failures
= 2,
112 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
113 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
114 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
115 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
116 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
117 [BTRFS_RAID_SINGLE
] = 0,
118 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
119 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
123 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
124 * condition is not met. Zero means there's no corresponding
125 * BTRFS_ERROR_DEV_*_NOT_MET value.
127 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
128 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
129 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
130 [BTRFS_RAID_DUP
] = 0,
131 [BTRFS_RAID_RAID0
] = 0,
132 [BTRFS_RAID_SINGLE
] = 0,
133 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
134 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
137 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
138 struct btrfs_fs_info
*fs_info
);
139 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
140 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
143 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
144 enum btrfs_map_op op
,
145 u64 logical
, u64
*length
,
146 struct btrfs_bio
**bbio_ret
,
147 int mirror_num
, int need_raid_map
);
149 DEFINE_MUTEX(uuid_mutex
);
150 static LIST_HEAD(fs_uuids
);
151 struct list_head
*btrfs_get_fs_uuids(void)
157 * alloc_fs_devices - allocate struct btrfs_fs_devices
158 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
160 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
161 * The returned struct is not linked onto any lists and can be destroyed with
162 * kfree() right away.
164 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
166 struct btrfs_fs_devices
*fs_devs
;
168 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
170 return ERR_PTR(-ENOMEM
);
172 mutex_init(&fs_devs
->device_list_mutex
);
174 INIT_LIST_HEAD(&fs_devs
->devices
);
175 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
176 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
177 INIT_LIST_HEAD(&fs_devs
->list
);
179 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
184 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
186 struct btrfs_device
*device
;
187 WARN_ON(fs_devices
->opened
);
188 while (!list_empty(&fs_devices
->devices
)) {
189 device
= list_entry(fs_devices
->devices
.next
,
190 struct btrfs_device
, dev_list
);
191 list_del(&device
->dev_list
);
192 rcu_string_free(device
->name
);
198 static void btrfs_kobject_uevent(struct block_device
*bdev
,
199 enum kobject_action action
)
203 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
205 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
207 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
208 &disk_to_dev(bdev
->bd_disk
)->kobj
);
211 void btrfs_cleanup_fs_uuids(void)
213 struct btrfs_fs_devices
*fs_devices
;
215 while (!list_empty(&fs_uuids
)) {
216 fs_devices
= list_entry(fs_uuids
.next
,
217 struct btrfs_fs_devices
, list
);
218 list_del(&fs_devices
->list
);
219 free_fs_devices(fs_devices
);
223 static struct btrfs_device
*__alloc_device(void)
225 struct btrfs_device
*dev
;
227 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
229 return ERR_PTR(-ENOMEM
);
232 * Preallocate a bio that's always going to be used for flushing device
233 * barriers and matches the device lifespan
235 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
236 if (!dev
->flush_bio
) {
238 return ERR_PTR(-ENOMEM
);
241 INIT_LIST_HEAD(&dev
->dev_list
);
242 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
243 INIT_LIST_HEAD(&dev
->resized_list
);
245 spin_lock_init(&dev
->io_lock
);
247 spin_lock_init(&dev
->reada_lock
);
248 atomic_set(&dev
->reada_in_flight
, 0);
249 atomic_set(&dev
->dev_stats_ccnt
, 0);
250 btrfs_device_data_ordered_init(dev
);
251 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
252 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
264 static struct btrfs_device
*find_device(struct btrfs_fs_devices
*fs_devices
,
265 u64 devid
, const u8
*uuid
)
267 struct list_head
*head
= &fs_devices
->devices
;
268 struct btrfs_device
*dev
;
270 list_for_each_entry(dev
, head
, dev_list
) {
271 if (dev
->devid
== devid
&&
272 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
279 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
281 struct btrfs_fs_devices
*fs_devices
;
283 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
284 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
291 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
292 int flush
, struct block_device
**bdev
,
293 struct buffer_head
**bh
)
297 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
300 ret
= PTR_ERR(*bdev
);
305 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
306 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
308 blkdev_put(*bdev
, flags
);
311 invalidate_bdev(*bdev
);
312 *bh
= btrfs_read_dev_super(*bdev
);
315 blkdev_put(*bdev
, flags
);
327 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
328 struct bio
*head
, struct bio
*tail
)
331 struct bio
*old_head
;
333 old_head
= pending_bios
->head
;
334 pending_bios
->head
= head
;
335 if (pending_bios
->tail
)
336 tail
->bi_next
= old_head
;
338 pending_bios
->tail
= tail
;
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
352 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
354 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
356 struct backing_dev_info
*bdi
;
357 struct btrfs_pending_bios
*pending_bios
;
361 unsigned long num_run
;
362 unsigned long batch_run
= 0;
364 unsigned long last_waited
= 0;
366 int sync_pending
= 0;
367 struct blk_plug plug
;
370 * this function runs all the bios we've collected for
371 * a particular device. We don't want to wander off to
372 * another device without first sending all of these down.
373 * So, setup a plug here and finish it off before we return
375 blk_start_plug(&plug
);
377 bdi
= device
->bdev
->bd_bdi
;
378 limit
= btrfs_async_submit_limit(fs_info
);
379 limit
= limit
* 2 / 3;
382 spin_lock(&device
->io_lock
);
387 /* take all the bios off the list at once and process them
388 * later on (without the lock held). But, remember the
389 * tail and other pointers so the bios can be properly reinserted
390 * into the list if we hit congestion
392 if (!force_reg
&& device
->pending_sync_bios
.head
) {
393 pending_bios
= &device
->pending_sync_bios
;
396 pending_bios
= &device
->pending_bios
;
400 pending
= pending_bios
->head
;
401 tail
= pending_bios
->tail
;
402 WARN_ON(pending
&& !tail
);
405 * if pending was null this time around, no bios need processing
406 * at all and we can stop. Otherwise it'll loop back up again
407 * and do an additional check so no bios are missed.
409 * device->running_pending is used to synchronize with the
412 if (device
->pending_sync_bios
.head
== NULL
&&
413 device
->pending_bios
.head
== NULL
) {
415 device
->running_pending
= 0;
418 device
->running_pending
= 1;
421 pending_bios
->head
= NULL
;
422 pending_bios
->tail
= NULL
;
424 spin_unlock(&device
->io_lock
);
429 /* we want to work on both lists, but do more bios on the
430 * sync list than the regular list
433 pending_bios
!= &device
->pending_sync_bios
&&
434 device
->pending_sync_bios
.head
) ||
435 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
436 device
->pending_bios
.head
)) {
437 spin_lock(&device
->io_lock
);
438 requeue_list(pending_bios
, pending
, tail
);
443 pending
= pending
->bi_next
;
447 * atomic_dec_return implies a barrier for waitqueue_active
449 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
450 waitqueue_active(&fs_info
->async_submit_wait
))
451 wake_up(&fs_info
->async_submit_wait
);
453 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
456 * if we're doing the sync list, record that our
457 * plug has some sync requests on it
459 * If we're doing the regular list and there are
460 * sync requests sitting around, unplug before
463 if (pending_bios
== &device
->pending_sync_bios
) {
465 } else if (sync_pending
) {
466 blk_finish_plug(&plug
);
467 blk_start_plug(&plug
);
471 btrfsic_submit_bio(cur
);
478 * we made progress, there is more work to do and the bdi
479 * is now congested. Back off and let other work structs
482 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
483 fs_info
->fs_devices
->open_devices
> 1) {
484 struct io_context
*ioc
;
486 ioc
= current
->io_context
;
489 * the main goal here is that we don't want to
490 * block if we're going to be able to submit
491 * more requests without blocking.
493 * This code does two great things, it pokes into
494 * the elevator code from a filesystem _and_
495 * it makes assumptions about how batching works.
497 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
498 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
500 ioc
->last_waited
== last_waited
)) {
502 * we want to go through our batch of
503 * requests and stop. So, we copy out
504 * the ioc->last_waited time and test
505 * against it before looping
507 last_waited
= ioc
->last_waited
;
511 spin_lock(&device
->io_lock
);
512 requeue_list(pending_bios
, pending
, tail
);
513 device
->running_pending
= 1;
515 spin_unlock(&device
->io_lock
);
516 btrfs_queue_work(fs_info
->submit_workers
,
520 /* unplug every 64 requests just for good measure */
521 if (batch_run
% 64 == 0) {
522 blk_finish_plug(&plug
);
523 blk_start_plug(&plug
);
532 spin_lock(&device
->io_lock
);
533 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
535 spin_unlock(&device
->io_lock
);
538 blk_finish_plug(&plug
);
541 static void pending_bios_fn(struct btrfs_work
*work
)
543 struct btrfs_device
*device
;
545 device
= container_of(work
, struct btrfs_device
, work
);
546 run_scheduled_bios(device
);
550 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
552 struct btrfs_fs_devices
*fs_devs
;
553 struct btrfs_device
*dev
;
558 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
563 if (fs_devs
->seeding
)
566 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
574 * Todo: This won't be enough. What if the same device
575 * comes back (with new uuid and) with its mapper path?
576 * But for now, this does help as mostly an admin will
577 * either use mapper or non mapper path throughout.
580 del
= strcmp(rcu_str_deref(dev
->name
),
581 rcu_str_deref(cur_dev
->name
));
588 /* delete the stale device */
589 if (fs_devs
->num_devices
== 1) {
590 btrfs_sysfs_remove_fsid(fs_devs
);
591 list_del(&fs_devs
->list
);
592 free_fs_devices(fs_devs
);
595 fs_devs
->num_devices
--;
596 list_del(&dev
->dev_list
);
597 rcu_string_free(dev
->name
);
606 * Add new device to list of registered devices
609 * 1 - first time device is seen
610 * 0 - device already known
613 static noinline
int device_list_add(const char *path
,
614 struct btrfs_super_block
*disk_super
,
615 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
617 struct btrfs_device
*device
;
618 struct btrfs_fs_devices
*fs_devices
;
619 struct rcu_string
*name
;
621 u64 found_transid
= btrfs_super_generation(disk_super
);
623 fs_devices
= find_fsid(disk_super
->fsid
);
625 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
626 if (IS_ERR(fs_devices
))
627 return PTR_ERR(fs_devices
);
629 list_add(&fs_devices
->list
, &fs_uuids
);
633 device
= find_device(fs_devices
, devid
,
634 disk_super
->dev_item
.uuid
);
638 if (fs_devices
->opened
)
641 device
= btrfs_alloc_device(NULL
, &devid
,
642 disk_super
->dev_item
.uuid
);
643 if (IS_ERR(device
)) {
644 /* we can safely leave the fs_devices entry around */
645 return PTR_ERR(device
);
648 name
= rcu_string_strdup(path
, GFP_NOFS
);
653 rcu_assign_pointer(device
->name
, name
);
655 mutex_lock(&fs_devices
->device_list_mutex
);
656 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
657 fs_devices
->num_devices
++;
658 mutex_unlock(&fs_devices
->device_list_mutex
);
661 device
->fs_devices
= fs_devices
;
662 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
664 * When FS is already mounted.
665 * 1. If you are here and if the device->name is NULL that
666 * means this device was missing at time of FS mount.
667 * 2. If you are here and if the device->name is different
668 * from 'path' that means either
669 * a. The same device disappeared and reappeared with
671 * b. The missing-disk-which-was-replaced, has
674 * We must allow 1 and 2a above. But 2b would be a spurious
677 * Further in case of 1 and 2a above, the disk at 'path'
678 * would have missed some transaction when it was away and
679 * in case of 2a the stale bdev has to be updated as well.
680 * 2b must not be allowed at all time.
684 * For now, we do allow update to btrfs_fs_device through the
685 * btrfs dev scan cli after FS has been mounted. We're still
686 * tracking a problem where systems fail mount by subvolume id
687 * when we reject replacement on a mounted FS.
689 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
691 * That is if the FS is _not_ mounted and if you
692 * are here, that means there is more than one
693 * disk with same uuid and devid.We keep the one
694 * with larger generation number or the last-in if
695 * generation are equal.
700 name
= rcu_string_strdup(path
, GFP_NOFS
);
703 rcu_string_free(device
->name
);
704 rcu_assign_pointer(device
->name
, name
);
705 if (device
->missing
) {
706 fs_devices
->missing_devices
--;
712 * Unmount does not free the btrfs_device struct but would zero
713 * generation along with most of the other members. So just update
714 * it back. We need it to pick the disk with largest generation
717 if (!fs_devices
->opened
)
718 device
->generation
= found_transid
;
721 * if there is new btrfs on an already registered device,
722 * then remove the stale device entry.
725 btrfs_free_stale_device(device
);
727 *fs_devices_ret
= fs_devices
;
732 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
734 struct btrfs_fs_devices
*fs_devices
;
735 struct btrfs_device
*device
;
736 struct btrfs_device
*orig_dev
;
738 fs_devices
= alloc_fs_devices(orig
->fsid
);
739 if (IS_ERR(fs_devices
))
742 mutex_lock(&orig
->device_list_mutex
);
743 fs_devices
->total_devices
= orig
->total_devices
;
745 /* We have held the volume lock, it is safe to get the devices. */
746 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
747 struct rcu_string
*name
;
749 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
755 * This is ok to do without rcu read locked because we hold the
756 * uuid mutex so nothing we touch in here is going to disappear.
758 if (orig_dev
->name
) {
759 name
= rcu_string_strdup(orig_dev
->name
->str
,
765 rcu_assign_pointer(device
->name
, name
);
768 list_add(&device
->dev_list
, &fs_devices
->devices
);
769 device
->fs_devices
= fs_devices
;
770 fs_devices
->num_devices
++;
772 mutex_unlock(&orig
->device_list_mutex
);
775 mutex_unlock(&orig
->device_list_mutex
);
776 free_fs_devices(fs_devices
);
777 return ERR_PTR(-ENOMEM
);
780 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
782 struct btrfs_device
*device
, *next
;
783 struct btrfs_device
*latest_dev
= NULL
;
785 mutex_lock(&uuid_mutex
);
787 /* This is the initialized path, it is safe to release the devices. */
788 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
789 if (device
->in_fs_metadata
) {
790 if (!device
->is_tgtdev_for_dev_replace
&&
792 device
->generation
> latest_dev
->generation
)) {
798 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
800 * In the first step, keep the device which has
801 * the correct fsid and the devid that is used
802 * for the dev_replace procedure.
803 * In the second step, the dev_replace state is
804 * read from the device tree and it is known
805 * whether the procedure is really active or
806 * not, which means whether this device is
807 * used or whether it should be removed.
809 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
814 blkdev_put(device
->bdev
, device
->mode
);
816 fs_devices
->open_devices
--;
818 if (device
->writeable
) {
819 list_del_init(&device
->dev_alloc_list
);
820 device
->writeable
= 0;
821 if (!device
->is_tgtdev_for_dev_replace
)
822 fs_devices
->rw_devices
--;
824 list_del_init(&device
->dev_list
);
825 fs_devices
->num_devices
--;
826 rcu_string_free(device
->name
);
830 if (fs_devices
->seed
) {
831 fs_devices
= fs_devices
->seed
;
835 fs_devices
->latest_bdev
= latest_dev
->bdev
;
837 mutex_unlock(&uuid_mutex
);
840 static void __free_device(struct work_struct
*work
)
842 struct btrfs_device
*device
;
844 device
= container_of(work
, struct btrfs_device
, rcu_work
);
845 rcu_string_free(device
->name
);
846 bio_put(device
->flush_bio
);
850 static void free_device(struct rcu_head
*head
)
852 struct btrfs_device
*device
;
854 device
= container_of(head
, struct btrfs_device
, rcu
);
856 INIT_WORK(&device
->rcu_work
, __free_device
);
857 schedule_work(&device
->rcu_work
);
860 static void btrfs_close_bdev(struct btrfs_device
*device
)
862 if (device
->bdev
&& device
->writeable
) {
863 sync_blockdev(device
->bdev
);
864 invalidate_bdev(device
->bdev
);
868 blkdev_put(device
->bdev
, device
->mode
);
871 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
873 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
874 struct btrfs_device
*new_device
;
875 struct rcu_string
*name
;
878 fs_devices
->open_devices
--;
880 if (device
->writeable
&&
881 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
882 list_del_init(&device
->dev_alloc_list
);
883 fs_devices
->rw_devices
--;
887 fs_devices
->missing_devices
--;
889 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
891 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
893 /* Safe because we are under uuid_mutex */
895 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
896 BUG_ON(!name
); /* -ENOMEM */
897 rcu_assign_pointer(new_device
->name
, name
);
900 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
901 new_device
->fs_devices
= device
->fs_devices
;
904 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
906 struct btrfs_device
*device
, *tmp
;
907 struct list_head pending_put
;
909 INIT_LIST_HEAD(&pending_put
);
911 if (--fs_devices
->opened
> 0)
914 mutex_lock(&fs_devices
->device_list_mutex
);
915 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
916 btrfs_prepare_close_one_device(device
);
917 list_add(&device
->dev_list
, &pending_put
);
919 mutex_unlock(&fs_devices
->device_list_mutex
);
922 * btrfs_show_devname() is using the device_list_mutex,
923 * sometimes call to blkdev_put() leads vfs calling
924 * into this func. So do put outside of device_list_mutex,
927 while (!list_empty(&pending_put
)) {
928 device
= list_first_entry(&pending_put
,
929 struct btrfs_device
, dev_list
);
930 list_del(&device
->dev_list
);
931 btrfs_close_bdev(device
);
932 call_rcu(&device
->rcu
, free_device
);
935 WARN_ON(fs_devices
->open_devices
);
936 WARN_ON(fs_devices
->rw_devices
);
937 fs_devices
->opened
= 0;
938 fs_devices
->seeding
= 0;
943 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
945 struct btrfs_fs_devices
*seed_devices
= NULL
;
948 mutex_lock(&uuid_mutex
);
949 ret
= __btrfs_close_devices(fs_devices
);
950 if (!fs_devices
->opened
) {
951 seed_devices
= fs_devices
->seed
;
952 fs_devices
->seed
= NULL
;
954 mutex_unlock(&uuid_mutex
);
956 while (seed_devices
) {
957 fs_devices
= seed_devices
;
958 seed_devices
= fs_devices
->seed
;
959 __btrfs_close_devices(fs_devices
);
960 free_fs_devices(fs_devices
);
963 * Wait for rcu kworkers under __btrfs_close_devices
964 * to finish all blkdev_puts so device is really
965 * free when umount is done.
971 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
972 fmode_t flags
, void *holder
)
974 struct request_queue
*q
;
975 struct block_device
*bdev
;
976 struct list_head
*head
= &fs_devices
->devices
;
977 struct btrfs_device
*device
;
978 struct btrfs_device
*latest_dev
= NULL
;
979 struct buffer_head
*bh
;
980 struct btrfs_super_block
*disk_super
;
987 list_for_each_entry(device
, head
, dev_list
) {
993 /* Just open everything we can; ignore failures here */
994 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
998 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
999 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1000 if (devid
!= device
->devid
)
1003 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
1007 device
->generation
= btrfs_super_generation(disk_super
);
1009 device
->generation
> latest_dev
->generation
)
1010 latest_dev
= device
;
1012 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
1013 device
->writeable
= 0;
1015 device
->writeable
= !bdev_read_only(bdev
);
1019 q
= bdev_get_queue(bdev
);
1020 if (blk_queue_discard(q
))
1021 device
->can_discard
= 1;
1022 if (!blk_queue_nonrot(q
))
1023 fs_devices
->rotating
= 1;
1025 device
->bdev
= bdev
;
1026 device
->in_fs_metadata
= 0;
1027 device
->mode
= flags
;
1029 fs_devices
->open_devices
++;
1030 if (device
->writeable
&&
1031 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1032 fs_devices
->rw_devices
++;
1033 list_add(&device
->dev_alloc_list
,
1034 &fs_devices
->alloc_list
);
1041 blkdev_put(bdev
, flags
);
1044 if (fs_devices
->open_devices
== 0) {
1048 fs_devices
->seeding
= seeding
;
1049 fs_devices
->opened
= 1;
1050 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1051 fs_devices
->total_rw_bytes
= 0;
1056 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1057 fmode_t flags
, void *holder
)
1061 mutex_lock(&uuid_mutex
);
1062 if (fs_devices
->opened
) {
1063 fs_devices
->opened
++;
1066 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1068 mutex_unlock(&uuid_mutex
);
1072 void btrfs_release_disk_super(struct page
*page
)
1078 int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1079 struct page
**page
, struct btrfs_super_block
**disk_super
)
1084 /* make sure our super fits in the device */
1085 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1088 /* make sure our super fits in the page */
1089 if (sizeof(**disk_super
) > PAGE_SIZE
)
1092 /* make sure our super doesn't straddle pages on disk */
1093 index
= bytenr
>> PAGE_SHIFT
;
1094 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1097 /* pull in the page with our super */
1098 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1101 if (IS_ERR_OR_NULL(*page
))
1106 /* align our pointer to the offset of the super block */
1107 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1109 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1110 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1111 btrfs_release_disk_super(*page
);
1115 if ((*disk_super
)->label
[0] &&
1116 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1117 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1123 * Look for a btrfs signature on a device. This may be called out of the mount path
1124 * and we are not allowed to call set_blocksize during the scan. The superblock
1125 * is read via pagecache
1127 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1128 struct btrfs_fs_devices
**fs_devices_ret
)
1130 struct btrfs_super_block
*disk_super
;
1131 struct block_device
*bdev
;
1140 * we would like to check all the supers, but that would make
1141 * a btrfs mount succeed after a mkfs from a different FS.
1142 * So, we need to add a special mount option to scan for
1143 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1145 bytenr
= btrfs_sb_offset(0);
1146 flags
|= FMODE_EXCL
;
1147 mutex_lock(&uuid_mutex
);
1149 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1151 ret
= PTR_ERR(bdev
);
1155 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1156 goto error_bdev_put
;
1158 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1159 transid
= btrfs_super_generation(disk_super
);
1160 total_devices
= btrfs_super_num_devices(disk_super
);
1162 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1164 if (disk_super
->label
[0]) {
1165 pr_info("BTRFS: device label %s ", disk_super
->label
);
1167 pr_info("BTRFS: device fsid %pU ", disk_super
->fsid
);
1170 pr_cont("devid %llu transid %llu %s\n", devid
, transid
, path
);
1173 if (!ret
&& fs_devices_ret
)
1174 (*fs_devices_ret
)->total_devices
= total_devices
;
1176 btrfs_release_disk_super(page
);
1179 blkdev_put(bdev
, flags
);
1181 mutex_unlock(&uuid_mutex
);
1185 /* helper to account the used device space in the range */
1186 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1187 u64 end
, u64
*length
)
1189 struct btrfs_key key
;
1190 struct btrfs_root
*root
= device
->fs_info
->dev_root
;
1191 struct btrfs_dev_extent
*dev_extent
;
1192 struct btrfs_path
*path
;
1196 struct extent_buffer
*l
;
1200 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1203 path
= btrfs_alloc_path();
1206 path
->reada
= READA_FORWARD
;
1208 key
.objectid
= device
->devid
;
1210 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1212 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1216 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1223 slot
= path
->slots
[0];
1224 if (slot
>= btrfs_header_nritems(l
)) {
1225 ret
= btrfs_next_leaf(root
, path
);
1233 btrfs_item_key_to_cpu(l
, &key
, slot
);
1235 if (key
.objectid
< device
->devid
)
1238 if (key
.objectid
> device
->devid
)
1241 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1244 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1245 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1247 if (key
.offset
<= start
&& extent_end
> end
) {
1248 *length
= end
- start
+ 1;
1250 } else if (key
.offset
<= start
&& extent_end
> start
)
1251 *length
+= extent_end
- start
;
1252 else if (key
.offset
> start
&& extent_end
<= end
)
1253 *length
+= extent_end
- key
.offset
;
1254 else if (key
.offset
> start
&& key
.offset
<= end
) {
1255 *length
+= end
- key
.offset
+ 1;
1257 } else if (key
.offset
> end
)
1265 btrfs_free_path(path
);
1269 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1270 struct btrfs_device
*device
,
1271 u64
*start
, u64 len
)
1273 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1274 struct extent_map
*em
;
1275 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1277 u64 physical_start
= *start
;
1280 search_list
= &transaction
->pending_chunks
;
1282 list_for_each_entry(em
, search_list
, list
) {
1283 struct map_lookup
*map
;
1286 map
= em
->map_lookup
;
1287 for (i
= 0; i
< map
->num_stripes
; i
++) {
1290 if (map
->stripes
[i
].dev
!= device
)
1292 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1293 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1297 * Make sure that while processing the pinned list we do
1298 * not override our *start with a lower value, because
1299 * we can have pinned chunks that fall within this
1300 * device hole and that have lower physical addresses
1301 * than the pending chunks we processed before. If we
1302 * do not take this special care we can end up getting
1303 * 2 pending chunks that start at the same physical
1304 * device offsets because the end offset of a pinned
1305 * chunk can be equal to the start offset of some
1308 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1315 if (search_list
!= &fs_info
->pinned_chunks
) {
1316 search_list
= &fs_info
->pinned_chunks
;
1325 * find_free_dev_extent_start - find free space in the specified device
1326 * @device: the device which we search the free space in
1327 * @num_bytes: the size of the free space that we need
1328 * @search_start: the position from which to begin the search
1329 * @start: store the start of the free space.
1330 * @len: the size of the free space. that we find, or the size
1331 * of the max free space if we don't find suitable free space
1333 * this uses a pretty simple search, the expectation is that it is
1334 * called very infrequently and that a given device has a small number
1337 * @start is used to store the start of the free space if we find. But if we
1338 * don't find suitable free space, it will be used to store the start position
1339 * of the max free space.
1341 * @len is used to store the size of the free space that we find.
1342 * But if we don't find suitable free space, it is used to store the size of
1343 * the max free space.
1345 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1346 struct btrfs_device
*device
, u64 num_bytes
,
1347 u64 search_start
, u64
*start
, u64
*len
)
1349 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1350 struct btrfs_root
*root
= fs_info
->dev_root
;
1351 struct btrfs_key key
;
1352 struct btrfs_dev_extent
*dev_extent
;
1353 struct btrfs_path
*path
;
1358 u64 search_end
= device
->total_bytes
;
1361 struct extent_buffer
*l
;
1364 * We don't want to overwrite the superblock on the drive nor any area
1365 * used by the boot loader (grub for example), so we make sure to start
1366 * at an offset of at least 1MB.
1368 search_start
= max_t(u64
, search_start
, SZ_1M
);
1370 path
= btrfs_alloc_path();
1374 max_hole_start
= search_start
;
1378 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1383 path
->reada
= READA_FORWARD
;
1384 path
->search_commit_root
= 1;
1385 path
->skip_locking
= 1;
1387 key
.objectid
= device
->devid
;
1388 key
.offset
= search_start
;
1389 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1391 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1395 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1402 slot
= path
->slots
[0];
1403 if (slot
>= btrfs_header_nritems(l
)) {
1404 ret
= btrfs_next_leaf(root
, path
);
1412 btrfs_item_key_to_cpu(l
, &key
, slot
);
1414 if (key
.objectid
< device
->devid
)
1417 if (key
.objectid
> device
->devid
)
1420 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1423 if (key
.offset
> search_start
) {
1424 hole_size
= key
.offset
- search_start
;
1427 * Have to check before we set max_hole_start, otherwise
1428 * we could end up sending back this offset anyway.
1430 if (contains_pending_extent(transaction
, device
,
1433 if (key
.offset
>= search_start
) {
1434 hole_size
= key
.offset
- search_start
;
1441 if (hole_size
> max_hole_size
) {
1442 max_hole_start
= search_start
;
1443 max_hole_size
= hole_size
;
1447 * If this free space is greater than which we need,
1448 * it must be the max free space that we have found
1449 * until now, so max_hole_start must point to the start
1450 * of this free space and the length of this free space
1451 * is stored in max_hole_size. Thus, we return
1452 * max_hole_start and max_hole_size and go back to the
1455 if (hole_size
>= num_bytes
) {
1461 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1462 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1464 if (extent_end
> search_start
)
1465 search_start
= extent_end
;
1472 * At this point, search_start should be the end of
1473 * allocated dev extents, and when shrinking the device,
1474 * search_end may be smaller than search_start.
1476 if (search_end
> search_start
) {
1477 hole_size
= search_end
- search_start
;
1479 if (contains_pending_extent(transaction
, device
, &search_start
,
1481 btrfs_release_path(path
);
1485 if (hole_size
> max_hole_size
) {
1486 max_hole_start
= search_start
;
1487 max_hole_size
= hole_size
;
1492 if (max_hole_size
< num_bytes
)
1498 btrfs_free_path(path
);
1499 *start
= max_hole_start
;
1501 *len
= max_hole_size
;
1505 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1506 struct btrfs_device
*device
, u64 num_bytes
,
1507 u64
*start
, u64
*len
)
1509 /* FIXME use last free of some kind */
1510 return find_free_dev_extent_start(trans
->transaction
, device
,
1511 num_bytes
, 0, start
, len
);
1514 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1515 struct btrfs_device
*device
,
1516 u64 start
, u64
*dev_extent_len
)
1518 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1519 struct btrfs_root
*root
= fs_info
->dev_root
;
1521 struct btrfs_path
*path
;
1522 struct btrfs_key key
;
1523 struct btrfs_key found_key
;
1524 struct extent_buffer
*leaf
= NULL
;
1525 struct btrfs_dev_extent
*extent
= NULL
;
1527 path
= btrfs_alloc_path();
1531 key
.objectid
= device
->devid
;
1533 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1535 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1537 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1538 BTRFS_DEV_EXTENT_KEY
);
1541 leaf
= path
->nodes
[0];
1542 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1543 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1544 struct btrfs_dev_extent
);
1545 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1546 btrfs_dev_extent_length(leaf
, extent
) < start
);
1548 btrfs_release_path(path
);
1550 } else if (ret
== 0) {
1551 leaf
= path
->nodes
[0];
1552 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1553 struct btrfs_dev_extent
);
1555 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1559 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1561 ret
= btrfs_del_item(trans
, root
, path
);
1563 btrfs_handle_fs_error(fs_info
, ret
,
1564 "Failed to remove dev extent item");
1566 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1569 btrfs_free_path(path
);
1573 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1574 struct btrfs_device
*device
,
1575 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1578 struct btrfs_path
*path
;
1579 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1580 struct btrfs_root
*root
= fs_info
->dev_root
;
1581 struct btrfs_dev_extent
*extent
;
1582 struct extent_buffer
*leaf
;
1583 struct btrfs_key key
;
1585 WARN_ON(!device
->in_fs_metadata
);
1586 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1587 path
= btrfs_alloc_path();
1591 key
.objectid
= device
->devid
;
1593 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1594 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1599 leaf
= path
->nodes
[0];
1600 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1601 struct btrfs_dev_extent
);
1602 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1603 BTRFS_CHUNK_TREE_OBJECTID
);
1604 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1605 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1606 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1608 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1609 btrfs_mark_buffer_dirty(leaf
);
1611 btrfs_free_path(path
);
1615 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1617 struct extent_map_tree
*em_tree
;
1618 struct extent_map
*em
;
1622 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1623 read_lock(&em_tree
->lock
);
1624 n
= rb_last(&em_tree
->map
);
1626 em
= rb_entry(n
, struct extent_map
, rb_node
);
1627 ret
= em
->start
+ em
->len
;
1629 read_unlock(&em_tree
->lock
);
1634 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1638 struct btrfs_key key
;
1639 struct btrfs_key found_key
;
1640 struct btrfs_path
*path
;
1642 path
= btrfs_alloc_path();
1646 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1647 key
.type
= BTRFS_DEV_ITEM_KEY
;
1648 key
.offset
= (u64
)-1;
1650 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1654 BUG_ON(ret
== 0); /* Corruption */
1656 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1657 BTRFS_DEV_ITEMS_OBJECTID
,
1658 BTRFS_DEV_ITEM_KEY
);
1662 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1664 *devid_ret
= found_key
.offset
+ 1;
1668 btrfs_free_path(path
);
1673 * the device information is stored in the chunk root
1674 * the btrfs_device struct should be fully filled in
1676 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1677 struct btrfs_fs_info
*fs_info
,
1678 struct btrfs_device
*device
)
1680 struct btrfs_root
*root
= fs_info
->chunk_root
;
1682 struct btrfs_path
*path
;
1683 struct btrfs_dev_item
*dev_item
;
1684 struct extent_buffer
*leaf
;
1685 struct btrfs_key key
;
1688 path
= btrfs_alloc_path();
1692 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1693 key
.type
= BTRFS_DEV_ITEM_KEY
;
1694 key
.offset
= device
->devid
;
1696 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1701 leaf
= path
->nodes
[0];
1702 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1704 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1705 btrfs_set_device_generation(leaf
, dev_item
, 0);
1706 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1707 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1708 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1709 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1710 btrfs_set_device_total_bytes(leaf
, dev_item
,
1711 btrfs_device_get_disk_total_bytes(device
));
1712 btrfs_set_device_bytes_used(leaf
, dev_item
,
1713 btrfs_device_get_bytes_used(device
));
1714 btrfs_set_device_group(leaf
, dev_item
, 0);
1715 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1716 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1717 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1719 ptr
= btrfs_device_uuid(dev_item
);
1720 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1721 ptr
= btrfs_device_fsid(dev_item
);
1722 write_extent_buffer(leaf
, fs_info
->fsid
, ptr
, BTRFS_FSID_SIZE
);
1723 btrfs_mark_buffer_dirty(leaf
);
1727 btrfs_free_path(path
);
1732 * Function to update ctime/mtime for a given device path.
1733 * Mainly used for ctime/mtime based probe like libblkid.
1735 static void update_dev_time(const char *path_name
)
1739 filp
= filp_open(path_name
, O_RDWR
, 0);
1742 file_update_time(filp
);
1743 filp_close(filp
, NULL
);
1746 static int btrfs_rm_dev_item(struct btrfs_fs_info
*fs_info
,
1747 struct btrfs_device
*device
)
1749 struct btrfs_root
*root
= fs_info
->chunk_root
;
1751 struct btrfs_path
*path
;
1752 struct btrfs_key key
;
1753 struct btrfs_trans_handle
*trans
;
1755 path
= btrfs_alloc_path();
1759 trans
= btrfs_start_transaction(root
, 0);
1760 if (IS_ERR(trans
)) {
1761 btrfs_free_path(path
);
1762 return PTR_ERR(trans
);
1764 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1765 key
.type
= BTRFS_DEV_ITEM_KEY
;
1766 key
.offset
= device
->devid
;
1768 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1772 btrfs_abort_transaction(trans
, ret
);
1773 btrfs_end_transaction(trans
);
1777 ret
= btrfs_del_item(trans
, root
, path
);
1779 btrfs_abort_transaction(trans
, ret
);
1780 btrfs_end_transaction(trans
);
1784 btrfs_free_path(path
);
1786 ret
= btrfs_commit_transaction(trans
);
1791 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1792 * filesystem. It's up to the caller to adjust that number regarding eg. device
1795 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1803 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1805 all_avail
= fs_info
->avail_data_alloc_bits
|
1806 fs_info
->avail_system_alloc_bits
|
1807 fs_info
->avail_metadata_alloc_bits
;
1808 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1810 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1811 if (!(all_avail
& btrfs_raid_group
[i
]))
1814 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1815 int ret
= btrfs_raid_mindev_error
[i
];
1825 struct btrfs_device
*btrfs_find_next_active_device(struct btrfs_fs_devices
*fs_devs
,
1826 struct btrfs_device
*device
)
1828 struct btrfs_device
*next_device
;
1830 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1831 if (next_device
!= device
&&
1832 !next_device
->missing
&& next_device
->bdev
)
1840 * Helper function to check if the given device is part of s_bdev / latest_bdev
1841 * and replace it with the provided or the next active device, in the context
1842 * where this function called, there should be always be another device (or
1843 * this_dev) which is active.
1845 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1846 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1848 struct btrfs_device
*next_device
;
1851 next_device
= this_dev
;
1853 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1855 ASSERT(next_device
);
1857 if (fs_info
->sb
->s_bdev
&&
1858 (fs_info
->sb
->s_bdev
== device
->bdev
))
1859 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1861 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1862 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1865 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
1868 struct btrfs_device
*device
;
1869 struct btrfs_fs_devices
*cur_devices
;
1873 mutex_lock(&uuid_mutex
);
1875 num_devices
= fs_info
->fs_devices
->num_devices
;
1876 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
1877 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1878 WARN_ON(num_devices
< 1);
1881 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
1883 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1887 ret
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
,
1892 if (device
->is_tgtdev_for_dev_replace
) {
1893 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1897 if (device
->writeable
&& fs_info
->fs_devices
->rw_devices
== 1) {
1898 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1902 if (device
->writeable
) {
1903 mutex_lock(&fs_info
->chunk_mutex
);
1904 list_del_init(&device
->dev_alloc_list
);
1905 device
->fs_devices
->rw_devices
--;
1906 mutex_unlock(&fs_info
->chunk_mutex
);
1909 mutex_unlock(&uuid_mutex
);
1910 ret
= btrfs_shrink_device(device
, 0);
1911 mutex_lock(&uuid_mutex
);
1916 * TODO: the superblock still includes this device in its num_devices
1917 * counter although write_all_supers() is not locked out. This
1918 * could give a filesystem state which requires a degraded mount.
1920 ret
= btrfs_rm_dev_item(fs_info
, device
);
1924 device
->in_fs_metadata
= 0;
1925 btrfs_scrub_cancel_dev(fs_info
, device
);
1928 * the device list mutex makes sure that we don't change
1929 * the device list while someone else is writing out all
1930 * the device supers. Whoever is writing all supers, should
1931 * lock the device list mutex before getting the number of
1932 * devices in the super block (super_copy). Conversely,
1933 * whoever updates the number of devices in the super block
1934 * (super_copy) should hold the device list mutex.
1937 cur_devices
= device
->fs_devices
;
1938 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1939 list_del_rcu(&device
->dev_list
);
1941 device
->fs_devices
->num_devices
--;
1942 device
->fs_devices
->total_devices
--;
1944 if (device
->missing
)
1945 device
->fs_devices
->missing_devices
--;
1947 btrfs_assign_next_active_device(fs_info
, device
, NULL
);
1950 device
->fs_devices
->open_devices
--;
1951 /* remove sysfs entry */
1952 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
1955 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
1956 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
1957 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1960 * at this point, the device is zero sized and detached from
1961 * the devices list. All that's left is to zero out the old
1962 * supers and free the device.
1964 if (device
->writeable
)
1965 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
1967 btrfs_close_bdev(device
);
1968 call_rcu(&device
->rcu
, free_device
);
1970 if (cur_devices
->open_devices
== 0) {
1971 struct btrfs_fs_devices
*fs_devices
;
1972 fs_devices
= fs_info
->fs_devices
;
1973 while (fs_devices
) {
1974 if (fs_devices
->seed
== cur_devices
) {
1975 fs_devices
->seed
= cur_devices
->seed
;
1978 fs_devices
= fs_devices
->seed
;
1980 cur_devices
->seed
= NULL
;
1981 __btrfs_close_devices(cur_devices
);
1982 free_fs_devices(cur_devices
);
1986 mutex_unlock(&uuid_mutex
);
1990 if (device
->writeable
) {
1991 mutex_lock(&fs_info
->chunk_mutex
);
1992 list_add(&device
->dev_alloc_list
,
1993 &fs_info
->fs_devices
->alloc_list
);
1994 device
->fs_devices
->rw_devices
++;
1995 mutex_unlock(&fs_info
->chunk_mutex
);
2000 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
2001 struct btrfs_device
*srcdev
)
2003 struct btrfs_fs_devices
*fs_devices
;
2005 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
2008 * in case of fs with no seed, srcdev->fs_devices will point
2009 * to fs_devices of fs_info. However when the dev being replaced is
2010 * a seed dev it will point to the seed's local fs_devices. In short
2011 * srcdev will have its correct fs_devices in both the cases.
2013 fs_devices
= srcdev
->fs_devices
;
2015 list_del_rcu(&srcdev
->dev_list
);
2016 list_del_rcu(&srcdev
->dev_alloc_list
);
2017 fs_devices
->num_devices
--;
2018 if (srcdev
->missing
)
2019 fs_devices
->missing_devices
--;
2021 if (srcdev
->writeable
)
2022 fs_devices
->rw_devices
--;
2025 fs_devices
->open_devices
--;
2028 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2029 struct btrfs_device
*srcdev
)
2031 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2033 if (srcdev
->writeable
) {
2034 /* zero out the old super if it is writable */
2035 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2038 btrfs_close_bdev(srcdev
);
2040 call_rcu(&srcdev
->rcu
, free_device
);
2043 * unless fs_devices is seed fs, num_devices shouldn't go
2046 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
2048 /* if this is no devs we rather delete the fs_devices */
2049 if (!fs_devices
->num_devices
) {
2050 struct btrfs_fs_devices
*tmp_fs_devices
;
2052 tmp_fs_devices
= fs_info
->fs_devices
;
2053 while (tmp_fs_devices
) {
2054 if (tmp_fs_devices
->seed
== fs_devices
) {
2055 tmp_fs_devices
->seed
= fs_devices
->seed
;
2058 tmp_fs_devices
= tmp_fs_devices
->seed
;
2060 fs_devices
->seed
= NULL
;
2061 __btrfs_close_devices(fs_devices
);
2062 free_fs_devices(fs_devices
);
2066 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2067 struct btrfs_device
*tgtdev
)
2069 mutex_lock(&uuid_mutex
);
2071 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2073 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2076 fs_info
->fs_devices
->open_devices
--;
2078 fs_info
->fs_devices
->num_devices
--;
2080 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2082 list_del_rcu(&tgtdev
->dev_list
);
2084 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2085 mutex_unlock(&uuid_mutex
);
2088 * The update_dev_time() with in btrfs_scratch_superblocks()
2089 * may lead to a call to btrfs_show_devname() which will try
2090 * to hold device_list_mutex. And here this device
2091 * is already out of device list, so we don't have to hold
2092 * the device_list_mutex lock.
2094 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2096 btrfs_close_bdev(tgtdev
);
2097 call_rcu(&tgtdev
->rcu
, free_device
);
2100 static int btrfs_find_device_by_path(struct btrfs_fs_info
*fs_info
,
2101 const char *device_path
,
2102 struct btrfs_device
**device
)
2105 struct btrfs_super_block
*disk_super
;
2108 struct block_device
*bdev
;
2109 struct buffer_head
*bh
;
2112 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2113 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2116 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2117 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2118 dev_uuid
= disk_super
->dev_item
.uuid
;
2119 *device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, disk_super
->fsid
);
2123 blkdev_put(bdev
, FMODE_READ
);
2127 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info
*fs_info
,
2128 const char *device_path
,
2129 struct btrfs_device
**device
)
2132 if (strcmp(device_path
, "missing") == 0) {
2133 struct list_head
*devices
;
2134 struct btrfs_device
*tmp
;
2136 devices
= &fs_info
->fs_devices
->devices
;
2138 * It is safe to read the devices since the volume_mutex
2139 * is held by the caller.
2141 list_for_each_entry(tmp
, devices
, dev_list
) {
2142 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2149 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2153 return btrfs_find_device_by_path(fs_info
, device_path
, device
);
2158 * Lookup a device given by device id, or the path if the id is 0.
2160 int btrfs_find_device_by_devspec(struct btrfs_fs_info
*fs_info
, u64 devid
,
2161 const char *devpath
,
2162 struct btrfs_device
**device
)
2168 *device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2172 if (!devpath
|| !devpath
[0])
2175 ret
= btrfs_find_device_missing_or_by_path(fs_info
, devpath
,
2182 * does all the dirty work required for changing file system's UUID.
2184 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2186 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2187 struct btrfs_fs_devices
*old_devices
;
2188 struct btrfs_fs_devices
*seed_devices
;
2189 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2190 struct btrfs_device
*device
;
2193 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2194 if (!fs_devices
->seeding
)
2197 seed_devices
= alloc_fs_devices(NULL
);
2198 if (IS_ERR(seed_devices
))
2199 return PTR_ERR(seed_devices
);
2201 old_devices
= clone_fs_devices(fs_devices
);
2202 if (IS_ERR(old_devices
)) {
2203 kfree(seed_devices
);
2204 return PTR_ERR(old_devices
);
2207 list_add(&old_devices
->list
, &fs_uuids
);
2209 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2210 seed_devices
->opened
= 1;
2211 INIT_LIST_HEAD(&seed_devices
->devices
);
2212 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2213 mutex_init(&seed_devices
->device_list_mutex
);
2215 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2216 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2218 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2219 device
->fs_devices
= seed_devices
;
2221 mutex_lock(&fs_info
->chunk_mutex
);
2222 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2223 mutex_unlock(&fs_info
->chunk_mutex
);
2225 fs_devices
->seeding
= 0;
2226 fs_devices
->num_devices
= 0;
2227 fs_devices
->open_devices
= 0;
2228 fs_devices
->missing_devices
= 0;
2229 fs_devices
->rotating
= 0;
2230 fs_devices
->seed
= seed_devices
;
2232 generate_random_uuid(fs_devices
->fsid
);
2233 memcpy(fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2234 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2235 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2237 super_flags
= btrfs_super_flags(disk_super
) &
2238 ~BTRFS_SUPER_FLAG_SEEDING
;
2239 btrfs_set_super_flags(disk_super
, super_flags
);
2245 * Store the expected generation for seed devices in device items.
2247 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2248 struct btrfs_fs_info
*fs_info
)
2250 struct btrfs_root
*root
= fs_info
->chunk_root
;
2251 struct btrfs_path
*path
;
2252 struct extent_buffer
*leaf
;
2253 struct btrfs_dev_item
*dev_item
;
2254 struct btrfs_device
*device
;
2255 struct btrfs_key key
;
2256 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2257 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2261 path
= btrfs_alloc_path();
2265 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2267 key
.type
= BTRFS_DEV_ITEM_KEY
;
2270 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2274 leaf
= path
->nodes
[0];
2276 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2277 ret
= btrfs_next_leaf(root
, path
);
2282 leaf
= path
->nodes
[0];
2283 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2284 btrfs_release_path(path
);
2288 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2289 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2290 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2293 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2294 struct btrfs_dev_item
);
2295 devid
= btrfs_device_id(leaf
, dev_item
);
2296 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2298 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2300 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
2301 BUG_ON(!device
); /* Logic error */
2303 if (device
->fs_devices
->seeding
) {
2304 btrfs_set_device_generation(leaf
, dev_item
,
2305 device
->generation
);
2306 btrfs_mark_buffer_dirty(leaf
);
2314 btrfs_free_path(path
);
2318 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2320 struct btrfs_root
*root
= fs_info
->dev_root
;
2321 struct request_queue
*q
;
2322 struct btrfs_trans_handle
*trans
;
2323 struct btrfs_device
*device
;
2324 struct block_device
*bdev
;
2325 struct list_head
*devices
;
2326 struct super_block
*sb
= fs_info
->sb
;
2327 struct rcu_string
*name
;
2329 int seeding_dev
= 0;
2332 if (sb_rdonly(sb
) && !fs_info
->fs_devices
->seeding
)
2335 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2336 fs_info
->bdev_holder
);
2338 return PTR_ERR(bdev
);
2340 if (fs_info
->fs_devices
->seeding
) {
2342 down_write(&sb
->s_umount
);
2343 mutex_lock(&uuid_mutex
);
2346 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2348 devices
= &fs_info
->fs_devices
->devices
;
2350 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2351 list_for_each_entry(device
, devices
, dev_list
) {
2352 if (device
->bdev
== bdev
) {
2355 &fs_info
->fs_devices
->device_list_mutex
);
2359 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2361 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2362 if (IS_ERR(device
)) {
2363 /* we can safely leave the fs_devices entry around */
2364 ret
= PTR_ERR(device
);
2368 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2374 rcu_assign_pointer(device
->name
, name
);
2376 trans
= btrfs_start_transaction(root
, 0);
2377 if (IS_ERR(trans
)) {
2378 rcu_string_free(device
->name
);
2380 ret
= PTR_ERR(trans
);
2384 q
= bdev_get_queue(bdev
);
2385 if (blk_queue_discard(q
))
2386 device
->can_discard
= 1;
2387 device
->writeable
= 1;
2388 device
->generation
= trans
->transid
;
2389 device
->io_width
= fs_info
->sectorsize
;
2390 device
->io_align
= fs_info
->sectorsize
;
2391 device
->sector_size
= fs_info
->sectorsize
;
2392 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2393 fs_info
->sectorsize
);
2394 device
->disk_total_bytes
= device
->total_bytes
;
2395 device
->commit_total_bytes
= device
->total_bytes
;
2396 device
->fs_info
= fs_info
;
2397 device
->bdev
= bdev
;
2398 device
->in_fs_metadata
= 1;
2399 device
->is_tgtdev_for_dev_replace
= 0;
2400 device
->mode
= FMODE_EXCL
;
2401 device
->dev_stats_valid
= 1;
2402 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2405 sb
->s_flags
&= ~MS_RDONLY
;
2406 ret
= btrfs_prepare_sprout(fs_info
);
2407 BUG_ON(ret
); /* -ENOMEM */
2410 device
->fs_devices
= fs_info
->fs_devices
;
2412 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2413 mutex_lock(&fs_info
->chunk_mutex
);
2414 list_add_rcu(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2415 list_add(&device
->dev_alloc_list
,
2416 &fs_info
->fs_devices
->alloc_list
);
2417 fs_info
->fs_devices
->num_devices
++;
2418 fs_info
->fs_devices
->open_devices
++;
2419 fs_info
->fs_devices
->rw_devices
++;
2420 fs_info
->fs_devices
->total_devices
++;
2421 fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2423 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2425 if (!blk_queue_nonrot(q
))
2426 fs_info
->fs_devices
->rotating
= 1;
2428 tmp
= btrfs_super_total_bytes(fs_info
->super_copy
);
2429 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2430 round_down(tmp
+ device
->total_bytes
, fs_info
->sectorsize
));
2432 tmp
= btrfs_super_num_devices(fs_info
->super_copy
);
2433 btrfs_set_super_num_devices(fs_info
->super_copy
, tmp
+ 1);
2436 * we've got more storage, clear any full flags on the space
2439 btrfs_clear_space_info_full(fs_info
);
2441 mutex_unlock(&fs_info
->chunk_mutex
);
2443 /* Add sysfs device entry */
2444 btrfs_sysfs_add_device_link(fs_info
->fs_devices
, device
);
2446 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2449 mutex_lock(&fs_info
->chunk_mutex
);
2450 ret
= init_first_rw_device(trans
, fs_info
);
2451 mutex_unlock(&fs_info
->chunk_mutex
);
2453 btrfs_abort_transaction(trans
, ret
);
2458 ret
= btrfs_add_device(trans
, fs_info
, device
);
2460 btrfs_abort_transaction(trans
, ret
);
2465 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2467 ret
= btrfs_finish_sprout(trans
, fs_info
);
2469 btrfs_abort_transaction(trans
, ret
);
2473 /* Sprouting would change fsid of the mounted root,
2474 * so rename the fsid on the sysfs
2476 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2478 if (kobject_rename(&fs_info
->fs_devices
->fsid_kobj
, fsid_buf
))
2480 "sysfs: failed to create fsid for sprout");
2483 ret
= btrfs_commit_transaction(trans
);
2486 mutex_unlock(&uuid_mutex
);
2487 up_write(&sb
->s_umount
);
2489 if (ret
) /* transaction commit */
2492 ret
= btrfs_relocate_sys_chunks(fs_info
);
2494 btrfs_handle_fs_error(fs_info
, ret
,
2495 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2496 trans
= btrfs_attach_transaction(root
);
2497 if (IS_ERR(trans
)) {
2498 if (PTR_ERR(trans
) == -ENOENT
)
2500 return PTR_ERR(trans
);
2502 ret
= btrfs_commit_transaction(trans
);
2505 /* Update ctime/mtime for libblkid */
2506 update_dev_time(device_path
);
2511 sb
->s_flags
|= MS_RDONLY
;
2512 btrfs_end_transaction(trans
);
2513 rcu_string_free(device
->name
);
2514 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2517 blkdev_put(bdev
, FMODE_EXCL
);
2519 mutex_unlock(&uuid_mutex
);
2520 up_write(&sb
->s_umount
);
2525 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2526 const char *device_path
,
2527 struct btrfs_device
*srcdev
,
2528 struct btrfs_device
**device_out
)
2530 struct request_queue
*q
;
2531 struct btrfs_device
*device
;
2532 struct block_device
*bdev
;
2533 struct list_head
*devices
;
2534 struct rcu_string
*name
;
2535 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2539 if (fs_info
->fs_devices
->seeding
) {
2540 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2544 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2545 fs_info
->bdev_holder
);
2547 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2548 return PTR_ERR(bdev
);
2551 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2553 devices
= &fs_info
->fs_devices
->devices
;
2554 list_for_each_entry(device
, devices
, dev_list
) {
2555 if (device
->bdev
== bdev
) {
2557 "target device is in the filesystem!");
2564 if (i_size_read(bdev
->bd_inode
) <
2565 btrfs_device_get_total_bytes(srcdev
)) {
2567 "target device is smaller than source device!");
2573 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2574 if (IS_ERR(device
)) {
2575 ret
= PTR_ERR(device
);
2579 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2585 rcu_assign_pointer(device
->name
, name
);
2587 q
= bdev_get_queue(bdev
);
2588 if (blk_queue_discard(q
))
2589 device
->can_discard
= 1;
2590 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2591 device
->writeable
= 1;
2592 device
->generation
= 0;
2593 device
->io_width
= fs_info
->sectorsize
;
2594 device
->io_align
= fs_info
->sectorsize
;
2595 device
->sector_size
= fs_info
->sectorsize
;
2596 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2597 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2598 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2599 ASSERT(list_empty(&srcdev
->resized_list
));
2600 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2601 device
->commit_bytes_used
= device
->bytes_used
;
2602 device
->fs_info
= fs_info
;
2603 device
->bdev
= bdev
;
2604 device
->in_fs_metadata
= 1;
2605 device
->is_tgtdev_for_dev_replace
= 1;
2606 device
->mode
= FMODE_EXCL
;
2607 device
->dev_stats_valid
= 1;
2608 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2609 device
->fs_devices
= fs_info
->fs_devices
;
2610 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2611 fs_info
->fs_devices
->num_devices
++;
2612 fs_info
->fs_devices
->open_devices
++;
2613 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2615 *device_out
= device
;
2619 blkdev_put(bdev
, FMODE_EXCL
);
2623 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2624 struct btrfs_device
*tgtdev
)
2626 u32 sectorsize
= fs_info
->sectorsize
;
2628 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2629 tgtdev
->io_width
= sectorsize
;
2630 tgtdev
->io_align
= sectorsize
;
2631 tgtdev
->sector_size
= sectorsize
;
2632 tgtdev
->fs_info
= fs_info
;
2633 tgtdev
->in_fs_metadata
= 1;
2636 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2637 struct btrfs_device
*device
)
2640 struct btrfs_path
*path
;
2641 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2642 struct btrfs_dev_item
*dev_item
;
2643 struct extent_buffer
*leaf
;
2644 struct btrfs_key key
;
2646 path
= btrfs_alloc_path();
2650 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2651 key
.type
= BTRFS_DEV_ITEM_KEY
;
2652 key
.offset
= device
->devid
;
2654 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2663 leaf
= path
->nodes
[0];
2664 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2666 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2667 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2668 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2669 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2670 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2671 btrfs_set_device_total_bytes(leaf
, dev_item
,
2672 btrfs_device_get_disk_total_bytes(device
));
2673 btrfs_set_device_bytes_used(leaf
, dev_item
,
2674 btrfs_device_get_bytes_used(device
));
2675 btrfs_mark_buffer_dirty(leaf
);
2678 btrfs_free_path(path
);
2682 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2683 struct btrfs_device
*device
, u64 new_size
)
2685 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2686 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2687 struct btrfs_fs_devices
*fs_devices
;
2691 if (!device
->writeable
)
2694 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2696 mutex_lock(&fs_info
->chunk_mutex
);
2697 old_total
= btrfs_super_total_bytes(super_copy
);
2698 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2700 if (new_size
<= device
->total_bytes
||
2701 device
->is_tgtdev_for_dev_replace
) {
2702 mutex_unlock(&fs_info
->chunk_mutex
);
2706 fs_devices
= fs_info
->fs_devices
;
2708 btrfs_set_super_total_bytes(super_copy
,
2709 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2710 device
->fs_devices
->total_rw_bytes
+= diff
;
2712 btrfs_device_set_total_bytes(device
, new_size
);
2713 btrfs_device_set_disk_total_bytes(device
, new_size
);
2714 btrfs_clear_space_info_full(device
->fs_info
);
2715 if (list_empty(&device
->resized_list
))
2716 list_add_tail(&device
->resized_list
,
2717 &fs_devices
->resized_devices
);
2718 mutex_unlock(&fs_info
->chunk_mutex
);
2720 return btrfs_update_device(trans
, device
);
2723 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2724 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2726 struct btrfs_root
*root
= fs_info
->chunk_root
;
2728 struct btrfs_path
*path
;
2729 struct btrfs_key key
;
2731 path
= btrfs_alloc_path();
2735 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2736 key
.offset
= chunk_offset
;
2737 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2739 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2742 else if (ret
> 0) { /* Logic error or corruption */
2743 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2744 "Failed lookup while freeing chunk.");
2749 ret
= btrfs_del_item(trans
, root
, path
);
2751 btrfs_handle_fs_error(fs_info
, ret
,
2752 "Failed to delete chunk item.");
2754 btrfs_free_path(path
);
2758 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2760 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2761 struct btrfs_disk_key
*disk_key
;
2762 struct btrfs_chunk
*chunk
;
2769 struct btrfs_key key
;
2771 mutex_lock(&fs_info
->chunk_mutex
);
2772 array_size
= btrfs_super_sys_array_size(super_copy
);
2774 ptr
= super_copy
->sys_chunk_array
;
2777 while (cur
< array_size
) {
2778 disk_key
= (struct btrfs_disk_key
*)ptr
;
2779 btrfs_disk_key_to_cpu(&key
, disk_key
);
2781 len
= sizeof(*disk_key
);
2783 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2784 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2785 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2786 len
+= btrfs_chunk_item_size(num_stripes
);
2791 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2792 key
.offset
== chunk_offset
) {
2793 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2795 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2801 mutex_unlock(&fs_info
->chunk_mutex
);
2805 static struct extent_map
*get_chunk_map(struct btrfs_fs_info
*fs_info
,
2806 u64 logical
, u64 length
)
2808 struct extent_map_tree
*em_tree
;
2809 struct extent_map
*em
;
2811 em_tree
= &fs_info
->mapping_tree
.map_tree
;
2812 read_lock(&em_tree
->lock
);
2813 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2814 read_unlock(&em_tree
->lock
);
2817 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2819 return ERR_PTR(-EINVAL
);
2822 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2824 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2825 logical
, length
, em
->start
, em
->start
+ em
->len
);
2826 free_extent_map(em
);
2827 return ERR_PTR(-EINVAL
);
2830 /* callers are responsible for dropping em's ref. */
2834 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2835 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2837 struct extent_map
*em
;
2838 struct map_lookup
*map
;
2839 u64 dev_extent_len
= 0;
2841 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2843 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
2846 * This is a logic error, but we don't want to just rely on the
2847 * user having built with ASSERT enabled, so if ASSERT doesn't
2848 * do anything we still error out.
2853 map
= em
->map_lookup
;
2854 mutex_lock(&fs_info
->chunk_mutex
);
2855 check_system_chunk(trans
, fs_info
, map
->type
);
2856 mutex_unlock(&fs_info
->chunk_mutex
);
2859 * Take the device list mutex to prevent races with the final phase of
2860 * a device replace operation that replaces the device object associated
2861 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2863 mutex_lock(&fs_devices
->device_list_mutex
);
2864 for (i
= 0; i
< map
->num_stripes
; i
++) {
2865 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2866 ret
= btrfs_free_dev_extent(trans
, device
,
2867 map
->stripes
[i
].physical
,
2870 mutex_unlock(&fs_devices
->device_list_mutex
);
2871 btrfs_abort_transaction(trans
, ret
);
2875 if (device
->bytes_used
> 0) {
2876 mutex_lock(&fs_info
->chunk_mutex
);
2877 btrfs_device_set_bytes_used(device
,
2878 device
->bytes_used
- dev_extent_len
);
2879 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
2880 btrfs_clear_space_info_full(fs_info
);
2881 mutex_unlock(&fs_info
->chunk_mutex
);
2884 if (map
->stripes
[i
].dev
) {
2885 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2887 mutex_unlock(&fs_devices
->device_list_mutex
);
2888 btrfs_abort_transaction(trans
, ret
);
2893 mutex_unlock(&fs_devices
->device_list_mutex
);
2895 ret
= btrfs_free_chunk(trans
, fs_info
, chunk_offset
);
2897 btrfs_abort_transaction(trans
, ret
);
2901 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2903 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2904 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
2906 btrfs_abort_transaction(trans
, ret
);
2911 ret
= btrfs_remove_block_group(trans
, fs_info
, chunk_offset
, em
);
2913 btrfs_abort_transaction(trans
, ret
);
2919 free_extent_map(em
);
2923 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2925 struct btrfs_root
*root
= fs_info
->chunk_root
;
2926 struct btrfs_trans_handle
*trans
;
2930 * Prevent races with automatic removal of unused block groups.
2931 * After we relocate and before we remove the chunk with offset
2932 * chunk_offset, automatic removal of the block group can kick in,
2933 * resulting in a failure when calling btrfs_remove_chunk() below.
2935 * Make sure to acquire this mutex before doing a tree search (dev
2936 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2937 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2938 * we release the path used to search the chunk/dev tree and before
2939 * the current task acquires this mutex and calls us.
2941 ASSERT(mutex_is_locked(&fs_info
->delete_unused_bgs_mutex
));
2943 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
2947 /* step one, relocate all the extents inside this chunk */
2948 btrfs_scrub_pause(fs_info
);
2949 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
2950 btrfs_scrub_continue(fs_info
);
2954 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2956 if (IS_ERR(trans
)) {
2957 ret
= PTR_ERR(trans
);
2958 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2963 * step two, delete the device extents and the
2964 * chunk tree entries
2966 ret
= btrfs_remove_chunk(trans
, fs_info
, chunk_offset
);
2967 btrfs_end_transaction(trans
);
2971 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
2973 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2974 struct btrfs_path
*path
;
2975 struct extent_buffer
*leaf
;
2976 struct btrfs_chunk
*chunk
;
2977 struct btrfs_key key
;
2978 struct btrfs_key found_key
;
2980 bool retried
= false;
2984 path
= btrfs_alloc_path();
2989 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2990 key
.offset
= (u64
)-1;
2991 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2994 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
2995 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2997 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3000 BUG_ON(ret
== 0); /* Corruption */
3002 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
3005 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3011 leaf
= path
->nodes
[0];
3012 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3014 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3015 struct btrfs_chunk
);
3016 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3017 btrfs_release_path(path
);
3019 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3020 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3026 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3028 if (found_key
.offset
== 0)
3030 key
.offset
= found_key
.offset
- 1;
3033 if (failed
&& !retried
) {
3037 } else if (WARN_ON(failed
&& retried
)) {
3041 btrfs_free_path(path
);
3045 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3046 struct btrfs_balance_control
*bctl
)
3048 struct btrfs_root
*root
= fs_info
->tree_root
;
3049 struct btrfs_trans_handle
*trans
;
3050 struct btrfs_balance_item
*item
;
3051 struct btrfs_disk_balance_args disk_bargs
;
3052 struct btrfs_path
*path
;
3053 struct extent_buffer
*leaf
;
3054 struct btrfs_key key
;
3057 path
= btrfs_alloc_path();
3061 trans
= btrfs_start_transaction(root
, 0);
3062 if (IS_ERR(trans
)) {
3063 btrfs_free_path(path
);
3064 return PTR_ERR(trans
);
3067 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3068 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3071 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3076 leaf
= path
->nodes
[0];
3077 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3079 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3081 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3082 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3083 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3084 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3085 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3086 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3088 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3090 btrfs_mark_buffer_dirty(leaf
);
3092 btrfs_free_path(path
);
3093 err
= btrfs_commit_transaction(trans
);
3099 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3101 struct btrfs_root
*root
= fs_info
->tree_root
;
3102 struct btrfs_trans_handle
*trans
;
3103 struct btrfs_path
*path
;
3104 struct btrfs_key key
;
3107 path
= btrfs_alloc_path();
3111 trans
= btrfs_start_transaction(root
, 0);
3112 if (IS_ERR(trans
)) {
3113 btrfs_free_path(path
);
3114 return PTR_ERR(trans
);
3117 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3118 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3121 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3129 ret
= btrfs_del_item(trans
, root
, path
);
3131 btrfs_free_path(path
);
3132 err
= btrfs_commit_transaction(trans
);
3139 * This is a heuristic used to reduce the number of chunks balanced on
3140 * resume after balance was interrupted.
3142 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3145 * Turn on soft mode for chunk types that were being converted.
3147 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3148 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3149 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3150 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3151 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3152 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3155 * Turn on usage filter if is not already used. The idea is
3156 * that chunks that we have already balanced should be
3157 * reasonably full. Don't do it for chunks that are being
3158 * converted - that will keep us from relocating unconverted
3159 * (albeit full) chunks.
3161 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3162 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3163 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3164 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3165 bctl
->data
.usage
= 90;
3167 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3168 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3169 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3170 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3171 bctl
->sys
.usage
= 90;
3173 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3174 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3175 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3176 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3177 bctl
->meta
.usage
= 90;
3182 * Should be called with both balance and volume mutexes held to
3183 * serialize other volume operations (add_dev/rm_dev/resize) with
3184 * restriper. Same goes for unset_balance_control.
3186 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3188 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3190 BUG_ON(fs_info
->balance_ctl
);
3192 spin_lock(&fs_info
->balance_lock
);
3193 fs_info
->balance_ctl
= bctl
;
3194 spin_unlock(&fs_info
->balance_lock
);
3197 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3199 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3201 BUG_ON(!fs_info
->balance_ctl
);
3203 spin_lock(&fs_info
->balance_lock
);
3204 fs_info
->balance_ctl
= NULL
;
3205 spin_unlock(&fs_info
->balance_lock
);
3211 * Balance filters. Return 1 if chunk should be filtered out
3212 * (should not be balanced).
3214 static int chunk_profiles_filter(u64 chunk_type
,
3215 struct btrfs_balance_args
*bargs
)
3217 chunk_type
= chunk_to_extended(chunk_type
) &
3218 BTRFS_EXTENDED_PROFILE_MASK
;
3220 if (bargs
->profiles
& chunk_type
)
3226 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3227 struct btrfs_balance_args
*bargs
)
3229 struct btrfs_block_group_cache
*cache
;
3231 u64 user_thresh_min
;
3232 u64 user_thresh_max
;
3235 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3236 chunk_used
= btrfs_block_group_used(&cache
->item
);
3238 if (bargs
->usage_min
== 0)
3239 user_thresh_min
= 0;
3241 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3244 if (bargs
->usage_max
== 0)
3245 user_thresh_max
= 1;
3246 else if (bargs
->usage_max
> 100)
3247 user_thresh_max
= cache
->key
.offset
;
3249 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3252 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3255 btrfs_put_block_group(cache
);
3259 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3260 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3262 struct btrfs_block_group_cache
*cache
;
3263 u64 chunk_used
, user_thresh
;
3266 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3267 chunk_used
= btrfs_block_group_used(&cache
->item
);
3269 if (bargs
->usage_min
== 0)
3271 else if (bargs
->usage
> 100)
3272 user_thresh
= cache
->key
.offset
;
3274 user_thresh
= div_factor_fine(cache
->key
.offset
,
3277 if (chunk_used
< user_thresh
)
3280 btrfs_put_block_group(cache
);
3284 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3285 struct btrfs_chunk
*chunk
,
3286 struct btrfs_balance_args
*bargs
)
3288 struct btrfs_stripe
*stripe
;
3289 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3292 for (i
= 0; i
< num_stripes
; i
++) {
3293 stripe
= btrfs_stripe_nr(chunk
, i
);
3294 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3301 /* [pstart, pend) */
3302 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3303 struct btrfs_chunk
*chunk
,
3304 struct btrfs_balance_args
*bargs
)
3306 struct btrfs_stripe
*stripe
;
3307 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3313 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3316 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3317 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3318 factor
= num_stripes
/ 2;
3319 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3320 factor
= num_stripes
- 1;
3321 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3322 factor
= num_stripes
- 2;
3324 factor
= num_stripes
;
3327 for (i
= 0; i
< num_stripes
; i
++) {
3328 stripe
= btrfs_stripe_nr(chunk
, i
);
3329 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3332 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3333 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3334 stripe_length
= div_u64(stripe_length
, factor
);
3336 if (stripe_offset
< bargs
->pend
&&
3337 stripe_offset
+ stripe_length
> bargs
->pstart
)
3344 /* [vstart, vend) */
3345 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3346 struct btrfs_chunk
*chunk
,
3348 struct btrfs_balance_args
*bargs
)
3350 if (chunk_offset
< bargs
->vend
&&
3351 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3352 /* at least part of the chunk is inside this vrange */
3358 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3359 struct btrfs_chunk
*chunk
,
3360 struct btrfs_balance_args
*bargs
)
3362 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3364 if (bargs
->stripes_min
<= num_stripes
3365 && num_stripes
<= bargs
->stripes_max
)
3371 static int chunk_soft_convert_filter(u64 chunk_type
,
3372 struct btrfs_balance_args
*bargs
)
3374 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3377 chunk_type
= chunk_to_extended(chunk_type
) &
3378 BTRFS_EXTENDED_PROFILE_MASK
;
3380 if (bargs
->target
== chunk_type
)
3386 static int should_balance_chunk(struct btrfs_fs_info
*fs_info
,
3387 struct extent_buffer
*leaf
,
3388 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3390 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3391 struct btrfs_balance_args
*bargs
= NULL
;
3392 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3395 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3396 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3400 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3401 bargs
= &bctl
->data
;
3402 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3404 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3405 bargs
= &bctl
->meta
;
3407 /* profiles filter */
3408 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3409 chunk_profiles_filter(chunk_type
, bargs
)) {
3414 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3415 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3417 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3418 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3423 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3424 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3428 /* drange filter, makes sense only with devid filter */
3429 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3430 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3435 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3436 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3440 /* stripes filter */
3441 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3442 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3446 /* soft profile changing mode */
3447 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3448 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3453 * limited by count, must be the last filter
3455 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3456 if (bargs
->limit
== 0)
3460 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3462 * Same logic as the 'limit' filter; the minimum cannot be
3463 * determined here because we do not have the global information
3464 * about the count of all chunks that satisfy the filters.
3466 if (bargs
->limit_max
== 0)
3475 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3477 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3478 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3479 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3480 struct list_head
*devices
;
3481 struct btrfs_device
*device
;
3485 struct btrfs_chunk
*chunk
;
3486 struct btrfs_path
*path
= NULL
;
3487 struct btrfs_key key
;
3488 struct btrfs_key found_key
;
3489 struct btrfs_trans_handle
*trans
;
3490 struct extent_buffer
*leaf
;
3493 int enospc_errors
= 0;
3494 bool counting
= true;
3495 /* The single value limit and min/max limits use the same bytes in the */
3496 u64 limit_data
= bctl
->data
.limit
;
3497 u64 limit_meta
= bctl
->meta
.limit
;
3498 u64 limit_sys
= bctl
->sys
.limit
;
3502 int chunk_reserved
= 0;
3505 /* step one make some room on all the devices */
3506 devices
= &fs_info
->fs_devices
->devices
;
3507 list_for_each_entry(device
, devices
, dev_list
) {
3508 old_size
= btrfs_device_get_total_bytes(device
);
3509 size_to_free
= div_factor(old_size
, 1);
3510 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3511 if (!device
->writeable
||
3512 btrfs_device_get_total_bytes(device
) -
3513 btrfs_device_get_bytes_used(device
) > size_to_free
||
3514 device
->is_tgtdev_for_dev_replace
)
3517 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3521 /* btrfs_shrink_device never returns ret > 0 */
3526 trans
= btrfs_start_transaction(dev_root
, 0);
3527 if (IS_ERR(trans
)) {
3528 ret
= PTR_ERR(trans
);
3529 btrfs_info_in_rcu(fs_info
,
3530 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3531 rcu_str_deref(device
->name
), ret
,
3532 old_size
, old_size
- size_to_free
);
3536 ret
= btrfs_grow_device(trans
, device
, old_size
);
3538 btrfs_end_transaction(trans
);
3539 /* btrfs_grow_device never returns ret > 0 */
3541 btrfs_info_in_rcu(fs_info
,
3542 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3543 rcu_str_deref(device
->name
), ret
,
3544 old_size
, old_size
- size_to_free
);
3548 btrfs_end_transaction(trans
);
3551 /* step two, relocate all the chunks */
3552 path
= btrfs_alloc_path();
3558 /* zero out stat counters */
3559 spin_lock(&fs_info
->balance_lock
);
3560 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3561 spin_unlock(&fs_info
->balance_lock
);
3565 * The single value limit and min/max limits use the same bytes
3568 bctl
->data
.limit
= limit_data
;
3569 bctl
->meta
.limit
= limit_meta
;
3570 bctl
->sys
.limit
= limit_sys
;
3572 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3573 key
.offset
= (u64
)-1;
3574 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3577 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3578 atomic_read(&fs_info
->balance_cancel_req
)) {
3583 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3584 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3586 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3591 * this shouldn't happen, it means the last relocate
3595 BUG(); /* FIXME break ? */
3597 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3598 BTRFS_CHUNK_ITEM_KEY
);
3600 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3605 leaf
= path
->nodes
[0];
3606 slot
= path
->slots
[0];
3607 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3609 if (found_key
.objectid
!= key
.objectid
) {
3610 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3614 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3615 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3618 spin_lock(&fs_info
->balance_lock
);
3619 bctl
->stat
.considered
++;
3620 spin_unlock(&fs_info
->balance_lock
);
3623 ret
= should_balance_chunk(fs_info
, leaf
, chunk
,
3626 btrfs_release_path(path
);
3628 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3633 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3634 spin_lock(&fs_info
->balance_lock
);
3635 bctl
->stat
.expected
++;
3636 spin_unlock(&fs_info
->balance_lock
);
3638 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3640 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3642 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3649 * Apply limit_min filter, no need to check if the LIMITS
3650 * filter is used, limit_min is 0 by default
3652 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3653 count_data
< bctl
->data
.limit_min
)
3654 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3655 count_meta
< bctl
->meta
.limit_min
)
3656 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3657 count_sys
< bctl
->sys
.limit_min
)) {
3658 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3662 ASSERT(fs_info
->data_sinfo
);
3663 spin_lock(&fs_info
->data_sinfo
->lock
);
3664 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3665 spin_unlock(&fs_info
->data_sinfo
->lock
);
3667 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3668 !chunk_reserved
&& !bytes_used
) {
3669 trans
= btrfs_start_transaction(chunk_root
, 0);
3670 if (IS_ERR(trans
)) {
3671 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3672 ret
= PTR_ERR(trans
);
3676 ret
= btrfs_force_chunk_alloc(trans
, fs_info
,
3677 BTRFS_BLOCK_GROUP_DATA
);
3678 btrfs_end_transaction(trans
);
3680 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3686 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3687 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3688 if (ret
&& ret
!= -ENOSPC
)
3690 if (ret
== -ENOSPC
) {
3693 spin_lock(&fs_info
->balance_lock
);
3694 bctl
->stat
.completed
++;
3695 spin_unlock(&fs_info
->balance_lock
);
3698 if (found_key
.offset
== 0)
3700 key
.offset
= found_key
.offset
- 1;
3704 btrfs_release_path(path
);
3709 btrfs_free_path(path
);
3710 if (enospc_errors
) {
3711 btrfs_info(fs_info
, "%d enospc errors during balance",
3721 * alloc_profile_is_valid - see if a given profile is valid and reduced
3722 * @flags: profile to validate
3723 * @extended: if true @flags is treated as an extended profile
3725 static int alloc_profile_is_valid(u64 flags
, int extended
)
3727 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3728 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3730 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3732 /* 1) check that all other bits are zeroed */
3736 /* 2) see if profile is reduced */
3738 return !extended
; /* "0" is valid for usual profiles */
3740 /* true if exactly one bit set */
3741 return (flags
& (flags
- 1)) == 0;
3744 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3746 /* cancel requested || normal exit path */
3747 return atomic_read(&fs_info
->balance_cancel_req
) ||
3748 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3749 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3752 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3756 unset_balance_control(fs_info
);
3757 ret
= del_balance_item(fs_info
);
3759 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3761 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3764 /* Non-zero return value signifies invalidity */
3765 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3768 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3769 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3770 (bctl_arg
->target
& ~allowed
)));
3774 * Should be called with both balance and volume mutexes held
3776 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3777 struct btrfs_ioctl_balance_args
*bargs
)
3779 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3780 u64 meta_target
, data_target
;
3787 if (btrfs_fs_closing(fs_info
) ||
3788 atomic_read(&fs_info
->balance_pause_req
) ||
3789 atomic_read(&fs_info
->balance_cancel_req
)) {
3794 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3795 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3799 * In case of mixed groups both data and meta should be picked,
3800 * and identical options should be given for both of them.
3802 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3803 if (mixed
&& (bctl
->flags
& allowed
)) {
3804 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3805 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3806 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3808 "with mixed groups data and metadata balance options must be the same");
3814 num_devices
= fs_info
->fs_devices
->num_devices
;
3815 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3816 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3817 BUG_ON(num_devices
< 1);
3820 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3821 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3822 if (num_devices
> 1)
3823 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3824 if (num_devices
> 2)
3825 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3826 if (num_devices
> 3)
3827 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3828 BTRFS_BLOCK_GROUP_RAID6
);
3829 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3831 "unable to start balance with target data profile %llu",
3836 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3838 "unable to start balance with target metadata profile %llu",
3843 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3845 "unable to start balance with target system profile %llu",
3851 /* allow to reduce meta or sys integrity only if force set */
3852 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3853 BTRFS_BLOCK_GROUP_RAID10
|
3854 BTRFS_BLOCK_GROUP_RAID5
|
3855 BTRFS_BLOCK_GROUP_RAID6
;
3857 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3859 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3860 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3861 !(bctl
->sys
.target
& allowed
)) ||
3862 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3863 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3864 !(bctl
->meta
.target
& allowed
))) {
3865 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3867 "force reducing metadata integrity");
3870 "balance will reduce metadata integrity, use force if you want this");
3875 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3877 /* if we're not converting, the target field is uninitialized */
3878 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3879 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
3880 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3881 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
3882 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
3883 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
3885 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3886 meta_target
, data_target
);
3889 ret
= insert_balance_item(fs_info
, bctl
);
3890 if (ret
&& ret
!= -EEXIST
)
3893 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3894 BUG_ON(ret
== -EEXIST
);
3895 set_balance_control(bctl
);
3897 BUG_ON(ret
!= -EEXIST
);
3898 spin_lock(&fs_info
->balance_lock
);
3899 update_balance_args(bctl
);
3900 spin_unlock(&fs_info
->balance_lock
);
3903 atomic_inc(&fs_info
->balance_running
);
3904 mutex_unlock(&fs_info
->balance_mutex
);
3906 ret
= __btrfs_balance(fs_info
);
3908 mutex_lock(&fs_info
->balance_mutex
);
3909 atomic_dec(&fs_info
->balance_running
);
3912 memset(bargs
, 0, sizeof(*bargs
));
3913 update_ioctl_balance_args(fs_info
, 0, bargs
);
3916 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3917 balance_need_close(fs_info
)) {
3918 __cancel_balance(fs_info
);
3921 wake_up(&fs_info
->balance_wait_q
);
3925 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3926 __cancel_balance(fs_info
);
3929 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3934 static int balance_kthread(void *data
)
3936 struct btrfs_fs_info
*fs_info
= data
;
3939 mutex_lock(&fs_info
->volume_mutex
);
3940 mutex_lock(&fs_info
->balance_mutex
);
3942 if (fs_info
->balance_ctl
) {
3943 btrfs_info(fs_info
, "continuing balance");
3944 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3947 mutex_unlock(&fs_info
->balance_mutex
);
3948 mutex_unlock(&fs_info
->volume_mutex
);
3953 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3955 struct task_struct
*tsk
;
3957 spin_lock(&fs_info
->balance_lock
);
3958 if (!fs_info
->balance_ctl
) {
3959 spin_unlock(&fs_info
->balance_lock
);
3962 spin_unlock(&fs_info
->balance_lock
);
3964 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
3965 btrfs_info(fs_info
, "force skipping balance");
3970 * A ro->rw remount sequence should continue with the paused balance
3971 * regardless of who pauses it, system or the user as of now, so set
3974 spin_lock(&fs_info
->balance_lock
);
3975 fs_info
->balance_ctl
->flags
|= BTRFS_BALANCE_RESUME
;
3976 spin_unlock(&fs_info
->balance_lock
);
3978 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3979 return PTR_ERR_OR_ZERO(tsk
);
3982 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3984 struct btrfs_balance_control
*bctl
;
3985 struct btrfs_balance_item
*item
;
3986 struct btrfs_disk_balance_args disk_bargs
;
3987 struct btrfs_path
*path
;
3988 struct extent_buffer
*leaf
;
3989 struct btrfs_key key
;
3992 path
= btrfs_alloc_path();
3996 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3997 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4000 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4003 if (ret
> 0) { /* ret = -ENOENT; */
4008 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4014 leaf
= path
->nodes
[0];
4015 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4017 bctl
->fs_info
= fs_info
;
4018 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4019 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4021 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4022 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4023 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4024 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4025 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4026 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4028 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
4030 mutex_lock(&fs_info
->volume_mutex
);
4031 mutex_lock(&fs_info
->balance_mutex
);
4033 set_balance_control(bctl
);
4035 mutex_unlock(&fs_info
->balance_mutex
);
4036 mutex_unlock(&fs_info
->volume_mutex
);
4038 btrfs_free_path(path
);
4042 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4046 mutex_lock(&fs_info
->balance_mutex
);
4047 if (!fs_info
->balance_ctl
) {
4048 mutex_unlock(&fs_info
->balance_mutex
);
4052 if (atomic_read(&fs_info
->balance_running
)) {
4053 atomic_inc(&fs_info
->balance_pause_req
);
4054 mutex_unlock(&fs_info
->balance_mutex
);
4056 wait_event(fs_info
->balance_wait_q
,
4057 atomic_read(&fs_info
->balance_running
) == 0);
4059 mutex_lock(&fs_info
->balance_mutex
);
4060 /* we are good with balance_ctl ripped off from under us */
4061 BUG_ON(atomic_read(&fs_info
->balance_running
));
4062 atomic_dec(&fs_info
->balance_pause_req
);
4067 mutex_unlock(&fs_info
->balance_mutex
);
4071 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4073 if (sb_rdonly(fs_info
->sb
))
4076 mutex_lock(&fs_info
->balance_mutex
);
4077 if (!fs_info
->balance_ctl
) {
4078 mutex_unlock(&fs_info
->balance_mutex
);
4082 atomic_inc(&fs_info
->balance_cancel_req
);
4084 * if we are running just wait and return, balance item is
4085 * deleted in btrfs_balance in this case
4087 if (atomic_read(&fs_info
->balance_running
)) {
4088 mutex_unlock(&fs_info
->balance_mutex
);
4089 wait_event(fs_info
->balance_wait_q
,
4090 atomic_read(&fs_info
->balance_running
) == 0);
4091 mutex_lock(&fs_info
->balance_mutex
);
4093 /* __cancel_balance needs volume_mutex */
4094 mutex_unlock(&fs_info
->balance_mutex
);
4095 mutex_lock(&fs_info
->volume_mutex
);
4096 mutex_lock(&fs_info
->balance_mutex
);
4098 if (fs_info
->balance_ctl
)
4099 __cancel_balance(fs_info
);
4101 mutex_unlock(&fs_info
->volume_mutex
);
4104 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4105 atomic_dec(&fs_info
->balance_cancel_req
);
4106 mutex_unlock(&fs_info
->balance_mutex
);
4110 static int btrfs_uuid_scan_kthread(void *data
)
4112 struct btrfs_fs_info
*fs_info
= data
;
4113 struct btrfs_root
*root
= fs_info
->tree_root
;
4114 struct btrfs_key key
;
4115 struct btrfs_path
*path
= NULL
;
4117 struct extent_buffer
*eb
;
4119 struct btrfs_root_item root_item
;
4121 struct btrfs_trans_handle
*trans
= NULL
;
4123 path
= btrfs_alloc_path();
4130 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4134 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4141 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4142 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4143 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4144 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4147 eb
= path
->nodes
[0];
4148 slot
= path
->slots
[0];
4149 item_size
= btrfs_item_size_nr(eb
, slot
);
4150 if (item_size
< sizeof(root_item
))
4153 read_extent_buffer(eb
, &root_item
,
4154 btrfs_item_ptr_offset(eb
, slot
),
4155 (int)sizeof(root_item
));
4156 if (btrfs_root_refs(&root_item
) == 0)
4159 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4160 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4164 btrfs_release_path(path
);
4166 * 1 - subvol uuid item
4167 * 1 - received_subvol uuid item
4169 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4170 if (IS_ERR(trans
)) {
4171 ret
= PTR_ERR(trans
);
4179 btrfs_release_path(path
);
4180 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4181 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4183 BTRFS_UUID_KEY_SUBVOL
,
4186 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4192 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4193 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4194 root_item
.received_uuid
,
4195 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4198 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4205 btrfs_release_path(path
);
4207 ret
= btrfs_end_transaction(trans
);
4213 if (key
.offset
< (u64
)-1) {
4215 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4217 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4218 } else if (key
.objectid
< (u64
)-1) {
4220 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4229 btrfs_free_path(path
);
4230 if (trans
&& !IS_ERR(trans
))
4231 btrfs_end_transaction(trans
);
4233 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4235 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4236 up(&fs_info
->uuid_tree_rescan_sem
);
4241 * Callback for btrfs_uuid_tree_iterate().
4243 * 0 check succeeded, the entry is not outdated.
4244 * < 0 if an error occurred.
4245 * > 0 if the check failed, which means the caller shall remove the entry.
4247 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4248 u8
*uuid
, u8 type
, u64 subid
)
4250 struct btrfs_key key
;
4252 struct btrfs_root
*subvol_root
;
4254 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4255 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4258 key
.objectid
= subid
;
4259 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4260 key
.offset
= (u64
)-1;
4261 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4262 if (IS_ERR(subvol_root
)) {
4263 ret
= PTR_ERR(subvol_root
);
4270 case BTRFS_UUID_KEY_SUBVOL
:
4271 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4274 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4275 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4285 static int btrfs_uuid_rescan_kthread(void *data
)
4287 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4291 * 1st step is to iterate through the existing UUID tree and
4292 * to delete all entries that contain outdated data.
4293 * 2nd step is to add all missing entries to the UUID tree.
4295 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4297 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4298 up(&fs_info
->uuid_tree_rescan_sem
);
4301 return btrfs_uuid_scan_kthread(data
);
4304 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4306 struct btrfs_trans_handle
*trans
;
4307 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4308 struct btrfs_root
*uuid_root
;
4309 struct task_struct
*task
;
4316 trans
= btrfs_start_transaction(tree_root
, 2);
4318 return PTR_ERR(trans
);
4320 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4321 BTRFS_UUID_TREE_OBJECTID
);
4322 if (IS_ERR(uuid_root
)) {
4323 ret
= PTR_ERR(uuid_root
);
4324 btrfs_abort_transaction(trans
, ret
);
4325 btrfs_end_transaction(trans
);
4329 fs_info
->uuid_root
= uuid_root
;
4331 ret
= btrfs_commit_transaction(trans
);
4335 down(&fs_info
->uuid_tree_rescan_sem
);
4336 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4338 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4339 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4340 up(&fs_info
->uuid_tree_rescan_sem
);
4341 return PTR_ERR(task
);
4347 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4349 struct task_struct
*task
;
4351 down(&fs_info
->uuid_tree_rescan_sem
);
4352 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4354 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4355 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4356 up(&fs_info
->uuid_tree_rescan_sem
);
4357 return PTR_ERR(task
);
4364 * shrinking a device means finding all of the device extents past
4365 * the new size, and then following the back refs to the chunks.
4366 * The chunk relocation code actually frees the device extent
4368 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4370 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4371 struct btrfs_root
*root
= fs_info
->dev_root
;
4372 struct btrfs_trans_handle
*trans
;
4373 struct btrfs_dev_extent
*dev_extent
= NULL
;
4374 struct btrfs_path
*path
;
4380 bool retried
= false;
4381 bool checked_pending_chunks
= false;
4382 struct extent_buffer
*l
;
4383 struct btrfs_key key
;
4384 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4385 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4386 u64 old_size
= btrfs_device_get_total_bytes(device
);
4389 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4390 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4392 if (device
->is_tgtdev_for_dev_replace
)
4395 path
= btrfs_alloc_path();
4399 path
->reada
= READA_FORWARD
;
4401 mutex_lock(&fs_info
->chunk_mutex
);
4403 btrfs_device_set_total_bytes(device
, new_size
);
4404 if (device
->writeable
) {
4405 device
->fs_devices
->total_rw_bytes
-= diff
;
4406 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4408 mutex_unlock(&fs_info
->chunk_mutex
);
4411 key
.objectid
= device
->devid
;
4412 key
.offset
= (u64
)-1;
4413 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4416 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4417 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4419 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4423 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4425 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4430 btrfs_release_path(path
);
4435 slot
= path
->slots
[0];
4436 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4438 if (key
.objectid
!= device
->devid
) {
4439 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4440 btrfs_release_path(path
);
4444 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4445 length
= btrfs_dev_extent_length(l
, dev_extent
);
4447 if (key
.offset
+ length
<= new_size
) {
4448 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4449 btrfs_release_path(path
);
4453 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4454 btrfs_release_path(path
);
4456 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4457 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4458 if (ret
&& ret
!= -ENOSPC
)
4462 } while (key
.offset
-- > 0);
4464 if (failed
&& !retried
) {
4468 } else if (failed
&& retried
) {
4473 /* Shrinking succeeded, else we would be at "done". */
4474 trans
= btrfs_start_transaction(root
, 0);
4475 if (IS_ERR(trans
)) {
4476 ret
= PTR_ERR(trans
);
4480 mutex_lock(&fs_info
->chunk_mutex
);
4483 * We checked in the above loop all device extents that were already in
4484 * the device tree. However before we have updated the device's
4485 * total_bytes to the new size, we might have had chunk allocations that
4486 * have not complete yet (new block groups attached to transaction
4487 * handles), and therefore their device extents were not yet in the
4488 * device tree and we missed them in the loop above. So if we have any
4489 * pending chunk using a device extent that overlaps the device range
4490 * that we can not use anymore, commit the current transaction and
4491 * repeat the search on the device tree - this way we guarantee we will
4492 * not have chunks using device extents that end beyond 'new_size'.
4494 if (!checked_pending_chunks
) {
4495 u64 start
= new_size
;
4496 u64 len
= old_size
- new_size
;
4498 if (contains_pending_extent(trans
->transaction
, device
,
4500 mutex_unlock(&fs_info
->chunk_mutex
);
4501 checked_pending_chunks
= true;
4504 ret
= btrfs_commit_transaction(trans
);
4511 btrfs_device_set_disk_total_bytes(device
, new_size
);
4512 if (list_empty(&device
->resized_list
))
4513 list_add_tail(&device
->resized_list
,
4514 &fs_info
->fs_devices
->resized_devices
);
4516 WARN_ON(diff
> old_total
);
4517 btrfs_set_super_total_bytes(super_copy
,
4518 round_down(old_total
- diff
, fs_info
->sectorsize
));
4519 mutex_unlock(&fs_info
->chunk_mutex
);
4521 /* Now btrfs_update_device() will change the on-disk size. */
4522 ret
= btrfs_update_device(trans
, device
);
4524 btrfs_abort_transaction(trans
, ret
);
4525 btrfs_end_transaction(trans
);
4527 ret
= btrfs_commit_transaction(trans
);
4530 btrfs_free_path(path
);
4532 mutex_lock(&fs_info
->chunk_mutex
);
4533 btrfs_device_set_total_bytes(device
, old_size
);
4534 if (device
->writeable
)
4535 device
->fs_devices
->total_rw_bytes
+= diff
;
4536 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4537 mutex_unlock(&fs_info
->chunk_mutex
);
4542 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4543 struct btrfs_key
*key
,
4544 struct btrfs_chunk
*chunk
, int item_size
)
4546 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4547 struct btrfs_disk_key disk_key
;
4551 mutex_lock(&fs_info
->chunk_mutex
);
4552 array_size
= btrfs_super_sys_array_size(super_copy
);
4553 if (array_size
+ item_size
+ sizeof(disk_key
)
4554 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4555 mutex_unlock(&fs_info
->chunk_mutex
);
4559 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4560 btrfs_cpu_key_to_disk(&disk_key
, key
);
4561 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4562 ptr
+= sizeof(disk_key
);
4563 memcpy(ptr
, chunk
, item_size
);
4564 item_size
+= sizeof(disk_key
);
4565 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4566 mutex_unlock(&fs_info
->chunk_mutex
);
4572 * sort the devices in descending order by max_avail, total_avail
4574 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4576 const struct btrfs_device_info
*di_a
= a
;
4577 const struct btrfs_device_info
*di_b
= b
;
4579 if (di_a
->max_avail
> di_b
->max_avail
)
4581 if (di_a
->max_avail
< di_b
->max_avail
)
4583 if (di_a
->total_avail
> di_b
->total_avail
)
4585 if (di_a
->total_avail
< di_b
->total_avail
)
4590 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4592 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4595 btrfs_set_fs_incompat(info
, RAID56
);
4598 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4599 - sizeof(struct btrfs_chunk)) \
4600 / sizeof(struct btrfs_stripe) + 1)
4602 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4603 - 2 * sizeof(struct btrfs_disk_key) \
4604 - 2 * sizeof(struct btrfs_chunk)) \
4605 / sizeof(struct btrfs_stripe) + 1)
4607 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4608 u64 start
, u64 type
)
4610 struct btrfs_fs_info
*info
= trans
->fs_info
;
4611 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4612 struct btrfs_device
*device
;
4613 struct map_lookup
*map
= NULL
;
4614 struct extent_map_tree
*em_tree
;
4615 struct extent_map
*em
;
4616 struct btrfs_device_info
*devices_info
= NULL
;
4618 int num_stripes
; /* total number of stripes to allocate */
4619 int data_stripes
; /* number of stripes that count for
4621 int sub_stripes
; /* sub_stripes info for map */
4622 int dev_stripes
; /* stripes per dev */
4623 int devs_max
; /* max devs to use */
4624 int devs_min
; /* min devs needed */
4625 int devs_increment
; /* ndevs has to be a multiple of this */
4626 int ncopies
; /* how many copies to data has */
4628 u64 max_stripe_size
;
4637 BUG_ON(!alloc_profile_is_valid(type
, 0));
4639 if (list_empty(&fs_devices
->alloc_list
))
4642 index
= __get_raid_index(type
);
4644 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4645 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4646 devs_max
= btrfs_raid_array
[index
].devs_max
;
4647 devs_min
= btrfs_raid_array
[index
].devs_min
;
4648 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4649 ncopies
= btrfs_raid_array
[index
].ncopies
;
4651 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4652 max_stripe_size
= SZ_1G
;
4653 max_chunk_size
= BTRFS_MAX_DATA_CHUNK_SIZE
;
4655 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4656 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4657 /* for larger filesystems, use larger metadata chunks */
4658 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4659 max_stripe_size
= SZ_1G
;
4661 max_stripe_size
= SZ_256M
;
4662 max_chunk_size
= max_stripe_size
;
4664 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4665 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4666 max_stripe_size
= SZ_32M
;
4667 max_chunk_size
= 2 * max_stripe_size
;
4669 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4671 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4676 /* we don't want a chunk larger than 10% of writeable space */
4677 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4680 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4686 * in the first pass through the devices list, we gather information
4687 * about the available holes on each device.
4690 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4694 if (!device
->writeable
) {
4696 "BTRFS: read-only device in alloc_list\n");
4700 if (!device
->in_fs_metadata
||
4701 device
->is_tgtdev_for_dev_replace
)
4704 if (device
->total_bytes
> device
->bytes_used
)
4705 total_avail
= device
->total_bytes
- device
->bytes_used
;
4709 /* If there is no space on this device, skip it. */
4710 if (total_avail
== 0)
4713 ret
= find_free_dev_extent(trans
, device
,
4714 max_stripe_size
* dev_stripes
,
4715 &dev_offset
, &max_avail
);
4716 if (ret
&& ret
!= -ENOSPC
)
4720 max_avail
= max_stripe_size
* dev_stripes
;
4722 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4725 if (ndevs
== fs_devices
->rw_devices
) {
4726 WARN(1, "%s: found more than %llu devices\n",
4727 __func__
, fs_devices
->rw_devices
);
4730 devices_info
[ndevs
].dev_offset
= dev_offset
;
4731 devices_info
[ndevs
].max_avail
= max_avail
;
4732 devices_info
[ndevs
].total_avail
= total_avail
;
4733 devices_info
[ndevs
].dev
= device
;
4738 * now sort the devices by hole size / available space
4740 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4741 btrfs_cmp_device_info
, NULL
);
4743 /* round down to number of usable stripes */
4744 ndevs
= round_down(ndevs
, devs_increment
);
4746 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4751 ndevs
= min(ndevs
, devs_max
);
4754 * The primary goal is to maximize the number of stripes, so use as
4755 * many devices as possible, even if the stripes are not maximum sized.
4757 * The DUP profile stores more than one stripe per device, the
4758 * max_avail is the total size so we have to adjust.
4760 stripe_size
= div_u64(devices_info
[ndevs
- 1].max_avail
, dev_stripes
);
4761 num_stripes
= ndevs
* dev_stripes
;
4764 * this will have to be fixed for RAID1 and RAID10 over
4767 data_stripes
= num_stripes
/ ncopies
;
4769 if (type
& BTRFS_BLOCK_GROUP_RAID5
)
4770 data_stripes
= num_stripes
- 1;
4772 if (type
& BTRFS_BLOCK_GROUP_RAID6
)
4773 data_stripes
= num_stripes
- 2;
4776 * Use the number of data stripes to figure out how big this chunk
4777 * is really going to be in terms of logical address space,
4778 * and compare that answer with the max chunk size
4780 if (stripe_size
* data_stripes
> max_chunk_size
) {
4781 u64 mask
= (1ULL << 24) - 1;
4783 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4785 /* bump the answer up to a 16MB boundary */
4786 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4788 /* but don't go higher than the limits we found
4789 * while searching for free extents
4791 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4792 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4795 /* align to BTRFS_STRIPE_LEN */
4796 stripe_size
= round_down(stripe_size
, BTRFS_STRIPE_LEN
);
4798 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4803 map
->num_stripes
= num_stripes
;
4805 for (i
= 0; i
< ndevs
; ++i
) {
4806 for (j
= 0; j
< dev_stripes
; ++j
) {
4807 int s
= i
* dev_stripes
+ j
;
4808 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4809 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4813 map
->stripe_len
= BTRFS_STRIPE_LEN
;
4814 map
->io_align
= BTRFS_STRIPE_LEN
;
4815 map
->io_width
= BTRFS_STRIPE_LEN
;
4817 map
->sub_stripes
= sub_stripes
;
4819 num_bytes
= stripe_size
* data_stripes
;
4821 trace_btrfs_chunk_alloc(info
, map
, start
, num_bytes
);
4823 em
= alloc_extent_map();
4829 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4830 em
->map_lookup
= map
;
4832 em
->len
= num_bytes
;
4833 em
->block_start
= 0;
4834 em
->block_len
= em
->len
;
4835 em
->orig_block_len
= stripe_size
;
4837 em_tree
= &info
->mapping_tree
.map_tree
;
4838 write_lock(&em_tree
->lock
);
4839 ret
= add_extent_mapping(em_tree
, em
, 0);
4841 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4842 refcount_inc(&em
->refs
);
4844 write_unlock(&em_tree
->lock
);
4846 free_extent_map(em
);
4850 ret
= btrfs_make_block_group(trans
, info
, 0, type
, start
, num_bytes
);
4852 goto error_del_extent
;
4854 for (i
= 0; i
< map
->num_stripes
; i
++) {
4855 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4856 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4857 map
->stripes
[i
].dev
->has_pending_chunks
= true;
4860 atomic64_sub(stripe_size
* map
->num_stripes
, &info
->free_chunk_space
);
4862 free_extent_map(em
);
4863 check_raid56_incompat_flag(info
, type
);
4865 kfree(devices_info
);
4869 write_lock(&em_tree
->lock
);
4870 remove_extent_mapping(em_tree
, em
);
4871 write_unlock(&em_tree
->lock
);
4873 /* One for our allocation */
4874 free_extent_map(em
);
4875 /* One for the tree reference */
4876 free_extent_map(em
);
4877 /* One for the pending_chunks list reference */
4878 free_extent_map(em
);
4880 kfree(devices_info
);
4884 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4885 struct btrfs_fs_info
*fs_info
,
4886 u64 chunk_offset
, u64 chunk_size
)
4888 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4889 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
4890 struct btrfs_key key
;
4891 struct btrfs_device
*device
;
4892 struct btrfs_chunk
*chunk
;
4893 struct btrfs_stripe
*stripe
;
4894 struct extent_map
*em
;
4895 struct map_lookup
*map
;
4902 em
= get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
4906 map
= em
->map_lookup
;
4907 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4908 stripe_size
= em
->orig_block_len
;
4910 chunk
= kzalloc(item_size
, GFP_NOFS
);
4917 * Take the device list mutex to prevent races with the final phase of
4918 * a device replace operation that replaces the device object associated
4919 * with the map's stripes, because the device object's id can change
4920 * at any time during that final phase of the device replace operation
4921 * (dev-replace.c:btrfs_dev_replace_finishing()).
4923 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4924 for (i
= 0; i
< map
->num_stripes
; i
++) {
4925 device
= map
->stripes
[i
].dev
;
4926 dev_offset
= map
->stripes
[i
].physical
;
4928 ret
= btrfs_update_device(trans
, device
);
4931 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
4932 dev_offset
, stripe_size
);
4937 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4941 stripe
= &chunk
->stripe
;
4942 for (i
= 0; i
< map
->num_stripes
; i
++) {
4943 device
= map
->stripes
[i
].dev
;
4944 dev_offset
= map
->stripes
[i
].physical
;
4946 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4947 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4948 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4951 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4953 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4954 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4955 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4956 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4957 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4958 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4959 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4960 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
4961 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4963 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4964 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4965 key
.offset
= chunk_offset
;
4967 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4968 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4970 * TODO: Cleanup of inserted chunk root in case of
4973 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
4978 free_extent_map(em
);
4983 * Chunk allocation falls into two parts. The first part does works
4984 * that make the new allocated chunk useable, but not do any operation
4985 * that modifies the chunk tree. The second part does the works that
4986 * require modifying the chunk tree. This division is important for the
4987 * bootstrap process of adding storage to a seed btrfs.
4989 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4990 struct btrfs_fs_info
*fs_info
, u64 type
)
4994 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
4995 chunk_offset
= find_next_chunk(fs_info
);
4996 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
4999 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5000 struct btrfs_fs_info
*fs_info
)
5003 u64 sys_chunk_offset
;
5007 chunk_offset
= find_next_chunk(fs_info
);
5008 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5009 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5013 sys_chunk_offset
= find_next_chunk(fs_info
);
5014 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5015 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5019 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5023 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5024 BTRFS_BLOCK_GROUP_RAID10
|
5025 BTRFS_BLOCK_GROUP_RAID5
)) {
5027 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5036 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5038 struct extent_map
*em
;
5039 struct map_lookup
*map
;
5044 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
5048 map
= em
->map_lookup
;
5049 for (i
= 0; i
< map
->num_stripes
; i
++) {
5050 if (map
->stripes
[i
].dev
->missing
) {
5055 if (!map
->stripes
[i
].dev
->writeable
) {
5062 * If the number of missing devices is larger than max errors,
5063 * we can not write the data into that chunk successfully, so
5066 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5069 free_extent_map(em
);
5073 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5075 extent_map_tree_init(&tree
->map_tree
);
5078 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5080 struct extent_map
*em
;
5083 write_lock(&tree
->map_tree
.lock
);
5084 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5086 remove_extent_mapping(&tree
->map_tree
, em
);
5087 write_unlock(&tree
->map_tree
.lock
);
5091 free_extent_map(em
);
5092 /* once for the tree */
5093 free_extent_map(em
);
5097 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5099 struct extent_map
*em
;
5100 struct map_lookup
*map
;
5103 em
= get_chunk_map(fs_info
, logical
, len
);
5106 * We could return errors for these cases, but that could get
5107 * ugly and we'd probably do the same thing which is just not do
5108 * anything else and exit, so return 1 so the callers don't try
5109 * to use other copies.
5113 map
= em
->map_lookup
;
5114 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5115 ret
= map
->num_stripes
;
5116 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5117 ret
= map
->sub_stripes
;
5118 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5120 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5122 * There could be two corrupted data stripes, we need
5123 * to loop retry in order to rebuild the correct data.
5125 * Fail a stripe at a time on every retry except the
5126 * stripe under reconstruction.
5128 ret
= map
->num_stripes
;
5131 free_extent_map(em
);
5133 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5134 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5135 fs_info
->dev_replace
.tgtdev
)
5137 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5142 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5145 struct extent_map
*em
;
5146 struct map_lookup
*map
;
5147 unsigned long len
= fs_info
->sectorsize
;
5149 em
= get_chunk_map(fs_info
, logical
, len
);
5151 if (!WARN_ON(IS_ERR(em
))) {
5152 map
= em
->map_lookup
;
5153 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5154 len
= map
->stripe_len
* nr_data_stripes(map
);
5155 free_extent_map(em
);
5160 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5162 struct extent_map
*em
;
5163 struct map_lookup
*map
;
5166 em
= get_chunk_map(fs_info
, logical
, len
);
5168 if(!WARN_ON(IS_ERR(em
))) {
5169 map
= em
->map_lookup
;
5170 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5172 free_extent_map(em
);
5177 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5178 struct map_lookup
*map
, int first
, int num
,
5179 int optimal
, int dev_replace_is_ongoing
)
5183 struct btrfs_device
*srcdev
;
5185 if (dev_replace_is_ongoing
&&
5186 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5187 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5188 srcdev
= fs_info
->dev_replace
.srcdev
;
5193 * try to avoid the drive that is the source drive for a
5194 * dev-replace procedure, only choose it if no other non-missing
5195 * mirror is available
5197 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5198 if (map
->stripes
[optimal
].dev
->bdev
&&
5199 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5201 for (i
= first
; i
< first
+ num
; i
++) {
5202 if (map
->stripes
[i
].dev
->bdev
&&
5203 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5208 /* we couldn't find one that doesn't fail. Just return something
5209 * and the io error handling code will clean up eventually
5214 static inline int parity_smaller(u64 a
, u64 b
)
5219 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5220 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5222 struct btrfs_bio_stripe s
;
5229 for (i
= 0; i
< num_stripes
- 1; i
++) {
5230 if (parity_smaller(bbio
->raid_map
[i
],
5231 bbio
->raid_map
[i
+1])) {
5232 s
= bbio
->stripes
[i
];
5233 l
= bbio
->raid_map
[i
];
5234 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5235 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5236 bbio
->stripes
[i
+1] = s
;
5237 bbio
->raid_map
[i
+1] = l
;
5245 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5247 struct btrfs_bio
*bbio
= kzalloc(
5248 /* the size of the btrfs_bio */
5249 sizeof(struct btrfs_bio
) +
5250 /* plus the variable array for the stripes */
5251 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5252 /* plus the variable array for the tgt dev */
5253 sizeof(int) * (real_stripes
) +
5255 * plus the raid_map, which includes both the tgt dev
5258 sizeof(u64
) * (total_stripes
),
5259 GFP_NOFS
|__GFP_NOFAIL
);
5261 atomic_set(&bbio
->error
, 0);
5262 refcount_set(&bbio
->refs
, 1);
5267 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5269 WARN_ON(!refcount_read(&bbio
->refs
));
5270 refcount_inc(&bbio
->refs
);
5273 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5277 if (refcount_dec_and_test(&bbio
->refs
))
5281 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5283 * Please note that, discard won't be sent to target device of device
5286 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5287 u64 logical
, u64 length
,
5288 struct btrfs_bio
**bbio_ret
)
5290 struct extent_map
*em
;
5291 struct map_lookup
*map
;
5292 struct btrfs_bio
*bbio
;
5296 u64 stripe_end_offset
;
5303 u32 sub_stripes
= 0;
5304 u64 stripes_per_dev
= 0;
5305 u32 remaining_stripes
= 0;
5306 u32 last_stripe
= 0;
5310 /* discard always return a bbio */
5313 em
= get_chunk_map(fs_info
, logical
, length
);
5317 map
= em
->map_lookup
;
5318 /* we don't discard raid56 yet */
5319 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5324 offset
= logical
- em
->start
;
5325 length
= min_t(u64
, em
->len
- offset
, length
);
5327 stripe_len
= map
->stripe_len
;
5329 * stripe_nr counts the total number of stripes we have to stride
5330 * to get to this block
5332 stripe_nr
= div64_u64(offset
, stripe_len
);
5334 /* stripe_offset is the offset of this block in its stripe */
5335 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5337 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5338 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5339 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5340 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5343 * after this, stripe_nr is the number of stripes on this
5344 * device we have to walk to find the data, and stripe_index is
5345 * the number of our device in the stripe array
5349 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5350 BTRFS_BLOCK_GROUP_RAID10
)) {
5351 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5354 sub_stripes
= map
->sub_stripes
;
5356 factor
= map
->num_stripes
/ sub_stripes
;
5357 num_stripes
= min_t(u64
, map
->num_stripes
,
5358 sub_stripes
* stripe_cnt
);
5359 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5360 stripe_index
*= sub_stripes
;
5361 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5362 &remaining_stripes
);
5363 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5364 last_stripe
*= sub_stripes
;
5365 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5366 BTRFS_BLOCK_GROUP_DUP
)) {
5367 num_stripes
= map
->num_stripes
;
5369 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5373 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5379 for (i
= 0; i
< num_stripes
; i
++) {
5380 bbio
->stripes
[i
].physical
=
5381 map
->stripes
[stripe_index
].physical
+
5382 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5383 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5385 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5386 BTRFS_BLOCK_GROUP_RAID10
)) {
5387 bbio
->stripes
[i
].length
= stripes_per_dev
*
5390 if (i
/ sub_stripes
< remaining_stripes
)
5391 bbio
->stripes
[i
].length
+=
5395 * Special for the first stripe and
5398 * |-------|...|-------|
5402 if (i
< sub_stripes
)
5403 bbio
->stripes
[i
].length
-=
5406 if (stripe_index
>= last_stripe
&&
5407 stripe_index
<= (last_stripe
+
5409 bbio
->stripes
[i
].length
-=
5412 if (i
== sub_stripes
- 1)
5415 bbio
->stripes
[i
].length
= length
;
5419 if (stripe_index
== map
->num_stripes
) {
5426 bbio
->map_type
= map
->type
;
5427 bbio
->num_stripes
= num_stripes
;
5429 free_extent_map(em
);
5434 * In dev-replace case, for repair case (that's the only case where the mirror
5435 * is selected explicitly when calling btrfs_map_block), blocks left of the
5436 * left cursor can also be read from the target drive.
5438 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5440 * For READ, it also needs to be supported using the same mirror number.
5442 * If the requested block is not left of the left cursor, EIO is returned. This
5443 * can happen because btrfs_num_copies() returns one more in the dev-replace
5446 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5447 u64 logical
, u64 length
,
5448 u64 srcdev_devid
, int *mirror_num
,
5451 struct btrfs_bio
*bbio
= NULL
;
5453 int index_srcdev
= 0;
5455 u64 physical_of_found
= 0;
5459 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5460 logical
, &length
, &bbio
, 0, 0);
5462 ASSERT(bbio
== NULL
);
5466 num_stripes
= bbio
->num_stripes
;
5467 if (*mirror_num
> num_stripes
) {
5469 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5470 * that means that the requested area is not left of the left
5473 btrfs_put_bbio(bbio
);
5478 * process the rest of the function using the mirror_num of the source
5479 * drive. Therefore look it up first. At the end, patch the device
5480 * pointer to the one of the target drive.
5482 for (i
= 0; i
< num_stripes
; i
++) {
5483 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5487 * In case of DUP, in order to keep it simple, only add the
5488 * mirror with the lowest physical address
5491 physical_of_found
<= bbio
->stripes
[i
].physical
)
5496 physical_of_found
= bbio
->stripes
[i
].physical
;
5499 btrfs_put_bbio(bbio
);
5505 *mirror_num
= index_srcdev
+ 1;
5506 *physical
= physical_of_found
;
5510 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5511 struct btrfs_bio
**bbio_ret
,
5512 struct btrfs_dev_replace
*dev_replace
,
5513 int *num_stripes_ret
, int *max_errors_ret
)
5515 struct btrfs_bio
*bbio
= *bbio_ret
;
5516 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5517 int tgtdev_indexes
= 0;
5518 int num_stripes
= *num_stripes_ret
;
5519 int max_errors
= *max_errors_ret
;
5522 if (op
== BTRFS_MAP_WRITE
) {
5523 int index_where_to_add
;
5526 * duplicate the write operations while the dev replace
5527 * procedure is running. Since the copying of the old disk to
5528 * the new disk takes place at run time while the filesystem is
5529 * mounted writable, the regular write operations to the old
5530 * disk have to be duplicated to go to the new disk as well.
5532 * Note that device->missing is handled by the caller, and that
5533 * the write to the old disk is already set up in the stripes
5536 index_where_to_add
= num_stripes
;
5537 for (i
= 0; i
< num_stripes
; i
++) {
5538 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5539 /* write to new disk, too */
5540 struct btrfs_bio_stripe
*new =
5541 bbio
->stripes
+ index_where_to_add
;
5542 struct btrfs_bio_stripe
*old
=
5545 new->physical
= old
->physical
;
5546 new->length
= old
->length
;
5547 new->dev
= dev_replace
->tgtdev
;
5548 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5549 index_where_to_add
++;
5554 num_stripes
= index_where_to_add
;
5555 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5556 int index_srcdev
= 0;
5558 u64 physical_of_found
= 0;
5561 * During the dev-replace procedure, the target drive can also
5562 * be used to read data in case it is needed to repair a corrupt
5563 * block elsewhere. This is possible if the requested area is
5564 * left of the left cursor. In this area, the target drive is a
5565 * full copy of the source drive.
5567 for (i
= 0; i
< num_stripes
; i
++) {
5568 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5570 * In case of DUP, in order to keep it simple,
5571 * only add the mirror with the lowest physical
5575 physical_of_found
<=
5576 bbio
->stripes
[i
].physical
)
5580 physical_of_found
= bbio
->stripes
[i
].physical
;
5584 struct btrfs_bio_stripe
*tgtdev_stripe
=
5585 bbio
->stripes
+ num_stripes
;
5587 tgtdev_stripe
->physical
= physical_of_found
;
5588 tgtdev_stripe
->length
=
5589 bbio
->stripes
[index_srcdev
].length
;
5590 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5591 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5598 *num_stripes_ret
= num_stripes
;
5599 *max_errors_ret
= max_errors
;
5600 bbio
->num_tgtdevs
= tgtdev_indexes
;
5604 static bool need_full_stripe(enum btrfs_map_op op
)
5606 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5609 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5610 enum btrfs_map_op op
,
5611 u64 logical
, u64
*length
,
5612 struct btrfs_bio
**bbio_ret
,
5613 int mirror_num
, int need_raid_map
)
5615 struct extent_map
*em
;
5616 struct map_lookup
*map
;
5626 int tgtdev_indexes
= 0;
5627 struct btrfs_bio
*bbio
= NULL
;
5628 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5629 int dev_replace_is_ongoing
= 0;
5630 int num_alloc_stripes
;
5631 int patch_the_first_stripe_for_dev_replace
= 0;
5632 u64 physical_to_patch_in_first_stripe
= 0;
5633 u64 raid56_full_stripe_start
= (u64
)-1;
5635 if (op
== BTRFS_MAP_DISCARD
)
5636 return __btrfs_map_block_for_discard(fs_info
, logical
,
5639 em
= get_chunk_map(fs_info
, logical
, *length
);
5643 map
= em
->map_lookup
;
5644 offset
= logical
- em
->start
;
5646 stripe_len
= map
->stripe_len
;
5649 * stripe_nr counts the total number of stripes we have to stride
5650 * to get to this block
5652 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5654 stripe_offset
= stripe_nr
* stripe_len
;
5655 if (offset
< stripe_offset
) {
5657 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5658 stripe_offset
, offset
, em
->start
, logical
,
5660 free_extent_map(em
);
5664 /* stripe_offset is the offset of this block in its stripe*/
5665 stripe_offset
= offset
- stripe_offset
;
5667 /* if we're here for raid56, we need to know the stripe aligned start */
5668 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5669 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5670 raid56_full_stripe_start
= offset
;
5672 /* allow a write of a full stripe, but make sure we don't
5673 * allow straddling of stripes
5675 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5677 raid56_full_stripe_start
*= full_stripe_len
;
5680 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5682 /* For writes to RAID[56], allow a full stripeset across all disks.
5683 For other RAID types and for RAID[56] reads, just allow a single
5684 stripe (on a single disk). */
5685 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5686 (op
== BTRFS_MAP_WRITE
)) {
5687 max_len
= stripe_len
* nr_data_stripes(map
) -
5688 (offset
- raid56_full_stripe_start
);
5690 /* we limit the length of each bio to what fits in a stripe */
5691 max_len
= stripe_len
- stripe_offset
;
5693 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5695 *length
= em
->len
- offset
;
5698 /* This is for when we're called from btrfs_merge_bio_hook() and all
5699 it cares about is the length */
5703 btrfs_dev_replace_lock(dev_replace
, 0);
5704 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5705 if (!dev_replace_is_ongoing
)
5706 btrfs_dev_replace_unlock(dev_replace
, 0);
5708 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5710 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5711 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
5712 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
5713 dev_replace
->srcdev
->devid
,
5715 &physical_to_patch_in_first_stripe
);
5719 patch_the_first_stripe_for_dev_replace
= 1;
5720 } else if (mirror_num
> map
->num_stripes
) {
5726 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5727 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5729 if (op
!= BTRFS_MAP_WRITE
&& op
!= BTRFS_MAP_GET_READ_MIRRORS
)
5731 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5732 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
)
5733 num_stripes
= map
->num_stripes
;
5734 else if (mirror_num
)
5735 stripe_index
= mirror_num
- 1;
5737 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5739 current
->pid
% map
->num_stripes
,
5740 dev_replace_is_ongoing
);
5741 mirror_num
= stripe_index
+ 1;
5744 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5745 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5746 num_stripes
= map
->num_stripes
;
5747 } else if (mirror_num
) {
5748 stripe_index
= mirror_num
- 1;
5753 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5754 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5756 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5757 stripe_index
*= map
->sub_stripes
;
5759 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
)
5760 num_stripes
= map
->sub_stripes
;
5761 else if (mirror_num
)
5762 stripe_index
+= mirror_num
- 1;
5764 int old_stripe_index
= stripe_index
;
5765 stripe_index
= find_live_mirror(fs_info
, map
,
5767 map
->sub_stripes
, stripe_index
+
5768 current
->pid
% map
->sub_stripes
,
5769 dev_replace_is_ongoing
);
5770 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5773 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5774 if (need_raid_map
&&
5775 (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
||
5777 /* push stripe_nr back to the start of the full stripe */
5778 stripe_nr
= div64_u64(raid56_full_stripe_start
,
5779 stripe_len
* nr_data_stripes(map
));
5781 /* RAID[56] write or recovery. Return all stripes */
5782 num_stripes
= map
->num_stripes
;
5783 max_errors
= nr_parity_stripes(map
);
5785 *length
= map
->stripe_len
;
5790 * Mirror #0 or #1 means the original data block.
5791 * Mirror #2 is RAID5 parity block.
5792 * Mirror #3 is RAID6 Q block.
5794 stripe_nr
= div_u64_rem(stripe_nr
,
5795 nr_data_stripes(map
), &stripe_index
);
5797 stripe_index
= nr_data_stripes(map
) +
5800 /* We distribute the parity blocks across stripes */
5801 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5803 if ((op
!= BTRFS_MAP_WRITE
&&
5804 op
!= BTRFS_MAP_GET_READ_MIRRORS
) &&
5810 * after this, stripe_nr is the number of stripes on this
5811 * device we have to walk to find the data, and stripe_index is
5812 * the number of our device in the stripe array
5814 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5816 mirror_num
= stripe_index
+ 1;
5818 if (stripe_index
>= map
->num_stripes
) {
5820 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5821 stripe_index
, map
->num_stripes
);
5826 num_alloc_stripes
= num_stripes
;
5827 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
5828 if (op
== BTRFS_MAP_WRITE
)
5829 num_alloc_stripes
<<= 1;
5830 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
5831 num_alloc_stripes
++;
5832 tgtdev_indexes
= num_stripes
;
5835 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5840 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
5841 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5843 /* build raid_map */
5844 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
5845 (need_full_stripe(op
) || mirror_num
> 1)) {
5849 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5850 sizeof(struct btrfs_bio_stripe
) *
5852 sizeof(int) * tgtdev_indexes
);
5854 /* Work out the disk rotation on this stripe-set */
5855 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5857 /* Fill in the logical address of each stripe */
5858 tmp
= stripe_nr
* nr_data_stripes(map
);
5859 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5860 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5861 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5863 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5864 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5865 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5870 for (i
= 0; i
< num_stripes
; i
++) {
5871 bbio
->stripes
[i
].physical
=
5872 map
->stripes
[stripe_index
].physical
+
5874 stripe_nr
* map
->stripe_len
;
5875 bbio
->stripes
[i
].dev
=
5876 map
->stripes
[stripe_index
].dev
;
5880 if (need_full_stripe(op
))
5881 max_errors
= btrfs_chunk_max_errors(map
);
5884 sort_parity_stripes(bbio
, num_stripes
);
5886 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
5887 need_full_stripe(op
)) {
5888 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
5893 bbio
->map_type
= map
->type
;
5894 bbio
->num_stripes
= num_stripes
;
5895 bbio
->max_errors
= max_errors
;
5896 bbio
->mirror_num
= mirror_num
;
5899 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5900 * mirror_num == num_stripes + 1 && dev_replace target drive is
5901 * available as a mirror
5903 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5904 WARN_ON(num_stripes
> 1);
5905 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5906 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5907 bbio
->mirror_num
= map
->num_stripes
+ 1;
5910 if (dev_replace_is_ongoing
) {
5911 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5912 btrfs_dev_replace_unlock(dev_replace
, 0);
5914 free_extent_map(em
);
5918 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5919 u64 logical
, u64
*length
,
5920 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5922 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5926 /* For Scrub/replace */
5927 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5928 u64 logical
, u64
*length
,
5929 struct btrfs_bio
**bbio_ret
)
5931 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
5934 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
,
5935 u64 chunk_start
, u64 physical
, u64 devid
,
5936 u64
**logical
, int *naddrs
, int *stripe_len
)
5938 struct extent_map
*em
;
5939 struct map_lookup
*map
;
5947 em
= get_chunk_map(fs_info
, chunk_start
, 1);
5951 map
= em
->map_lookup
;
5953 rmap_len
= map
->stripe_len
;
5955 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5956 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5957 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5958 length
= div_u64(length
, map
->num_stripes
);
5959 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5960 length
= div_u64(length
, nr_data_stripes(map
));
5961 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5964 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5965 BUG_ON(!buf
); /* -ENOMEM */
5967 for (i
= 0; i
< map
->num_stripes
; i
++) {
5968 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5970 if (map
->stripes
[i
].physical
> physical
||
5971 map
->stripes
[i
].physical
+ length
<= physical
)
5974 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5975 stripe_nr
= div64_u64(stripe_nr
, map
->stripe_len
);
5977 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5978 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5979 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5980 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5981 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5982 } /* else if RAID[56], multiply by nr_data_stripes().
5983 * Alternatively, just use rmap_len below instead of
5984 * map->stripe_len */
5986 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5987 WARN_ON(nr
>= map
->num_stripes
);
5988 for (j
= 0; j
< nr
; j
++) {
5989 if (buf
[j
] == bytenr
)
5993 WARN_ON(nr
>= map
->num_stripes
);
6000 *stripe_len
= rmap_len
;
6002 free_extent_map(em
);
6006 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6008 bio
->bi_private
= bbio
->private;
6009 bio
->bi_end_io
= bbio
->end_io
;
6012 btrfs_put_bbio(bbio
);
6015 static void btrfs_end_bio(struct bio
*bio
)
6017 struct btrfs_bio
*bbio
= bio
->bi_private
;
6018 int is_orig_bio
= 0;
6020 if (bio
->bi_status
) {
6021 atomic_inc(&bbio
->error
);
6022 if (bio
->bi_status
== BLK_STS_IOERR
||
6023 bio
->bi_status
== BLK_STS_TARGET
) {
6024 unsigned int stripe_index
=
6025 btrfs_io_bio(bio
)->stripe_index
;
6026 struct btrfs_device
*dev
;
6028 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6029 dev
= bbio
->stripes
[stripe_index
].dev
;
6031 if (bio_op(bio
) == REQ_OP_WRITE
)
6032 btrfs_dev_stat_inc(dev
,
6033 BTRFS_DEV_STAT_WRITE_ERRS
);
6035 btrfs_dev_stat_inc(dev
,
6036 BTRFS_DEV_STAT_READ_ERRS
);
6037 if (bio
->bi_opf
& REQ_PREFLUSH
)
6038 btrfs_dev_stat_inc(dev
,
6039 BTRFS_DEV_STAT_FLUSH_ERRS
);
6040 btrfs_dev_stat_print_on_error(dev
);
6045 if (bio
== bbio
->orig_bio
)
6048 btrfs_bio_counter_dec(bbio
->fs_info
);
6050 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6053 bio
= bbio
->orig_bio
;
6056 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6057 /* only send an error to the higher layers if it is
6058 * beyond the tolerance of the btrfs bio
6060 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6061 bio
->bi_status
= BLK_STS_IOERR
;
6064 * this bio is actually up to date, we didn't
6065 * go over the max number of errors
6070 btrfs_end_bbio(bbio
, bio
);
6071 } else if (!is_orig_bio
) {
6077 * see run_scheduled_bios for a description of why bios are collected for
6080 * This will add one bio to the pending list for a device and make sure
6081 * the work struct is scheduled.
6083 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6086 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6087 int should_queue
= 1;
6088 struct btrfs_pending_bios
*pending_bios
;
6090 if (device
->missing
|| !device
->bdev
) {
6095 /* don't bother with additional async steps for reads, right now */
6096 if (bio_op(bio
) == REQ_OP_READ
) {
6098 btrfsic_submit_bio(bio
);
6104 * nr_async_bios allows us to reliably return congestion to the
6105 * higher layers. Otherwise, the async bio makes it appear we have
6106 * made progress against dirty pages when we've really just put it
6107 * on a queue for later
6109 atomic_inc(&fs_info
->nr_async_bios
);
6110 WARN_ON(bio
->bi_next
);
6111 bio
->bi_next
= NULL
;
6113 spin_lock(&device
->io_lock
);
6114 if (op_is_sync(bio
->bi_opf
))
6115 pending_bios
= &device
->pending_sync_bios
;
6117 pending_bios
= &device
->pending_bios
;
6119 if (pending_bios
->tail
)
6120 pending_bios
->tail
->bi_next
= bio
;
6122 pending_bios
->tail
= bio
;
6123 if (!pending_bios
->head
)
6124 pending_bios
->head
= bio
;
6125 if (device
->running_pending
)
6128 spin_unlock(&device
->io_lock
);
6131 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6134 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6135 u64 physical
, int dev_nr
, int async
)
6137 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6138 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6140 bio
->bi_private
= bbio
;
6141 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6142 bio
->bi_end_io
= btrfs_end_bio
;
6143 bio
->bi_iter
.bi_sector
= physical
>> 9;
6146 struct rcu_string
*name
;
6149 name
= rcu_dereference(dev
->name
);
6150 btrfs_debug(fs_info
,
6151 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6152 bio_op(bio
), bio
->bi_opf
,
6153 (u64
)bio
->bi_iter
.bi_sector
,
6154 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6155 bio
->bi_iter
.bi_size
);
6159 bio_set_dev(bio
, dev
->bdev
);
6161 btrfs_bio_counter_inc_noblocked(fs_info
);
6164 btrfs_schedule_bio(dev
, bio
);
6166 btrfsic_submit_bio(bio
);
6169 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6171 atomic_inc(&bbio
->error
);
6172 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6173 /* Should be the original bio. */
6174 WARN_ON(bio
!= bbio
->orig_bio
);
6176 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6177 bio
->bi_iter
.bi_sector
= logical
>> 9;
6178 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6179 bio
->bi_status
= BLK_STS_IOERR
;
6181 bio
->bi_status
= BLK_STS_OK
;
6182 btrfs_end_bbio(bbio
, bio
);
6186 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6187 int mirror_num
, int async_submit
)
6189 struct btrfs_device
*dev
;
6190 struct bio
*first_bio
= bio
;
6191 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6197 struct btrfs_bio
*bbio
= NULL
;
6199 length
= bio
->bi_iter
.bi_size
;
6200 map_length
= length
;
6202 btrfs_bio_counter_inc_blocked(fs_info
);
6203 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6204 &map_length
, &bbio
, mirror_num
, 1);
6206 btrfs_bio_counter_dec(fs_info
);
6207 return errno_to_blk_status(ret
);
6210 total_devs
= bbio
->num_stripes
;
6211 bbio
->orig_bio
= first_bio
;
6212 bbio
->private = first_bio
->bi_private
;
6213 bbio
->end_io
= first_bio
->bi_end_io
;
6214 bbio
->fs_info
= fs_info
;
6215 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6217 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6218 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6219 /* In this case, map_length has been set to the length of
6220 a single stripe; not the whole write */
6221 if (bio_op(bio
) == REQ_OP_WRITE
) {
6222 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6225 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6226 map_length
, mirror_num
, 1);
6229 btrfs_bio_counter_dec(fs_info
);
6230 return errno_to_blk_status(ret
);
6233 if (map_length
< length
) {
6235 "mapping failed logical %llu bio len %llu len %llu",
6236 logical
, length
, map_length
);
6240 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6241 dev
= bbio
->stripes
[dev_nr
].dev
;
6242 if (!dev
|| !dev
->bdev
||
6243 (bio_op(first_bio
) == REQ_OP_WRITE
&& !dev
->writeable
)) {
6244 bbio_error(bbio
, first_bio
, logical
);
6248 if (dev_nr
< total_devs
- 1)
6249 bio
= btrfs_bio_clone(first_bio
);
6253 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6254 dev_nr
, async_submit
);
6256 btrfs_bio_counter_dec(fs_info
);
6260 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6263 struct btrfs_device
*device
;
6264 struct btrfs_fs_devices
*cur_devices
;
6266 cur_devices
= fs_info
->fs_devices
;
6267 while (cur_devices
) {
6269 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
)) {
6270 device
= find_device(cur_devices
, devid
, uuid
);
6274 cur_devices
= cur_devices
->seed
;
6279 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6280 u64 devid
, u8
*dev_uuid
)
6282 struct btrfs_device
*device
;
6283 unsigned int nofs_flag
;
6286 * We call this under the chunk_mutex, so we want to use NOFS for this
6287 * allocation, however we don't want to change btrfs_alloc_device() to
6288 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6291 nofs_flag
= memalloc_nofs_save();
6292 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6293 memalloc_nofs_restore(nofs_flag
);
6297 list_add(&device
->dev_list
, &fs_devices
->devices
);
6298 device
->fs_devices
= fs_devices
;
6299 fs_devices
->num_devices
++;
6301 device
->missing
= 1;
6302 fs_devices
->missing_devices
++;
6308 * btrfs_alloc_device - allocate struct btrfs_device
6309 * @fs_info: used only for generating a new devid, can be NULL if
6310 * devid is provided (i.e. @devid != NULL).
6311 * @devid: a pointer to devid for this device. If NULL a new devid
6313 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6316 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6317 * on error. Returned struct is not linked onto any lists and can be
6318 * destroyed with kfree() right away.
6320 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6324 struct btrfs_device
*dev
;
6327 if (WARN_ON(!devid
&& !fs_info
))
6328 return ERR_PTR(-EINVAL
);
6330 dev
= __alloc_device();
6339 ret
= find_next_devid(fs_info
, &tmp
);
6342 return ERR_PTR(ret
);
6348 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6350 generate_random_uuid(dev
->uuid
);
6352 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6353 pending_bios_fn
, NULL
, NULL
);
6358 /* Return -EIO if any error, otherwise return 0. */
6359 static int btrfs_check_chunk_valid(struct btrfs_fs_info
*fs_info
,
6360 struct extent_buffer
*leaf
,
6361 struct btrfs_chunk
*chunk
, u64 logical
)
6371 length
= btrfs_chunk_length(leaf
, chunk
);
6372 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6373 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6374 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6375 type
= btrfs_chunk_type(leaf
, chunk
);
6378 btrfs_err(fs_info
, "invalid chunk num_stripes: %u",
6382 if (!IS_ALIGNED(logical
, fs_info
->sectorsize
)) {
6383 btrfs_err(fs_info
, "invalid chunk logical %llu", logical
);
6386 if (btrfs_chunk_sector_size(leaf
, chunk
) != fs_info
->sectorsize
) {
6387 btrfs_err(fs_info
, "invalid chunk sectorsize %u",
6388 btrfs_chunk_sector_size(leaf
, chunk
));
6391 if (!length
|| !IS_ALIGNED(length
, fs_info
->sectorsize
)) {
6392 btrfs_err(fs_info
, "invalid chunk length %llu", length
);
6395 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6396 btrfs_err(fs_info
, "invalid chunk stripe length: %llu",
6400 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6402 btrfs_err(fs_info
, "unrecognized chunk type: %llu",
6403 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6404 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6405 btrfs_chunk_type(leaf
, chunk
));
6409 if ((type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) == 0) {
6410 btrfs_err(fs_info
, "missing chunk type flag: 0x%llx", type
);
6414 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
6415 (type
& (BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
))) {
6417 "system chunk with data or metadata type: 0x%llx", type
);
6421 features
= btrfs_super_incompat_flags(fs_info
->super_copy
);
6422 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
6426 if ((type
& BTRFS_BLOCK_GROUP_METADATA
) &&
6427 (type
& BTRFS_BLOCK_GROUP_DATA
)) {
6429 "mixed chunk type in non-mixed mode: 0x%llx", type
);
6434 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6435 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
!= 2) ||
6436 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6437 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6438 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
!= 2) ||
6439 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6440 num_stripes
!= 1)) {
6442 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6443 num_stripes
, sub_stripes
,
6444 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6451 static int read_one_chunk(struct btrfs_fs_info
*fs_info
, struct btrfs_key
*key
,
6452 struct extent_buffer
*leaf
,
6453 struct btrfs_chunk
*chunk
)
6455 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6456 struct map_lookup
*map
;
6457 struct extent_map
*em
;
6461 u8 uuid
[BTRFS_UUID_SIZE
];
6466 logical
= key
->offset
;
6467 length
= btrfs_chunk_length(leaf
, chunk
);
6468 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6470 ret
= btrfs_check_chunk_valid(fs_info
, leaf
, chunk
, logical
);
6474 read_lock(&map_tree
->map_tree
.lock
);
6475 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6476 read_unlock(&map_tree
->map_tree
.lock
);
6478 /* already mapped? */
6479 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6480 free_extent_map(em
);
6483 free_extent_map(em
);
6486 em
= alloc_extent_map();
6489 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6491 free_extent_map(em
);
6495 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6496 em
->map_lookup
= map
;
6497 em
->start
= logical
;
6500 em
->block_start
= 0;
6501 em
->block_len
= em
->len
;
6503 map
->num_stripes
= num_stripes
;
6504 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6505 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6506 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6507 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6508 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6509 for (i
= 0; i
< num_stripes
; i
++) {
6510 map
->stripes
[i
].physical
=
6511 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6512 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6513 read_extent_buffer(leaf
, uuid
, (unsigned long)
6514 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6516 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
, devid
,
6518 if (!map
->stripes
[i
].dev
&&
6519 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6520 free_extent_map(em
);
6521 btrfs_report_missing_device(fs_info
, devid
, uuid
);
6524 if (!map
->stripes
[i
].dev
) {
6525 map
->stripes
[i
].dev
=
6526 add_missing_dev(fs_info
->fs_devices
, devid
,
6528 if (!map
->stripes
[i
].dev
) {
6529 free_extent_map(em
);
6532 btrfs_report_missing_device(fs_info
, devid
, uuid
);
6534 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6537 write_lock(&map_tree
->map_tree
.lock
);
6538 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6539 write_unlock(&map_tree
->map_tree
.lock
);
6542 "failed to add chunk map, start=%llu len=%llu: %d",
6543 em
->start
, em
->len
, ret
);
6545 free_extent_map(em
);
6550 static void fill_device_from_item(struct extent_buffer
*leaf
,
6551 struct btrfs_dev_item
*dev_item
,
6552 struct btrfs_device
*device
)
6556 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6557 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6558 device
->total_bytes
= device
->disk_total_bytes
;
6559 device
->commit_total_bytes
= device
->disk_total_bytes
;
6560 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6561 device
->commit_bytes_used
= device
->bytes_used
;
6562 device
->type
= btrfs_device_type(leaf
, dev_item
);
6563 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6564 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6565 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6566 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6567 device
->is_tgtdev_for_dev_replace
= 0;
6569 ptr
= btrfs_device_uuid(dev_item
);
6570 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6573 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6576 struct btrfs_fs_devices
*fs_devices
;
6579 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6582 fs_devices
= fs_info
->fs_devices
->seed
;
6583 while (fs_devices
) {
6584 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6587 fs_devices
= fs_devices
->seed
;
6590 fs_devices
= find_fsid(fsid
);
6592 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6593 return ERR_PTR(-ENOENT
);
6595 fs_devices
= alloc_fs_devices(fsid
);
6596 if (IS_ERR(fs_devices
))
6599 fs_devices
->seeding
= 1;
6600 fs_devices
->opened
= 1;
6604 fs_devices
= clone_fs_devices(fs_devices
);
6605 if (IS_ERR(fs_devices
))
6608 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6609 fs_info
->bdev_holder
);
6611 free_fs_devices(fs_devices
);
6612 fs_devices
= ERR_PTR(ret
);
6616 if (!fs_devices
->seeding
) {
6617 __btrfs_close_devices(fs_devices
);
6618 free_fs_devices(fs_devices
);
6619 fs_devices
= ERR_PTR(-EINVAL
);
6623 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6624 fs_info
->fs_devices
->seed
= fs_devices
;
6629 static int read_one_dev(struct btrfs_fs_info
*fs_info
,
6630 struct extent_buffer
*leaf
,
6631 struct btrfs_dev_item
*dev_item
)
6633 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6634 struct btrfs_device
*device
;
6637 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6638 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6640 devid
= btrfs_device_id(leaf
, dev_item
);
6641 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6643 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6646 if (memcmp(fs_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
)) {
6647 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6648 if (IS_ERR(fs_devices
))
6649 return PTR_ERR(fs_devices
);
6652 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
6654 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6655 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
);
6659 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6662 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
);
6664 if (!device
->bdev
) {
6665 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
);
6666 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6670 if(!device
->bdev
&& !device
->missing
) {
6672 * this happens when a device that was properly setup
6673 * in the device info lists suddenly goes bad.
6674 * device->bdev is NULL, and so we have to set
6675 * device->missing to one here
6677 device
->fs_devices
->missing_devices
++;
6678 device
->missing
= 1;
6681 /* Move the device to its own fs_devices */
6682 if (device
->fs_devices
!= fs_devices
) {
6683 ASSERT(device
->missing
);
6685 list_move(&device
->dev_list
, &fs_devices
->devices
);
6686 device
->fs_devices
->num_devices
--;
6687 fs_devices
->num_devices
++;
6689 device
->fs_devices
->missing_devices
--;
6690 fs_devices
->missing_devices
++;
6692 device
->fs_devices
= fs_devices
;
6696 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6697 BUG_ON(device
->writeable
);
6698 if (device
->generation
!=
6699 btrfs_device_generation(leaf
, dev_item
))
6703 fill_device_from_item(leaf
, dev_item
, device
);
6704 device
->in_fs_metadata
= 1;
6705 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6706 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6707 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6708 &fs_info
->free_chunk_space
);
6714 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6716 struct btrfs_root
*root
= fs_info
->tree_root
;
6717 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6718 struct extent_buffer
*sb
;
6719 struct btrfs_disk_key
*disk_key
;
6720 struct btrfs_chunk
*chunk
;
6722 unsigned long sb_array_offset
;
6729 struct btrfs_key key
;
6731 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6733 * This will create extent buffer of nodesize, superblock size is
6734 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6735 * overallocate but we can keep it as-is, only the first page is used.
6737 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6740 set_extent_buffer_uptodate(sb
);
6741 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6743 * The sb extent buffer is artificial and just used to read the system array.
6744 * set_extent_buffer_uptodate() call does not properly mark all it's
6745 * pages up-to-date when the page is larger: extent does not cover the
6746 * whole page and consequently check_page_uptodate does not find all
6747 * the page's extents up-to-date (the hole beyond sb),
6748 * write_extent_buffer then triggers a WARN_ON.
6750 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6751 * but sb spans only this function. Add an explicit SetPageUptodate call
6752 * to silence the warning eg. on PowerPC 64.
6754 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6755 SetPageUptodate(sb
->pages
[0]);
6757 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6758 array_size
= btrfs_super_sys_array_size(super_copy
);
6760 array_ptr
= super_copy
->sys_chunk_array
;
6761 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6764 while (cur_offset
< array_size
) {
6765 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6766 len
= sizeof(*disk_key
);
6767 if (cur_offset
+ len
> array_size
)
6768 goto out_short_read
;
6770 btrfs_disk_key_to_cpu(&key
, disk_key
);
6773 sb_array_offset
+= len
;
6776 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6777 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6779 * At least one btrfs_chunk with one stripe must be
6780 * present, exact stripe count check comes afterwards
6782 len
= btrfs_chunk_item_size(1);
6783 if (cur_offset
+ len
> array_size
)
6784 goto out_short_read
;
6786 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6789 "invalid number of stripes %u in sys_array at offset %u",
6790 num_stripes
, cur_offset
);
6795 type
= btrfs_chunk_type(sb
, chunk
);
6796 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6798 "invalid chunk type %llu in sys_array at offset %u",
6804 len
= btrfs_chunk_item_size(num_stripes
);
6805 if (cur_offset
+ len
> array_size
)
6806 goto out_short_read
;
6808 ret
= read_one_chunk(fs_info
, &key
, sb
, chunk
);
6813 "unexpected item type %u in sys_array at offset %u",
6814 (u32
)key
.type
, cur_offset
);
6819 sb_array_offset
+= len
;
6822 clear_extent_buffer_uptodate(sb
);
6823 free_extent_buffer_stale(sb
);
6827 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6829 clear_extent_buffer_uptodate(sb
);
6830 free_extent_buffer_stale(sb
);
6834 void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6837 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing", devid
, uuid
);
6841 * Check if all chunks in the fs are OK for read-write degraded mount
6843 * Return true if all chunks meet the minimal RW mount requirements.
6844 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6846 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
)
6848 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6849 struct extent_map
*em
;
6853 read_lock(&map_tree
->map_tree
.lock
);
6854 em
= lookup_extent_mapping(&map_tree
->map_tree
, 0, (u64
)-1);
6855 read_unlock(&map_tree
->map_tree
.lock
);
6856 /* No chunk at all? Return false anyway */
6862 struct map_lookup
*map
;
6867 map
= em
->map_lookup
;
6869 btrfs_get_num_tolerated_disk_barrier_failures(
6871 for (i
= 0; i
< map
->num_stripes
; i
++) {
6872 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
6874 if (!dev
|| !dev
->bdev
|| dev
->missing
||
6875 dev
->last_flush_error
)
6878 if (missing
> max_tolerated
) {
6880 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6881 em
->start
, missing
, max_tolerated
);
6882 free_extent_map(em
);
6886 next_start
= extent_map_end(em
);
6887 free_extent_map(em
);
6889 read_lock(&map_tree
->map_tree
.lock
);
6890 em
= lookup_extent_mapping(&map_tree
->map_tree
, next_start
,
6891 (u64
)(-1) - next_start
);
6892 read_unlock(&map_tree
->map_tree
.lock
);
6898 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
6900 struct btrfs_root
*root
= fs_info
->chunk_root
;
6901 struct btrfs_path
*path
;
6902 struct extent_buffer
*leaf
;
6903 struct btrfs_key key
;
6904 struct btrfs_key found_key
;
6909 path
= btrfs_alloc_path();
6913 mutex_lock(&uuid_mutex
);
6914 mutex_lock(&fs_info
->chunk_mutex
);
6917 * It is possible for mount and umount to race in such a way that
6918 * we execute this code path, but open_fs_devices failed to clear
6919 * total_rw_bytes. We certainly want it cleared before reading the
6920 * device items, so clear it here.
6922 fs_info
->fs_devices
->total_rw_bytes
= 0;
6925 * Read all device items, and then all the chunk items. All
6926 * device items are found before any chunk item (their object id
6927 * is smaller than the lowest possible object id for a chunk
6928 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6930 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6933 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6937 leaf
= path
->nodes
[0];
6938 slot
= path
->slots
[0];
6939 if (slot
>= btrfs_header_nritems(leaf
)) {
6940 ret
= btrfs_next_leaf(root
, path
);
6947 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6948 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6949 struct btrfs_dev_item
*dev_item
;
6950 dev_item
= btrfs_item_ptr(leaf
, slot
,
6951 struct btrfs_dev_item
);
6952 ret
= read_one_dev(fs_info
, leaf
, dev_item
);
6956 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6957 struct btrfs_chunk
*chunk
;
6958 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6959 ret
= read_one_chunk(fs_info
, &found_key
, leaf
, chunk
);
6967 * After loading chunk tree, we've got all device information,
6968 * do another round of validation checks.
6970 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
6972 "super_num_devices %llu mismatch with num_devices %llu found here",
6973 btrfs_super_num_devices(fs_info
->super_copy
),
6978 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
6979 fs_info
->fs_devices
->total_rw_bytes
) {
6981 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6982 btrfs_super_total_bytes(fs_info
->super_copy
),
6983 fs_info
->fs_devices
->total_rw_bytes
);
6989 mutex_unlock(&fs_info
->chunk_mutex
);
6990 mutex_unlock(&uuid_mutex
);
6992 btrfs_free_path(path
);
6996 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6998 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6999 struct btrfs_device
*device
;
7001 while (fs_devices
) {
7002 mutex_lock(&fs_devices
->device_list_mutex
);
7003 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7004 device
->fs_info
= fs_info
;
7005 mutex_unlock(&fs_devices
->device_list_mutex
);
7007 fs_devices
= fs_devices
->seed
;
7011 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
7015 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7016 btrfs_dev_stat_reset(dev
, i
);
7019 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7021 struct btrfs_key key
;
7022 struct btrfs_key found_key
;
7023 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7024 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7025 struct extent_buffer
*eb
;
7028 struct btrfs_device
*device
;
7029 struct btrfs_path
*path
= NULL
;
7032 path
= btrfs_alloc_path();
7038 mutex_lock(&fs_devices
->device_list_mutex
);
7039 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7041 struct btrfs_dev_stats_item
*ptr
;
7043 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7044 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7045 key
.offset
= device
->devid
;
7046 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
7048 __btrfs_reset_dev_stats(device
);
7049 device
->dev_stats_valid
= 1;
7050 btrfs_release_path(path
);
7053 slot
= path
->slots
[0];
7054 eb
= path
->nodes
[0];
7055 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
7056 item_size
= btrfs_item_size_nr(eb
, slot
);
7058 ptr
= btrfs_item_ptr(eb
, slot
,
7059 struct btrfs_dev_stats_item
);
7061 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7062 if (item_size
>= (1 + i
) * sizeof(__le64
))
7063 btrfs_dev_stat_set(device
, i
,
7064 btrfs_dev_stats_value(eb
, ptr
, i
));
7066 btrfs_dev_stat_reset(device
, i
);
7069 device
->dev_stats_valid
= 1;
7070 btrfs_dev_stat_print_on_load(device
);
7071 btrfs_release_path(path
);
7073 mutex_unlock(&fs_devices
->device_list_mutex
);
7076 btrfs_free_path(path
);
7077 return ret
< 0 ? ret
: 0;
7080 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7081 struct btrfs_fs_info
*fs_info
,
7082 struct btrfs_device
*device
)
7084 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7085 struct btrfs_path
*path
;
7086 struct btrfs_key key
;
7087 struct extent_buffer
*eb
;
7088 struct btrfs_dev_stats_item
*ptr
;
7092 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7093 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7094 key
.offset
= device
->devid
;
7096 path
= btrfs_alloc_path();
7099 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7101 btrfs_warn_in_rcu(fs_info
,
7102 "error %d while searching for dev_stats item for device %s",
7103 ret
, rcu_str_deref(device
->name
));
7108 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7109 /* need to delete old one and insert a new one */
7110 ret
= btrfs_del_item(trans
, dev_root
, path
);
7112 btrfs_warn_in_rcu(fs_info
,
7113 "delete too small dev_stats item for device %s failed %d",
7114 rcu_str_deref(device
->name
), ret
);
7121 /* need to insert a new item */
7122 btrfs_release_path(path
);
7123 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7124 &key
, sizeof(*ptr
));
7126 btrfs_warn_in_rcu(fs_info
,
7127 "insert dev_stats item for device %s failed %d",
7128 rcu_str_deref(device
->name
), ret
);
7133 eb
= path
->nodes
[0];
7134 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7135 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7136 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7137 btrfs_dev_stat_read(device
, i
));
7138 btrfs_mark_buffer_dirty(eb
);
7141 btrfs_free_path(path
);
7146 * called from commit_transaction. Writes all changed device stats to disk.
7148 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7149 struct btrfs_fs_info
*fs_info
)
7151 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7152 struct btrfs_device
*device
;
7156 mutex_lock(&fs_devices
->device_list_mutex
);
7157 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7158 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7159 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7164 * There is a LOAD-LOAD control dependency between the value of
7165 * dev_stats_ccnt and updating the on-disk values which requires
7166 * reading the in-memory counters. Such control dependencies
7167 * require explicit read memory barriers.
7169 * This memory barriers pairs with smp_mb__before_atomic in
7170 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7171 * barrier implied by atomic_xchg in
7172 * btrfs_dev_stats_read_and_reset
7176 ret
= update_dev_stat_item(trans
, fs_info
, device
);
7178 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7180 mutex_unlock(&fs_devices
->device_list_mutex
);
7185 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7187 btrfs_dev_stat_inc(dev
, index
);
7188 btrfs_dev_stat_print_on_error(dev
);
7191 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7193 if (!dev
->dev_stats_valid
)
7195 btrfs_err_rl_in_rcu(dev
->fs_info
,
7196 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7197 rcu_str_deref(dev
->name
),
7198 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7199 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7200 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7201 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7202 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7205 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7209 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7210 if (btrfs_dev_stat_read(dev
, i
) != 0)
7212 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7213 return; /* all values == 0, suppress message */
7215 btrfs_info_in_rcu(dev
->fs_info
,
7216 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7217 rcu_str_deref(dev
->name
),
7218 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7219 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7220 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7221 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7222 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7225 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7226 struct btrfs_ioctl_get_dev_stats
*stats
)
7228 struct btrfs_device
*dev
;
7229 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7232 mutex_lock(&fs_devices
->device_list_mutex
);
7233 dev
= btrfs_find_device(fs_info
, stats
->devid
, NULL
, NULL
);
7234 mutex_unlock(&fs_devices
->device_list_mutex
);
7237 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7239 } else if (!dev
->dev_stats_valid
) {
7240 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7242 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7243 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7244 if (stats
->nr_items
> i
)
7246 btrfs_dev_stat_read_and_reset(dev
, i
);
7248 btrfs_dev_stat_reset(dev
, i
);
7250 btrfs_info(fs_info
, "device stats zeroed by %s (%d)",
7251 current
->comm
, task_pid_nr(current
));
7253 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7254 if (stats
->nr_items
> i
)
7255 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7257 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7258 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7262 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7264 struct buffer_head
*bh
;
7265 struct btrfs_super_block
*disk_super
;
7271 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7274 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7277 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7279 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7280 set_buffer_dirty(bh
);
7281 sync_dirty_buffer(bh
);
7285 /* Notify udev that device has changed */
7286 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7288 /* Update ctime/mtime for device path for libblkid */
7289 update_dev_time(device_path
);
7293 * Update the size of all devices, which is used for writing out the
7296 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7298 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7299 struct btrfs_device
*curr
, *next
;
7301 if (list_empty(&fs_devices
->resized_devices
))
7304 mutex_lock(&fs_devices
->device_list_mutex
);
7305 mutex_lock(&fs_info
->chunk_mutex
);
7306 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7308 list_del_init(&curr
->resized_list
);
7309 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7311 mutex_unlock(&fs_info
->chunk_mutex
);
7312 mutex_unlock(&fs_devices
->device_list_mutex
);
7315 /* Must be invoked during the transaction commit */
7316 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info
*fs_info
,
7317 struct btrfs_transaction
*transaction
)
7319 struct extent_map
*em
;
7320 struct map_lookup
*map
;
7321 struct btrfs_device
*dev
;
7324 if (list_empty(&transaction
->pending_chunks
))
7327 /* In order to kick the device replace finish process */
7328 mutex_lock(&fs_info
->chunk_mutex
);
7329 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7330 map
= em
->map_lookup
;
7332 for (i
= 0; i
< map
->num_stripes
; i
++) {
7333 dev
= map
->stripes
[i
].dev
;
7334 dev
->commit_bytes_used
= dev
->bytes_used
;
7335 dev
->has_pending_chunks
= false;
7338 mutex_unlock(&fs_info
->chunk_mutex
);
7341 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7343 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7344 while (fs_devices
) {
7345 fs_devices
->fs_info
= fs_info
;
7346 fs_devices
= fs_devices
->seed
;
7350 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7352 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7353 while (fs_devices
) {
7354 fs_devices
->fs_info
= NULL
;
7355 fs_devices
= fs_devices
->seed
;